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1. Introduction 
The Word Problem for groups was formulated by DEHN in 1912, who gave 

a solution for the fundamental groups of two dimensional manifolds. DErIrq's 

method was geometrical. (See DEHN [5, 6], also REIDEMEISTER [17].) Related 

results have since been obtained by other methods, in particular by TARTA- 

KOVSKII [20--24], SCHIEK [18], BRITTON [2, 3], and GREENDLINGER [9--12]. 

Here we return to DEHN'S geometrical method, extending it to obtain most of 

these more recent results, together with some results that are new. 

DEHN'S method is based on the Cayley color diagram, or Gruppenbild, M, 
associated with a presentation of a group G. This is a certain abstract two di- 

mensional complex (or, what comes to the same in the present context, the one 

skeleton of the complex). Let G = F/N, with F free on a basis of generators 

xl,  x2, ..., and N the normal closure in F of a set R of relators rl, r2, ... The 

group diagram M is defined as follows. It has vertices P(g) in one to one cor- 

respondence with the elements g of G. For  each g in G and each y = x~ 1, it has 

an oriented edge E leading from P(g) to P(gy-'), where y =  yN;  to E is attached 

the label dp(E) = y, and to the oppositely oriented edge E -  1 the label ~b (E-  1) = y-  1. 

The two cells D of M are as follows: for each closed path W in M, such that the 

labels on the successive edges of W are the successive letters of the reduced 

word for some r~ in R, we introduce a two cell D with boundary W. 

The words w in the x~ ~ correspond one to one to the paths W in M with 

base point P(1)=  0, and w represents an element of N iff W is a dosed  path. 

If w is moreover reduced, then W is spanned by a possibly singular union of 

two cells D, together with spines attaching them to the base point 0. In the cases 

considered by DEHN, the group diagram M can be embedded in the plane. 

Then, if w is the reduced word for a non trivial element of N, the path W will 

contain a simple dosed  subpath Wo at some point Po, and Wo will be the 

boundary U', at Po, of a simple finite union U of two cells D in the plane, each 

corresponding to some relator ri or its inverse r~-1. 

Now restrictions on the amount  that two reduced words r~ 1 can have in 

common provide conditions on the amount  of common boundary between 

two adjoining discs D in U. At this point DEaN used the fact that (apart from 

trivial cases) M can be represented as a regular tesselation of the hyperbolic 

plane with Poincar6 metric, and inferred on metric grounds that the boundary 

Wo of U must contain more than half the boundary D" of some disc D. (REIDE- 
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MEISTER [17] later showed that this conclusion can be obtained purely com- 

binatoriaUy, without appeal to a metric.) It follows immediately that the reduced 

word w must contain more than half of some cyclic permutation of the reduced 

word for some r~ 1. 

The Word Problem asks whether arbitrary w in F belongs in fact to N. 

If w = 1, then w is in N. Otherwise, given a non trivial reduced word w in F, 

it can be decided by inspection whether w contains more than half of some 

cyclically reduced conjugate s of an r{ t. If not, then, by the above, w is not in N. 

If so, say, w = abc with s = bd, and d shorter than b, then w is in N iffthe shorter 

word w '=  ad-lc is in N. A finite number of such reductions then leads to a 

decision whether w is in N. 

We depart from DEHN'S method mainly in not requiring that the entire 

group diagram M be embeddable in the plane. For  quite general G = F/N, and 

arbitrary w in N, there exists a finite complex M' in the plane, with boundary 

described by a closed path on which the product of the labels is w, and with 

interior a union of discs corresponding to relators, in exactly the same way as 

in DEHN's case, where all of M can simultaneously be embedded in the plane. 

Conditions on the amount of agreement between relators now lead as before 

to conditions on common boundaries between discs, and to a solution of the 

Word Problem. Indeed, by a modified combinatorial argument, we are able 

to solve the Word Problem in additional cases where non trivial w in N need 

not contain as much as half of any cyclically reduced conjugate of a relator. 

In addition to the Word Problem, the present methods yield a proof that, 

in the cases treated, the commutator quotient group N/[N, N] of N, viewed as 

a natural G = FIN module, if not free, is at least a direct sum of cyclic sub- 

modules, whence the cohomology of G,beginning with dimension 3, has period 2. 

The present methods, with minor modification, apply equally to the case 

that F is an arbitrary free product, rather than a free group. This case, already 

considered by SCHIEK [18] and BRITTON [3], has bearing on the problem of 

adjunction of solutions to equations over a group. 

The main argument falls naturally into three stages. In Section 2 we discuss 

finite complexes (graphs, or maps) in the plane. In Section 3, we associate plane 

diagrams with elements of a free group. In Section 4, this connection is used to 

translate properties of plane graphs into properties of groups: this contains 

our main results, Theorems I, II, and III. A further Section 5 deals with free 

products, with examples illustrating applications to the Adjunction Problem. 

In addition to references cited explicitly, I want to acknowledge suggestions 

from B. J. BIRCH, D. E. COHEN, H. SCHIEK, and H. ZIESCHANG. 

2. Maps 

A map M in the plane H is determined by a finite set of points, called vertices, 
and of simple arcs, called edges. Both ends ofan edge are vertices (not necessarily 

distinct), and an edge is not incident elsewhere with any vertex or any other 

edge. A region D of a map M is a bounded component of the complement H - M 
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of M in the plane H; we consider only maps in which every region is simply 

connected. 

The degree d(P) of a vertex P, in M, is the number of edges incident at P, 

any edge with both ends at P being counted twice. The degree d(D) of a region D 

is the number of edges on the boundary D" of D, any edge such that D lies on 

both sides of it being counted twice. 

The boundary M" of M is the topological boundary of the unbounded com- 

ponent of the complement H - M. A boundary vertex or edge is one contained 

in M; and a boundary region D is one whose boundary D" contains a boundary 

edge. Those not on the boundary are interior vertices, edges, and regions. 
Our main results about maps can be viewed as combinatorial versions of 

two elementary metric properties of sufficiently regular domains in the Eucli- 

dean plane. The first is that the integral of curvature along the boundary M" of 

M is 2rr, and the second that the area of M does not exceed a constant (1/4rr) 

times the square of the length of the boundary M'. To introduce the ideas, w~ 

suppose that M is a union of regions in a regular tesselation T of the Euclidean 

plane. There are, of course, three types of regular tesselation, by hexagons, 

by squares, and by triangles, and our later results fall into three corresponding 

cases; but, for the precent heuristic remarks, we confine attention to a regular 

tesselation T by hexagons. We suppose, for the moment, that the vertices, 

edges, and regions of the map M belong to the regular tesselation T, and that 

M" is a simple dosed polygon, containing more than one hexagon from T. 

To calculate curvature along M', we pass to the dosed polygon C (in the 

tesselation T* dual to T) whose successive vertices are the centers D* of the 

successive regions D lying on the boundary M" of M. It is easy to see that, if 

i(D) is the number of edges on D" that are interior to M, then the change of 
2n 

direction in C at the point D* is [ 4 -  i(D)]--~--. It follows that 

21r 
Z'[4 - i(O)] - -~  = 2n, 

where the notation indicates summation over all boundary regions D of M, 

and hence that 
Z" [4 - i(O)] = 6. 

In the map M, contained in T, we evidently have d(D) = 6 for each of the hexa- 

gonal regions D of M, and d(P) = 3 for every interior vertex P of M. We now 

pass to more general maps M, requiring only that M contain more than one 

region, that d(D) ~ 6 for every region D of M, and that d(P) ~ 3 for every interior 

vertex P of M. We shall see that, in this case, the equation above may be 

replaced by an inequality, 
Z" [4 - i(O)] > 6. 

An alternative formulation of this result refers to a map M* dual to M. The 

combinatorial relation of M* to M is determined uniquely by the condition 

that M* has exactly one vertex D* within each region D of M, and one edge E* 

corresponding to each interior edge E of M, crossing E to join the vertices D* 

and D* of M* contained in the regions Dx and D2 of M abutting along E. Note 
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that M** is not isomorphic to M, but can be identified with the submap of M 

obtained by deleting all vertices on M" and all edges incident with such a vertex. 

Replacing M by M*, the above hypotheses require that M contain more than 

one vertex, that d(D) >_ 3 for all D, and that d(P) >= 6 for all interior vertices P. 

The conclusion then takes the form that 

X" [4 - d(P)] > 6. 

One immediate consequence of this is that, under the hypotheses, M" 

contains at least two convex points P, that is, with d(P) < 3. A second is that 

there exists no map M on the sphere, in the obvious sense, with all d(D) > 6 and 

all d(P) > 3. 
To relate area and length of boundary, we again suppose for the moment  

that M is part of the regular tesselation T. Then the area of M is proportionate 

to the number a(M) of regions D of M, and the length of M" to the number of 

edges on M', that is, to b(M) = Z" [6 - i(D)]. In this case it is obvious that a(M) 
is bounded by a constant multiple of b(M) z. It will be seen that for more ~eneral 

M, such that d(D)> 6 for all D and that d(P)> 3 for all interior P, we have 

indeed 1 

a(M) < ~6 b(M)2" 

We turn now to exact statements and proofs of these results. We begin with 

a rather general formula;  the present method of proof  was suggested by BIRCH. 

If M is any map in the plane, we write Q for the number of connected components 

of M, and Q0 for the number that consist of a single isolated point. We define 

a generalization of the expression found above for curvature, depending on a 

real parameter t, by the formula 

K(t) = 27" [t - d(P)], 

where summation is over all P on the boundary M" of M. As a measure of the 

excess of degree over t, on all interior vertices, we take 

V(O = Z°[d(P) - t ] ,  

sum over all interior vertices, P on M - M'. As a measure of excess degree of 

regions we take R(t) = 27 [d(D) - t ] ,  

sum over all regions D of M. In these terms we state our first basic formula. 

Lemma 2.1. Let M be any map, and p and q real numbers such that lip + 1/q 

) =1/2.  Then K +2 >__pQ+V(p)+qR(q)- q o. 

We begin the proof  with EULER'S formula, in the form 

(1) Q = v - e + d ,  

where v, e, and d are the numbers of vertices, edges, and regions. It is immediate 

that 

(2) 2e = Xd(P), sum over all P in M, and 

(3) 2e=27d(D)+doo, sum over all D in M, with d~o the number of edges 

d(Doo) on the unbounded component  o f / - / -  M. 
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To eliminate e from these three equations we combine (2) multiplied by a real 

number  m, and (3) multiplied by a real number  n, with (1) multiplied by 2(m + n). 

Putt ing aside the cases that m = 0, n = 0, or m + n = 0, we may normalize, taking 

m = 1 and n 4: 0, - 1. We obtain then 

2(n + 1)Q = 2(n + 1)v - Zd(P) + 2(n + 1)d - nEd(D) - nd~ 

= Z t 2 ( n +  1 ) - d ( P ) ]  +nZ[ - 2(n+  1) d ( D ) l - n d ~ .  (4) 
k n .3 

N o w  the real solutions of 1/p + 1/q = 1/2 are given parametrically by p = 2(n + 1) 

and q = 2(n + 1)In, for n ,  0, - 1 .  With these substitutions we have 

pQ =Z[p-d(P)]+ P z[q-d(D)-nd® 
q 

= - V(p) + Z" [2(n + 1) - d(P)] - p R(q) -nd®. 
q 

To remove the term in do~ we note that the number  v® of vertices on M" satisfies 

the relation 

voo <doo+Qo, 

since, in traversing M" in the positive sense, each non isolated point of M" is 

encountered as the beginning of at least one distinct edge on M'. With this 

we have 

pQ= - V(p) + Z" [n + 2  - d(P)] - PR(q)+nvoo -nd~  < 
q 

<= -- V(p) + K + - R(q)  + q Q o .  

This completes the proof. 

The essence of this formula is contained in the case that M" is a simple 

closed curve, Here we have. Q = 1, Qo = 0, voo = d~o, and obtain an exact equality 

K ( P  + 2 )=p+ V(P)+ P R(q), 

which may be viewed as a combinatorial  generalization of the Gauss-Bonnet  

formula for tesselations of the hyperbolic plane. Suppose further that d(D) > 6 
for all D and d(P) > 3 for all interior P. Taking p = 3 and q = 6 we have 

where b(M) is the number  of edges on M'. We have V(p) = Z°[d(P) - 3] >__ 0, and 

p I 1 2 R(q)= -~ Z[d(D)-61~_-f Z [ 7 - 6 ] =  a(M), 

where a(M) is the number  of regions of M. F rom this we have a(M) < b(M) - 6, 
a linear relation between area and length of boundary,  which can also be 

inferred from DE,N's  algorithm for this case. 
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We comment also that the proof of Lemma 2.1 indicates how the condition 

lip + 1/q = 1/2 enters into our considerations, independent of any metric, 

Euclidean or otherwise. In the sequel, we shall always take p and q to be 

positive integers, hence (p, q) one of the pairs (6, 3), (4, 4), and (3, 6), correspond- 

ing to the three Euclidean tesselations. 

Corollary 2.2. Let (p, q) = (6, 3), (4, 4), or (3, 6). Let M be a map containing more 

than one vertex, and such that d(D) ~ q for every region D and that d(P) >= p for 

every interior vertex P. Then, according to the three cases, 

X ' [ 4 - d ( P ) ] > 6 ,  X ' [ 3 - d ( e ) ] > 4 ,  or x ' l S - d ( P ) l > 3 .  

Corollary 2.3. Under the same hypotheses, the boundary M" of M contains 

at least two points P such that, according to the case, d(P)< 3, d(P)< 2, or 

d(P) < 2. 

Corollary 2.4. Let (p, q) = (6, 3), (4, 4), or (3, 6). Let M be a map containing more 

than one region, and such that d(D)>__ p for each interior region D and that 

d(P) >__ q for each interior vertex P. Then there are at least two regions D on the 

boundary M" of M such that, according to the case, D" contains no more than 3, 

2, or 2 interior edges. 

Corollary 2.2 is an immediate consequence of Lemma 2.1, and Corollary 2.3 

is an immediate consequence of Corollary 2.2. To prove Corollary 2.4, let M 

satisfy the given hypotheses, and let M* be a map dual to M. Since M contains 

more that one region D, M* contains at least two corresponding vertices D*. 

Each region of M* contains some interior vertex P of M, and has the same degree, 

d(P) > q. Each interior vertex of M* is the D* contained in some interior region 

D of M, and has the same degree, d(D) >>_ p. Thus M* satisfies the hypotheses, 

and so the conclusion, of Corollary 2.3. Finally, a vertex D* of M* with d(D*) <= 3, 

2, or 2, is contained in a region D of M with no more than 3, 2, or 2 interior edges. 

We note that the case (p, q) = (4, 4) of Corollary 2.4 is closely related to a 

theorem of REIDEMEISTER [17], page 201. 

A map on the two dimensional sphere is defined exactly as a map on the 

plane, except that now every component of the complement is counted as a 

region. 

Corollary 2.5. Let (p, q) = (6, 3), (4, 4), or (3, 6). Then there does not exist any 

map M on the sphere such that d(D) ~ p for all regions D and that d(P) >= q for 

all vertices P. 

To see this, suppose such a map M on the sphere given. Deleting a point p~ 

of the sphere, not on M, we obtain a plane, and deleting from M the region D~ 

containing p~ we obtain a map M# on the plane. We may suppose D~ chosen to 

have no more than one edge in common with any other region D. By Corollary 

2.4, M o contains a region D with no more than 3, 2, or 2 interior edges in M o ; 

then D, as a region of M, has degree d(D) _ 4, 3, or 3. In the first two cases this 

contradicts the hypothesis on M. The third case follows from the first by duality: 

if M satisfied the hypotheses with (p, q) = (3, 6), than a dual map M* would 

satisfy the hypothesis with (p, q) = (6, 3). 
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Although Corollary 2.5 must surely be long known, the nearest related 

result we can find is in BERGE [1], page 208. 

We turn now to our remaining lemma on maps, relating area to length of 

boundary. 

Lemma 2.6. Let (p, q) = (6, 3), (4, 4), or (3, 6). Let M be a map in the plane such 

that d(D)>= q for each region D and that d(P)> p for each interior vertex P. 

Define 
a(M) = number of  vertices of  M ,  

b(M) = Z" [p - d(P)], all V on M'.  

Then 
! 

a(M) < = ~ b(M) z 

where, according to the case, K is 36, 16, or 6. 

The proof is by induction on the number of vertices of M. In the initial case 

that M contains only a single point, and hence, by the condition d(D)>= q, 

no edges, the relation Ka <= b 2 evidently holds provided only that K ~ p2. But, 

it will be seen, the inductive step requires that K _<_ 2 p ( p -  2). Now the given 

number 36, 16, or 6 is the smaller ofp  2 and 2p(p - 2), according as p is 6, 4, or 3. 

As a preliminary to the inductive step, suppose that M consists of a non 

empty part Mo, together with one further vertex P, either isolated or attached 

to Mo by a single edge. Then a = ao + I, with ao >_- 1, while either b = bo + p or 

b = bo + p -  2. Now, assuming inductively that Kao <-_ b 2, and using the fact 

that K __< 2p(p - 2) and that b o is an integer, it is easy to deduce that Ka = Ka  o + 

+ K _~ (bo + p - 2) 2 _-< b 2. With this, we may assume henceforth that M contains 

more than one vertex, and that every vertex on M" is incident with at least two 

edges on M'. 
'1 

Now Corollary 2.2 applies to give Z'[ P ~  z - d ( P ) [  > p. If we write a" for 

the number of vertices on M" and d" = Z'd(P), this inequality takes the form 

p + 2  
(1) - - a ' - d ' > p .  

2 

Since b = Z" [p - d(P)] = pa" - d', form (1) we have 

(2) b__ p - 2  
- 2 a ' + p .  

Let M 1 = M**, the map obtained from M by deleting all vertices on M', together 

with the set F of all edges with one or both ends on M'. Let f l  be the number of 

such edges with one end on M', and fz  of those with both ends on M'. Evidently 

(2) d '=  f l  + 2f2 .  

Since every vertex on M" is incident with at least two edges on M', we have 

2a" ~ 2f2, that is, 

(4) a" < f2 .  



On Dchn's Algorithm 215 

We now estimate b 1 = b(M1) = 2;] [p - dl(P)], where the sum is over all P on M~ 

and where dl (P)  is the degree of P in M~. First, i fP  is in M:,  then P is not  on M', 

whence d ( P ) >  p. Second, from the definition of M l, if P is in M1, then dl (P)  

= d(P) - f ( P ) ,  where f ( P )  is the number of edges of the set F incident at P. 

Evidently ~,' l f(P) = f l. Now 

bl = 2;~ [p - d l (P)] < Z~ [d(P) - d l  (P)] = 2~ f ( P )  = f ~ ,  

whence 

b - b  l = p a ' - E - f l  

and using successively (3), (4), and (1), we have 

b - b~ = pa" - 2d" + 2 f  2 > (p + 2)a" - 2d" ~ 2p,  

that is, 

(5) b I < b - 2p.  

Assume inductively that K a l  ~ b 2, where K ~ 2p(p - 2). Since a = a" + a~, 

we have K a  = Ka" + Ka~ < 2p(p - 2)a" + b~, and estimating a" and bl by (2) 

and (5) gives K a  < 4p(b - p) + (b - 2p) 2 = b 2. 

3. Diagrams 

A diagram, over a group F, consists of a finite map M equipped with a 

function q5 assigning to each oriented edge E as label a non trivial element <k(E) 

ofF, and assigning the inverse element to the oppositely oriented edge E-1.  

We shall associate a diagram M with each finite sequence Pl, --., P, of non trivial 

elements from F, a free group with given basis. Note  that each p~ has a unique 

representation p~ = u~rlur, 1 in reduced form, where r i is cyclically reduced. 

A diagram M will be called a diagram f o r  the sequence Pl . . . .  , p ,  if it satisfies 

the following two conditions. 

(t) The boundary M" is connected and contains a vertex 0 such that, if 

El  . . . .  , E k are the successive oriented edges traversed in running around M" 

from 0 back to 0 in the positive sense, then the product of the labels q~(E0, ..., 

O(Ek) is reduced without cancellation, and is the reduced word for w = Pi..-P,.  

(2) IfD is any region of M, then its boundary D' contains a point P such that, 

if E~ . . . .  , Ek are the successive oriented edges traversed in running around D" 

from P back to P in the positive sense, then the product  of the labels tk(E1), ..., 

rb(Ek) is reduced without cancellation, and is the reduced word for one of 

r l ,  . . . ,  r n .  

Lemma 3.1. There  exis ts  a diagram for  every sequence. 

We shall construct, for each sequence, a canonical diagram. 

If n = 0, and the sequence is empty, we take M to consist of a single point 0. 

Let n =  1, and w = p l  = u l r ~ u ~  ~. We draw a loop, consisting of a single 

edge E with both ends at the same vertex P, and label E, in the positive sense, 

with r~. Ifu~ = 1, we take 0 = P and are done. Ifu~ 4= 1, we connect an external 

point 0 to P with an edge E', with label tk(E')= u~. 
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Let n > 1. As in the case n = 1, we construct diagrams M t . . . . .  M~ for the 

single factors Px, ..., P,. We may take these with common base point 0, each 

external to the rest, and arranged in order about the point 0. I fM is the resulting 

diagram, then (2) is already satisfied. Moreover, M' is connected and contains 0, 

and the product of the labels on M" from 0 back to 0 (beginning with the first 

edge of M~I) is equal to w = Pl..-P~. However, this product need not be reduced 

without cancellation. We shall show how to modify a diagram M, satisfying the 

conditions just stated, until ultimately (1) is satisfied. 

For  simplicity, if an edge E bears a label with reduced form v = Yl, ---, Yk, 

each Yi a generator or the inverse of a generator, we divide E into successive 

edges E 1 . . . . .  E k with labels Yl . . . . .  Yk. Thus we may suppose each label is a 

generator or the inverse of a generator. Let ~ be an arc, from 0 to 0, describing 

M', and such that the product  of the labels on the successive edges of ~ is w. 

If (1) is not already satisfied, then ~ will have the form ct = flE1E27, where E1 

and E 2 are consecutive edges bearing inverse labels. Let E1 run from PI to Po and 

E2 from Po to/2-  Suppose first that/ '1 is distinct from Po and P2. Then, deforming 

that part of M lying in a small neighborhood of El, and keeping Po fixed, we 

can pivot E l =  P~ Po about Po in the exterior of M until it comes into coincidence 

with E 2 = P2Po . Then/ '1 and P2 coincide, as do the oriented edges El and E~ 1. 

In resulting M' the arc ct will be replaced by ~' = fiT, containing fewer edges than 

0c If P2 is distinct from Po and/ '1, we proceed similarly. The case remains that 

P1 =/ '2.  In this case the part Ez E 2 of ~ is a loop, attached to the rest of ~t only at 

the point Po. We form M' by deleting this loop, together with all of M interior 

to the loop; again ~ is replaced by ~ '=  fly. In all cases, M '  satisfies the same 

hypotheses as M, whence, by iteration, we must ultimately arrive at some M" 

satisfying (1) as well as (2). 

Suppose that, in obtaining the reduced form for the product w = p l  . . .p , ,  

there is cancellation between corresponding parts of some pi and p j, for 

1 <- i < j  < n, in the following sense. First, r~ and r~ have reduced forms rl = axb  

and r~ = c x -  ~ d, where the parts x and x -  1 correspond in the sense that cyclic 

conjugates xba  and x c - l d  -1 of r~ and r f  1 are equal, hence b a = c - l d  -1. 

Second, the corresponding parts cancel, that is, xbuY,~qujcx  - 1 =  1 where 

q = P i + l . . . P j - 1 .  Then we have p iqp i=u~adu f  1, and since a d = b - l c  -1 and 

q = u~b- l c -  lu-~ 1, we have P~qPi = q" It follows that w = Pl . . .  Pi- lPi+ 1-. .Pj-  1 × 

x pj+ 1-.-Pn- 
We shall call a sequence Pl, ..., Pn reduced if, for no i and j, where I < i < 

< j  < n, do we have pt... P1 = P~ + 1... Pi- 1. Then if w is the product of a sequence, 

it is the product of some reduced subsequence. 

We note that reduced sequences have been considered by GI~EENDLINGER 

[9], page 68, and by GLADKU [8]. 

A diagram M wilt be called reduced if it contains no interior edge E, 

separating regions Dt and D2, such that the product of the labels on the bound- 

ary D" of the combined region D = D~ u D2 u E reduces to 1. Suppose the cano- 

nical diagram M, constructed above, for a sequence Pl . . . . .  p, is not  reduced. 

For  E, D 1 and D 2 as above we have D'~ and D2 described by arcs E6~ and 
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E-162, where the product of the labels on the arc 6t32 describing D" is 1. 

Now E must have entered M through identification of edges E 1 from a certain 

M i and E 21 from a certain M~, where we may suppose i <j .  Thus Mi contains 

D1 with D~ described by El 61 where r i = axb, for ~b(E1) = x, and ba the product 

of the labels on 61. Similarly, rj =- c x -  ld, with dc the product of the labels on 62. 

The product of the labels 6162 is then badc = 1. Moreover, in order that E1 

and E 2 should become successive edges, the product of the intervening edges on 

M 1 w... u M ,  must have reduced to 1, that is, bu~, lpi+ 1 ...P~-luj c = 1. But this 

implies that the sequence pl . . . . .  p, is not reduced. We have proved the following. 

Lemma 3.2. Every reduced sequence possesses a reduced diagram. 

In fact, if pl, ..., p, is any sequence, it contains a reduced subsequence with 

the same product w, and any reduced diagram for the subsequence will be a 

reduced diagram for the original sequence. One can, alternatively, obtained 

a reduced diagram for any sequence by successively shrinking to a slit any 

combined region D as above with the product of the labels on D" equal to 1. 

This can be done as well in the case that D is the union of more than two regions, 

together with their separating edges. 

We next examine the possibility of the loss of some of the n regions of 

M l w ' " w M ,  in the course of constructing the canonical diagram M for a 

reduced sequence Pl, ---, P,- This can happen only in case, in the construction 

of M, we encounter a loop EIEz on the boundary. Let Lo be the part of the 

diagram consisting of this loop and everything interior to it. Completing the 

plane to a sphere by adjoining a point Po~, we can flatten the new region Doo 

containing Po~ to a slit, bringing the two edges E~ and E2 a into coincidence. 

We then have a diagram L on the sphere which satisfies (2). Now L will be a 

reduced diagram unless identification of E1 and E21 violates the condition for a 

reduced diagram. But then exactly the same argument as before would show that 

the labels x on Et and x -  1 o n  E 2 were corresponding parts of certain r~ and r j, 

which could be cancelled in reducing the product pa ... p,. This would contradict 

the assumption that Pi, .--, P, is reduced. This proves the following. 

Lemma 3.3. I f  Pl, ..., P, is a reduced sequence, then there exists a reduced 

diagram M for this sequence, together with some number q ~ 0 of  reduced 

diagrams L1, ..., Lq on spheres, such that these diagrams contain in all exactly n 

regions. 

A subdiagram M o of a reduced diagram M for Pl . . . . .  p, will be called critical 

if either (i) Mo contains a single region D, and a closed arc bounding D is part 

of a closed arc at 0 bounding M, or else if (ii) Mo contains more than one region, 

and with the possible exception of one region Do, for every D in Mo, such that 

/ ) ' r iM o contains more than a single point, D'c~Mo is a simple arc and a part 

of a closed arc at 0 bounding M. 

Lemma 3.4. I f  Pl . . . . .  p, is a reduced sequence, and Pl...Pn ~ 1, then the 

sequence possesses a critical subdiagram. 

Let M be a reduced diagram. From (1) it follows, since Px...P, 4= 1, that M" 

consists of more than the single point 0, and that M" contains no spines, that is, 

successive edges E and E -  1, except possibly at 0. It follows that, if • is an arc 
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with base point 0 that describes M', then at must contain a simple loop fl at some 

base point P. Let M o be the subdiagram of M consisting of fl together with all 

of  M contained within fl; then fl describes ?do, and M o has at most the point P 

in common with the remainder of M. If Mo contains a single region D, then fl 

describes D', and, since fl is part of ~, Mo is critical. Suppose M o contains more 

than one region. Choose a region D o o f M  o such that P lies on D o. IfD is a region 

of M o other than D o, and if D" n M" is connected and consists of more than one 

point, then D ' n M "  is an arc 6, not containing P in its interior, and hence is a 

simple subarc offl  and so of~. Thus again M o is critical provided every D ' n M  o 

is connected. 

Suppose D 1 is a region of Mo such that D'lnM'o is not connected. Then 

removing D'I separates M 0 into more than one component, and we may choose 

a component  K not containing P. Let M 1 = KuD'~, and suppose first D1 and 

then K chosen to make the number of regions in M1 as small as possible. Then 

D'nM'~ is connected for all D in M 1. Moreover, M~ contains some region other 

than D~, and if D is such a region, and D' nM'~ contains more than one point, 

it is an arc not containing P in its interior, and hence a simple subarc of 0t. 

Therefore M 1 is critical. This establishes Lemma 3.4. 

It is perhaps worth commenting on the relation between the diagram M 

associated with a sequence pa . . . .  , p, and the full group diagram J~ for the 

presentation determined by the relators rx . . . . .  r,. An incidence preserving 

map ~0 from M into )~t is determined by mapping the vertex 0 of M into the 

vertex P(1) of)~,  and each edge E of M with starting point P and label y = x + 1 

into the unique edge ~pE in M with starting point lpP and label y. Moreover, 

this map ~p can be extended to map the regions of M onto two cells of j~t. The 

map ~p need not be one to one: ifp~, P2 has the form rl, r~, then M consists of 

two loops bounding disjoint regions at 0, which doubly cover a loop at P(1) 

in h~t bounding a single two cell. The possibility of embedding M in the plane, 

and the consequent multiplicity of ~p, results from the fact that, in constructing 

M, we have not taken into account all coincidences between parts of the p{ l, 

but only those that play a role in cancellations leading to the reduced form of 

the product w = Pl..-P.- 

4. Free groups 

We now suppose that F is a free group, R a set of non trivial elements of F, 

and N the normal closure of R in F. If w is in N, then w can be written as a 

product  w = p i  .. .p,,  for some n ~ 0 ,  of conjugates Pi of elements r ±~ for r in R;  

indeed, each Pi = uir~u7, 1 reduced, where each ri is a cyclically reduced conjugate 

of some r in R. Moreover, we can suppose the'sequence p~, ..., p, reduced. I f M  

is a reduced diagram for this sequence, we shall impose conditions on R which 

imply conditions on the degrees of interior regions and vertices of M, and hence, 

by our lemmas on maps, imply conditions on M'. 

First, it is convenient to suppose R symmetrized in the sense that every 

element r of R is cyclically reduced and that, if r is in R, then every cyclically 

reduced conjugate of r or r -  x is in R. Second, we can without loss delete from 
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M every vertex of degree 2, except possibly 0, with the result that d(P) > 3 for 

each interior vertex P. 

Define a piece to be an element x of F such that R contains two distinct 

elements with reduced forms r = xa  and s = xb. Suppose that E is an interior 

edge of M, separating regions D1 and D2. I fx  is the label on E, then D'~ and D~ 

will have labels, starting at the starting point of E, which are elements of R of 

reduced forms rl = x a  and r2 = b x -  1. Since the label on D', for D = DI u D 2 w E ,  

is ab, and M is reduced, ab 4= 1, and R contains distinct elements with reduced 

forms x a  and x b -  1. It follows that every label on an interior edge is a piece. 

If D is an interior region of M, and d(D) = k, then D" is described by an arc 

E l , . . . ,  ER where each Ei is an interior edge, and D" has a label r in R with reduced 

form r = x i . . . X k ,  where each xi is a piece. Consequently the condition that 

d(D) > p for every interior region D will follow from the following condition 

on R: 

C(p): N o  element o f  R is a product o f  f ewer  than p pieces. 

Case i. Assume that R satisfies the condition C(6). Then d(D)> 6 for each 

interior region D. Moreover, d(P) > 3 for each interior vertex. Suppose w 4= 1, 

whence M contains a critical subdiagram Mo satisfying the same conditions on 

interior degrees. If M0 consists of a single region D, then some simple closed 

arc fi bounding D is a subarc of the arc ~ describing M" at 0, whence the label r 

in R on ~ is a part of the reduced form of the label w on 0¢. If Mo contains more 

than one region, then, by Corollary 2.3, it contains at least two boundary 

regions D with at most 3 interior edges each. Taking one of these D distinct 

from the exceptional region Do, we have that D'c~M o is a simple arc 8, part of 0~. 

Now D" is described by an arc tSE 1 ...Ek, where k < 3 and the E i are interior 

edges. Then R contains an element r with reduced form r = a x : . . . x k ,  k < 3 ,  

where a is the label on 6 and x l ,  ..., Xk are pieces. Moreover, a is a part of the 

reduced word w. In this sense, w contains some r from R with (at most) 3 pieces 

missing. (We can delete 'at most', since 1 is always a piece,) 

Case ii. Assume C(4), whence d(D) > 4 of each interior region D. If we can 

ensure that d ( P ) >  4 for each interior vertex P, then we can conclude, exactly 

as in Case i, that each non trivial element w in N contains some element r 

from R with two pieces missing. It remains to formulate a condition on R 

excluding interior vertices of degree 3. Suppose that P were such a vertex, with 

E 1, D~, E2, D2, E3, Da in order the edges leading into P and the included regions. 

The boundary of D~, starting at P, then has label with reduced form r i = x?  laixi+ 1 

in R, where i is taken modulo 3 and x~ is the label on Ei. Thus there is cancellation 

in each of the products r l r  2, rzr3, and rar 1. To exclude such vertices we impose 

on R the following condition: 

Ta : I f  r t, r2, and ra are in R, then in at least one o f  the products r I r2, rzra, 

rar 1 there is no cancellation. 

Case iii. This case is of very limited interest, since the hypotheses needed 

for our argument seem both artificial and very restrictive; we know of no 

16 Math. Ann. 166 
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natural application, although we shall give later a natural, if special, application 

of the analc~gous case for free products. In fact, the condition C(3) is very mild; 

it can be given the simpler form that, if rl, r2, and r 3 are elements of R, with 

rlr2 # 1 and r2r3 # 1, then r2 does not cancel entirely in the product rlr2r 3. 

The condition that all interior vertices have degree d(P) __> 6 is, on the other hand, 

very strong. We can ensure this by assuming T3 together with analogous 7"4 

and Ts. In fact, since M is reduced, we can modify each of these conditions Tk 

to T~ by inserting the additional hypothesis that no r~rl+ ~ = 1. It is easy to see 

that T~ is in fact equivalent to T3, and that, in the presence of T3, T~ is equivalent 

to Ts. However T~ is significantly weaker than 7"4. Even so, if each r in R has 

length at,least 4, T~ cannot be realized in any case that does not already fall 

under Case ii. The best we can do to improve this is to replace 7"4 by the following: 

T~' : I f  rl, ..., r 5 are elements of  R, with each rir~+ 1 ~: 1, then there exists 

a in F such that each r'~ = a r a - t  is in R, and in at least one of  the 

products r~r'i+ z there is no cancellation. 

For, it can be shown by an argument similar to that we shall use in the next 

section, if M contains an interior vertex P of degree 4, assuming T~ we can 

modify M to eliminate this vertex. In all, under hypotheses C(3), Ta, T~, and 

T 5, we can conclude as before that each non trivial element of N contains some 

r in R with two pieces missing. 

We have proved the following theorem. 

Theorem I. Let F be a free group, R a symmetrized subset of  F, N the normal 

closure of  R in F, and w a non trivial element of  N. Under the additional hypo- 

thesis 

(i) C(6), 

it follows that w contains some r from R with three pieces missing : w and r have 

reduced forms w = bac and r = axlx2x3,  where xl, x2, and x3 are pieces. 

Under either of  the hypotheses 

(ii) C(4) and Ta, 
o r  

(iii) C(3), T 3, T~, and T 5 , 

it follows that w contains some r from R with two pieces missing. 

With each positive real number 2 we associate the following condition : 

C'(2): I f  r in R has reduced form r = ab where a is a piece, then a has length 

lal < 2lrl. 

1 
If 2 _~ - - - T '  then r cannot be the product of as few as p - 1 pieces, and C(p) 

p -  

holds. Thus Theorem I has the following corollary. 

Corollary 4.1. Let F, R, N, and w be as before. I f  we have 

1 
(i) C'(2) for some X < - -  

- - 5 '  

then w contains a part a of  some r in R, with [a[ > (1 - 3A)lr[. I f  we have either 

1 
(ii) C'(2), for some 2 <= -~,  and T a , 
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o r  

1 
(iii) C'(2), for some 2 <= --~, and T 3, T~, and Ts ,  

then w contains a part a of  some r in R, with la[ > (1 - 22)1rl. 

Most of these results are known. Both Scmzt< [18] and GREENDLIN6ER [10] 

have stated results in terms of pieces missing. Case i of the corollary, for 2 = 1/6, 

was stated explicitly by GREENDLINGER [9]; earlier TARTAKOVSKtl [22] had 

obtained a closely related result, and BRIXTON [3] had obtained the analogous 

result with the free group F replaced by a free product. It is mentioned in a review 

by BooNE [2] that BRIXXON had conjectured Case i with 2 = 1/5, and BRITTON 

now has a proof  by his methods for this case. Case ii, for 2 = 1/4, was stated 

explicitly by GRE~NDLINGER [11]; earlier a related result had been given by 

SCI-ItEK [18], who introduced the condition T3, and BRIXXON [3] appears to 

allude to a similar result. 

DEHN'S argument gives an immediate solution of the Word Problem for R 

finite whenever every non trivial element of N contains more than half of some 

element from R, in particular, under Case i of the corollary provided 2 < 1/6, or 

Case ii provided 2 < 1/4. Under a more general hypothesis, a different argument 

is needed. 

Theorem H. Let F be a free group, R a finite symmetrized subset of  F, and N 

the normal closure of  R in F. Assume one of  the three hypotheses: 

(i) C(6), 

(ii) C(4) and T3 , 

(iii) C(3), T3, T~, and Ts.  

Then there exists an algorithm for deciding whether arbitrary w in F belongs to N. 

We show first that if w is in N, hence w=Pl . . . pn  for some n > 0  and 

p~ = u~r~u7, 1 reduced, r~ in R, then some such sequence Pl . . . .  , Pn has a diagram M 

with no more than p21wl2 vertices, where p = 6, 4, 3 according to the case. 

Indeed, let Pl, -.., P, be a reduced such that pl . . .pn=w,  and let M be the 

associated reduced diagram. If a closed arc 0c at 0 describing M has k edges, 

then w is the product without cancellation of the k non trivial labels on these 

edges, whence k < twl. Each vertex on M" occurs at least once as the starting 

vertex of some edge in ~, whence the number a" of vertices on M" is no greater 

than k, that is, a" < k. The length of M', in the sense of Lemma 2.6, is given by 

b = 27" [p - d(P)], whence it follows that b = E" [p - d(P)] < 27"p = pa" < pk < plwl. 
Now Lemma 2.6 gives a_b< 2 _p< 21wl.2 

Now suppose arbitrary w in F given. If w is in N, it must be the product  of 

a sequence with a reduced diagram with no more than p21wl 2 vertices. There 

are, within isomorphism, only finitely many unlabeled maps with no more 

than this many vertices, whence it will suffice, given w in F, to decide whether 

a given such map can be labeled to yield a diagram of the required sort. Now a 

label on an interior edge is a piece, and, since R is finite, there are only finitely 

many pieces. A label on a boundary edge must be part of the reduced word w, 

16" 
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and there are only finitely many such parts. Thus, given a map, there are only 

finitely many labelings of its edges to consider, and it suffices to decide whether 

a given labeled map in fact constitutes a diagram for a sequence Pl . . . .  , p, of 

conjugates of elements r~ in R, with Pl. . .P,  = w. But this last equation can clearly 

be settled by inspection. 

We state now the last of our three main results. 

Theorem HI. Let F be a free group, R a symmetrized subset of F, and N the 

normal closure of R in F. The operation of F on N by conjugation induces on 

the quotient group N o = N/[N,N] of N by its derived group the structure of  an 

F/N module. Assume one of the following three hypotheses: 

(i) C(6), 

(ii) C(4) and 7"3, 

(iii) C(3), T3, T~', and Ts. 

Then the FIN module N O is the direct sum of cyclic submodules. 

For each r in R, the coset r[N, N] in No generates a cyclic submodule, 

containing all p [N, N] for p conjugate to r; clearly conjugate elements r of R 

generate the same submodule. We shall show that No is the direct sum of these 

cyclic submodules. This amounts to showing that if w = Pl...P~ is in [N, N], 

where each p~ is a conjugate of some element from R, then the factors p~ fall 

into pairs p~ and p~, with p~ = qpj lq-~ for some q in N. Since a commutator  

pr Ip-~ ~p~pj of conjugates of elements of R obviously has this pairing property, 

it suffices, by an induction on n, to show that ifp~.. .p, = 1, and n > 0, then there 

is one pair of factors p~ and p~ of the required sort. We shall show more, that 

p~...p, = 1 implies the sequence PI . . . . .  p, is not reduced. 

Suppose, w = pl . . .p , ,  n > 0, each p~ conjugate to some element of R, and 

that the sequence p~, ..., p, is reduced. By Lemma 3.3, there exists a reduced 

diagram M for this sequence, together with some number q > 0 of reduced 

diagrams L~, ..., L~ on the sphere, containing in all n regions. By Corollary 2.5, 

there cannot exist any map L on the sphere satisfying those conditions on degrees 

that follow from the hypotheses of Theorem II. Therefore q = 0 and M contains 

n regions. But then M, and so also M', consists of more than a single point. It 

follows that w =~ 1. 

In the cases where one can conclude that every non trivial element of N 

contains more than half of some element from R, COHEN and LYNDON [4] 

derived the conclusion of TheoremlIIfrom a stronger result, that N has a free 

basis consisting of conjugates of elements from R. It is not clear whether this 

stronger result holds in the more general situation considered in Theorem III. 

5. Free products 

We now suppose that F is no longer a free group, but the free product of a 

given family of subgroups F~, with distinct F~ having trivial intersection. We 

shall again take R to be a subset of F and N the normal closure of R in F. The 

construction of diagrams and the proofs of Theorems I, II, and III then go 
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over with very little change. We shall confine ourselves to the proof  of an 

analog of Theorem I, and to giving two simple applications. 

Every element w of F now has a unique normal form,  w = wt ... w,, n > O, 

where each of the letters wi is a non trivial element of some component  Fj, and 

adjacent wt, wt+ 1 do not belong to the same Fj. The length of such w is lwl = n. 

Given two elements with normal  forms u = Ul... um and v = v 1... v,, in obtaining 

the normal  form for the product  w = uv there may be cancellation of a certain 

number  of letters from the end of u against their inverses, at the beginning of v; 

it may also happen that the last remaining letter ui of u is in the same Fk as the 

first remaining letter vj of v, in which case they are consolidated to give a single 

letter utvj = wt in the normal  form for w. We shall speak of w as having reduced 

fo rm  w = uv if there is no cancellation in forming the product ;  we do not 

exclude the possibility of consolidation. It  should be emphasized that for a to 

be a part  of w with reduced form w = bac does not require that the letters of a 

should be a subsequence of those of w. 

We shall call an element r cyclically reduced if it has normal  form r = rl... r, 

where r,r 1 ~ 1 ; if r I and r, belong to different Fj, we call r strictly cyclically 

reduced. A set R will be called symmetrized if every r in R is cyclically reduced and 

if, together with each r in R, every cyclically reduced conjugate of r on r -  1 also 

belongs to R. The definition of a piece is modified as follows" x is a piece if R 

contains elements with reduced forms a x b  and c x d  where xba  :~ xdc .  

We turn now to the construction of a diagram M associated with a sequence 

Pl . . . .  , p,. In all diagrams considered, the vertices will fall into two classes, 

pr imary and secondary, and the two ends of every edge will fall into different 

classes. The label on every edge will belong to some Ft, with the labels on two 

edges meeting successively at a pr imary vertex belonging to different F t, and 

those on edges meeting at a secondary vertex belonging to the same Fj. If 

E 1 . . . .  , E k are in order the edges running into a secondary vertex P, then we 

shall want to specify the values of the labels dp(E i lEi+ 1) = dP(Ei)- l~b(Et+ t), but 

we shall not be concerned with the particular choice of the ~(Ei) = xt. For  the 

x i we shall then have a system of equations x7  lxi+ 1 = qb(Er~ le t+ 1)= at, in Fj, 

for i modulo  k, and of inequations x~ :t: 1. We shall have always the compatibil i ty 

condition al . . .ak  = 1; with this one of the equations xr, l X t + l - a i  becomes 

redundant, and the rest can be solved to express the remaining xt in terms of x 1. 

We are then left with k inequations x 1 ~= bl, ..., bk. Assuming, as we may  in 

this context, that each F~ is infinite, a solution can always be found. 

With a sequence of length n = 0 we associate as before a diagram M 

consisting of the single (primary) point O. Let n = 1 ; then Pl has normal  form 

Pl =al . . .akb l . . .bma-k l . . .a -11  where k__>0, m >  1, and bmb 1 ~:1. If  bl and bm 

are in different Fj we take M to be a loop at P joined to O by a path. The path 

OP consists of 2k edges E, 1, E'I . . . . .  E k ,  E'k, with each dp(EiE~)= at. The loop at P 

consists of 2m edges B1, B~, ..., Bin, B~, with each ~(BtB~) = b t. If bl and b 2 lie 

in the same Fj, we take O P  to end with an additional edge E, and the loop at P 

to consist of edges B, B2, B~, ..., B m _  1, B~n- 1, C, with dp(BtB~) = b t as before for 

2 __< i __< m - 1. The three edges E, B, and C at the secondary vertex P are to be 
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labeled in such a way as to satisfy the compatible conditions ~b(EB)= al, 

qb(CE- 1) = am and d?(CB) = areal. 

The argument by induction for n > 1 follows the same plan as before. 

Suppose at some stage we have successive edges E, E', G, and G', where E 

and G are separated by a primary vertex P, and yet ~(EE') = a and q~(GG') = b 

lie in the same Fj. I fab = 1, we either delete a loop bounded by these four edges, 

or else, as before, we bring E' into coincidence with G-1 (their secondary 

vertices cannot coincide) and E with G'-  1. Ifab + 1, we bring E' into coincidence 

with G- 1, leaving on the boundary consecutive edges to be labeled ~b (E G') = a b. 

In either case it is necessary, but possible, to readjust the labels on the four 

edges involved. 

With this, we obtain analogs of everything in Section 3. 

To begin with an analog, Theorem IV, of Theorem I, we again assume a 

condition C(p) to ensure that every interior region D of a reduced diagram M 

has degree d(D) > p. As before, we can also suppose that every interior vertex P 

has degree d(P) > 3. For  the case that p = 6, no more is required. 

In Case ii, assuming C(4), we again need a condition to exclude interior 

vertices of degree 4. To exclude such primary vertices, we require the following 

variant of T3 : 

T~ : I f  rl, r2, and r a are strictly cyclically reduced elements of  R, then, in 

at least one of  the products rlr 2, r2r 3, rarl, there is non cancellation. 

At a secondary vertex P of degree 3, with successive edges El, E2, and E 3 leading 

into P, let x~, x 2, x a be the labels on these edges. Then the three regions D i 

meeting at P will bear on their boundaries labels ri in R, strictly cyclically re- 

duced, where r i contains a letter ai = x~+ lXi- 1. Thus aaa2a I = 1. To exclude this, 

we require the following condition: 

T2: I f  al, a2, and a 3 are letters occurring in strictly cyclically reduced 

elements of  R, then ala2a3 :~ 1. 

This suffices for the case p = 4. 

The remaining Case iii is again awkward. We again assume C(3), and also 

T~, 7"41, and ?'51, obtained from 7"3, T~, and T5 by restricting consideration to 

strictly cyclically reduced r~ in R. These imply the condition d(D) > 3 on interior 

regions D, and the condition d(P) > 6 on interior primary vertices. For interior 

secondary vertices, T 2 together with analogous T 2 and Tg would suffice, but 

are needlessly strong. If we restrict these conditions to the case where all 

a~a~+ 14: 1, the content of Ta 2 and T~ taken together is not altered, but we obtain 

T 2 in weaker form: 

I"24: I f  al, a2, aa, a4 are letters occuring in strictly cyclically reduced 

elements o f  R, and ala2, a2a3, a3a4 • 1, then ala2a3a 4 :~ 1. 

This condition does not in fact exclude that the diagram M should contain 

an interior secondary vertex P of degree d(P) = 4, but does ensure that M can 

be modified in such a way as to eliminate all such vertices. Suppose then that 

P is such a vertex, with four edges E~ = P~P running into P, in order, and with 



On Dehn's Algorithm 225 

regions D i lying between Ei and Ei+ 1, where i is taken modulo 4. Since P is 

secondary, the labels x i =  ~b(Ei) all lie in the same Fj, and the ai = x i + l x 7 ,  1 

satisfy a4a3a2al = 1. By T 2 and symmetry we can suppose a2al = 1, hence 

x~ = x3. In the diagram K = D~ w "." u D  4, we think of the pair of edges Et  = P~P 

and Ea- 1 = PP3 as obtained by flattening a rhombus P~ p2 P3 P* onto a diagonal 

in such a way that p2 = / , 4  = p. We obtain K'  by flattening this rhombus onto 

its other diagonal, so that P~ and P3 coincide at a point Q. Since K'  has the same 

boundary as K, we can form M' from M by replacing the part K by K'. Now M' 

does not contain the vertex P, but contains three vertices that did not appear 

in M. Two of these, p2 and P*, are of degree 2, and can be deleted, while the third, 

Q, is a primary vertex. Since M' contains fewer interior vertices of degree 4 

than M, by iteration of this process we can eliminate all such vertices. 

With this, we have proved an analog of Theorem I. 

Theorem IV. Le t  F be a f r e e  product, R a symmetrized subset o f  F, and w, 

a non trivial element in the normal closure N o f  R in F. Assuming 

(i) C(6) 

we conclude that w = bac reduced, where r = a x  1X2xareduced,for some r in R and 

pieces x l ,  x2, xa. 

Assuming either 

(ii) C(4), T~ and T 2 , 

or 

(iii) C(3) and T~ 1, T3, i= 3, 4, 5, 

we conclude that w = bac reduced, where r = a x l  x 2 reduced, for  some r in R and 

pieces x l  and x 2. 1 

If we replace the hypothesis C(p) by C'(2), for 2 < P _ 1 ' then the exact 

analog of Corollary 4.1 holds, with the conclusion that lal > ( 1 -  3,~)[rl or 

lal > ( 1 -  22)Irl according to the case. This is not quite immediate since, for 

example, we may have Ixxx2x31 < Ixd + Ixzl + Ix31 if there is consolidation in 

forming the product. However, it is easy to see that corresponding considera- 

tions strengthen the hypothesis C'(2) in a way that more than compensates for 

this. 

It should be emphasized that, in Theorem IV, the part a ofw need not consist 

precisely of a consecutive sequence of factors from the normal form of w, or of r. 

If we require this, and also restrict a piece to be a consecutive part in this sense 

of the normal forms of two distinct strictly cyclically reduced elements of R, 

then, for the reasons indicated, we can assure only that lal > (1 - 3;0 Irl - 4 or 

lal > (1 - 22) Irl - 3, according to the case. A procedure that is in some sense 

more natural is to replace lal, as part of w = bac, by the number of full factors 

from w in a, and adding 1/2 for a factor on either end of a that is consolidated in 

forming w; if this is done consistently, the number Ilall exceeds (1 - 3 2 ) I r l  or 

( 1 - 2 2 )  Irl, r strictly cyclically reduced. This is similar to the procedure of 

BRITTON [3]. 
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We conclude with two examples. The case with C(6), in particular with 

2 < 1/6, either for F a free group or F a free product, has already been adequately 

illustrated by DEHN and his successors. We shall illustrate the two remaining 

cases, for F a free product. It must be confessed that our example for the third 

case is the only reasonable application of this case that we have been able to 

discover. 

Example 5.1. Let  F = A * B, f ree  product o f  subgroups A and B with 

A c~ B = 1. Le t  r = a i b 1 a2 bz with a i, a2 in A and b 1, b2 in B, and let N be the normal 

closure o f  r in F. Assume that the set o f  a~ ~ and b~ 1 consists o f  eight distinct 

elements, and that no one is the square o f  another. Then N c~ A = N n B = 1. 

We take R to consist of all cyclically reduced conjugates of r and r-1.  If s 

is any strictly cyclically reduced element of R, it follows from the assumption 

that the a~ 1 and b~ 1 are distinct, that a piece ofs  cannot contain all of any letter 

from s, and hence consists at most of parts of two adjoining letters. Thus s 

cannot be a product of three pieces, and C(4) holds. Condition T3 ~ is immediate 

on the same grounds: there cannot be cancellation in the product st  of two 

strictly cyclically reduced elements of R unless st = 1. For  T3 2 we require that 

no product of three factors a~ 1 or b/~ 1 is trivial, and this has been incorporated 

in our hypothesis. It follows now that if w is any non trivial element of N, then 

w = b a c  reduced, where some s = a x l x 2 ,  reduced, s in R and xl, x2 pieces. 

Evidently the part a of s cannot lie in A or in B, whence the same holds for w. 

Example 5.2. Let  F = A .  B, free product o f  subgroups A and B with 

A c~ B = I. Let  r = al bl a2b2aab 3 with the ai in A and the b~ in B, and let N be the 

normal closure o f  r in F. Assume that the b i are strictly 5-free in the following 

sense: i f  bi~l ... b ~  = 1, where 1 <_ m < 5, each i h --- 1, 2, o r  3,  and each e h = +_ 1, 

then there exists h, 1 < h < m, such that i h -~-i  h + 1 and eh = --eh+ 1. Assume that 

the a i are weakly 5-free in the following sense: /f a~ ... aT~ = 1; 1 _< m _< 5; 

ih = 1, 2, or 3 ; eh = +__ 1 ; then a~ heh ai heh++ll = 1 for  some h, 1 <= h < nt Then N n A 

= N n B = I .  

Take R as before. It follows from the distinctness of the b~ 1 that no piece 

can contain a letter b~ ~ except as its first or last letter, and hence cannot contain 

two letters a~ ~. Consequently no element of R is a product of two pieces, and 

C(3) holds. (We note that C(4) need not hold, for example if al = a2 = aa.) 

Again the distinctness of the b~ ~ implies that one cannot have strictly cyclically 

reduced r~ in R such that for some i there is cancellation in both r~_ ~ r~ and 

r~ri+i, with neither product  trivial; thus T~, 7"41, and Ts 1 hold. The weak 

5-freeness of the letters gives precisely T 2, T 2, and Ts 2. The conclusion of the 

theorem, that non trivial w in N contains some element from R with two pieces 

missing is here not strong enough. For  let a~ = a2 = as = a. Then x l  = b~ab2 

begins both  bl ab2abaa and b l a b l  ab2a(bab  ~ 1), x2 = ab a begins both abaabt  ab 2 

and ablab2ab3,  and r = a x l x  2. We appeal to the diagram M, Which we know 

to contain a region D with at most two interior edges, restoring to D" its three 

primary vertices and its three secondary vertices, dividing D" into what we shall 

call subedges. No interior edge can contain two successive subedges with labels 

in B, by virtue of the distinctness of the b~ 1. Therefore an edge can at most 
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contain two adjacent subedges with labels in A, together with a subedge with 

label in B at each end. Two such edges can exhaust at most eight of the twelve 

subedges of D', whence the part D'c~M" must contain at least four subedges, 

and hence bear a label that does not lie in A or in B. We conclude again that w 

is not in A or B. 

Corollary 5.3. Let B be any group, and bl, b2, and b 3 three elements of  B that 

are 5-free in the above sense. Then B can be embedded in a group G containing an 

element x such that, in G, x b l x b 2 x - l b 3  = 1. 

Let A be a cyclic group, with generator a, of order n 4: 1, 2, 3, 4, 5. Let 

F = A • B and r = ablab2a-  lb3, with N the normal closure of R in F. The hypo- 

these of Example 5.2 are satisfied, and we conclude that N n B  = 1. Consequently 

G = F / N  contains B isomorphicalty, and the element x = a N  satisfied the re- 

quired equation. We note that B is contained in no proper normal subgroup 

of G, for, if K is the normal closure of B in G, then G/K is generated by xK;  

with a defining relation implying that x K = 1. 

We remark that the above corollary gives only a rather special example of a 

variety of similar results that can be obtained by similar methods. A stronger 

form of the result given is contained in a theorem of GERSTENHABER and 

ROTHAUS [7] under the assumption that B can be embedded in a compact 

connected Lie group. The analogous result for the equation xb txb2xb3  = 1 

follows from a simpler argument of LEVlN [ 13]. If one considers more generally 

an equation x"~bl.., xnkbk = 1, the case k = 1 is trivial, while partial results for 

k = 2 and k = 3 can be derived from the two examples above. For  k = 4 or k = 5, 

Case ii of  Theorem IV can be applied under somewhat milder conditions on the 

ni and hi. For  k ~ 6, we can use Case i of Theorem IV, and conclude that a 

solution exists provided all ni 4:0 and all b~ 1 are non trivial and distinct; in 

particular, one may well have Eni = O. 

Bibliography 

[l] BERGE, C.: Th6orie des graphes et ses applications. Paris: Dunod 1958. 

[2] BOONE, W. W.: Review of BRITTON [3]. Math. Reviews 23, 440---441 (1962), A 2325. 

[3] BRITTON, J. L. : Solution of the word problem for certain types of groups, I, II. Proc. Glasgow 

Math. Ass. 3, 45--54, 68--90 (1956--58). 

[4] COHEN, D. E., and R. C. LYNDON : Free bases for normal subgroups of free groups. Trans. 

Am. Math. Soc. 108, 528--537 (1963). 

[5] DEHN, M.: Ober unendliche diskontinuierliche Gruppen. Math. Ann. 71, 116--144 (1912). 

[6] - -  Transformation der Kurven auf zweiseitigen Ft~ichen. Math. Ann. 72, 413--42t (t912). 

[7] GERSTENHABER, M., and O. S. ROTHAUS: The solution of sets of equations in groups. Proc. 
Nat. Acad. Sci. U.S. 48, 1531--1533 (1962). 

[8] GLADKII, A. V.: On simple Dyck words. Sibirsk Mat. Zh. 2, 36--45 (1961). 

[91 GREENDLtNGER, M. : Dehn's algorithm for the word problem. Comm. Pure Appl. Math. 13, 
67--83 (1960). 

[10] - -  On Dehn's algorithms for the conjugacy and word problems with applications. Comm. 

Pure Appl. Math. 13, 641--677 (1960). 

] 11 ] - -  Solutions of the word problem for a class of groups by means of Dehn's algorithm, and 

of the conjugacy problem by means of a generalization of Dehn's algorithm. Dokl. Akad. 

Nauk SSSR 154, 507--509 (1964). 



228 R.C. LVNDOr~: On Dehn's Algorithm 

[ 12] - -  Solution of the conjugacy problem for a class of groups coinciding with their anti-centers, 

by means of the generalized Dehn algorithm. Dokl. Akad. Nauk SSSR 158, 1254---1256 

(1964). 

[13] LEVIS, F.: Solutions of equations over groups. Bull. Am. Math. Soc. 68, 603--604 (1962). 

[14] LIPSCHUTZ, S. : Elements in S-groups with trivial centralizers. Comm. Pure Appl. Math. 13, 

679--683 (1960). 

[ 15] LYr~]9oN, R. C.: Cohomology theory of groups with a single defining relation. Ann. of Math. 

52, 650---665 (1950). 

[16] - -  Dependence and independence in free groups. Crelles J. 210, 148---174 (1962). 

[t7] REIDEMEIST~R, K.: Einfiihrung in die kombinatorische Topologie. Braunschweig: Vieweg 

1932. 

[18] SCHmK, H.: .~hnlichkeitsanalyse von Gruppenrelationen. Acta Math. 96, 157 251 (1956). 

~19] - -  Das Adjunktionsproblem der Gruppentheorie. Math. Ann. 147, 159--165 (1962). 

[20] TARTAKOVS~n, V. A.: The sieve method in group theory. Mat. Sbornik (N. S.) 25, (67), 3--50 

(1949). 

[21] - -  Application of the sieve method to the solution of the word problem for certain types of 

groups. Mat. Sbornik (N.S.) 25, (67), 251--274 (1949). 

[22] - -  Solution of the word problem for groups with a k-reduced basis for k > 6. Izvestiya Akad. 

Nauk SSSR, Ser. Mat. 13, 483---494 (1949). 

[23] - -  On primitive composition. Mat. Sbornik (N.S.) 30, (72), 39--52 (1952). 

[24] - -  Translations of [20, 21, 22]. Am. Math. Soc. Translations 60 (1952), reprint 1 (1962). 

[25] ZmSCHANG, H.: Studien zur kombinatorischen Topologie von Fl~ichen und ebenen diskon- 

tinuierlichen Gruppen (multigraphed). Frankfurt 1964 (priv. Ver6ffentlichung). 

Added in proof. We would like to add to the bibliography several references that have come 

recently to our attention. First, independent work of C. WEINBAU! [34] appears to have much in 

common with the present paper; also, WEINBAUM drew our attention to a paper orE. VAN KAMPEN 

[33] containing essentially our concept of diagram. We are grateful to B. GRONBAUM for telling 

us of the papers [26, 27] of C. BLANC, and the paper [28] of F. FIALA, where geometric theorems 

for graphs that are similar to ours are used for a different purpose. We are grateful to M. GRE~ND- 

LINOER for reference to the papers [29, 30] of A. V. GLADKU, where different proofs of some of 

our results may be found. We wish also to draw attention to the thesis [32] ofP. E. SCHUPP, in which 

the present methods are extended to apply to the problems of conjugacy, of centralizers, and of 

torsion, and also to the thesis [31 ] of P. P. N. O~Lm, written under the guidance of F. RAYMOND, 

in which these ideas are applied to the theory of manifolds. 

Additional bibliography 
[26] BLANC, C. : Une interpr6tation ~l~mentaire des th~or~mes fondamentaux de M. Nevanlinna. 

Comm. Math. Helv. 12, 153--163 (1940). 

[27] - -  Les r6saux Riemanniens. Comm. Math. Helv. 13, 54--67 (1941). 

[28] FIALA, F. : Sur les poly~dres ~t faces triangulaires. Comm. Math. Helv. 19, 83--90 (1946). 

[29] GLADKn, A. V.: On groups with k-reducible bases. Dokl. Akad. Nauk SSSR 134, 16--18 

0960). 
[30] - -  On groups with k-reducible bases. Sibirsk Math. J. 2, 366--383 (1961). 

[31] ORLIK, P. P. N. : Necessary conditions for the homeomorphism of Seifert-manifolds. Thesis, 

University of Michigan, 1966. 

[32] Scr]uPp, P. E.: On Dehn's algorithm and the conjugacy problem. Thesis, University of 
Michigan, 1966. (To be submitted to Math. Ann.) 

[33] VAN ~ P E N ,  E. R.: One some lemmas in the theory of groups. Ann. J. Math. 55, 268--273 

(1933). 
[34] WEmBAUM, C. M.: VisuaF~zing the word problem, with an application to sixth groups. 

Pacific J. Math. 16, 557--578 (1966). 

Ro~]~R C. LYNDON 

The University of Michigan, Department of Mathematics, Angell Hall 

Ann Arbor, Michigan, USA 

(Received March 8, 1965) 


