
On-Demand Language Model Interpolation for Mobile Speech Input

Brandon Ballinger1, Cyril Allauzen2, Alexander Gruenstein1, Johan Schalkwyk2

1Google, 1600 Amphitheatre Parkway, Mountain View, CA 94043, USA
2Google, 76 Ninth Avenue, New York, NY 10011, USA

brandonb@google.com, allauzen@google.com, alexgru@google.com, johans@google.com

Abstract
Google offers several speech features on the Android mobile
operating system: search by voice, voice input to any text field,
and an API for application developers. As a result, our speech
recognition service must support a wide range of usage sce-
narios and speaking styles: relatively short search queries, ad-
dresses, business names, dictated SMS and e-mail messages,
and a long tail of spoken input to any of the applications users
may install. We present a method of on-demand language
model interpolation in which contextual information about each
utterance determines interpolation weights among a number of
n-gram language models. On-demand interpolation results in
an 11.2% relative reduction in WER compared to using a single
language model to handle all traffic.
Index Terms: language modeling, interpolation, mobile

1. Introduction
Entering text on mobile devices is often slow and error-prone
in comparison to typing on a full-sized keyboard. Google of-
fers several features on Android aimed at making speech a
viable alternative input method: search by voice, voice input
into any text field, and a speech API for application develop-
ers. To search by voice, users simply tap a microphone icon on
the desktop search box, or hold down the physical search but-
ton. They can speak any query, and are then shown the Google
search results. To use the Voice Input feature, users tap the
microphone key on the on-screen keyboard, and then speak to
enter text virtually anywhere they would normally type. Users
may dictate e-mail and SMS messages, fill in forms on web
pages, or enter text into any application. Finally, the Android
Speech API is a simple way for developers to integrate speech
recognition capabilities into their own applications.

While a large portion of usage of the speech recognition
service is comprised of spoken queries and dictation of SMS
messages, there is a long tail of usage from thousands of other
applications. Due to this diversity, choosing an appropriate lan-
guage model for each utterance (recorded audio) is challenging.
Two viable options are to build a single language model to han-
dle all traffic, or to train a language model appropriate to each
major use case and then choose the “best” one for each utter-
ance, depending on the context of that utterance.

We develop and compare a third option in this paper, in
which a development set of utterances from each context is
used to optimize interpolation weights among a small number
of component language models. Since there may be thousands
of such “contexts”, the language models are interpolated on-
demand, either during decoding or as a post-processing rescor-
ing phase. On-demand interpolation is performed efficiently via
the use of a “compact interpolated” finite state transducer (FST),
in which transition weights are dynamically computed.

Percent of utterances
Voice input 49%

Search by Voice 44%
Speech API 7%

Table 1: Breakdown of speech traffic on Android devices that
support Voice Input, Search by Voice, and Speech API.

2. Related Work
The technique of creating interpolated language models for dif-
ferent contexts has been used with success in a number of con-
versational interfaces [1, 2, 3] In this case, the pertinent con-
text is the system’s “dialogue state”, and it’s typical to group
transcribed utterances by dialogue state and build one language
model per state. Typically, states with little data are merged, and
the state-specific language models are interpolated, or otherwise
merged. Language models corresponding to multiple states may
also be interpolated, to share information across similar states.

The technique we develop here differs in two key respects.
First, we derive interpolation weights for thousands of recog-
nition contexts, rather than a handful of dialogue states. This
makes it impractical to create each interpolated language model
offline and swap in the desired one at runtime. Our language
models are large, and we only learn the recognition context for
a particular utterance when the audio starts to arrive. Second,
rather than relying on transcribed utterances from each recogni-
tion context to train state-specific language modes, we instead
interpolate a small number of language models trained from
large corpora.

3. Android Speech Usage Analysis
The challenge of supporting a variety of use cases is illustrated
by examining the usage of the speech features available on
Android. Table 1 breaks down the portion of utterances from
the Android platform associated with the three speech features:
voice input, search by voice, and the speech API. We note that
this distinction isn’t perfect, as some users might, for exam-
ple, speak a search query into a text box in the browser us-
ing the voice input feature. In addition, a large majority of the
speech API utterances come from built-in Google applications –
Google Maps provides a popular voice-enabled search box, for
example. Overall, we observe roughly an even split between
searching and dictation.

The voice input feature encourages a wide range of usage.
Since its launch in January, 2010, users have dictated text into
over 8,000 distinct text fields. Table 2 shows the 10 most pop-
ular text fields. SMS is extremely popular, with usage levels an
order of magnitude greater than any other application. More-
over, among the top 10 fields, 4 of them come from either the
built-in SMS application, or one of the many SMS applica-
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Text Field Usage
SMS - Compose 63.1%
An SMS app from Market - Compose 4.9%
Browser 4.8%
Google Talk 4.5%
Gmail - Compose 3.3%
Android Market - Search 2.4%
Email - Compose 1.8%
SMS - To 1.3%
Maps - Directions Endpoint 1.0%
An SMS app from Market - Compose 1.0%

Table 2: The 10 most popular voice input text fields and their
percent usage.
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Figure 1: Cumulative usage for the most popular 100 text fields,
rank ordered by usage.

tions available on the Android Market. Also popular are other
dictation-style applications: Gmail, Email, and Google Talk.
Android Market and Maps, both of which also appear in the top
10, represent different kinds of utterances – search queries. Fi-
nally, the Browser category here actually encompasses a wide
range of fields – any text field on any web page.

Figure 1 shows the cumulative usage per text field of the
100 most popular text fields, rank ordered by usage. Although
the usage is certainly concentrated among a handful of applica-
tions, there remains a significant tail. While increasing accuracy
for the tail may not have a huge effect on the overall accuracy
of the system, it’s important for users to have a seamless experi-
ence using voice input: users will have a difficult time discern-
ing that voice input may work better in some text fields than
others.

4. Compact Interpolated FST
In this setting, we have a relatively small set of language mod-
els that is fixed and known in advance. At recognition time,
each utterance comes with a custom set of interpolation (or mix-
ture) weights and we need to be able to efficiently compute on-
demand the corresponding interpolated model.

In a backoff language model, the conditional probability of
w ∈ Σ given context h ∈ Σ∗ is recursively defined as

P(w | h) =
{

P̃(w | h) if hw ∈ S
αhP(w | h′) otherwise,

where P̃ is the adjusted maximum likelihood probability (de-
rived from the training corpus), S is the skeleton of the model,
αh is the backoff weight for the context h and h′ is the longest
common suffix of h. The order of the model is maxhw∈S |hw|.

Such a language model can naturally be represented by
a weighted automaton over the real semiring (R,+,×, 0, 1)
using failure transitions [4]: the set of states is Q =
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Figure 2: Outgoing transitions from state x in (a) G1, (b) G2

and (c) I . For λ = (.6, .4)T , PIλ(a | x) = .6× .5+ .4× .24.

{h ∈ Σ∗ | ∃w ∈ Σ such that hw ∈ S}, for each state h, there
is a failure transition from h to h′ labeled by φ and with weight
αh, and for each hw ∈ S, there is a transition from h to the
longest suffix of hw that belongs to Q, labeled by w and with

weight P̃(w | h).
Given a set G = {G1, . . . , Gm} of m backoff language

models and a vector of mixture weights λ = (λ1, . . . λm)T ,
the linear interpolation of G by λ is defined as the language
model Iλ assigning the conditional probability:

PIλ(w | h) =
m∑
i=1

λiPGi(w | h). (1)

Using (1) directly to perform on-demand interpolation would
be inefficient because for a given pair (w, h) we might need to
backoff several times in several of the models and this can be-
come rather expensive when using the automata representation.
Instead, we chose to reformulate the interpolated model as a
backoff model:

PIλ(w | h) =
{

λTphw if hw ∈ S(G),
f(λ,αh)PIλ(w | h′) otherwise,

where phw = (PG1(w|h), . . . ,PGm(w|h))T , S(G) =
∪m

i=1S(Gi) and αh = (αh(G1), . . . , αh(Gm))T . There ex-
ists a closed-form expression of f(λ,α) that ensure the proper
normalization of the model. However, in practice we decided
to approximate it by the dot product of λ and αh: f(λ,αh) =
λTαh.

The benefit of this formulation is that it perfectly fits our
requirement. Since the set of models is known in advance we
can precompute S(G) and all the relevant vectors (phw and αh)
effectively building a generic interpolated model I as a model
over R

m. Given a new utterance and a corresponding vector
of mixture weights λ, we can obtain the relevant interpolated
model Iλ by taking the dot product of each component vector
of I with λ.

Moreover, this approach also allows for an efficient
representation of I as a weighted automaton over the
semiring (Rm,+, ◦,0,1) (◦ denotes componentwise mul-
tiplication), the weight of each transition in the automa-
ton being a vector in R

m. The set of states is Q =
{h ∈ Σ∗ | ∃w ∈ Σ such that hw ∈ S(G)}. For each state h,
there is a failure transition from h to h′ labeled by φ and with
weight αh, and for each hw ∈ S(G), there is a transition from
h to the longest suffix of hw that belongs to Q, labeled by w
and with weight phw. Figure 2 illustrates this construction.

Given a new utterance and a corresponding vector of mix-
ture weights λ, this automaton can be converted on-demand into
a weighted automaton over the real semiring by taking the dot
product of λ and the weight vector of each visited transition.
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The OpenFst library [5] supports arbitrary semirings so we
could have chosen to implement the interpolated model as a
weighted automaton over Rm. However, software engineering
considerations lead us to use the CompactFst class from Open-
Fst instead. This concrete class allows customizing the memory
representation of the transitions. This represention is very effi-
cient and combined with the on-demand composition algorithm
of [6], it allows for the use of on-demand interpolation in the
first-pass of recognition (see Section 7).

5. Interpolation Weight Optimization
To determine the mixture weights used for a particular utter-
ance, we group utterances using the application and text field in
which they are targeted, which we refer to as the context. For in-
stance, utterances directed at the “subject” and “body” fields in
the Gmail application form two distinct contexts, while a third
context is comprised of utterances directed at the “body” field
in the SMS application.

The interpolation weights for each language model compo-
nent are chosen to maximize the likelihood of the development
transcripts within a context. The optimization procedure is an
EM-based algorithm, where at each iteration, the j’th weight is
set to the fraction of the probability that the j’th language model
contributed to the total mixture:

λ′
j =

1

n

n∑
i=1

λjPj(wi | hi)∑m
k=1 λkPk(wi | hi)

(2)

where n is the number of words in group, m is the number of
language model components, and Pk(wi | hi) is the probability
the j’th language model assigns to the i’th word in the group.

To avoid overfitting, our algorithm uses a simple back-off
rule. We train interpolation weights for each field, application,
and globally on the entire development set. If a particular field
in the application has fewer than 10 transcripts, then the applica-
tion’s interpolation weights are used; if the application itself has
fewer than 10 transcripts, then the global mixture is used. Ex-
periments show that the back-off threshold has an insignificant
(< 0.1% absolute) effect on accuracy. This back-off procedure
provides for highly targeted weights when a significant amount
of data is available for a particular field, while still providing
support for the “long tail” of applications.

6. Component Language Models
We experimented with language model interpolation compo-
nents constructed from a variety of spoken and written English
sources, enumerated in Table 3. We extracted n-gram counts
from anonymized typed e-mail and SMS messages through an
automatic process in which humans did not have access to the
raw data. These models were expected to match well with the
expected common use case of dictated e-mail and SMS mes-
sages. A Twitter language model, which was expected to be
useful for social networking “status update” usage, was created
using publicly-accessible tweets that had been published on the
web and downloaded by Google’s web crawler. The Query
model was trained on anonymized Google search queries, and
is currently being used for Google’s search by voice service.

In addition to text corpora, we experimented with two
sources of transcribed spoken data. The Android Speech API
corpus contains utterances by users of Android applications
that take advantage of Google’s speech API. We chose utter-
ances from a subset of applications, for example applications

Source Tokens Description
Query 230B Google search queries
SMS 2B Anonymized SMS messages
E-mail 213M Anonymized E-mail messages
BN 148M Broadcast news corpora [7]
Twitter 30M Tweets from Google’s web index
Speech API 2M Android Speech API transcripts

Table 3: Language Model Interpolation Components.

Single pass Rescoring
Task Global

mix
LM
per
field

Mix
per
field

LM
per
field

Mix
per
field

Web search 14.6 11.8 11.7 13.1 13.2
SMS 20.9 21.0 19.0 20.9 19.2
Market Search 26.9 28.4 26.2 27.2 26.1
Browser 22.2 30.1 21.5 26.8 22.4
Maps Search 25.0 22.5 22.6 23.9 23.9
Gmail 19.2 19.8 16.0 20.0 18.5

Overall 19.7 19.1 17.5 19.5 18.7

Table 4: WER of language model combination techniques on
several representative tasks, and overall for the entire test set.

for composing SMS messages, that we thought likely to be well-
matched to mobile dictation usage. Finally, the Broadcast News
transcripts [7] add coverage for a different style of speaking.

Basic text normalization was applied to each source, and n-
gram models were constructed using Google’s large-scale lan-
guage model infrastructure [8]. The Query model is a 3-gram,
and all other models are 4-grams. The vocabulary of each was
limited to the one million most frequent words. Katz smooth-
ing was employed, and entropy pruning [9] was used to signifi-
cantly prune each model.

7. Experiments
In this section, we report experimental results for both individ-
ual component language models (LMs) and model combination
techniques on several mobile speech tasks.

7.1. Experiment Setup

The test set consists of 42,227 transcribed utterances from sev-
eral mobile voice tasks: 17,711 utterances from Google Search
by Voice, 5,774 utterances from searching on Google Maps, and
18,742 utterances for Voice Input into text fields. For voice
input, we report accuracy on four specific tasks: SMS (text
message body), Browser (any form field on the web), Market
(searching for applications in the Android Market app), and
Gmail (email body). In addition, a development set of 21,000
utterances with the same distribution of tasks was used to train
the mixture weights. The acoustic model is a tied-state triphone
GMM-based HMM whose input features are 39 PLP-cepstral
coefficients, trained using ML, MMI, and boosted-MMI objec-
tive functions as described in [10]

7.2. Language Model Combination Techniques

Table 4 gives the accuracy of five different methods for com-
bining the component language models. The simplest method,
“Global mix”, decodes all utterances using a single interpolated
model with interpolation weights set to minimize perplexity on
the entire development set. We also tried a second baseline
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Figure 3: Relative reduction in WER for the Single Pass and
Rescoring Mix per Field conditions compared to the Global Mix
baseline, grouped by field frequency in the test set.

(“LM per field”), in which we used the LM component with
the lowest-perplexity for each field. Finally, we evaluated the
technique described in Section 5, in which custom interpolation
weights are derived for each field (“Mix per field”).

Furthermore, we evaluated the latter two techniques under
two conditions. First, we created a two-pass system where word
lattices created by decoding with the globally-optimal mixture
are rescored (“Rescoring”). Lattices had a mean arc density per
word of 48.6. Second, we performed on-demand interpolation
in a single decoding pass (“Single pass”). In this case, the Com-
pact Interpolated language model FST was composed dynami-
cally (see [6]) with a precompiled FST generated by composing
C, the context-dependent phone transducer, with L, the lexicon.
Unfortunately, this system currently operates at approximately
8x realtime; optimizations are in progress.

Several trends are evident. First, training per-field mixtures
gives a 5.1% total relative improvement over the global mix-
ture baseline when rescoring, and moving interpolation to the
decoding pass boosts this to a 11.2% total gain. Performing in-
terpolation in the first pass is especially important for tasks like
Web search, where a single component LM optimized for the
task already works quite well. For Web search, performing in-
terpolation during the rescoring phase yields a lower accuracy
than a single pass using only the Query LM. This is because
the globally optimized first pass is mismatched to the task, and
doesn’t yield a rich enough lattice for rescoring to compensate.

Second, the benefit seems to come mostly from tasks where
one of the component language models is well-matched to a
task—gains for Web Search and Gmail are relatively large,
while those for Market and Browser are more modest. Third,
the greatest gain comes from the most popular and least popu-
lar text fields, but not the middle of the frequency distribution.
Figure 3 shows the relative reduction in WER gained by using
per-field mixtures. The head of the distribution is improved by
both rescoring and first-pass interpolation. For the “long tail”
of infrequent fields, rescoring leads to a loss of accuracy, but
first-pass interpolation leads to a 11% gain. This is likely be-
cause the first-pass model under-weights language model com-
ponents that are not popular in the overall test set, leading to a
mismatched first and second pass in the tail.

7.3. Component Language Model Performance

Finally, we also explored using each component LM in isola-
tion, as well as removing each LM from the mixture and rec-
ognizing with the remaining five LMs. Table 5 shows WER
rates under the single-pass “Mix per field” condition. There are
several points to note. First, all the mixture techniques in table
5 perform 20-29% relative better than even the best individual
LM, highlighting that good performance on the mobile speech

Language Model Component Only Removed
Query 27.0 22.0
SMS 24.7 18.0
E-mail 25.9 17.9
Broadcast News 34.6 17.7
Twitter 28.1 17.8
Speech API 33.6 18.2

Table 5: WER of the “mix per field” condition when including
only the LM component indicated, or when removing only that
LM from the on-demand interpolation.

task requires a diverse set of data sources. Second, each LM’s
influence in the mixture is only loosely correlated with its in-
dividual performance. For example, the Speech API LM ranks
fifth by individual performance, but removing it from the mix-
ture leads to the second-highest accuracy drop.

8. Conclusion
We described a data structure that allows for on-demand lan-
guage model interpolation, with mixture weights set at decode-
time, and a training algorithm to generate mixture weights for
thousands of individual text fields. These techniques together
yield an 11.2% relative improvement in WER over a single
statically-interpolated language model on mobile recognition
tasks, with the greatest improvement coming from the most-
and least- frequent fields.
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