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On dense ideals of C∗-algebras and
generalizations of the Gelfand–Naimark Theorem

by

Jorma Arhippainen and Jukka Kauppi (Oulu)

Abstract. We develop the theory of Segal algebras of commutative C∗-algebras,
with an emphasis on the functional representation. Our main results extend the Gelfand–
Naimark Theorem. As an application, we describe faithful principal ideals of C∗-algebras.
A key ingredient in our approach is the use of Nachbin algebras to generalize the Gelfand
representation theory.

1. Introduction. The concept of a Segal algebra originated in the work
of Reiter on subalgebras of the L1-algebra of a locally compact group; cf. [30].
It was generalized to arbitrary Banach algebras by Burnham in [10]. A C∗-
Segal algebra is a Banach algebra which is a dense ideal in a C∗-algebra;
it need not be self-adjoint. The multiplier and the bidual algebras of self-
adjoint C∗-Segal algebras were described in [1, 16, 18] and, in the presence
of an approximate identity, the form of the closed ideals of C∗-Segal algebras
was given in [7]. Otherwise, however, not much is known about the general
structure of C∗-Segal algebras. Without a doubt, a major reason for this is
the lack of Gelfand–Naimark type theorems for C∗-Segal algebras.

In this paper, we develop the theory of commutative C∗-Segal algebras,
with an emphasis on the functional representation. Our main results extend
the Gelfand–Naimark Theorem from C∗-algebras to a large class of C∗-Segal
algebras. A key ingredient in our approach is the use of Nachbin algebras to
generalize the Gelfand representation theory. Although such algebras have
attracted much attention since being introduced by Nachbin in the 60s (to
cite a few, see [25, 9, 29]), this appears to be the first paper where they are
employed in the context of C∗-algebras. We consider Nachbin algebras in
Section 2 and Gelfand representation in Section 4.

A fundamental difference between C∗-algebras and their Segal algebras is
that a C∗-Segal algebra need not contain an approximate identity (bounded
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or unbounded). This necessitates developing new approaches, since most
results on Segal algebras have been obtained under the assumption of an
approximate identity. To this end, we will introduce a notion of “approxi-
mate ideal” which, together with the theory of multiplier modules, provides
an efficient tool for the study of Segal algebras without an approximate
identity. We consider the structure of Segal algebras of arbitrary Banach
algebras in Section 3.

Section 5 contains our main results. In Theorems 5.7 and 5.21, we es-
tablish a module- and an order-theoretic generalization of the Gelfand–
Naimark Theorem. As an application, we describe faithful principal ide-
als of C∗-algebras. Here, an important role is played by the notion of an
order unit. However, in contrast to the C∗-algebra case, an order unit of
a C∗-Segal algebra cannot serve as a multiplicative identity for the alge-
bra. In fact, it emerges that a C∗-Segal algebra with an order unit cannot
even have an approximate identity. It should be noted that in the order
theory of rings and algebras, it has been customary to assume that the
notions of multiplicative identity and order unit coincide; see [17], for ex-
ample.

All algebras considered in this paper are assumed to be commutative
and over the field C of complex numbers.

2. On proper ideals of Cb(X) and C0(X). In this section, we recall
some basic facts about Nachbin algebras. For a more detailed discussion of
these algebras, including full proofs, we refer to [4, 5].

2.1. Notation. Throughout this paper, X is a locally compact Haus-
dorff space. We denote by C(X) the set of continuous complex-valued func-
tions on X, by Cb(X) the set of bounded functions in C(X), and by C0(X)
the set of vanishing-at-infinity functions in C(X). We view Cb(X) and C0(X)
as C∗-algebras in the usual way.

For a subset A of C(X), we denote by Z(A) its zero set and by Asa its
self-adjoint part , that is,

Z(A) := {t ∈ X : f(t) = 0 for all f ∈ A},
Asa := {f ∈ A : f ∈ A},

where the bar denotes the complex conjugate. Given a non-empty subset Y
of X, we say that A separates the points of Y if, for every pair s, t of distinct
points of Y , there exists f ∈ A such that f(s) 6= f(t). Furthermore, we say
that A strongly separates the points of Y if it separates the points of Y and
Y is contained in X \ Z(A). Finally, A is called self-adjoint if Asa = A.

The next result will be useful. For the proof, see [4, Lemma 2.2].
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Lemma 2.1. Let A be a self-adjoint subalgebra of C(X) which separates
the points of X \ Z(A). Then, for every ideal I of A, one has:

(i) Isa is a self-adjoint ideal of A;
(ii) Z(Isa) = Z(I);

(iii) Isa and I strongly separate the points of X \ Z(I).

2.2. Weighted function algebras. Let v be an upper semicontinuous
real-valued function on X such that inft∈X v(t) > 0. We define

Cvb (X) := {f ∈ C(X) : vf is bounded on X},
Cv0 (X) := {f ∈ C(X) : vf vanishes at infinity on X}.

Clearly, these sets are self-adjoint and strongly separate the points of X.
When equipped with the pointwise operations, they become algebras. If v is
unbounded, then Cvb (X) is a proper ideal of Cb(X), and Cv0 (X) is a proper
ideal of C0(X). Moreover, if v(tα) → ∞ whenever (tα) is a net in X con-
verging to the point at infinity of X, then also Cvb (X) is a proper ideal
of C0(X). On the other hand, if v is bounded, then Cvb (X) = Cb(X) and
Cv0 (X) = C0(X). Therefore, Cb(X) and C0(X) are special cases of Cvb (X)
and Cv0 (X). From now on, we shall refer to v as a weight function on X.

Remark 2.2. It is easy to see that Cvb (X) and Cv0 (X) need not be closed
under the pointwise product without the condition inft∈X v(t) > 0.

We will frequently use the following lemma; the proof is trivial.

Lemma 2.3. For every f ∈ Cvb (X) and g ∈ C0(X), one has fg ∈ Cv0 (X).

In order to make Cvb (X) and Cv0 (X) into C∗-Segal algebras, we endow
them with the weighted supremum norm, defined by

‖f‖v := sup
t∈X

v(t)|f(t)| (f ∈ Cvb (X)).

In fact, although being a complete norm on both algebras, ‖·‖v is an algebra
norm if and only if v(t) ≥ 1 for all t ∈ X. Nevertheless, by multiplying ‖ · ‖v
with a suitable constant, Cvb (X) and Cv0 (X) can be regarded as Banach
algebras.

2.3. Stone–Weierstrass property. It is well known that the proof
of the Gelfand–Naimark Theorem for commutative C∗-algebras relies on
the Stone–Weierstrass Theorem. Therefore, in order to extend the Gelfand–
Naimark Theorem from C∗-algebras to a larger class of Banach algebras,
it is natural to consider the Stone–Weierstrass property from a more gen-
eral point of view. With this in mind, we make the following definition,
introduced in [2].
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Definition 2.4. Let A be a subalgebra of C(X) which separates the
points of X \Z(A), and let T be a topology on A making it into a topolog-
ical algebra with jointly continuous multiplication. We call (A, T ) a Stone–
Weierstrass algebra if every self-adjoint subalgebra of A which strongly sep-
arates the points of X \ Z(A) is T -dense in A.

We can now state the main result on the structure of Cv0 (X). For the
proof, see [4, Theorem 4.1].

Proposition 2.5. Equipped with the weighted supremum norm topology,
Cv0 (X) is a Stone–Weierstrass algebra.

Remark 2.6. Clearly, Cvb (X) with the weighted supremum norm topol-
ogy is a Stone–Weierstrass algebra if and only if it coincides with Cv0 (X).

2.4. Closed ideals and quotient algebras. Let A be a closed sub-
algebra of Cvb (X) which strongly separates the points of X. For a closed
subset E of X, we put

IA(E) := {f ∈ A : f(t) = 0 for all t ∈ E}.

It is easy to see that IA(E) is a closed ideal of A.

2.4.1. On the ideal structure of Cv0 (X). For a closed ideal I of Cv0 (X),
put E := Z(I) and w := v|X\E . Then w is a weight function on the lo-
cally compact Hausdorff space X \ E. Moreover, by [4, Lemma 3.3], the
mapping f 7→ f |X\E is an isometric conjugate-preserving isomorphism from
ICv

0 (X)(E) onto Cw0 (X \ E). As a result, ICv
0 (X)(E) is a Stone–Weierstrass

algebra. Together with Lemma 2.1 and the inclusions Isa ⊆ I ⊆ ICv
0 (X)(E),

this yields the following.

Proposition 2.7. The mapping E 7→ ICv
0 (X)(E) is a bijection between

the closed subsets of X and the closed ideals of Cv0 (X). In particular, for
every closed ideal I of Cv0 (X), one has I = ICv

0 (X)(E), where E = Z(I).

Corollary 2.8. The mapping t 7→ ICv
0 (X)({t}) is a bijection between

the points of X and the closed maximal ideals of Cv0 (X). In particular, for
every closed maximal ideal M of Cv0 (X), one has M = ICv

0 (X)({t}), where
{t} = Z(M).

For a closed ideal I of Cv0 (X), put E := Z(I), w := v|E , and B :=
{f |E : f ∈ Cv0 (X)}. Then E is a locally compact Hausdorff space, w is
a weight function on E, and B is a self-adjoint subalgebra of Cw0 (E) which
strongly separates the points of E. Since Cw0 (E) is a Stone–Weierstrass
algebra, B is dense in it. On the other hand, by [4, Theorem 4.5], the map-
ping f + I 7→ f |E is an isometric conjugate-preserving homomorphism from
Cv0 (X)/I into Cw0 (E). Taken together, these observations yield the following.
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Proposition 2.9. Let I be a closed ideal of Cv0 (X). Then Cv0 (X)/I is
isometrically conjugate isomorphic to Cw0 (E), where E = Z(I) and w = v|E.
In particular, Cv0 (X)|E = Cw0 (E).

We end the study of the ideal structure of Cv0 (X) with a result on its
sum ideals. For the proof, see [4, Theorem 4.7].

Proposition 2.10. Let I and J be closed ideals of Cv0 (X). Then I + J
is a closed ideal of Cv0 (X).

2.4.2. On the ideal structure of Cvb (X). Our knowledge of the ideal
structure of Cvb (X) is restricted to the proposition below.

Proposition 2.11. Let A be a closed subalgebra of Cvb (X) such that
Cv0 (X) ⊆ A ⊆ C0(X). Then, for every closed regular ideal I of A, one has
I = IA(E), where E = Z(I).

Proof. Put E := Z(I) and J := Cv0 (X) ∩ I. Using Lemma 2.3 and the
regularity of I, it is not hard to show that

IA(E) = ICv
0 (X)(E) + I.

On the other hand, since J is a closed ideal of Cv0 (X) with zero set E, one
has J = ICv

0 (X)(E) by Proposition 2.7. Consequently, IA(E) = J + I = I.

Corollary 2.12. Let A be a closed subalgebra of Cvb (X) such that
Cv0 (X) ⊆ A ⊆ C0(X). Then, for every maximal regular ideal M of A, one
has M = IA({t}), where {t} = Z(M).

Remark 2.13. The size of the class of non-regular ideals of Cvb (X) can be
immense. For instance, every subspace L of Cvb (X) satisfying the inclusions
Cv0 (X) ⊆ L ⊆ C0(X) is an ideal of Cvb (X), by Lemma 2.3.

We finish this section with a weighted version of the Banach–Stone The-
orem.

Proposition 2.14. Let Y be a locally compact Hausdorff space, and
let w be a weight function on Y . The following conditions are equivalent:

(a) Cv0 (X) and Cw0 (Y ) are isometrically conjugate isomorphic;
(b) there exists a homeomorphism φ : X → Y such that v = w ◦ φ.

3. Irregularity of Banach algebras. In this section, we discuss and
analyse Banach algebras which are (possibly non-closed) ideals in a Banach
algebra.

3.1. Notation and basic definitions. Throughout the remainder of
this paper, let A be a Banach algebra with norm ‖ · ‖. For an ideal I of A,
we denote by annA(I) its annihilator in A, that is,

annA(I) := {a ∈ A : ax = 0 for all x ∈ I}.
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The ideal I is called faithful if annA(I) = {0}. Similarly, the Banach algebra
A is called faithful if annA(A) = {0}.

The basic notion of this paper is that of the multiplier seminorm, defined
on A by

‖a‖M := sup
‖b‖≤1

‖ab‖ (a, b ∈ A).

It is not difficult to verify that ‖ · ‖M is an algebra seminorm on A whose
kernel coincides with annA(A). If A has an identity element (denoted by e),
then each a ∈ A satisfies

‖a‖M ≤ ‖a‖ ≤ ‖e‖ ‖a‖M .
However, in the non-unital case, the interrelations between ‖ · ‖ and ‖ · ‖M
become more involved. The left-hand inequality remains true for every a∈A,
but even if ‖ · ‖M is a norm, it need not be equivalent to ‖ · ‖.

Example 3.1. Let G be an infinite compact abelian group, and let λ be
a Haar measure on it which is normalized so that λ(G) = 1. For 1 ≤ p <∞,
denote by Lp(G) the Banach space of (equivalence classes of) complex-valued
functions f on G such that

‖f‖p :=
( �
G

|f(t)|p dλ(t)
)1/p

<∞.

With convolution as multiplication, Lp(G) is a commutative Banach algebra.
Since any f, g ∈ Lp(G) satisfy ‖f ∗ g‖p ≤ ‖f‖1 ‖g‖p, it follows that, for
1 < p <∞, the multiplier norm on Lp(G) is not equivalent to ‖ · ‖p. On the
other hand, it is well known that the two norms coincide on L1(G).

In order to simplify the discussion, we introduce some terminology, fol-
lowing [6, 8].

Definition 3.2. The Banach algebra A is called

(i) norm regular if ‖ · ‖ and ‖ · ‖M coincide on A;
(ii) weakly norm regular if ‖ · ‖ and ‖ · ‖M are equivalent on A;

(iii) norm irregular if ‖ · ‖ is strictly stronger than ‖ · ‖M on A.

Example 3.3. It is easy to see that the multiplier norm on Cv0 (X) and
Cvb (X) coincides with the supremum norm. Therefore, Cv0 (X) and Cvb (X)
are norm regular if and only if v is identically 1, weakly norm regular if and
only if v is bounded, and norm irregular if and only if v is unbounded.

Besides the multiplier seminorm, the following family of algebra norms
will play a role in our work. The terminology will be justified shortly.

Definition 3.4. Let | · | be an algebra norm on A. We call it a Segal
norm if there exist strictly positive constants k and l such that

k‖a‖M ≤ |a| ≤ l‖a‖ for all a ∈ A.
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3.2. Segal algebras. Given a Banach algebra B with norm ‖ · ‖B,
recall that A is said to be a Segal algebra in B if it is a dense ideal of B
and there exists a constant l > 0 such that ‖a‖B ≤ l‖a‖ for all a ∈ A.
Of course, the latter condition is superfluous whenever B is semisimple.
For future reference, we record the following standard result of Barnes [7,
Theorem 2.3]. For other basic properties of Segal algebras, the reader may
consult [23, 30].

Lemma 3.5. Let B be a Banach algebra in which A is a Segal algebra.
Then A is a Banach B-module, i.e., there exists a constant l > 0 such
that

‖ax‖ ≤ l‖a‖ ‖x‖B for all a ∈ A and x ∈ B.

In our context, it is natural to reverse the notion of a Segal algebra as
follows.

Definition 3.6. By a Segal extension of A we mean a Banach algebra
in which A is a Segal algebra.

The proposition below establishes a useful relation between the Segal
extensions of A and the Segal norms on A. (Here and in the sequel, we
identify a normed algebra with its canonical image in its completion.)

Proposition 3.7. The following conditions are equivalent for a Banach
algebra B:

(a) B is a Segal extension of A;
(b) B is the completion of A with respect to a Segal norm on A.

Proof. (a)⇒(b). It follows from Lemma 3.5 that the multiplier semi-
norm on A is majorized by the norm on B. Together with the definition of a
Segal extension, this means that the restriction of ‖ · ‖B to A is the desired
Segal norm on A.

(b)⇒(a). It is enough to prove that A is an ideal of B. Let a ∈ A and
x ∈ B. Then there is a sequence (an) in A such that ‖an−x‖B → 0. Noting
that each b ∈ A satisfies ‖ab‖ ≤ ‖a‖ ‖b‖M , it is easy to deduce from the
definition of a Segal norm that (aan) is a Cauchy sequence in A. Thus, for
some b ∈ A, one has ‖b− aan‖ → 0. Now

‖b− ax‖B ≤ ‖b− aan‖B + ‖aan − ax‖B
≤ l‖b− aan‖+ ‖a‖B ‖an − x‖B → 0,

where l > 0 is a constant. Therefore, ax = b and the assertion follows.

In particular, this result shows that norm irregular Banach algebras pro-
vide the natural framework for our investigation.
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Corollary 3.8. Let A be a faithful Banach algebra. The following con-
ditions are equivalent:

(a) A is norm irregular;
(b) A is a Segal algebra.

Furthermore, the completion of A under the multiplier norm is a Segal ex-
tension of A with the property that any Segal extension of A can be embedded
as a dense subalgebra.

Remark 3.9. The assumption that A is faithful is not needed in proving
that (b) implies (a).

For the remainder of this paper, we shall assume that A is faithful. The
normed algebra (A, ‖·‖M ) will be denoted by AM and its completion by ÃM .

3.3. Approximate identities of norm irregular Banach algebras.
Given a normed algebra B with norm ‖ · ‖B, recall that an approximate
identity for B is a net (eα)α∈Ω in B such that ‖xeα − x‖B → 0 for every
x ∈ B. It is said to be bounded if there exists a constant l > 0 such that
‖eα‖B ≤ l for all α ∈ Ω. Moreover, it is said to be minimal if ‖eα‖B ≤ 1 for
all α ∈ Ω. In case Ω = N, it is said to be sequential.

One of the drawbacks of norm irregular Banach algebras is that they
cannot have a bounded approximate identity. Indeed, it is easy to see that
if A has a bounded approximate identity (eα)α∈Ω, then each a ∈ A satisfies
‖a‖ ≤ l‖a‖M , where l = supα∈Ω ‖eα‖. Thus, in the context of norm irregular
Banach algebras, the crucial point turns out to be the existence of a bounded
approximate identity with respect to the multiplier norm. In order to make
this precise, we first need a simple lemma.

Lemma 3.10. The following conditions are equivalent for the Banach
algebra A:

(a) AM has a bounded approximate identity;

(b) ÃM has a bounded approximate identity;
(c) A has a Segal extension with a bounded approximate identity.

The proof is immediate from Proposition 3.7 and the fact that a normed
algebra has a bounded approximate identity if and only if its completion
has a bounded approximate identity (see, e.g., [13, Lemma 2.1]).

Example 3.11. Since a C∗-algebra always has a minimal approximate
identity, it follows that every C∗-Segal algebra contains a bounded approx-
imate identity under the multiplier norm. The same is true for the group
algebras Lp(G), as they are Segal algebras in L1(G), which has a minimal
approximate identity.
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Remark 3.12. In general, the existence of a bounded approximate iden-
tity for AM does not guarantee the existence of even an unbounded approx-
imate identity for A. Example 3.15 below illustrates this well.

Now, consider the set

AÃM := {ax : a ∈ A and x ∈ ÃM}.

As A is a Banach ÃM -module, we conclude from the Cohen–Hewitt Fac-
torization Theorem [15, Theorem B.7.1] and part (b) of Lemma 3.10 that

AÃM is a closed faithful ideal of A whenever AM has a bounded approxi-
mate identity. The importance of AÃM lies in the fact that it is the largest
closed ideal of A with an approximate identity (necessarily unbounded in
the norm irregular case).

Proposition 3.13. Let A be a Banach algebra such that AM has a
bounded approximate identity (eα)α∈Ω. Then:

(i) AÃM = {a ∈ A : ‖aeα − a‖ → 0};
(ii) AÃM has an approximate identity;
(iii) every closed ideal of A with an approximate identity is contained in

AÃM .

Proof. (i) The inclusion “⊇” is evident from the closedness of AÃM in A,
and “⊆” follows easily from Lemmas 3.5 and 3.10(b).

(ii) Noting that the net (e2α)α∈Ω is also a bounded approximate iden-

tity for AM , contained in AÃM , the assertion follows from (i) by replacing
(eα)α∈Ω with (e2α)α∈Ω.

(iii) Given a closed ideal I of A with an approximate identity, the set I2

is dense in it, and so the statement follows.

Motivated by this result, we make the following definition.

Definition 3.14. Let A be a Banach algebra such that AM has a
bounded approximate identity. We put EA := AÃM and call it the ap-
proximate ideal of A.

Example 3.15. Let B be a closed subalgebra of Cvb (X) such that
Cv0 (X) ⊆ B ⊆ C0(X). It follows immediately from Lemma 2.3 and the
density of Cv0 (X) in C0(X) that B is a C∗-Segal algebra with approximate
ideal of the form EB = BC0(X). Clearly, the zero set of EB is empty, whence
EB = Cv0 (X) by Lemma 2.3 and Proposition 2.7.

Remark 3.16. Our approach is particularly well suited to the study of
Banach algebras having an unbounded approximate identity. That is, it is
not easy to give an example of a Banach algebra with an approximate iden-
tity not bounded in the multiplier norm; Willis constructed such an algebra
in [33, Example 5]. Moreover, an application of the Uniform Boundedness
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Principle shows that if a Banach algebra has a sequential approximate iden-
tity, then it is automatically bounded with respect to the multiplier norm;
see, for instance, [14, p. 191].

As a consequence of the above discussion, we have the following factor-
ization results.

Corollary 3.17. Let A be a Banach algebra with an approximate iden-
tity bounded under ‖ · ‖M . Then EA = A.

Corollary 3.18. Let A be a Banach algebra with a sequential approx-
imate identity. Then EA = A.

Example 3.19. For 1 ≤ p < ∞, denote by `p the Banach space of
complex-valued sequences x = (xn) such that ‖x‖p := (

∑
n |xn|p)1/p < ∞.

Under pointwise multiplication, `p is a commutative Banach algebra with
a sequential approximate identity (e.g., the sequence (en), where en(k) = 1
for every 1 ≤ k ≤ n, and en(k) = 0 for every k > n). Furthermore, it is
not hard to see that the multiplier norm on `p coincides with the supremum
norm. Together with the previous corollary and the fact that `p is dense
in the C∗-algebra c0 of complex-valued sequences converging to zero, this
yields the well-known factorization property `p = `pc0.

We finish this subsection with some useful observations on the approxi-
mate ideal.

Lemma 3.20. Let A be a Banach algebra such that AM has a bounded
approximate identity, and let B be a Segal extension of A with a bounded
approximate identity. Then:

(i) A2 is dense in EA;
(ii) EA = AB := {ax : a ∈ A and x ∈ B};

(iii) B is a Segal extension of EA.

Proof. (i) This is a direct consequence of the density of A in ÃM and
Lemma 3.5.

(ii) One can use the Cohen–Hewitt Factorization Theorem again to de-
duce that AB is a closed ideal of A. The identity now follows from (i) and
the inclusions A2 ⊆ AB ⊆ EA.

(iii) It is enough to prove that EA is dense in B. But this is immediate
from (ii) together with the facts that A is dense in B and that B = B2.

3.4. Multipliers of norm irregular Banach algebras. Multiplier
modules will play a central role in this paper, as they allow us to reduce the
study of certain properties of A to those of EA. For general information on
multiplier modules, we refer to [31, 12].
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Definition 3.21. Let A be a Banach algebra such that AM has a
bounded approximate identity, and let B be a Segal extension of A. By
a B-multiplier of A we mean a mapping m : B → A such that

m(xy) = m(x)y (x, y ∈ B).

Each a ∈ A determines a B-multiplier la of A given by la(x) := ax for
x ∈ B. We write MB(A) for the set of B-multipliers of A. Clearly, it is a
closed commutative subalgebra of the Banach algebra L(B,A) of bounded
linear mappings from B into A. (The fact that L(B,A) is an algebra is a
direct consequence of A being a Segal algebra in B.) In addition, MB(A)
carries a natural B-module structure defined by

m · x := lm(x) (m ∈MB(A), x ∈ B).

There exists a continuous injective algebra and B-module homomorphism
ϕ : A → MB(A) given by ϕ(a) := la for a ∈ A. In case B has a bounded
approximate identity, the image of EA under ϕ is a closed faithful ideal
of MB(A).

Remark 3.22. If A and B coincide, then MB(A) is the usual multiplier
algebra M(A) of A. As mentioned in the Introduction, multiplier algebras
of Segal algebras have received some attention; see also, e.g., [21, 32]. How-
ever, the drawback in the norm irregular case is that, although they can be
considered as faithful ideals of M(A), neither EA nor A is closed in it.

Example 3.23. It can be shown that, up to an isometric isomorphism,
the identities M(Cv0 (X)) = Cb(X) and MC0(X)(C

v
0 (X)) = Cvb (X) hold.

To end this section, we describe a universal property of the multiplier
module. Recall that a B-module V is said to be faithful if, for every non-zero
x ∈ B, there exists v ∈ V such that v · x 6= 0.

Proposition 3.24. Let A be a Banach algebra such that AM has a
bounded approximate identity. Then, for every Segal extension B of A with a
bounded approximate identity, (MB(A), ϕ) satisfies the following conditions:

(i) MB(A) is a faithful B-module;
(ii) ϕ(EA) = MB(A) ·B;

(iii) if V is a faithful B-module and φ is an injective B-module homo-
morphism from A into V such that φ(EA) = V ·B, then there exists
a unique injective B-module homomorphism ψ of V into MB(A)
such that ϕ = ψ ◦ φ.

Proof. (i) This is a straightforward calculation.

(ii) By Lemma 3.20(ii), it is sufficient to show that MB(A)·B is contained
in ϕ(EA). Let m ∈ MB(A) and x ∈ B. Then there exist y, z ∈ B such that
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x = yz. It follows that m · x = m · yz = lm(yz) = lm(y)z ∈ ϕ(AB) = ϕ(EA),
as wanted.

(iii) The desired map ψ is given by ψ(v) := φv for v ∈ V , where φv(x) :=
φ−1(v · x) for each x ∈ B.

4. Gelfand representation of norm irregular Banach algebras.
In this section, we consider functional representation of norm irregular Ba-
nach algebras.

4.1. Notation. Our notation is standard and generally follows that
of [22, 27]. For the Banach algebra A, we denote by ∆(A) its Gelfand
space. Unless otherwise explicitly stated, we assume that it is non-empty. For
a ∈ A, we denote by â its Gelfand transform. By the Gelfand transforma-
tion on A we mean the mapping a 7→ â from A onto the Gelfand transform
algebra of A, denoted by Â. Recall that ∆(A) is a locally compact Hausdorff

space and that Â is a subalgebra of C0(∆(A)) which strongly separates the
points of ∆(A).

4.2. The weight function. Following [11, 3], we now describe a natural
weight function on the Gelfand space of A.

Definition 4.1. We define a mapping v̂A : ∆(A)→ R by setting

v̂A(τ) := 1/‖τ‖ (τ ∈ ∆(A)),

where ‖τ‖ denotes the dual norm of τ . Whenever convenient, we shall ab-
breviate it by v̂.

Lemma 4.2. v̂ is upper semicontinuous on ∆(A), and v̂(τ) ≥ 1 for all
τ ∈ ∆(A).

Proof. It is sufficient to establish the upper semicontinuity of v̂. For
α > 0, put U := {τ ∈ ∆(A) : v̂(τ) < α}. To show that U is open in ∆(A),
suppose that it is non-empty, and let τ ∈ U . Then there exists a ∈ A
satisfying ‖a‖ ≤ 1 and |â(τ)| > 1/α. Since â is continuous on ∆(A), τ has
a neighbourhood V such that |â(ω)| > 1/α for all ω ∈ V . This implies
that V is contained in U , and so the proof is complete.

Our choice for the weight function is motivated by the example below.

Example 4.3. Let B be a closed subalgebra of Cvb (X) such that
Cv0 (X) ⊆ B ⊆ C0(X). It follows from Corollary 2.12 that ∆(B) =
{τt : t ∈ X}, where τt denotes the point evaluation at t. Moreover, by
[26, Lemma 1], one has v̂(τt) = v(t) for all t ∈ X.

In order to give an idea of how the interrelations between ‖ · ‖ and ‖ · ‖M
affect the behaviour of v̂, we first note that in the unital case, each τ ∈ ∆(A)
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satisfies v̂(τ) ≤ ‖e‖. More generally, if A has a bounded approximate identity
(eα)α∈Ω, then

|τ(eα)τ(a)− τ(a)| = |τ(eαa− a)| ≤ ‖τ‖ ‖eαa− a‖ → 0

for all a ∈ A, which implies that

1 = lim
α∈Ω
|τ(eα)| ≤ ‖τ‖ lim

α∈Ω
‖eα‖ ≤ ‖τ‖ sup

α∈Ω
‖eα‖.

We thus obtain the following estimate.

Lemma 4.4. Let A be a Banach algebra with a bounded approximate
identity (eα)α∈Ω. Then

v̂(τ) ≤ sup
α∈Ω
‖eα‖ for all τ ∈ ∆(A).

These considerations raise the question of whether v̂ is bounded whenever
‖ · ‖ and ‖ · ‖M are equivalent. In general, however, (weak) norm regularity
is neither a sufficient nor a necessary condition for the boundedness of the
weight function.

Example 4.5. Let D := {z ∈ C : |z| ≤ 1}, and let A(D) be the disc
algebra, that is, the subalgebra of C(D) of functions which are analytic in
the interior of D. Let M0 denote the maximal ideal of A(D) of functions
vanishing at zero. It is a Banach algebra with the supremum norm, and its
Gelfand space consists of the point evaluations τt, where t runs through the
elements of D \ {0}. Of course, M0 is norm regular, but as each t ∈ D \ {0}
satisfies ‖τt‖∞ = |t|, it follows that v̂ is unbounded.

Example 4.6. For 1 ≤ p < ∞, consider the C∗-Segal algebra `p of
Example 3.19. Then ∆(`p) consists of the point evaluations τn, where n
runs through the natural numbers. Clearly, ‖τn‖p = 1 for all n ∈ N, and so
v̂ is identically 1.

We end this subsection with two useful results concerning the Gelfand
space and the weight function of Segal algebras. The first lemma is well
known (see [10, Theorem 2.1]), but we include a proof for completeness.

Lemma 4.7. Let B be a Segal extension of A. Then ∆(A) and ∆(B)
are homeomorphic. In particular, every multiplicative functional on A has a
unique extension to a multiplicative functional on B.

Proof. Let τ ∈ ∆(A) and pick u ∈ A such that τ(u) = 1. Given a
sequence (an) in A such that ‖an‖B → 0, it is immediate from Lemma 3.5
that ‖uan‖ → 0. Consequently, τ(an) = τ(u)τ(an) = τ(uan) → 0 so that
τ is continuous under ‖ · ‖B. By the density of A in B, it follows that τ
has a unique extension τ̃ to a multiplicative functional on B. Obviously, the
mapping τ 7→ τ̃ is a homeomorphism from ∆(A) onto ∆(B).
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Lemma 4.8. Let A be a Banach algebra such that AM has a minimal
approximate identity (eα)α∈Ω. Then:

(i) the mapping τ 7→ τ |EA
is a homeomorphism from ∆(A) onto ∆(EA);

(ii) v̂A(τ) = v̂EA
(τ |EA

) for all τ ∈ ∆(A).

Proof. (i) By Lemma 3.20(iii), ÃM is a Segal extension of both EA and A,
whence the claim follows from the previous lemma.

(ii) Let τ ∈ ∆(A). Since it is continuous under ‖ · ‖M , one can deduce,
as in the proof of Lemma 4.4, that |τ(eα)| ≤ 1 for all α ∈ Ω and that
limα∈Ω |τ(eα)| = 1. Together with the fact that any a ∈ A and α ∈ Ω
satisfy ‖aeα‖ ≤ ‖a‖ ‖eα‖M ≤ ‖a‖, this yields

‖τ‖ ≥ ‖τ |EA
‖ = sup

a∈A\{0}, x∈ÃM\{0}

|τ(ax)|
‖ax‖

≥ sup
a∈A\{0}, α∈Ω

|τ(aeα)|
‖aeα‖

≥ sup
a∈A\{0}, α∈Ω

|τ(a)| |τ(eα)|
‖a‖

= sup
a∈A\{0}

|τ(a)|
‖a‖

= ‖τ‖,

proving the assertion.

Remark 4.9. It is easy to see that Lemma 4.8 also holds true with the
assumption that ÃM has a minimal approximate identity.

4.3. Weighted uniform algebras. We are now in a position to repre-
sent A by means of weighted function algebras. Clearly, for every τ ∈ ∆(A),
one has

v̂(τ) = sup{l > 0 : l|â(τ)| ≤ ‖a‖ for all a ∈ A}.

Therefore, besides being a subalgebra of C0(∆(A)), Â is also a subalgebra
of C v̂b (∆(A)). Moreover, since each a ∈ A satisfies

(4.1) ‖â‖∞ ≤ ‖â‖v̂ ≤ ‖a‖,
it follows that the Gelfand transformation on A is a contractive homomor-
phism into C v̂b (∆(A)). If A has an approximate identity (eα)α∈Ω, then

‖âêα − â‖v̂ ≤ ‖aeα − a‖ → 0

for all a ∈ A, implying, by Lemma 2.3, that Â is contained in C v̂0 (∆(A)).
This observation will be useful later.

The following proposition summarizes the above discussion.

Proposition 4.10. The Gelfand transformation a 7→ â is a contractive
homomorphism from A into C v̂b (∆(A)). If A has an approximate identity,

then its image is contained in C v̂0 (∆(A)).

Recall that A is said to be a uniform algebra if the Gelfand transfor-
mation on A is an isometry into C0(∆(A)). The next definition provides a
natural generalization of this fundamental concept.
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Definition 4.11. We call A a weighted uniform algebra if

‖a‖ = ‖â‖v̂ for all a ∈ A.

As a consequence of (4.1), we see that every uniform algebra is also a
weighted uniform algebra. More generally, if A is a weighted uniform algebra,
then it is easy to verify that each a ∈ A satisfies

(4.2) ‖a‖M = ‖â‖∞.
Note that, by Example 4.5, a weighted uniform algebra can be norm reg-
ular even though v̂ would be unbounded. It is immediate from Lemma 4.4
that the existence of a bounded approximate identity in AM excludes this
possibility.

We close this subsection by an example which shows that the converse
of Definition 4.11 holds true, too.

Example 4.12. Let B be a closed subalgebra of Cvb (X) which strongly
separates the points of X. Then the set {τt : t ∈ X} is contained in ∆(B).

Clearly, for each t ∈ X, one has v̂(τt) ≥ v(t), so that ‖f‖v ≤ ‖f̂‖v̂ for all
f ∈ B. Since the reverse inequality is always true, it follows that B is a
weighted uniform algebra.

4.4. Almost self-adjoint weighted uniform algebras. Recall that
A is said to be self-adjoint if its Gelfand transform algebra is self-adjoint.
In the context of weighted uniform algebras, it is useful to generalize this
notion as follows.

Definition 4.13. We call A almost self-adjoint if the self-adjoint part
of Â strongly separates the points of ∆(A).

It is readily deduced from the Stone–Weierstrass Theorem that Â =
C0(∆(A)) whenever A is an almost self-adjoint uniform algebra. Therefore,
the two notions coincide in a uniform algebra. The next example shows that
this is not generally true for weighted uniform algebras. First, we record a
simple lemma; the proof is evident from Example 4.3.

Lemma 4.14. Let B be a closed subalgebra of Cvb (X) such that Cv0 (X) ⊆
B ⊆ C0(X). Then B is almost self-adjoint.

Example 4.15. Let c be the C∗-algebra of complex-valued convergent
sequences. Put B := {ux : x ∈ c}, where u : N→ C is given by u(n) := 1/n
for odd n, and u(n) := i/n for even n. Define a weight function v : N→ R by
setting v(n) := n for n ∈ N. It is easy to see that B is a closed subalgebra of
Cvb (N) satisfying the above inclusions. Therefore, B is an almost self-adjoint
weighted uniform algebra. However, it fails to be self-adjoint: one has u ∈ B,
but if u ∈ B, then u = ux for some x ∈ c. This implies that x(n) = 1 for
odd n, and x(n) = −1 for even n, a contradiction.



86 J. Arhippainen and J. Kauppi

Combining Lemma 4.14 with the following proposition, we obtain a char-
acterization of almost self-adjointness in a weighted uniform algebra.

Proposition 4.16. Let A be an almost self-adjoint weighted uniform
algebra. Then Â is a closed subalgebra of C v̂b (∆(A)) such that C v̂0 (∆(A)) ⊆
Â ⊆ C0(∆(A)).

Proof. Since Âsa is a self-adjoint subalgebra of C0(∆(A)) which strongly
separates the points of ∆(A), one can deduce from the Stone–Weierstrass

Theorem that Â is dense in C0(∆(A)). Together with (4.2), this implies that

Â is a Segal algebra in C0(∆(A)) with approximate ideal of the form E
Â

=

ÂC0(∆(A)). Clearly, the zero set of E
Â

is empty, whence E
Â

= C v̂0 (∆(A))
by Lemma 2.3 and Proposition 2.7. This proves the claim.

The importance of almost self-adjoint weighted uniform algebras in the
study of Banach algebras without a bounded approximate identity is ex-
plained by the classification result below. The proof is immediate from
Lemma 4.4 and Propositions 4.10 and 4.16.

Theorem 4.17. Let A be an almost self-adjoint weighted uniform alge-
bra. Then:

(i) A has a bounded approximate identity if and only if Â = C0(∆(A));

(ii) A has an approximate identity if and only if Â = C v̂0 (∆(A));

(iii) A does not have an approximate identity if and only if Â is a closed

subalgebra of C v̂b (∆(A)) such that C v̂0 (∆(A)) ⊆ Â ⊆ C0(∆(A)), both
inclusions being strict.

By means of Proposition 2.14 and Lemmas 4.7 and 4.8, this result can
be reformulated as follows.

Corollary 4.18. Let A be an almost self-adjoint weighted uniform al-
gebra. Then:

(i) ÃM is isometrically isomorphic to C0(∆(A));
(ii) EA is isometrically isomorphic to C v̂0 (∆(A));
(iii) A is isometrically isomorphic to a closed almost self-adjoint subal-

gebra of C v̂b (∆(A)) which strongly separates the points of ∆(A).

Remark 4.19. As a consequence of Theorem 4.17, we see that an al-
most self-adjoint weighted uniform algebra with an approximate identity is
automatically self-adjoint.

We end this subsection with a discussion of the ideal structure of self-
adjoint weighted uniform algebras having an approximate identity. For a
closed ideal I of A and a closed subset E of ∆(A), we denote by h(I) the
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hull of I and by k(E) the kernel of E, i.e.,

h(I) := {τ ∈ ∆(A) : x̂(τ) = 0 for all x ∈ I},
k(E) := {a ∈ A : â(τ) = 0 for all τ ∈ E}.

Clearly, h(I) is a closed subset of ∆(A) and k(E) is a closed ideal of A.

Proposition 4.20. Let A be a self-adjoint weighted uniform algebra with
an approximate identity. Then, for every closed ideal I of A, one has:

(i) I = k(h(I));
(ii) I is a self-adjoint weighted uniform algebra with an approximate

identity;
(iii) A/I is a self-adjoint weighted uniform algebra with an approximate

identity;
(iv) I + J is a closed ideal of A for any closed ideal J of A.

Proof. Parts (i) and (ii) follow from Proposition 2.7, and parts (iii)
and (iv) from Propositions 2.9 and 2.10.

4.5. Multipliers of weighted uniform algebras. It is well known
that if A is semisimple, then each m ∈ M(A) determines a unique
m̂ ∈ Cb(∆(A)) with the properties that m(a)∧ = m̂â for all a ∈ A and
‖m̂‖∞ ≤ ‖m‖. Furthermore, in the particular case where A is a uniform al-
gebra, the supremum norm of m̂ coincides with the operator norm of m. We
shall now apply the weighted Gelfand representation to prove an analogous
result for the multiplier module M

ÃM
(A).

Lemma 4.21. Let A be a semisimple Banach algebra such that AM has
a minimal approximate identity. Then, for every m ∈M

ÃM
(A), there exists

a unique m̂ ∈ C v̂b (∆(A)) such that:

(i) m(a)∧ = m̂â for all a ∈ A;
(ii) ‖m̂‖v̂ ≤ ‖m‖.
Proof. Clearly, the restriction of m to A is a multiplier of A; thus there

exists a unique m̂ ∈ Cb(∆(A)) such that m(a)∧ = m̂â for all a ∈ A. To see

that m̂ ∈ C v̂b (∆(A)) and that ‖m̂‖v̂ ≤ ‖m‖, let τ ∈ ∆(A). Then each a ∈ A
satisfies

v̂(τ)|m̂(τ)| |â(τ)| = v̂(τ)|m(a)∧(τ)| ≤ ‖m(a)‖ ≤ ‖m‖ ‖a‖M ,
so that

v̂(τ)|m̂(τ)| ≤ inf
‖a‖M=1

‖m‖
|â(τ)|

=
‖m‖

sup‖a‖M=1 |τ(a)|
= ‖m‖.

For semisimple A, put

Mv̂(A) := {f ∈ C v̂b (∆(A)) : fâ ∈ Â for all a ∈ A}.
Then Mv̂(A) is a subalgebra of C v̂b (∆(A)) and the mapping m 7→ m̂ is a
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contractive injective homomorphism from M
ÃM

(A) into Mv̂(A) whenever
AM has a minimal approximate identity. In the special case of a weighted
uniform algebra, we have:

Proposition 4.22. Let A be a weighted uniform algebra such that AM
has a minimal approximate identity. Then M

ÃM
(A) is isometrically isomor-

phic to Mv̂(A).

Proof. Since each m ∈M
ÃM

(A) satisfies

‖m‖ = sup
‖a‖M≤1

‖m(a)‖ = sup
‖â‖∞≤1

‖m(a)∧‖v̂ = sup
‖â‖∞≤1

‖m̂â‖v̂

≤ sup
‖â‖∞≤1

‖m̂‖v̂‖â‖∞ = ‖m̂‖v̂, a ∈ A,

the mapping m 7→ m̂ is an isometry. To show that it is a surjection, let

f ∈Mv̂(A) and define m : ÃM → A by the formula m(x)∧ = fx̂ for x ∈ ÃM .
One easily checks that m belongs to M

ÃM
(A) and that it satisfies m̂ = f .

Remark 4.23. It is easy to see that the above results also hold true
with the assumption that ÃM has a minimal approximate identity.

By Lemma 2.3 and Theorem 4.17, Â is an ideal of C v̂b (∆(A)) whenever
A is an almost self-adjoint weighted uniform algebra. We thus obtain the
following corollary.

Corollary 4.24. Let A be an almost self-adjoint weighted uniform al-
gebra. Then M

ÃM
(A) is isometrically isomorphic to C v̂b (∆(A)).

5. C∗-Segal algebras. This section contains our main results. In The-
orems 5.7 and 5.21, we establish a module- and an order-theoretic gener-
alization of the Gelfand–Naimark Theorem. As an application, we describe
faithful principal ideals of C∗-algebras.

5.1. General properties of C∗-Segal algebras

Definition 5.1. We call A a C∗-Segal algebra if it has a Segal exten-
sion C, where C is a C∗-algebra.

We leave it to the reader to verify the following basic properties of C∗-
Segal algebras.

Lemma 5.2. Let A be a C∗-Segal algebra. Then:

(i) C is unique up to an isometric ∗-isomorphism;
(ii) ‖ · ‖M and ‖ · ‖C are equivalent norms on A;
(iii) every closed ideal of A is a C∗-Segal algebra;
(iv) EA and MC(A) are C∗-Segal algebras;
(v) A is semisimple;
(vi) A is self-adjoint if and only if it is closed under the involution of C.
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Remark 5.3. In general, the quotient of a C∗-Segal algebra by a
closed ideal is not a C∗-Segal algebra. As an example, the annihilator of
Cvb (X)/Cv0 (X) is the whole algebra whenever Cvb (X) is contained in C0(X).

Concerning the self-adjointness of C∗-Segal algebras, we have the follow-
ing result.

Lemma 5.4. Let A be a C∗-Segal algebra. Then A is almost self-adjoint.
Moreover, the following conditions are equivalent:

(a) EA is self-adjoint;
(b) MC(A) is self-adjoint.

Finally, EA is self-adjoint whenever A is self-adjoint.

Proof. The almost self-adjointness of A follows from Lemmas 2.1(iii)
and 4.7. The implication (b)⇒(a) and the last claim follow from Proposi-
tion 3.24(ii) and Lemma 3.20(ii). The implication (a)⇒(b) follows from the
easily verified fact that the image of every multiplier in MC(A) is contained
in EA.

There is an interesting relation between approximate identities, closed
ideals, and the Stone–Weierstrass property of C∗-Segal algebras, as de-
scribed by the proposition below. Recall that A is said to have

(i) the property of spectral synthesis if I = k(h(I)) for every closed
ideal I of A;

(ii) the Stone–Weierstrass property if every self-adjoint subalgebra of A
which strongly separates the points of ∆(A) is dense in A.

In the following, we let l > 0 designate a constant as in Lemma 3.5.

Proposition 5.5. Let A be a C∗-Segal algebra. The following conditions
are equivalent:

(a) A has an approximate identity (eα)α∈Ω;
(b) A has the property of spectral synthesis;
(c) A has the Stone–Weierstrass property.

Proof. (a)⇒(b). Let I be a closed ideal of A. Since the hulls of I and
k(h(I)) agree on ∆(A), Lemmas 4.7 and 5.2(iii) together with the spectral
synthesis property of C imply that I and k(h(I)) have the same closure
in C. Given x ∈ k(h(I)) and ε > 0, one can thus find α ∈ Ω and y ∈ I with
‖x− xeα‖ < ε and ‖x− y‖C < εl−1‖eα‖−1. As yeα ∈ I and

‖x− yeα‖ ≤ ‖x− xeα‖+ ‖xeα − yeα‖ ≤ ‖x− xeα‖+ l‖eα‖ ‖x− y‖C < 2ε,

it follows that I is dense in k(h(I)), whence I = k(h(I)) as wanted.
(b)⇒(c). Let B be a self-adjoint subalgebra of A strongly separating

the points of ∆(A), and let J denote the closure of B in A. Then, by the
Stone–Weierstrass property of C and Lemma 4.7, B is dense in C. Given
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a ∈ A, x ∈ J , and ε > 0, one can thus find y, z ∈ B with ‖x− y‖ < ε‖a‖−1
and ‖a− z‖C < εl−1‖y‖−1. As yz ∈ B and

‖ax− yz‖ ≤ ‖ax− ay‖+ ‖ay − yz‖ ≤ ‖a‖ ‖x− y‖+ l‖y‖ ‖a− z‖C < 2ε,

it follows that J is an ideal of A, whence J = A as required.

(c)⇒(a). Put B := {x ∈ EA : x∗ ∈ EA}. Then Lemmas 5.2(iv) and 5.4
imply that B is a self-adjoint subalgebra of EA strongly separating the points
of ∆(EA). Thus, by Lemma 4.8(i) and the Stone–Weierstrass property of A,
it follows that B is dense in A, whence EA = A as desired.

Remark 5.6. The concept of a Stone–Weierstrass property was intro-
duced by Katznelson and Rudin [19] for semisimple Banach algebras. In
view of that paper, where it was demonstrated that the connection between
the Stone–Weierstrass property and the ideal structure of semisimple Ba-
nach algebras is not generally a very close one, the above result is slightly
surprising.

5.2. Weighted C∗-algebras. We now come to the module-theoretic
generalization of the Gelfand–Naimark Theorem.

Theorem 5.7. Let A be a C∗-Segal algebra. The following conditions
are equivalent:

(a) A is an almost self-adjoint weighted uniform algebra with v̂ contin-
uous on ∆(A);

(b) there exists a positive isometric C-module homomorphism π :
A→M(C).

Remark 5.8. (i) By positivity of π we mean that the spectrum of π(a)
in M(C) is non-negative whenever the spectrum of a in A is non-negative.

(ii) Letting φ be the canonical embedding of C into M(C), it is easy
to see that the C-module action on M(C) satisfies π(a) · x = π(a)φ(x) for
all a ∈ A and x ∈ C. In what follows, we shall identify C with its image
in M(C) under φ.

Proof of Theorem 5.7. (a)⇒(b) The desired mapping π is given by
π(a) := ma for a ∈ A, where ma is defined by the formula m̂a(τ̃) = v̂(τ)â(τ)
for τ ∈ ∆(A).

(b)⇒(a). The proof is divided into seven steps.

Step 1: ‖a‖M = ‖a‖C for all a ∈ A. Let a ∈ A. Then

‖a‖M = sup
b∈A\{0}

‖ab‖
‖b‖

= sup
b∈A\{0}

‖π(ab)‖C
‖π(b)‖C

= sup
b∈A\{0}

‖aπ(b)‖C
‖π(b)‖C

≤ ‖a‖C ;

the reverse inequality follows from the minimality property of the C∗-norm;
see [27, Theorem 3.4.22], for instance.
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Step 2: π(EA) is a closed ideal of C. This is immediate from the as-
sumptions on π.

Step 3: There is a unique non-negative fπ ∈ C(∆(A)) such that π(x)∧(τ̃)
= fπ(τ)τ(x) for all x ∈ EA and τ ∈ ∆(A). Let τ ∈ ∆(A) and x, y ∈ EA
be such that τ(x) and τ(y) are non-zero. Since π(x)y = π(xy) = xπ(y) and
π(EA) ⊆ C, one has

τ̃(π(x))

τ(x)
=
τ̃(π(y))

τ(y)
.

In view of this and Lemma 4.8(i), we can define a mapping fπ : ∆(A) → C
by setting

fπ(τ) :=
τ̃(π(x))

τ(x)
,

where x ∈ EA is such that τ(x) 6= 0. It is easy to verify that fπ is continuous
on ∆(A). Moreover, if τ ∈ ∆(A) and x ∈ EA are such that τ(x) = 0,
then each y ∈ EA satisfies τ̃(π(x))τ(y) = τ(x)τ̃(π(y)) = 0. As a result,
τ̃(π(x)) = 0 so that π(x)∧(τ̃) = fπ(τ)τ(x) for all x ∈ EA and τ ∈ ∆(A).
Next, to establish the non-negativity of fπ, let τ ∈ ∆(A) and pick x ∈ EA
such that τ(x) 6= 0. Since the spectrum of x∗x is non-negative and τ(x∗x)
is a strictly positive real number, one has

fπ(τ) =
τ̃(π(x∗x))

τ(x∗x)
≥ 0

as desired. The uniqueness of fπ is trivial.

Step 4: ∆(A) \ Z(fπ) is dense in ∆(A). Suppose ∆(A) \ Z(fπ) is not
dense in ∆(A). Then there is a non-empty open subset U of ∆(A) contained
in Z(fπ). Clearly, one can find a non-zero x ∈ EA such that ∆(A) \ U
is contained in Z(x̂). Together with Step 3, this implies τ̃(π(x)) = 0 for
all τ ∈ ∆(A). Thus, by Lemma 4.7 and the semisimplicity of C, one has
π(x) = 0, contradicting the injectivity of π.

Step 5: fπ(τ) = v̂(τ) for all τ ∈ ∆(A). Let τ ∈ ∆(A) \Z(fπ). It follows
from Step 3 that each x ∈ EA with τ(x) 6= 0 satisfies τ̃(π(x)) 6= 0. Thus,
as π(EA) is a closed ideal of C and τ̃ |π(EA) is a non-zero multiplicative
functional on it, one has ‖τ̃ |π(EA)‖C = 1. Together with Lemma 4.8(ii) and
Steps 1 and 3, this yields

‖τ‖ = ‖τ |EA
‖ = sup

x∈EA\{0}

|τ(x)|
‖x‖

=
1

fπ(τ)
sup

x∈EA\{0}

|τ̃(π(x))|
‖π(x)‖C

=
1

fπ(τ)
,

and therefore, to complete the proof, it suffices to show that Z(fπ) is empty.
But this is immediate from the density of ∆(A) \ Z(fπ) in ∆(A) and the
fact that fπ is continuous on ∆(A) with fπ(τ) ≥ 1 for all τ ∈ ∆(A) \Z(fπ).
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Step 6: ‖x‖ = ‖x̂‖v̂ for all x ∈ EA. Let x ∈ EA. Then Steps 3 and 5
together with Lemma 4.7 imply

‖x‖ = ‖π(x)‖C = sup
τ∈∆(A)

|π(x)∧(τ̃)| = sup
τ∈∆(A)

|fπ(τ)τ(x)|

= sup
τ∈∆(A)

v̂(τ)|x̂(τ)| = ‖x̂‖v̂,

as claimed.

Step 7: A is an almost self-adjoint weighted uniform algebra with v̂
continuous. By Lemma 5.4 and Step 5, it is enough to prove that A is a
weighted uniform algebra. Let (eα)α∈Ω be a minimal approximate identity
for C. Then each a ∈ A satisfies

‖â‖v̂
(∗)
≥ sup
‖x‖C≤1

‖ax‖ = sup
‖x‖C≤1

‖π(ax)‖C ≥ lim
α∈Ω
‖π(aeα)‖C

= lim
α∈Ω
‖π(a)eα‖C

(∗∗)
= ‖π(a)‖C = ‖a‖, x ∈ C,

where (∗) is given by Step 6 and (∗∗) by [24, Theorem 7.3.1], for example.
The reverse inequality is always true, and so the result follows.

Remark 5.9. (i) It is easy to deduce from Steps 3 and 5 together with
the faithfulness of C in M(C) and Lemma 4.7 that the mapping π is unique,
i.e., if π′ : A→M(C) is a positive isometric C-module homomorphism, then
π = π′.

(ii) It is not difficult to see that Theorem 5.7 also holds true without the
positivity assumption on π; however, such a mapping is not unique.

(iii) It follows from Steps 3 and 5 together with Lemma 4.7 that the
hull of π(EA) in C is empty, whence π(EA) = C by the spectral synthesis
property of C.

Motivated by Theorem 5.7, we make the following definition.

Definition 5.10. By a weighted C∗-algebra we mean a pair (A, π),
where

(i) A is a C∗-Segal algebra;
(ii) π : A→M(C) is a positive isometric C-module homomorphism.

Among the most important examples of weighted C∗-algebras are the
faithful principal ideals of C∗-algebras, as shown by the proposition below.

Proposition 5.11. Let B be a C∗-algebra, and let u ∈ B be such that
uB is faithful in B. Then there exists a norm on uB making it into a
weighted C∗-algebra, and uB has an approximate identity if and only if it is
dense in B.
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Proof. One can assume that ‖u‖B = 1. Put I := uB and define a map-
ping |· | : I → R by setting |ux| := ‖x‖B for x ∈ B. Clearly, |· | is a norm on I
making it into a C∗-Segal algebra. Since J , the closure of I in B, is an ideal
of B, the multiplication operator lx belongs to M(J) for every x ∈ B. It is
easy to verify that the mapping ux 7→ lx from I into M(J) is an isometric
J-module homomorphism. Consequently, I is a weighted C∗-algebra. The
second assertion follows from the identities EI = IJ = uBJ = uJ .

Remark 5.12. (i) Clearly, v̂I(τ) = 1/|τ(u)| for τ ∈ ∆(I) = ∆(B)\Z(û).

(ii) Another equivalent condition for the density of I in B is the strict
positivity of u, that is, û(τ) > 0 for all τ ∈ ∆(B).

It is not difficult to see that Proposition 5.11 admits the following gen-
eralization.

Corollary 5.13. Let B be a C∗-algebra, and let m be an injective mul-
tiplier of B. Then there exists a norm on m(B) making it into a weighted
C∗-algebra, and m(B) has an approximate identity if and only if it is dense
in B.

5.3. Order structure of C∗-Segal algebras. We now proceed to the
order-theoretic generalization of the Gelfand–Naimark Theorem. Let A be
a C∗-Segal algebra. The positive cone of A is defined by

A+ := {a ∈ A : τ(a) ≥ 0 for all τ ∈ ∆(A)}.
Let Ah denote the real vector space of hermitian elements of A. Then Ah
becomes a partially ordered vector space when equipped with the relation

a ≤ b if b− a ∈ A+ (a, b ∈ Ah).

An element u ∈ A+ is called an order unit for A if each a ∈ Ah satisfies
a ≤ lu for some constant l > 0. Clearly, if A has an order unit, then it is
strictly positive.

Example 5.14. Consider Cvb (X) with v continuous on X. Then the
function 1/v is an order unit for Cvb (X).

For future reference, we record the following standard lemma.

Lemma 5.15. Let A be a self-adjoint C∗-Segal algebra with order unit u.
Then

A = Ah + iAh and Ah = A+ −A+.

Moreover, for each c ∈ C, one has uc = 0 if and only if c = 0.

Our next result is a purely algebraic characterization of self-adjoint C∗-
Segal algebras with an order unit. Here, 1 denotes the identity element
of M(C).
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Proposition 5.16. Let A be a self-adjoint C∗-Segal algebra, and let
u ∈ A+. The following conditions are equivalent:

(a) u is an order unit for A;
(b) A = uD for some subspace D of M(C) containing C and 1.

Proof. It is enough to prove that (a) implies (b). Let w be the weight
function on∆(A) given by w(τ) := 1/û(τ) for τ ∈ ∆(A). By Proposition 5.11
and Remark 5.12 together with Lemma 4.7, the Gelfand transform algebra
of uC can be identified with Cw0 (∆(A)). The remainder of the proof goes as
follows.

Step 1: Â ⊆ Cwb (∆(A)). Let a ∈ A. Then there exist b, c ∈ Ah such
that a = b + ic. Since, for some positive constants k and l, one has b ≤ ku
and c ≤ lu, it follows that the Gelfand transforms of b and c belong to
Cwb (∆(A)). This proves the inclusion.

Step 2: EA = uC. By Lemma 2.3 and Step 1 together with Lemma 4.7,
the Gelfand transform algebra of EA is contained in Cw0 (∆(A)), whence the
identity follows from the above discussion and the semisimplicity of A.

Step 3: MC(A) = uM(C). Let m ∈MC(A) and recall that its image is
contained in EA. By the last assertion of Lemma 5.15 and Step 2, we can
thus define a mapping n : C → C by the formula m(x) = un(x) for x ∈ C.
To verify that n is a multiplier of C, let x, y ∈ C. Then un(xy) = m(xy) =
m(x)y = un(x)y, so that n(xy) = n(x)y by Lemma 5.15 again. The reverse
inclusion is trivial, and so the identity follows.

Step 4: A = uD for some subspace D of M(C) containing C and 1.
Putting D := {m ∈ M(C) : um ∈ A}, the assertion is immediate from
Steps 2 and 3 together with the inclusions EA ⊆ A ⊆MC(A).

In view of the identity EA = MC(A)C together with Lemmas 5.2(iv)
and 5.4, it is not difficult to see that Proposition 5.16 admits the following
generalization.

Corollary 5.17. Let A be a C∗-Segal algebra such that EA is self-
adjoint, and let u ∈MC(A)+. The following conditions are equivalent:

(i) u is an order unit for MC(A);
(ii) A = uD for some subspace D of M(C) containing C.

Using a construction of Paulsen and Tomforde [28, Definition 4.4], we
now describe a natural norm on a self-adjoint C∗-Segal algebra with an order
unit. Call a positive functional ω on a C∗-Segal algebra B with order unit u
a state if ω(u) = 1.
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Definition 5.18. Let A be a self-adjoint C∗-Segal algebra with order
unit u. We define a mapping ‖ · ‖u : A→ R by setting

‖a‖u := sup{|ω(a)| : ω is a state on A} (a ∈ A)

and call it the order norm on A induced by u.

In [28], this map was defined in the setting of partially ordered ∗-vector
spaces with an order unit, and it was called the minimal order norm. The
terminology is explained by the following important result (see [28, Theo-
rem 4.5 and Proposition 4.9]).

Lemma 5.19. Let A be a self-adjoint C∗-Segal algebra with order unit u.
Then ‖ · ‖u is a vector space norm on A satisfying the following conditions:

(i) ‖a∗‖u = ‖a‖u for all a ∈ A;
(ii) ‖a‖u = inf{l > 0 : −lu ≤ a ≤ lu} for all a ∈ Ah;

(iii) if | · | is a vector space norm on A with the above two properties,
then there exists a constant l > 0 such that ‖a‖u ≤ |a| ≤ l‖a‖u for
all a ∈ A.

Definition 5.20. By an order unit C∗-Segal algebra we mean a pair
(A, u), where A is a self-adjoint C∗-Segal algebra and u is an order unit
for A such that

‖a‖ = ‖a‖u for all a ∈ A.

We can now state and prove the order-theoretic generalization of the
Gelfand–Naimark Theorem.

Theorem 5.21. Let (A, u) be an order unit C∗-Segal algebra. Then:

(i) û(τ) = ‖τ‖ for all τ ∈ ∆(A);
(ii) ∆(A) is σ-compact;
(iii) A is a weighted C∗-algebra.

Furthermore, A is isometrically ∗-isomorphic to C v̂b (∆(A)) if and only if it
is an order ideal of C, i.e., if 0 ≤ x ≤ a for a ∈ A and x ∈ C then x ∈ A.

Proof. Let | · | be the ∗-algebra norm on A defined by |a| := ‖â‖v̂ for
a ∈ A. By [28, Lemma 4.16], one has û(τ) = ‖τ‖ for all τ ∈ ∆(A). This

yields the continuity of v̂ and the σ-compactness of ∆(A) because Â contains
a strictly positive element. To establish the property (ii) of Lemma 5.19, let
a ∈ Ah. Then

|a| = inf{l > 0 : −l ≤ v̂(τ) â(τ) ≤ l for all τ ∈ ∆(A)}
= inf{l > 0 : −lû(τ) ≤ â(τ) ≤ lû(τ) for all τ ∈ ∆(A)}
= inf{l > 0 : −lu ≤ a ≤ lu},

so that A is a weighted C∗-algebra by Theorem 5.7 and the minimality
property of ‖ · ‖u.
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Next, suppose that A is an order ideal of C. To show that Â = C v̂b (∆(A)),
it suffices to prove that A = MC(A), by Corollary 4.24. Let D be a subspace
of M(C) satisfying A = uD and containing C and 1. By Step 3 of the proof
of Proposition 5.16, one has A = MC(A) if and only if D = M(C). To
verify the latter identity, note that the order ideal hypothesis together with
Lemma 5.15 implies that A, and therefore D as well, is an ideal of M(C).
But since the identity element of M(C) belongs to D, it follows that the
two sets coincide. The other direction of the statement is trivial.

In order to extend this result to weighted C∗-algebras without an order
unit, we need to generalize the notion of a unitization of a C∗-algebra.

Definition 5.22. Let A be a C∗-Segal algebra. By an order unitization
of A we mean a pair (B, ι), where

(i) B is an order unit C∗-Segal algebra;
(ii) ι is a positive isometric homomorphism from A into B;
(iii) ι(A) is a faithful ideal of B.

In view of Corollary 4.24, it is evident that every weighted C∗-algebra
has an order unitization. The result below shows that the converse holds
too. First, we recall a basic fact about multipliers of C∗-algebras.

Lemma 5.23. Let I and J be closed faithful ideals in a C∗-algebra such
that I ⊆ J . Then the mapping m 7→ m|I is a positive isometric algebra and
I-module homomorphism from M(J) into M(I).

Proposition 5.24. Let A be a C∗-Segal algebra. The following condi-
tions are equivalent:

(a) A has an order unitization;
(b) A is a weighted C∗-algebra.

Proof. Let (B, ι) be an order unitization of A. Then there is a C∗-
algebra C ′ containing B as a Segal algebra and a positive isometric C ′-
module homomorphism ψ : B →M(C ′). Without loss of generality, identify
A with its image in B under ι. It is not hard to verify that the C∗-algebra
C in which A is a Segal algebra is the closure of A in C ′. Using the faith-
fulness of A in B together with the density of A in C and B in C ′, respec-
tively, it is easy to see that C is a faithful ideal of C ′. In view of this and
Lemma 5.23, it is evident that the desired mapping π : A→M(C) is given
by π(a) := ψ(a)|C for a ∈ A.

Remark 5.25. Theorems 5.7 and 5.21 suggest that the theory of Nach-
bin algebras can be extended to the non-commutative setting. In fact, first
steps in this direction have already been taken in [20].
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