
Acta Cybernetica 23 (2018) 981–993.

On Derivation Languages of a

Class of Splicing Systems

Kalpana Mahalingamab, Prithwineel Paulb, and Erkki Mäkinenc

Abstract

Derivation languages are language theoretical tools that describe halting
derivation processes of a generating device. We consider two types of deriva-
tion languages, namely Szilard and control languages for splicing systems
where iterated splicing is done in non-uniform way defined by Mitrana, Petre
and Rogojin in 2010. The families of Szilard (rules and labels are mapped in
a one to one manner) and control (more than one rule can share the same
label) languages generated by splicing systems of this type are then com-
pared with the family of languages in the Chomsky hierarchy. We show that
context-free languages can be generated as Szilard and control languages and
any non-empty context-free language is a morphic image of the Szilard lan-
guage of this type of system with finite set of rules and axioms. Moreover,
we show that these systems with finite set of axioms and regular set of rules
are capable of generating any recursively enumerable language as a control
language.

Keywords: Splicing systems, Szilard languages, Control languages

1 Introduction

The information regarding terminal derivation processes of a generative device is
well studied in the literature. Each rule of the generative system in question is
labeled and the given sequence of labels is considered as the output of the compu-
tation. The set of all such words constitute a language. When the labelling is done
in a one to one fashion, the set of all labeled sequences is called a Szilard language.
Szilard languages have been defined for a variety of generative mechanisms (for
Chomsky grammars [8, 9, 14, 12], for regulated rewritings [5, 18] and for grammar
systems [6, 10], to name a few) and their closure and decidability properties and

acorresponding author
bDepartment of Mathematics,Indian Institute of Technology, Madras, Chennai - 36. E-mail:

kmahalingam@iitm.ac.in, prithwineelpaul@gmail.com
cFaculty of Natural Sciences/Computer Science, University of Tampere, Finland. E-mail:

em@sis.uta.fi

DOI: 10.14232/actacyb.23.4.2018.1

982 Kalpana Mahalingam, Prithwineel Paul, and Erkki Mäkinen

complexity ([2, 3]) have been studied extensively. The study of the derivation pro-
cess has also been extended in the context of P systems ([15, 16, 21, 20]). Since
P systems are parallel computing devices and several rules can be used in a single
computation step, one to one mapping of the labels may lead to complications (see
[1]). To overcome this, all rules that are used in a computation step are labeled
with the same symbol or some of them are labeled with the empty symbol λ. The
set of all sequences of labels that lead to a halting computation is called the control
language. The characterization of such control languages in terms of Chomsky hi-
erarchy has been discussed for various P systems [15, 16, 21, 20]. Note that we use
the terms control word and control language in the sense of [15, 16, 21, 20] which
differs from their original use [19].

In this paper, we extend the study of derivation languages to a particular type
of splicing systems, namely to EGenSS’s defined in [11]. In EGenSS, iterated
splicing is done in non-uniform way. More specifically, at any step splicing is done
between a string generated in the previous step and axioms. Splicing systems were
introduced by Head [7] as a theoretical model to study the recombinant behaviour
of DNA molecules. Splicing operation between two strings is defined to be a cut
and paste operation where the both strings are cut at particular sites and the
first component of the first string is pasted with the second component of the
second string, and the second component of the first string is pasted with the first
component of the second string to obtain two new strings. It is well known that if
in a splicing system, the set of axioms and the set of rules are finite, the system
cannot generate beyond regular languages [4, 13]. Different versions of such finite
splicing systems are capable of generating recursively enumerable languages [13].
One such version is the concept of extended H system. Extended H systems can be
thought of as the set of all DNA strings satisfying a particular property. However,
it is not clear when this desired set of strings is obtained. In order to understand
this, a labelling of rules is done. The sequence of labels of the applied rules that
leads to a terminal derivation is included in the language of the system. In this
paper we consider the derivation languages of a variant of splicing system defined
in [11].

The paper is organized as follows: Section 2 presents some basic notations.
Section 3 defines the Szilard language of splicing systems and shows that there exist
regular and context-free languages that are Szilard languages. It is well known that
{aa} and {a4n | n ≥ 1} cannot be a Szilard language of a Chomsky grammar ([12]).
However, we show that {aa} can be the Szilard language of EGenSS with finite
set of axioms and rules where splicing is done in non-uniform way. The language
{a4n | n ≥ 1} cannot be Szilard language of this type of system with finite set of
axioms and rules but it can be a Szilard language if the system contains regular
set of axioms and finite set of rules. Also we will show that every non-empty
context-free language is a morphic image of the Szilard language of an EGenSS
with finite set of axioms and rules. In Section 4, we define the control language
of a splicing system. We show that both the families of regular and context-free
languages are proper subsets of the family of control languages generated by the
EGenSS’s with finite set of axioms and rules. Also we show that any recursively

On Derivation Languages of a Class of Splicing Systems 983

enumerable language is a control language of this type of splicing system with finite
set of axioms and regular set of rules when the rules can also be labeled with λ.
We end the paper with a few concluding remarks.

2 Preliminaries

For basic notations and results of formal language theory we refer the reader to
[13, 17, 19]. Let V be an alphabet and let V ∗ denote the set of all strings over
V . The empty string is denoted by λ. If F is a family of languages, then F \ {λ}
denotes the λ-free family of languages. By FIN,REG,CF,CS,RE we denote the
families of finite, regular, context-free, context-sensitive and recursively enumerable
languages, respectively.

A word u is a prefix (resp. suffix) of a word v if v is of the form v = uw, w ∈ V ∗
(resp. v = wu). The set of all prefixes (resp. suffixes) of v is denoted as pref(v)
(resp. suff(v)). The length of a string w is denoted by |w|.

A morphism is a mapping from h : Σ∗ → ∆∗ such that h(xy) = h(x)h(y) where
x, y ∈ Σ∗. A morphism h : Σ∗ → ∆∗ is called non-erasing, if h(x) 6= λ for all x ∈ Σ.

A splicing rule over V is a string of the form r = u1#u2$u3#u4, where ui ∈ V ∗,
1 ≤ i ≤ 4 and #, $ /∈ V . The maximum of |ui|, 1 ≤ i ≤ 4, is the radius of the
splicing rule r.

An extended generating H system is a 4-tuple H = (V, T,A,R), where V is
the alphabet, T ⊆ V is the terminal alphabet, A ⊆ V ∗ is the set of axioms,
and R ⊆ V ∗#V ∗$V ∗#V ∗; #, $ /∈ V is the set of splicing rules. For a splic-
ing rule r = u1#u2$u3#u4 and an ordered pair of words x, y ∈ V ∗, denote,
σr(x, y) = {u = x1u1u4y2, v = y1u3u2x2 where x = x1u1u2x2, y = y1u3u4y2,
for some x1, x2, y1, y2 ∈ V ∗}. We also write (x, y) `r (u, v), where u and v are
referred to as the first and the second components obtained when r is applied to x
and y. Let R be a set of splicing rules and L a language, then σR(L) is defined as

σR(L) =
⋃
r∈R

⋃
w1,w2∈L

σr(w1, w2).

If L1, L2 are any two languages, then σR(L1, L2) is denoted as

σR(L1, L2) =
⋃

x1∈L1

⋃
x2∈L2

σR(x1, x2),

where

σR(x1, x2) =
⋃
r∈R

σr(x1, x2).

A non-uniform variant for extended generating splicing system is defined in
[11]. The system is an extended generating H system, H = (V, T,A,R) with the
additional requirement that splicing at any step occurs between a generated word
in the previous step and an axiom:

τ0R(A) = A, τ i+1
R (A) = σR(τ iR(A), A), i ≥ 0 , τ∗R(A) =

⋃
i≥0 τ

i
R(A).

984 Kalpana Mahalingam, Prithwineel Paul, and Erkki Mäkinen

The system is denoted as EGenSS H. The language generated by an EGenSS H
is defined as Ln(H) = T ∗∩τ∗R(A). The family of languages generated by EGenSS’s
in non-uniform way is denoted by Ln(EGenSS).

The class of languages generated by non-uniform extended generating splicing
systems with finite set of axioms and finite set of rules equals REG [11].

3 Szilard language associated with splicing sys-
tems

In this section we extend the concept of Szilard languages to splicing systems.
We define Szilard languages of EGenSS’s and compare them with the family of
languages in the Chomsky hierarchy. We also show that the language {aa} which is
not the Szilard language of a Chomsky grammar [12] is indeed the Szilard language
of an EGenSS.

A labeled extended generatingH system is a construct of the form γ = (V1, T1, A1,
R1, Lab), where H = (V1, T1, A1, R1) is an extended generating splicing system as
defined in Section 2, and Lab, Lab ∩ V1 = ∅ is a set of labels that are used to
uniquely name the rules. Since the splicing in the system works in the non-uniform
manner, we call this type of splicing systems non-uniform labeled extended gener-
ating splicing systems. A derivation in the splicing system is terminal if it obeys
one of the following two patterns:
(1) (x0, y0) `a1 (x1, y

0
1), (x1, y1) `a2 (x2, y

0
2), (x2, y2) `a3 (x3, y

0
3), · · ·

(xn−1, yn−1) `an (xn, y
0
n) , or

(2) (y0, x0) `a1 (x1, y
0
1), (y1, x1) `a2 (x2, y

0
2), (y2, x2) `a3 (x3, y

0
3), · · ·

(yn−1, xn−1) `an (xn, y
0
n),

where xi ∈ V ∗1 , yi ∈ A1, for 0 ≤ i ≤ n − 1, xn ∈ T ∗1 , y0i ∈ V ∗1 , and ai ∈ Lab, for
1 ≤ i ≤ n.

The set of all such label sequences a1a2 · · · an of the applied rules that leads
to a terminal derivation constitute SZ(γ), the Szilard language of the non-uniform
labeled extended generating H system γ. The family of Szilard languages generated
by the non-uniform labeled extended generating splicing systems is denoted by
S Z LEGenSSn(FL1, FL2), with axioms from the family FL1 and rules from the
family FL2 .

In the following we show that there exist an infinite regular and a non-regular
context-free language which is the Szilard language of a finite labeled EGenSS.

Theorem 1. REG ∩S Z LEGenSSn(FIN,FIN) 6= ∅.

Proof. We construct a labeled H system such that SZ(γ) = {an | n ≥ 1}. Let
γ = (V1, T1, A1, R1, Lab) be an labeled EGenSS where V1 = {X,S1, Y, Z}, T1 =
{X,Y }, A1 = {XS1Y, ZS1Y, ZY }, R1 = {a : #S1Y $Z#} and Lab = {a}. If the
strings XS1Y and ZS1Y are spliced, then

(X | S1Y, Z | S1Y) `a (XS1Y, ZS1Y).

On Derivation Languages of a Class of Splicing Systems 985

The rule can be applied iteratively to XS1Y and ZS1Y to obtain XS1Y and ZS1Y .
A terminal derivation is obtained if XS1Y is spliced with ZY :

(X | S1Y, Z | Y) `a (XY, ZS1Y).

Any other possibility does not lead to a terminal derivation and, hence, SZ(γ) =
{an | n ≥ 1}.

It was shown in [12] that the language {aa} cannot be a Szilard language of
any type-0 grammar. We show that there exists a splicing system γ such that
SZ(γ) = {aa}.

Theorem 2. The language {aa} is a Szilard language of a finite labeled EGenSS.

Proof. We construct a labeled splicing system γ = (V1, T1, A1, R1, Lab) such that
SZ(γ) = {aa}. We define, V1 = {X1

1 , Y
1
0 , u

1
1, u

1
3, α, β, β1, X

2
0 , Y

2
0 }, T1 = {X1

1 , u
1
1, β,

β1, Y
2
0 }, A1 = {X1

1u
1
1αu

1
1αu

1
1βX

2
0 , Y

1
0 u

1
3ββ1Y

2
0 }, Lab = {a} and

R1 = {a : u11#αu11β$u13#ββ1}. There is a terminal derivation

(X1
1u

1
1αu

1
1 | αu11βX2

0 , Y
1
0 u

1
3 | ββ1Y 2

0) `a (X1
1u

1
1αu

1
1ββ1Y

2
0 , Y 1

0 u
1
3αu

1
1βX

2
0)

(X1
1u

1
1 | αu11ββ1Y 2

0 , Y 1
0 u

1
3 | ββ1Y 2

0) `a (X1
1u

1
1ββ1Y

2
0 , Y 1

0 u
1
3αu

1
1ββ1Y

2
0).

It is easy to verify that no other derivation is possible and, hence, SZ(γ) = {aa}.

In the following we show that there exists a regular language that cannot be a
Szilard language of any finite labeled EGenSS.

Theorem 3. REG \S Z LEGenSSn(FIN,FIN) 6= ∅.

Proof. Let L = {a4n | n ≥ 1}. To derive a contradiction, suppose a finite labeled
EGenSS, γ = (V1, T1, A1, R1, Lab) such that SZ(γ) = {a4n | n ≥ 1}. The system
contains only one rule, a : u11#u12$u13#u14, where u11, u

1
2, u

1
3, u

1
4 ∈ V ∗1 . Hence, there

exists a terminal derivation with label sequence a4 as follows:
(x0, y0) = (x10u

1
1 | u12x20 , y10u13 | u14y20) `a (x10u

1
1u

1
4y

2
0 , y

1
0u

1
3u

1
2x

2
0)

(x1, y1) = (x11u
1
1 | u12x21 , y11u13 | u14y21) `a (x11u

1
1u

1
4y

2
1 , y

1
1u

1
3u

1
2x

2
1)

(x2, y2) = (x12u
1
1 | u12x22 , y12u13 | u14y22) `a (x12u

1
1u

1
4y

2
2 , y

1
2u

1
3u

1
2x

2
2)

(x3, y3) = (x13u
1
1 | u12x23 , y13u13 | u14y23) `a (x13u

1
1u

1
4y

2
3 , y

1
3u

1
3u

1
2x

2
3),

where x13u
1
1u

1
4y

2
3 ∈ T ∗1 , x

j
i , y

j
i ∈ V ∗1 , 0 ≤ i ≤ 3, 1 ≤ j ≤ 2 such that x10u

1
1u

1
4y

2
0 =

x11u
1
1u

1
2x

2
1, x11u

1
1u

1
4y

2
1 = x12u

1
1u

1
2x

2
2 and x12u

1
1u

1
4y

2
2 = x13u

1
1u

1
2x

2
3. Then we have the

following cases:

1. x12 = x13u
1
1u

1
2α1, α1 ∈ pref(x23)

2. x12 = x13u
1
1α1 , α1 ∈ pref(u12)

3. x12 = x13α1, α1 ∈ pref(u11)

4. x12 = α1 , α1 ∈ pref(x13).

986 Kalpana Mahalingam, Prithwineel Paul, and Erkki Mäkinen

If x12 = x13u
1
1u

1
2α1, then x2 = x13u

1
1u

1
2α1u

1
1u

1
2x

2
2 and (x2, y3) `a (x4, y4) where x4 ∈

T ∗1 generating a3. The cases x12 = x13α1, α1 ∈ pref(u11) and x12 = α1, α1 ∈ pref(x13)
lead to the same contradiction. If x12 = x13u

1
1α1 where α1 ∈ pref(u12), then x2 =

x12u
1
1α1u

1
1u

1
2x

2
2. Note that α1 /∈ T ∗1 , otherwise, the rule a can be applied to x2 and

y3 which leads to a terminal derivation generating a3.
Now from x10u

1
1u

1
4y

2
2 = x11u

1
1u

1
2x

2
1, we have the following possibilities:

x10 ∈ pref(x11), x10 ∈ x11 pref(u11), x10 ∈ x11u11 pref(u12) and x10 ∈ x11u11u12 pref(x21).
Similarly, from x11u

1
1u

1
4y

2
1 = x12u

1
1u

1
2x

2
2, we obtain x11 ∈ pref(x12), x11 ∈ x12 pref(u11),

x11 ∈ x12u11 pref(u12) and x11 ∈ x12u11u12 pref(x22). If x10 = x11 or x11 = x12, then the
system will generate strings ai /∈ L.

All other cases mentioned will either increase in the length of u11 or u12 or both
or increase in the number of independent occurrences of prefixes of u11 and prefixes
of u12. Since L is infinite and x0 is a finite string, this is not possible and, hence, L
is not a Szilard language of any finite splicing system.

In the following we construct a labeled EGenSS with regular set of axioms such
that {a4n | n ≥ 1} ∈ S Z LEGenSSn(REG,FIN).

Example 1. We construct a labeled EGenSS, γ = (V1, T1, A1, R1, Lab) such
that SZ(γ) = {a4n | n ≥ 1}. Let V1 = {X,u11, β, Y, Z}, T1 = {X,β, Y }, A1 =
{Xu4n1 βY | n ≥ 1} ∪ {ZβY }, R1 = {a : #u1βY $Z#βY }, and Lab = {a}. It is
clear that any derivation of the above system reaches a terminal derivation only
after applying the rule a four times. Since the set A1 is regular, {a4n | n ≥ 1} ∈
S Z LEGenSSn(REG,FIN).

Next, we show that there exists a context-free language that is the Szilard
language of a finite labeled EGenSS. From [11] we know that this type of splicing
systems cannot generate non-regular languages.

Theorem 4. CF ∩S Z LEGenSSn(FIN,FIN) 6= ∅.

Proof. Let γ = (V1, T1, A1, R1, Lab) be a labeled EGenSS where V1 = {X1, Y, Y1,
a, Z,A1, A2}, T1 = {X1, Y1}, A1 = {X1Y, ZaA1Y, ZA2Y1}, and Lab = {1, 2, 3, 4, 5}.
The system contains the rules R1 = {1 : X1#Y $Z#aA1Y , 2 : a#A1Y $Z#aA1Y ,
3 : aa#A1Y $Z#A2Y1, 4 : a#aA2Y1$Z#A2Y1, 5 : X1#aA2Y1$ZA2#Y1}.

Initially, the rule 1 can be applied to the strings X1Y and ZaA1Y . After
applying rule 1, the string X1aA1Y is produced. Then rule 2 can be applied
iteratively (n−1) times, to generate a string of the form X1a

nA1Y . Then rule 3 can
be applied to obtain the string X1a

nA2. After application of rule 3, only rules 4 or
5 are applicable. If rule 4 is applied (n−1) times, XaA2Y is produced. Finally, rule
5 is applied to obtain the terminal string X1Y1. If a derivation does not start with
1, it does not lead to a terminal derivation. Thus, SZ(γ) = {12n34n5 | n ≥ 1}.

It was shown in [9] that context-free languages can be represented as a morphic
images of Szilard languages associated with the left most derivations of context-
free grammars. However, the class of all languages obtained by taking the morphic

On Derivation Languages of a Class of Splicing Systems 987

image of Szilard languages of the context-free grammars in general are incomparable
with context-free languages [9]. In the following we show a result similar to that
in [9], that each context-free languages can be expressed as a morphic image of the
Szilard language of a finite labeled EGenSS.

Theorem 5. Every non-empty context free language is a morphic image of the
Szilard language of a finite labeled EGenSS.

Proof. Let L be a non-empty context-free language and let G = (N,T, P, S) be
a grammar in Greibach normal form such that L = L(G). The rules in P are
of the form, Di → aα and Di → a, where α ∈ N+, Di ∈ N, a ∈ T and N =
{D1, D2, . . . , Dn}. We show that there exists a finite splicing system γ such that
L = h(SZ(γ)) where h is a non-erasing morphism from Lab∗ to T ∗.

We construct a labeled splicing system γ = (V1, T1, A1, R1, Lab) such that
L = h(SZ(γ)) where

• V1 = {Y } ∪ N ∪ ∆1, for ∆1 = {Ya | Di → aα, α ∈ N+, Di ∈ N, a ∈ T} ∪
{Ya | Di → a ∈ P,Di ∈ N, a ∈ T};

• T1 = {Y };

• A1 = {Y SY } ∪∆2 ∪∆3, where
∆2 = {Y αYa | Di → aα,Di ∈ N, a ∈ T, α ∈ N+} and
∆3 = {Y Ya | Di → a,Di ∈ N, a ∈ T}.

• R1 = {(aiαk : Y αk#Ya$Y Di#) | Di → aαk ∈ P} ∪{(ai : Y#Ya$Y Di#) | Di

→ a ∈ P} that is, for every rule of the form Di → aαk in G, where a ∈
T, αk ∈ N+, k a positive integer, a splicing rule (aiαk : Y αk#Ya$Y Di#) is
constructed. Similarly, if there exists a rule Di → a, then a splicing rule
(ai : Y#Ya$Y Di#) is constructed.

• Lab = {aiαk | Di → aαk ∈ P} ∪ {ai | Di → a ∈ P}.

Finally, we define the morphism h : Lab∗ → T ∗ such that h(aiαk) = h(ai) = a
where aαik , a

i ∈ Lab and a ∈ T.
We first prove that L(G) ⊆ h(SZ(γ)). Any computation in G starts from S

and after sequential application of the rules in P , a string over T is generated. The
splicing rules simulating the rules Di → aαk, Di → a,Dj → aαk, and Dj → a
in P are labeled with aiαk , a

i, ajαk , and aj , respectively. Suppose a terminal string,
say, w is generated in G. If the corresponding labeled rules are also applied in γ,
a terminal derivation can be obtained. If the labels of the applied splicing rules
are concatenated, a string over Lab, say, w1 is generated. But if the morphism
h is applied w, each occurrence of aiαk , a

i, ajαk , and aj is replaced by a. Hence, if
w ∈ L(G), we have w = h(w1) ∈ h(SZ(γ)) where w1 ∈ SZ(γ).

Next we prove the inclusion h(SZ(γ) ⊆ L(G). Let w = h(w1) where w1 ∈
SZ(γ). Let w1 = a1a2 . . . an ∈ SZ(γ), i.e., there exists a terminal derivation in
γ with which w1 is generated. In G, computations starts from S. If the rules in

988 Kalpana Mahalingam, Prithwineel Paul, and Erkki Mäkinen

G are applied in the same sequence as the (simulated) labeled rules are applied
in γ, a terminal string is generated. So, a terminal string in G and a terminal
derivation in γ is obtained at the same time. Again, h(aiαk) = h(ai) = a, and
hence, h(w1) = w ∈ L(G). So, we can conclude h(SZ(γ)) ⊆ L(G).

4 Control languages of splicing systems

In the previous section we discussed the Szilard languages associated with splicing
systems. In this section we define control languages associated with splicing systems
and compare the family of control languages generated by the labeled EGenSS with
the family of languages in the Chomsky hierarchy. Control languages have already
been discussed for several variants of, for example, tissue P systems, spiking neural
P systems, and P systems with isotonic array grammars ([15, 16, 21, 20]) to name
a few. We extend the concept of control languages to splicing systems and show
that all non-empty regular and context-free languages are indeed control languages
of finite labeled EGenSS.

We conisder a labeled extended generating H system γ = (V1, T1, A1, R1, Lab),
working in non-uniform manner, where V1, T1, A1, R1, and Lab are as defined in
Section 3 except that multiple rules in R1 can be assigned with the same label.
Also a single rule cannot be mapped with different labels. The rules can also be
labeled with the empty string λ. The concatenation of the labels of the applied
splicing rules in any terminal derivation will form a string over Lab. It is called a
control word of the labeled EGenSS. The set of all control words constitute the
control language of the labeled EGenSS γ. It is denoted by CTL(γ).

The family of control languages generated by any labeled extended generating
splicing system γ = (V1, T1, A1, R1, Lab) with card(A) ≤ n and rad(R) ≤ m, where
n,m ≥ 1, is denoted by RLCTL([n], [m]). When no restriction on the number
n of axioms or on the maximal radius m are considered but n and m are still
finite, they are simply replaced with FIN . If empty labels are allowed then the
family is denoted by RLCTLλ([n], [m]). If the system contains axioms from F1

and rules from F2, for some families of languages F1 and F2, then the family of
control languages generated by the systems is denoted by RLCTL(F1, F2). When
the system contains λ-labeled rules, we denote it by RLCTLλ(F1, F2).

Ln(EGenSS) with finite set of axioms and finite set of rules [11] with no re-
striction on the radius of the splicing rules equals the class of regular languages.
In the next theorem, we show that the class of non-empty regular languages are
contained in RLCTL(FIN, [1]).

Theorem 6. (REG \ {λ}) ⊆ RLCTL(FIN, [1]).

Proof. Let L be a λ-free regular language. Then there exists a regular grammar
G = (N,T, P, S) such that L = L(G). Suppose the non-terminals N of G are
Di, 1 ≤ i ≤ n, where D1 = S is the start symbol. We now construct a finite

On Derivation Languages of a Class of Splicing Systems 989

labeled EGenSS γ such that L = L(G) = CTL(γ). The rules in P are of the form
Di → aDi, Di → aDj(i 6= j), and Di → a, Di, Dj ∈ N , and a ∈ T .

Let γ = (V1, T1, A1, R1, Lab) be a labeled EGenSS, where

• V1 = {X,Y, Y1, D1, D2, . . . , Dn} ∪∆1, for ∆1 = {Ya | Di → aDi} ∪ {Ya | Di →
aDj(i 6= j)} ∪ {Ya | Di → a ∈ P, a ∈ T};

• T1 = {Y } ∪∆1;

• A1 = {XD1Y } ∪∆2 ∪∆3 ∪∆4, where

1. ∆2 = {Y DjYa | Di → aDj ∈ P, a ∈ T},
2. ∆3 = {Y DiYa | Di → aDi ∈ P, a ∈ T},
3. ∆4 = {YaY1 | Di → a ∈ P, a ∈ T};

(The set (∆2 ∩∆3) may or may not be disjoint.)

• The rules in R1 are of the form
(a : Di#Ya$Di#Y), for Di → aDi, a ∈ T ,
(a : Dj#Ya$Di#Y), for Di → aDj , i 6= j, a ∈ T ,
(a : Ya#Y1$Di#Y), for Di → a, a ∈ T , where 1 ≤ i, j ≤ n;

• Lab = T .

Every rule in G is simulated by a corresponding splicing rule with the required label
a that corresponds to the grammar rule under consideration. Thus, every w ∈ L(G)
can be simulated by a terminal derivation in γ and vice versa. The sequence of
splicing rules reach a terminal derivation only when the rule (a : Ya#Y1$Di#Y)
corresponding to the rule Di → a, a ∈ T , is applied. Thus, L(G) = CTL(γ).

In the next theorem we show that, every non-empty context-free language can be
a control language of a finite labeled EGenSS.

Theorem 7. (CF \ {λ}) ⊆ RLCTL(FIN,FIN).

Proof. Let L be any non-empty context-free language such that λ /∈ L. Then let
G = (N,T, P, S) be a context-free grammar in Greibach normal form such that
L = L(G). We construct a finite labeled EGenSS, γ = (V1, T1, A1, R1, Lab) such
that L = L(G) = CTL(γ). Let γ = (V1, T1, A1, R1, Lab) be a labeled splicing
system where:

• V1 = {X,Y, Y1} ∪N ∪∆1, for ∆1 = {Ya | D → aα, α ∈ N+, a ∈ T} ∪ {Ya | D →
a ∈ P, a ∈ T, ,D ∈ N};

• T1 = {Y } ∪∆1;

• A1 = {XSY } ∪∆2 ∪∆3, where

1. ∆2 = {Y αYa | D → aα ∈ P, a ∈ T, α ∈ N+, D ∈ N},

990 Kalpana Mahalingam, Prithwineel Paul, and Erkki Mäkinen

2. ∆3 = {Y Ya, YaY1 | D → a ∈ P, a ∈ T,D ∈ N};

• R1 contains the following rules :
For D → aα ∈ P , we have, {(a : Y α#Ya$XD#Y), (a : Y α#Ya$Y D#Y)} ∪
{(a : Y α#Ya$Y D#β1β2 . . . βiY) | βi ∈ N, 1 ≤ i ≤ (n− 1)}∪
{(a : Y α#Ya$Y D#β1β2 . . . βn) | βi ∈ N}
For D → a ∈ P , we have, {(a : Y#Ya$Y D#β1β2 . . . βiY) | βi ∈ N, 1 ≤
i ≤ (n − 1)}∪ {(a : Ya#Y1$XD#Y)} ∪{(a : Y#Ya$Y D#β1β2 . . . βn) | βi ∈
N} ∪ {(a : Ya#Y1$Y D#Y)}
where n = Max{|α| | D → aα ∈ P};

• Lab = T .

Corresponding to each rule of the formD → aα ∈ P there exist rules in γ labeled
with a, (a : Y α#Ya$XD#Y), (a : Y α#Ya$Y D#β1Y), (a : Y α#Ya$Y D#β1β2Y),
(a : Y α#Ya$Y D#β1β2β3Y), . . ., and (a : Y α#Ya$Y D#β1β2 . . . βn). These rules
can be applied to the pairs of strings XDY , Y αYa and Y DQY , Y αYa, where
Q ∈ N∗, respectively. At first, Y αYa and XSY are spliced and Y αY and XSYa
are produced. No rule is applicable to XSYa, but Y αY can be spliced further
with the rules in the system. If XSY and YaY1 are spliced together, it will produce
XSY1 and YaY . Strings of the form Y DQY , where Q ∈ N∗, can be spliced with the
strings Y αYa and Y Ya to obtain Y DYa and Y αQY or Y QY . After the application
of the rule (a : Ya#Y1$Y D#Y) to Y DY and YaY1, the strings Y DY1 and YaY
are produced. The string YaY is a terminal string and the strings of labels of the
rules applied are in the control language. The above construction of γ simulates
the rules of P in R. The splicing rules in γ are applied in the same sequence as the
rules are applied in the derivation S ⇒∗ x, for x ∈ L(G). Thus x ∈ L(G) iff there
exist a terminal derivation in γ generating x. Whenever the rules D → aα, and
D → a are applied to a non-terminal in G, the corresponding splicing rule labeled
with a is applied in the system γ and vice versa. Thus, L(G) = CTL(γ).

In the following we show that there exists a context-sensitive language that
cannot be the control language of any finite labeled EGenSS.

Theorem 8. CS \RL CTLλ(FIN,FIN) 6= ∅.

Proof. Let L = {a2n | n ≥ 0} be a context-sensitive language. Assume that there
exists a finite labeled EGenSS, γ = (V1, T1, A1, R1, Lab) such that CTL(γ) =
{a2n | n ≥ 0}.
Since a ∈ CTL(γ), there exist an ‘a′ labeled rule (say r1) and x0, y0 ∈ A1 such
that (x0, y0) `ar1 (xt, y

′), xt ∈ T ∗1 . Since xt ∈ T ∗1 , xt cannot be spliced further and
hence it is not possible to generate a2, from the strings x0, and y0 and just by
using the rule r1. Therefore there exists an ‘a′ labeled rule r2 such that r1 6= r2
and (x0, y0) `ar2 (x1, y

′), (x1, y1) `ar1 (xt, y
′′), xt ∈ T ∗1 . Thus to generate a2

n

, for
some n starting with x0, y0, there must exist ‘a′ labeled rules r1, r2, · · · rk such that
k ≤ 2n. Since the number of rules in the system are finite, some of these rules
are repeated recursively which will end up in generating strings of the type ai such
that i 6= 2n. Hence CTL(γ) 6= L.

On Derivation Languages of a Class of Splicing Systems 991

The following theorem shows that the family of control languages generated
by the labeled EGenSS with rules from a regular set where some of the rules are
labeled with λ is equal to the family of recursively enumerable languages.

Theorem 9. RLCTLλ(FIN,REG) = RE.

Proof. The inclusion RLCTLλ(FIN,REG) ⊆ RE follows from the Church-Turing
Thesis. We have to prove only the inclusion RE ⊆ RLCTLλ(FIN,REG). Let
G = (N,T, P, S) be a type-0-grammar in Kuroda normal form. We construct
a labeled EGenSS, γ = (V1, T1, A1, R1, Lab) such that CTLλ(γ) = L(G). Let
γ = (V1, T1, A1, R1, Lab) is a labeled EGenSS with U = N ∪ T ∪ {E}, where

• V1 = N ∪ {E,X,X ′
, Y, Z} ∪ {Yα | α ∈ U};

• T1 = {X,Y,E};

• A1 = {XESY,XZ,ZY }∪{ZYα | α ∈ U}∪{X
′
αZ | α ∈ N∪E}∪{ZBCY |A→

BC ∈ P} ∪ {ZCDY | AB → CD ∈ P} ∪ {ZYaY | A→ a ∈ P};

• R1 contains the following rules:
1. (λ : Xw#AY $Z#BCY), for A→ BC ∈ P,w ∈ (N ∪ {E})∗
2. (λ : Xw#ABY $Z#CDY), for AB → CD ∈ P,w ∈ (N ∪ {E})∗
3. (a : XwE#AY $ZYa#Y), for A→ a ∈ P,w ∈ N∗
4. (λ : XwE#AY $Z#Y), for A→ λ ∈ P,w ∈ N∗
5. (λ : Xw#αY $Z#Yα), for α ∈ N ∪ E,w ∈ (N ∪ {E})∗
6. (λ : X

′
α#Z$X#wYα), for α ∈ N ∪ E,w ∈ (N ∪ {E})∗

7. (λ : X
′
w#Yα$Z#Y), for α ∈ N ∪ E,w ∈ (N ∪ {E})∗

8. (λ : X#Z$X
′
#wY), for w ∈ (N ∪ {E})∗;

• Lab = T ∪ {λ}.

The above system is constructed in the same manner as in any standard proof
of extended H system with finite set of axioms and regular set of rules that can
generate RE languages. The splicing rules are labeled with the terminal symbol a
that simulates the rule A→ a in G and the rest of the rules are labeled with λ. The
grammar G is in Kuroda normal form and any element w ∈ L(G) can be generated
by the application of the recursive rules A → BC and AB → CD rules in P in
any manner and then by application of the terminating rules A → λ and A → a
in the leftmost manner. The splicing rules (1) and (2) simulate the non-terminal
recursive rules and the splicing rules in (3) and (4) simulate the terminating rules
A→ a and A→ λ, respectively. The splicing rules (3) and (4) are applicable only
to the non-terminal symbol present between E and the right hand marker Y and
by doing this the left-most derivation is simulated, since the terminating rules are
applied in leftmost manner. The rules in γ from (1) to (4) simulate the rules in P .
Rules from (5) to (8) are used to rotate the string inside the markers X and Y .

Note that the λ-labeled splicing rules in (1) and (2) can be applied any number
of times. Also, the rotation rules from (5) to (8) are λ-labeled and they can also
be applied any number of times. But the rules in (3) and (4) are applicable to the

992 Kalpana Mahalingam, Prithwineel Paul, and Erkki Mäkinen

non-terminals in between E and Y. The a-rule in (3) eliminates one non-terminal
(adjacent to E) from the string inside the markers X and Y in γ. It simulates the
application of the rule A → a to the left most non-terminal in any derivation of
G . The λ-labeled rule in (4) also works in the same manner. Thus, w ∈ L(G) iff
there exists a derivation S ⇒∗ w and the system γ generates the string XEY ∈ T ∗1
in the first component of a step, i.e., a terminal derivation is obtained. Thus, w ∈
L(G) iff w ∈ CTLλ(γ).

5 Conclusion

We have defined the derivation languages of non-uniform variant of generating
splicing systems and have compared them with the families of languages in the
Chomsky hierarchy. We have shown that infinite regular and non-regular context-
free languages can be Szilard languages of finite splicing systems. and that every
non-empty context-free language is a morphic image of the Szilard language of
a finite splicing system. Also we showed that the family of infinite regular and
non-regular context-free languages are properly contained in the family of control
languages of finite splicing systems. We also have shown that if the set of axioms
are finite and the set of rules are regular and λ labeled rules are allowed, any
recursively enumerable language can be generated as a control language of a non-
uniform labeled extended generating splicing system. It will also be interesting to
explore power of the derivation languages of other variants of splicing system.

References

[1] Ciobanu, G., Păun, G., Stefanescu, G. : Sevilla carpets associated with P
systems. in BWMC 2003, Tarragona Univ., TR 26/03 (2003)

[2] Cojocaru, L., Mäkinen, E., Tiplea, F. L. : Classes of Szilard languages in N C .
In: 11th International Symposium on Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, pp. 299–306 (2009)

[3] Cojocaru, L., Mäkinen, E. : On some derivation mechanisms and the complexity
of their Szilard languages. Theoretical Computer Science. 537, 87–96 (2014)

[4] Culik, K. II, Harju, T. : Splicing semigroups of dominoes and DNA. Discrete
Appllied Matematics. 31, 261–277 (1991)

[5] Dassow, J., Păun, G. : Regulated rewriting in formal language theory. Springer,
Berlin (1989)

[6] Dassow, J., Mitrana, V., Păun, G. : Szilard languages associated to co-operating
distributed grammar systems. Stud. Cercet. Mat. 45, 403–413 (1993)

On Derivation Languages of a Class of Splicing Systems 993

[7] Head, T. : Formal language theory and DNA : an analysis of the generative
capacity of specific recombinant behaviours. Bulletin of Mathematical Biology.
49(6), 737–759 (1987)

[8] Mäkinen, E. : On context-free and Szilard languages. BIT. 24, 164–170 (1984)

[9] Mäkinen, E. : On homomorphic images of Szilard languages. International Jour-
nal of Computer Mathematics. 18, 239–245 (1986)

[10] Mihalache, V. : Szilard languages associated to parallel communicating gram-
mar systems. Developments in Language Theory II, At the Crossroads of Mathe-
matics, Computer Science and Biology, Magdeburg, Germany, July 1995, World
Scientific, Singapore, 247–256 (1996)

[11] Mitrana, V., Petre, I., Rogojin, V. : Accepting splicing systems. Theoretical
Computer Science. 411, 2414–2422 (2010)

[12] Păun, G. : On some families of Szilard languages. BULL. MATH. de la Soc.
Sci. Math. de la R. S. de Roumanie Tome 27(75), 259–265 (1983)

[13] Păun, Gh., Rozenberg, G., Salomaa, A. : DNA Computing: New computing
paradigms, Springer-Verlag, Berlin (1998)

[14] Penttonen, M. : On derivation language corresponding to context-free gram-
mars. Acta Informatica. 3, 285–291 (1974)

[15] Ramanujan, A., Krithivasan, K. : Control words of transition P systems. BIC-
TA 2012, Advances in Intelligent Systems and Computing. 145–155 (2012)

[16] Ramanujan, A., Krithivasan, K. : Control languages associated with spiking
neural P systems. Romanian Journal of Information Science and Technology.
15(4), 301–318 (2012)

[17] Rozenberg, G., Salomaa, A. (Eds.) : Handbook of formal languages, vol. I-III,
Springer-Verlag, Berlin (1997)

[18] Salomaa, A. : Matrix grammars with a left most restriction. Information Con-
trol. 20(2), 143–149 (1972)

[19] Salomaa, A. : Formal languages, Academic Press, New York (1973)

[20] Sureshkumar, W., Rama, R. : Chomsky hierarchy control on isotonic array
P systems. International Journal of Pattern Recognition and Artificial Intelli-
gence. 30(2), 10.1142/S021800141650004X (2016)

[21] Zhang, X., Liu, Y., Luo, B., Pan, L. : Computational power of tissue P systems
for generating control languages. Information Sciences. 278, 285–297 (2014)

Received 23rd March 2017

