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• Generalizations of assortativity metrics for multilayer networks are provided.
• The metrics show that degree–degree correlations should be measured system-wide.
• The new tools are applied to study disease spreading on multilayer networks.
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a b s t r a c t

We propose a generalization of the concept of assortativity based on the tensorial representation of
multilayer networks, covering the definitions given in terms of Pearson and Spearman coefficients.
Our approach can also be applied to weighted networks and provides information about correlations
considering pairs of layers. By analyzing the multilayer representation of the airport transportation
network, we show that contrasting results are obtained when the layers are analyzed independently or
as an interconnected system. Finally, we study the impact of the level of assortativity and heterogeneity
between layers on the spreading of diseases. Our results highlight the need of studying degree–degree
correlations on multilayer systems, instead of on aggregated networks.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The use of network science to study the structure and dynam-
ics of complex systems has proved to be a successful approach to
understand the organization and function of several natural and ar-
tificial systems [1–4]. The traditional framework used up to a few
years ago represents the structure of complex systems as single-
layer (also referred to as monoplex) networks, in which only one
type of connection is accounted for. However, this approach is lim-
ited because most natural and artificial systems such as the brain,
our society or modern transportation networks [5,6], are made up
by different constituents and/or different types of interaction. In-
deed, their structure is organized in layers. For instance, in social
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networks individuals can be connected according to different so-
cial ties, such as friendship or family relationship (e.g. [7]). In trans-
portation networks, routes of a single airline can be represented
as a network, whose vertices (destinations) can be mapped into
networks of several companies [8]. Gene co-expression networks
consist of layers, each one representing a different signaling path-
way or expression channel [9]. Therefore, mapping out the struc-
ture of these and similar systems as amonoplex network could lead
to miss relevant information that could not be captured if the sin-
gle layers are analyzed separately nor if all layers are collapsed al-
together in an aggregated graph. Additionally, note that in most
of these interconnected systems, the information travels not only
among vertices of the same layer, but also between pairs of layers.

Recent advances in modeling the aforementioned systems in-
clude new mathematical formulations [10], the generalization of
different metrics [6,10–12] and the impact of the multilayer struc-
ture on several dynamical processes [13,11,14–16]. Although clus-
tering [12], centrality [11,17] and spectral properties [13,11,18]
of multilayer networks have been addressed, a measure to quan-
tify degree–degree correlations in multilayers is still lacking.
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Degree–degree correlations is a fundamental property of single-
layer networks, impacting the spreading of diseases, synchroniza-
tion phenomena and systems’ resilience [19,3]. Additionally, it has
been reported that different correlations arise in different kinds
of networks: social networks are in general assortative, meaning
that highly connected nodes tend to link with each other, whereas
technological and biological systems have disassortative struc-
tures, in which high degree nodes are likely attached to low degree
nodes [20].

For networks made up of more than one layer, only recently,
Nicosia and Latora [21] considered the correlation between the
degrees in twodifferent layers. However, theirmethodology is only
for node-aligned multiplex networks, which are special cases of
multilayer networks (see [5]). In fact,multiplex networks aremade
up of N nodes that can be in one or more interacting layers. The
links in each layer represent a given mode of interaction between
the set of nodes belonging to that layer, whereas links connecting
different layers stand for the different modes of interaction
between objects involved in [5].

In this paper we study degree–degree correlations in mul-
tilayer systems and propose a way to generalize previous as-
sortativity metrics by considering the tensorial formulation
introduced in [10]. Our approach also covers a weighted version of
assortativity [22] and the case in which the assortativity is given
by the Spearman correlation coefficient, generalizing the defini-
tion in [23]. Aside from those, it worth mention the generaliza-
tion for weighted and directed networks [24]. The study of a real
dataset corresponding to the airport transportationnetwork shows
a contrasting behavior between the analyses of each layers inde-
pendently and altogether, which reinforces the need for such a
generalization of the assortativity measure. Finally, we study the
influence of degree–degree correlations on epidemic spreading in
multilayer networks. We verify that the impact of the disease de-
pends on degree–degree correlations and also on the level of het-
erogeneity between the layers.

2. Assortativity in multilayer networks

Tensors are suitable for representation of multilayer networks.
As showed in [10], tensors allow us to consider a branch of new
relationships between nodes and layers, by encoding a multilayer

network as a fourth order mixed tensor, Mαδ̃
βγ̃

, i.e. 2-covariant and

2-contravariant basis, in the Euclidean space. Such representation
is convenient for many operations, as discussed in [10]. We use

the definition of the interlayer adjacency tensor Cα
β (h̃r̃) that is a

second order tensor which has the information of the relationships

between nodes in layers h̃ and r̃ . Note that Cα
β (r̃ r̃) is the adjacency

matrix for the layer r̃ and belongs to R
N×N space. Then, the

multilayer adjacency tensor is expressed as the summation over all

layers L of the tensorial product of the adjacency tensors, Cα
β (h̃r̃),

and the canonical Euclidean basis. Mathematically,

M
αγ̃

βδ̃
=

L


h̃,r̃

Cα
β (h̃r̃)E δ̃

γ̃ (h̃r̃) (1)

which belongs to R
N×N×L×L space.

Following Einstein’s summation convention, the assortativity
coefficient can be written as
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M
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(2)

where u is the 1-tensor, which is a tensor of rank 1 and has all
elements equal to 1, Wα

β is a second order tensor that summarizes

the information that is being extracted and M = W
α
β U

β
α is a

normalization constant.

Let us explain in more details all terms appearing in the
expression of ρ(Wα

β ). First, we define

Q α = W
α
β u

β , (3)

which is a 1-contravariant tensor and

Qβ = W
α
β uα (4)

which is a 1-covariant tensor. Moreover, the indices are related
to the direction of the relationships between nodes. Such a choice
ensures a more general expression, capturing degree correlations
on non-symmetric tensors and, consequently, in directed and
weighted networks.

Due to themultiplex nature of such systemswe obtain different
types of correlations, which can be uncovered by operating on the
adjacency tensor. First of all, it is possible to extract a single layer
by the operation called single layer extraction [10]. In this case, the
adjacency tensor is defined as

W
α
β = Cα

β (r̃ r̃) = M
αγ̃

βδ̃
E δ̃

γ̃ (r̃ r̃), (5)

which is a simple projection on the canonical basis, E δ̃
γ̃
(r̃ r̃). It

is noteworthy that the results obtained from this projection are
the same as those obtained by considering the layer r̃ as a
monoplex network and applying the traditional formulation of
assortativity [20]. On the other hand, to consider all layers together,
we can use the projected network, which is a weighted single-layer
network. Formally it is given as

W
α
β = Pα

β = Mαδ̃
βγ̃U

γ̃

δ̃
. (6)

Note that the projection presents self-edges and, as argued in [10],
it is different from a weighted monoplex network, since self-edges
code for inter-layer couplings between different replica of the
same object. Thus they have a different meaning with respect to
other edges. A version of the projectionwithout self-edges is called
overlay network and is given as the contraction over the layers [10],
i.e.,

W
α
β = Oα

β = M
αγ̃

βγ̃
. (7)

Observe that the overlay network does not consider the contribu-
tion of the interlayer connections, whereas the projection does. As
we will see later, comparisons between the assortativity of those
two different representations of the system reveal the key role of
such inter-links.

In both cases, i.e., for the overlay and the projected networks,
we extract degree–degree correlations. Nodeswith similar degrees
connected in the same or different layers contribute positively to
the assortativity coefficient. On the other hand, the connections
between hubs and low degree nodes in the same or different
layers decrease the assortativity. Self-edges always increase the
assortativity, which yields different values of assortativity for the
overlay and the projected networks. This gives information on
the nature of the coupling between different replicas of the same
object among different layers.

In some applications, it is interesting to calculate a pair-wise
correlation between a set of nodes, for instance, between couple
of layers. Thus, we propose a new operation, that we call selection,
which is a projection over a selected set of layers:

W
α
β (L) = Sα

β (L) = Mαδ̃
βγ̃ Ω

γ̃

δ̃
(L), (8)
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where Ω
γ̃

δ̃
is a tensor used to select the set of layers we consider in

the projection (L). The components of the tensor are equal to unity

when the layers δ̃ and γ̃ are selected, and zero otherwise. Note

that by selecting all layers togetherwe recover the 1-tensorU
γ̃

δ̃
and

consequently Eq. (6). Another special case is δ̃ = γ̃ , which yields
Eq. (5), or the layer extraction. The tensor can also be generalized to

weight different layers. In this case, each element of Ω
γ̃

δ̃
contains

the weight of the relationship between two layers δ̃ and γ̃ . Such
projection is similar to the covariance matrix in statistics, which
generalizes the concept of variance. The covariance between two
variables is quantified in each entry of the matrix and the main
diagonal has the variance of each variable. Thus, we can define a
matrix that generalizes the assortativity in a similar manner as the
covariance matrix generalizes the concept of variance, i.e.

S
γ̃

δ̃
= ρ



Sα
β (L = {γ̃ , δ̃})



, (9)

which belongs to a R
L×L space. We call S the P-assortativity matrix.

Also in this case, a similar operation for the overlay network can
be considered, yielding

W
α
β (L) = Zα

β (L) =

L


h̃∈L

Cα
β (h̃h̃), (10)

which can also be generalized in a similar way as Eqs. (8) and (9),
resulting in the matrix

Z
γ̃

δ̃
= ρ



Zα
β (L = {γ̃ , δ̃})



. (11)

We call Z the O-assortativity matrix. A similar interlayer correlation
was also proposed in [21], where the authors suggestedmeasuring
the degree correlation between two different layers of the replica
of the same object (or node). Furthermore, they proposed three
different ways: the Pearson correlation coefficient, Spearman
rank correlation and the Kendall’s τ index. However, it is worth
pointing out that such an approach does not consider the intra-
layer relationship because it is only for node-aligned multiplex
networks [5]. Here, we generalize such a measure in terms of
tensorial notation.

Up to now we have considered nodes, but if we extract the
network of layers [10], the correlation between different layers can
also be evaluated. We use

W
γ̃

δ̃
= Ψ

γ̃

δ̃
= M

αγ̃

βδ̃
Uβ

α (12)

where Uβ
α is the second-order tensor whose components are all

equal to one. It is important to stress that the components of this
adjacency tensor are not binary, but weighted by the number of
edges inter each layer. Moreover, also in this case, the resulting
tensor presents self-edges that encode the information about
the density of connections inside a single layer. Finally, we can
consider only interlayer relationships over two different layers.
Such information is extracted by projecting the adjacency tensor
on the canonical base as

W
α
β = Cα

β (r̃ h̃) = Mαδ̃
βγ̃ E

γ̃

δ̃
(r̃ h̃). (13)

Note that this is only applicable to multilayer networks and does
not make sense in multiplex networks, since in the latter case the
coupling is diagonal.

The assortativity coefficient can also be defined in terms of the
Spearman rank correlation [23], since the traditional definition
of this coefficient based on the Pearson correlation [20] can lead
to incomplete results, as discussed in [23]. The generalization
of assortativity coefficient proposed here allows to consider the
Spearman rank correlation coefficient by changing Eqs. (3) and (4).

Specifically, instead of considering the values of Q α and Qβ , one

substitutes them by their respective ranks.1 Such transformation
is performed by using

Q α = rank(Wα
β u

β) (14)

and

Qβ = rank(Wα
β uα), (15)

where rank(Xi) is the rank of the tensor Xi.
We henceforth denote by ρP(Wα

β ) and ρS(Wα
β ) the Pearson and

Spearman correlation coefficients, respectively. Furthermore, we

adopt (SP)
γ̃

δ̃
and (SS)

γ̃

δ̃
for the pair-wise correlation matrices using

the Pearson and Spearman correlation coefficients, respectively.

The same notation can be used for the matrices (ZP)
γ̃

δ̃
and

(ZS)
γ̃

δ̃
. Monoplex assortativity, i.e. assortativity in single-layer

networks [20], is recovered by considering the adjacency matrix,
W

α
β = Aα

β , and consequently Q α and Qβ are analogous to in-degree
and out-degree, respectively. Note that Q α = Qβ for undirected
networks. Moreover, M is equal to twice the number of edges,
recovering the equation introduced in [20], which also captures
correlations of weighted networks, as exposed in [22].

Each approach presented here gives a different descriptor of
the multilayer structure. For instance, the projected and overlay
networks gather the information of all layers into a single
layer structure, aiming at describing the whole system using
single descriptors. Aside from those, we also provide a pair-wise
descriptor which gives another type of information. Besides, there
is also the network of layers, that possesses information about yet
another level of the system. In this way, our approach gives a set
of metrics that capture information about the whole multilayer
structure. However, it is worth mentioning that the interpretation
and choices depend on the application.

3. Application to real data

We analyze the airport transportation network [25], whose
multilayer representation was studied in [8]. The network
comprises 450 airports and 37 companies, which are mapped as
nodes and layers, respectively. More specifically, in each layer, the
edges represent the directed flights operated by a given company
and nodes, airports. Fig. 1 shows a representation of 12 layers
of such multilayer network. The inter-layer connections link the
airports shared by pairs of different companies. This approach
gives us a multilayer network that is not a node-aligned multiplex
network, since the latter considers a diagonal coupling between all
nodes in all layers. Note that the way proposed in [8] to create the
aggregatedmonoplex network is the union of all layers considering
multiple edges as single ones. This is in contrast to our approach,
because we consider the projections and overlay networks as
weighted networks, thus retaining the information of the number
of different connections between the same pair of airports.

Previous studies [25,8] showed that the airport transportation
network presents the rich-club effect, which refers to the tendency
of highly central nodes to be connected among themselves. This
is also captured by the assortativity as shown in Table 1, where
we verify that the projected network has positive assortativity
coefficients, agreeing with previous analyses. However note that
the projection has a positive value of the assortativity, whereas the
overlay has a negative one. Thus, the assortativity of the projection

1 One may not confuse rank in this context with the tensorial rank. Here it is the

position in the ordered set of values, whereas the rank of a tensor is the number of

covariant and contravariant indices.
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Fig. 1. Example of an airport transportationmultilayer network. Each layer represents an airline, in which each node represents an airport and the edges are flights between

two airports. This visualization was generated using MuxViz [26].

Table 1

Structural properties of the airport transportation multilayer networks.

Network N M ⟨Q α⟩ ρP (Wα
β ) ρS(Wα

β )

Network of Layers (Ψ α
β ) 37 30398.0 821.568 0.377 0.286

Overlay (Oα
β ) 450 7176.0 15.947 −0.050 −0.025

Projected network (Pα
β ) 450 30398.0 67.551 0.795 0.560

indicates that many companies share hubs airport, not that hubs
connect between them. This apparent contradiction results from
the fact that the rich-club effect is masked out in the overlay setup
by the large number of peripheral nodes connecting to hubs.

The analysis of each layer separately shows a different result,
where most of the layers are disassortative. The only exception
is the Netjet layer, which presents a positive coefficient for the
rank correlation. Usually the companies focus their activities in one
city or country, for example, Lufthansa in Germany or Air France
in France, and have flights to other airports where their activity
is lower. This leads to the disassortative behavior of each layer.
Additionally, the disassortative correlations found in single layers
is more pronounced than that of the overlay representation, which
can be explained by noticing that hubs of a company are peripheral
(or secondary) airports for other companies, but when the layers
are collapsed they are also hubs in the overlay network and are
connected.

Fig. 2 shows the pair-wise correlation between layers. Interest-
ingly, the latter is disassortative, in contrast to the results obtained
for the projected network, but of the same sign as those computed
for the overlay representation (see Table 1). Furthermore, our con-
struction of the adjacency tensor leads to an assortative network of
layers, suggesting that bigger companies tend to share similar air-
ports. This analysis agrees with [8], where the authors argued that
themain airports are connected to eachother via directed flights. In
addition, considering the Pearson correlations, the O-assortativity
matrix presents lower values if compared to the P-assortativityma-
trix due to the intra-layer contributions, as discussed before.

4. Epidemic spreading in correlated multilayer networks

We investigate the effects of degree–degree correlations on
epidemic spreading. To this end, we consider a classical SIS
(Susceptible–Infected–Susceptible) model, in which nodes can be
in one of two states, susceptible or infected [27]. Susceptible
individuals can be infected if they are in contact with infected
individuals, who have already caught the disease and are actively
spreading it. Infected individuals get back to the susceptible
state with probability µ. Here, we adopt the discrete formulation
presented in [13], considering a fully reactive processes (RP). Such
work is a generalization to multiplex networks of the Discrete-
Time Markov Chain approach (DTMC) formerly presented in [28].
Furthermore, we remark that the DTMC formalism assumes that
the state of two nodes is independent, which is an approximation.

Fig. 2. Pair-wise assortativity coefficient using Spearman rank correlation, ρS(Sα
β )

in (a) and ρS(Zα
β ) in (b). Observe that the main diagonal presents the same

coefficient considering the layer extraction operation, ρS(Cα
β (r̃ r̃)).
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Besides, such approximation was shown to capture the main
features of the process as observed in [28]. In addition to the
numerical approach we also perform Monte Carlo simulations of
the epidemic process.

As in [13], we consider intra and inter layer spreading. Let λ be
the probability of spreading through an intra-layer contact and γ
the spreading probability through an inter-layer contact. We also
assume the possibility of one-step reinfection, that is, an infected
individual can be cured and reinfected in the same time interval.
Furthermore, it is convenient to consider the ratio between intra-
layer and inter-layer spreading probabilities as a constant [13],
hence, we set η =

γ

λ
= 2 on our numerical experiments. Other

choices were also possible, for instance if η = 1 the intra and
inter-edges are indistinguishable. Moreover, if η < 1 it is easier
to spread over an intra-layer edge than over an inter-layer edge.
Besides, note that for η = 0 we have a set of decoupled layers. On
the other hand, for η > 1 the opposite applies. The chosen value
(η =

γ

λ
= 2) enforces the multiplex structure, however, we have

found similar results considering other ratios.
To obtain the expression of the macro-state variable in the

tensorial notation, we redefine the supra-contact matrix as

R
αγ̃

βδ̃
(λ, γ ) = M

αη̃

βσ̃
E σ̃

η̃ (γ̃ δ̃)δ
γ̃

δ̃
+

γ

λ
M

αη̃

βσ̃
E σ̃

η̃ (γ̃ δ̃)(U
γ̃

δ̃
− δ

γ̃

δ̃
), (16)

where E σ̃
η̃
(γ̃ δ̃) ∈ R

L×L indicates the tensor in the canonical basis

and δ
γ̃

δ̃
is the Kronecker delta, which is equal to one if γ̃ = δ̃

and zero otherwise. Such tensor encodes the relationship between
individuals, weighting the inter-layer edges by

γ

λ
, which implicitly

impose that the spreading rate between layers is a constant
times the intra-layer spreading ratio. It is worth mentioning that
in [29] the authors study such tensor and its role in the epidemic
spreading process considering following the tensorial formalism,
however considering a continuous time approach.

Denoting the probability of the node β , on layer δ̃, becoming
infected at time t as Xβδ̃(t), the discrete time evolution equation
for this probability is described as

Xβδ̃(t + 1) = (1 − Xβδ̃(t))(1 − qβδ̃(t)) + (1 − µ)Xβδ̃(t)

+ µ(1 − qβδ̃(t))Xβδ̃(t), (17)

where the probability that a node will not be infected by any of its
neighbors at time t is given as

qβδ̃(t) =


α



γ̃



1 − λR
βδ̃

αγ̃
(λ, γ )Xαγ̃



. (18)

Observe that in Eq. (17), the indices βδ̃ are not dummy and there
is no summation on it. A more formal notation would be obtained
substituting Xβδ̃ by Xησ̃ E

ησ̃ (βδ̃). The implicit summation has only
one term different from zero, which is Xβδ̃ .

Finally, the macro-state variable is given as

φ =
1

LN
Xβδ̃U

βδ̃, (19)

where Uβδ̃ ∈ R
N×L is the all one tensor. In other words it is

an average over all the individuals. Observe that our equations
are exactly the same presented in [13], but here we consider the
tensorial notation.

In addition to the analytical approach we also perform Monte
Carlo simulations to evaluate the influence of degree–degree corre-
lations on epidemic spreading. The simulations are performed in a
synchronous manner, i.e., every node changes its state at the same
time and the events between t and t+1 are assumed to occur at the
same time. In this way, at each time step, every spreader is cured
with probabilityµ. After that, every infected individual contacts all

its neighbors, thus representing fully reactive processes (RP). How-
ever, note that a cured spreader can still propagate the disease,
because its state changes only at the end of the time step. This
procedure enables the occurrence of one-step reinfections. After
the contact, the disease spreading can occur in two different ways:
(i) for inter-layers, where the spreading takes place with probabil-
ity λ, or (ii) for intra-layers, where the spreading occurs with prob-
ability γ .

In order to quantify the effect of degree–degree correlations on
the spreading process, we generate two scale-free networks, with
degree distribution P(k) ≈ k−m, according to the configuration
model [30]. The first layer has m ≈ 3 and ⟨k⟩ ≈ 17, whereas the
other one we evaluate in two different configurations: (i)m ≈ 4.5
and ⟨k⟩ ≈ 13 and (ii) m ≈ 2.8 and ⟨k⟩ ≈ 12. Both networks are
composed of N = 104 nodes.

On the other hand, to control the level of degree–degree
correlations in random networks, we consider a simulated
annealing algorithm [31]. This algorithm is based on two functions,
i.e., (i) the perturbation function, which changes the system
configuration, and (ii) the energy function, which is minimized.
In our case, the perturbation function is a rewiring procedure
that preserves the degree distribution of the network, but changes
the large-scale degree–degree correlations. The energy function is
defined as Et = c(ρt + 1), where ρt is the network assortativity
at time t and c is a constant related to the level of degree–degree
correlation, i.e., c = −1 if the goal is to obtain an assortative
network or c = 1 if the goal is a disassortative network.

Given an initial network configuration, an initial temperature,
T and a cooling factor α, the algorithm can be described by
the following steps: (i) the energy function is initialized as E0;
(ii) while the number of iterations are less than a threshold or the
optimal solution is not found (or good solution, given a tolerance)
the following steps are performed: (iii) a rewiring preserving the
degree distribution is executed, according to our perturbation
function; (iv) the new energy function, Et+1, is calculated; (v) if

Et − Et+1 < 0 or exp


−(Et−Et+1)

T



< U(0, 1), where U(0, 1)

is a random number sampled from a uniform distribution in
[0, 1], then the new solution is accepted; (vi) the temperature
is updated, T = αT ; and (vii) increment the iteration counter.
Observe that a worse state than the current one can be accepted

with a probability exp


−(Et−Et+1)

T



. This mechanism allows the

system to avoid local minima. Following this procedure, we can
generate random networks with a defined level of degree–degree
correlation.

Thus, using the simulated annealing algorithm above, we tune
the assortativity on the individual layers. We can have three
different configurations for each layer, i.e., (i) one assortative,
(ii) one disassortative and (iii) one non-assortative. Those individ-
ual layers are connected, forming amultiplex network. In this case,
we can have three different configurations: (i) assortative: densely
connected nodes from one layer is connected to densely connected
nodes in the other layer, (ii) disassortative: hubs in one layer are
connected to low degree nodes in the other layer, and (iii) random:
nodes in different layers are randomly connected. In this way, our
dataset is composed by 27 multiplex networks presenting differ-
ent levels of assortativity. We also consider η =

γ

λ
= 2 and µ = 1.

Similar results are found for different values of η.

Fig. 3 shows the simulations of the SIS dynamics on top of mul-
tiplex networks with different levels of assortativity. We can see a
good agreement between the Monte Carlo simulation and the the-
oretical macro-state variable (see Eq. (19)), although we assume
that there is no correlation among the state of each random vari-
able. Each network has different values of the epidemic threshold
and also exhibits different behaviors near the threshold. Indeed,
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Fig. 3. Phase diagram for epidemic spreading on different levels of assortativity.

(a) First layer with m ≈ 3 and ⟨k⟩ ≈ 17, and second with m ≈ 2.8 and ⟨k⟩ ≈ 12.

(b) First layer with m ≈ 3 and ⟨k⟩ ≈ 17, and second with m ≈ 4.5 and ⟨k⟩ ≈ 13.

All networks are composed by N = 104 nodes. We adopt
γ

λ
= 2 and µ = 1.

The continuous lines are the analytical solution (Eq. (19)), while the symbols are

obtained from Monte Carlo simulations, averaging over 102 runs. The standard

deviation is of the size of the symbols. Each line was obtained as a result of a

multiplex network whose assortative was tuned following the simulated annealing

algorithm described on the text. The obtained assortativity is represented by the

colors of the curves. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

the epidemic threshold for assortative networks is at a lower trans-
mission probability. This happens because the disease has a faster
initial growth rate and a shorter duration in assortative networks
than in disassortative networks. Nevertheless, disassortative net-
works show higher values of φ for larger values of γ /λ. This result
agreeswith the analysis of single layer networks in [32]. Notice that
the same behavior is observed for Fig. 3(a) and (b), although in (a)
the network is more heterogeneous than in (b). In fact, for more
heterogeneous networks, the influence of degree–degree correla-
tions is reduced.

5. Conclusions

In this paper we have generalized the metric used to calculate
assortativity of multilayer networks. Our approach consists of
reducing the dimension of the adjacency tensor and applying the
Pearson correlation coefficient on the extremes of each edge. We
follow the tensorial approach, which help us to have a compact,
algorithmic and general formulation, covering various topological
representations and possibilities, such as overlay and projected
networks, and also pair-wisemeasurements. The calculation of the
Spearman rank correlation is also possible from our formulation.

In the study of the airport transportation network, we veri-
fied that the individual analysis of the overlay or the projected

networks can yield misleading conclusions. Indeed, as shown in
Table 1 the assortativity values for the projected and overlay
networks are different. The overlay network shows a small dis-
assortative behavior, while the projected graph is highly assorta-
tive. This indicates that the main contribution to the assortativity
of the projected network is given by self-edges, i.e., hub airports
that are present in many different layers. On the other hand, in-
dividually, each layer is disassortative, with a value much higher
in module than the one obtained for the overlay network. This is
because companies tend to have one big hub from which connec-
tions to many other airports are established, but, at the same time,
they tend to have direct flights to the hubs of other companies.
This interpretation of the data is also confirmed in Fig. 2, in which
we observe a high negative value along the diagonal of the matrix,
i.e., a strong disassortative behavior of isolated layers. In addition,
we can see relative smaller negative values for the elements out of
the diagonal, i.e., a relative weaker disassortative behavior, repre-
senting pair-wise correlations between different layers, i.e. com-
panies. Furthermore, the comparison of the P-assortativity and the
O-assortativitymatrices also emphasizes the importance of the two
different analysis, where the first is slightly higher due to the self-
edges. Finally, the network of layers shows an assortative behavior,
suggesting again that themain airline companies share similar air-
ports.

Finally, we studied the effects of degree–degree correlations
on epidemic spreading. The results obtained from Monte Carlo
simulations and theoretical analysis using a Markov Chain
formulation in terms of tensors show that the level of assortativity
and heterogeneity between layers influence the spreading process.
More specifically, we verified that assortative networks show a
smaller epidemic threshold, and that the disease has a faster
initial growth rate in these networks, but a shorter duration.
On the contrary, the fraction of infected individuals is larger
in disassortative networks. Finally, we have also shown that
degree–degree correlations have a larger impact on the spreading
dynamics when the coupled networks have similar levels of
heterogeneity.
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