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ON DERIVATIVES OF
p-ADIC L-SERIES AT s=0

DAVID BURNS

ABSTRACT. We use techniques of non-commutative Iwasawa theory to investigate the values
at zero of higher derivatives of p-adic Artin L-series.

1. INTRODUCTION

Let p be an odd prime. In this article we use techniques and results from non-commutative
Iwasawa theory to investigate detailed arithmetic properties of the values at zero of the higher
derivatives of p-adic Artin L-series.

As concrete applications of our approach we shall (unconditionally) extend the main results
of Federer and Gross in [11] from linear Q,-valued characters to general finite dimensional
p-adic characters, define a canonical refinement of Gross’s p-adic regulator map that gives
a natural description of the image of Gross’s map and also encodes p-adic valuations of the
values at zero of higher derivatives of p-adic Artin L-series, and describe an explicit non-abelian
generalisation of Gross’s p-adic analytic approach to Hilbert’s twelfth problem. At the same
time we prove natural p-adic analogues of the central conjecture of Chinburg in [9] and of a
natural non-abelian generalisation of the annihilation results proved by Rubin in [37].

In addition, our methods suggest the formulation of a natural conjectural ‘refined p-adic class
number formula’ for G, and allow us to prove this conjecture modulo Iwasawa’s conjecture on
the vanishing of cyclotomic p-invariants, and even in some interesting cases unconditionally
(see Remark 3.7).

We also deduce several concrete consequences of this refined p-adic class number formula,
including explicit formulas for the (non-commutative) Fitting invariants of Selmer groups that
are naturally associated to G,, over number fields.

In particular, in this way we are able to show that the validity of Gross’s conjecture on
the order of vanishing at zero of p-adic Artin L-series implies, in general modulo the above u-
invariant hypothesis, the p-component of the ‘minus part’ of the equivariant Tamagawa number
conjecture for untwisted Tate motives over CM Galois extensions of totally real fields as well as
the non-abelian extensions of Brumer’s Conjecture and of the Brumer-Stark Conjecture that
were formulated independently by Nickel in [31] and by the present author in [2].

The latter results are of interest because they make no assumptions concerning the decom-
position behaviour of p-adic places and, ever since Wiles’ seminal work in [45], it has been clear

Key words and phrases. p-adic Artin L-series, trivial zeroes, non-commutative Iwasawa theory, Tamagawa
Number Conjecture, Brumer’s Conjecture.
MSC: 11R42 (primary), 11R23, 11R34 (secondary).
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that trivial zeroes have a particularly important (if hitherto unclear) role to play in relation
to Brumer’s Conjecture and its variants.

In addition, and as first pointed out by Greither, there is a gap in the argument given in [45]
and, building on ideas of Greither in [14], all previous attempts to breach that gap have either
restricted to special classes of fields where trivial zeroes can be skilfully avoided or effectively
ignored the problem by dealing with imprimitive L-series.

By contrast, our approach now both makes clear that the difficulties caused by trivial zeroes
in relation to Brumer’s Conjecture (and the equivariant Tamagawa number conjecture) are
concerned solely with verifying that the order of vanishing at zero of all relevant p-adic Artin
L-series agrees with an explicit formula predicted by Gross and also provides a concrete strategy
for obtaining new results concerning these conjectures.

For example, in a subsequent article [5], jointly authored with Sano, we will show that the
approach described here can be used to obtain the first unconditional verifications of both the
minus part of the equivariant Tamagawa number conjecture for untwisted Tate motives and of
the (non-abelian) Brumer-Stark Conjecture in the technically most difficult case of non-abelian
Galois extensions that have degree divisible by p and characters for which the associated p-adic
L-series possess trivial zeroes.

Finally, we remark that our approach also leads to new evidence for the ‘refined class number
formula for G,,’ that was conjectured independently by Mazur and Rubin in [27] and by Sano
in [39]. A brief discussion of this aspect is given in §3.5 and full details can be found in [5].

In a little more detail, the main contents of this article is as follows. In §2 we review the p-adic
Gross-Stark conjecture and then, in §3, we state the main results of this article and formulate
a refined p-adic class number formula for G,,. In §4 we construct a canonical family of perfect
complexes that will play a key role in our arguments and in §5 we prove preliminary results in
(non-commutative) Iwasawa-theory, define a canonical refinement of Gross’s p-adic regulator
map in terms of natural Bockstein homomorphisms and interpret the order of vanishing at
zero of p-adic Artin L-series in terms of the semisimplicity of natural Iwasawa modules. In
§6 we prove all of our main results concerning orders of vanishing, valuations and the p-adic
analytic approach to Hilbert’s twelfth problem and then, finally, in §7 we prove that our refined
p-adic class number formula for G, is valid modulo the vanishing of cyclotomic p-invariants
and deduce several concrete consequences of this result.

This article is an updated version of a preprint (with the same title) that was posted on
the web in 2011. I am grateful to Masato Kurihara, Mahesh Kakde and Takamichi Sano for
some very interesting discussions. I am also very grateful to the referee for advise concerning
previous results in the literature.

2. THE p-ADIC GROSS-STARK CONJECTURE

In this section we quickly review certain conjectures of Gross concerning the derivatives at
zero of p-adic Artin L-series.

To do this we fix a finite CM Galois extension F' of a totally real number field k£ with group
G. We write Ir(G) and Ir,(G) for the set of irreducible characters of G over C and C, and for
each such character ¢ we fix a representation V, over C, respectively over C,, of character .
For each such y we also write y for its contragredient.
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We write F'* for the maximal totally real subfield of F' and 7 for the (unique) non-trivial
element of G'p/p+ and obtain central idempotents of Q[G] by setting ex = (1+£7)/2. We write
Irljf(G) and Ir*(G) for the subsets of Ir,(G) and Ir(G) comprising characters with x(7) =
+x(1). For any G-module M we also write M* for the G-submodule {m € M : 7(m) = +m}.

We fix a finite set of places ¥ of k which contains both the set S;° of all archimedean places
and the set S} of all p-adic places. For any extension E of k we write X for the set of places
of E above those in X.

For a Galois extension of fields F'/E we set Gp/p := Gal(F/E). Unless explicitly specified
otherwise, modules are regarded as left modules. For an abelian group A and homomorphism
¢ we write A and ¢, in place of Z;, ®z A and idz, ®z ¢.

2.1. We first recall (from, for example, [43, Chap. I, Prop. 3.4]) that if a character x in
Ir(G) is not trivial, then the algebraic order r5(x) at z = 0 of the ¥-truncated Artin L-series
Ls(x, z) of x (as defined in [43, §1]) can be computed via the explicit formula

(1) rex =3 dimg(HY(Gy, Vy)) = dime (Homgg) (Vy, C - Yix)),
vEX
where GG, denotes the decomposition subgroup in G of any fixed place w of F' above v and
Yr s the free abelian group on the set X, regarded as a Z[G]-module via the natural action
of G on Xp.
We observe this formula implies that ry,, = 75 yo for all automorphisms « of C and so for
any character v in Ir,(G) we may unambiguously set

TSy = TSx
where ¥ is any character in Ir(G) with x? = ¢ for some field isomorphism j : C 2 C,,.
For each character ¢ in Ir}} (G) we write Ly, 5 (¢, s) for the X-truncated Deligne-Ribet p-adic
Artin L-series of ¢ (as discussed by Greenberg in [13]). We also write wy, for the Teichmiiller

character Gy, — Z,; .

We can now state Gross’s ‘Order of Vanishing Conjecture’ for p-adic Artin L-series (taken
from [17, Conj. 2.12a)]).

Conjecture 2.1. For each character i in Ir;(G) the algebraic order at s = 0 of the series
Ly s (wy, s) is equal to s 4.
Remark 2.2. By using Brauer’s Induction Theorem (as in the proof of Proposition 2.6 below)

one shows easily that Conjecture 2.1 is valid if and only if it is valid for all L-series of the form
Ly s, (¢pwk,s) where K is a totally real intermediate field of F//k and ¢ is a linear character

2.2. In the sequel we write Oy, for the subring of F' comprising elements that are integral at
all places outside X . We also write

ryx (9;;5 - Yps,
for the homomorphism of G-modules that sends each € to ), ord,(€) - w, where in the sum w
runs over all non-archimedean places in ¥z and ord,, denotes the normalised additive valuation

at w. We further write
Rrx:R-Opy = R- Yy
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for the isomorphism of R[G]-modules that sends each w in (’);E_ to >
| - | is the normalised absolute value at 7.

The scalar extension C ®z ¢ry is bijective and so, for each x in Ir™(G), we may define a
non-zero ‘regulator’ element in C by setting

Rs(x) := detc((C ®r Rrx) o (C®z ¢rx) " | Homgg)(Vy, C- Yyy)) € C.

rexp loglulr - m, where

By using an observation of Tate from [42, 2.6], it is shown in [17, Prop. 2.11] that Rx(x)
differs from the coefficient Ly, (¥, 0) of 2"*x in the Taylor expansion at z = 0 of Lx(¥, 2) by
multiplication by an element of Q“* and further that for each all a in Gge /g one has

(2) L™ (X,0)/Rs(x) = (Lg™ (%, 0)/Re (X))

2.3. For each place w of F' Gross defines in [17, §1] a local p-adic absolute value || - ||, on
E* by means of the commutative diagram

H'Hw,
(3) g : Z,
x\ /Fi)
Gng/Fw

where ng denotes the maximal abelian extension of F,, in F, ry, the reciprocity map of class
field theory and xp, the p-adic cyclotomic character.
We write
X ,— —
Arsp Opy, = Yes,
for the homomorphism of Z,[G]-modules sending each u in O s to > wesyp 10gy[ulfw,p-w. For

each ¢ in Ir, (G) we then define a canonical ‘.Z-invariant’ (or, if one prefers, ‘p-adic regulator’)
in C, by setting

L5 () = det(;p(((Cp Rz, )\F,E,p) o (Cp X7z ng,z)_l ’ Hom(cp[(;}(VJ}, Cp - YFT,E))

We then also define an associated idempotent of Qg[G] by setting

(4) €gg ‘= Z ew
(4

where the sum is over all ¥ in Ir, (G) for which £(7) is non-zero. It is straightforward to
check that ey is independent of the set ¥ and belongs to the centre of Q,[G].

Remark 2.3.

(i) In [17, Conj. 1.15] Gross conjectures Z5 (1) # 0 for all ¢ in Ir, (G), and hence that ess = e—.
(ii) For ¢ in Ir, (G) set ry := rseeus? - I 7y = 0, then it is straightforward to verify directly
that % (v) # 0. Excluding this case, however, the non-vanishing of %% (¢)) has only been
verified (by Gross in [17, Prop. 2.13]) in the case ry, = 1 when it follows as a consequence of
Brumer’s p-adic version of Baker’s theorem.
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For each integer m we write LZ?E (1,0) for the coefficient of s in the power series expansion
of L,x(1,s) at s =0.

We can now state the ‘Weak p-adic Gross-Stark Conjecture’ as formulated by Gross in [17,
Conj. 2.12b)].

Conjecture 2.4. For every finite set X of places of k containing Sp° U Sﬁ, every character 1
in Ir, (G) and every field isomorphism j : C, = C one has

L (Pwp, 0) = Lo (9) - 5 1L (47, 0)/Rs(¥7)).

Remark 2.5. 5

(i) If ¢ validates Conjecture 2.1, then L;’?E”" (wg, 0) #0 and so Conjecture 2.4 implies %5 (¢)) #0
(as is consistent with Remark 2.3(i)). One can in fact prove directly that a character ¢ validates
Conjecture 2.1 if and only if .Z%;(¢)) does not vanish (see Theorem 3.1(i) and (iii) below).

(ii) Taken together, Conjectures 2.1 and 2.4 constitute the ‘p-adic Gross-Stark Conjecture’.

The strongest evidence that one has in support of Conjecture 2.4 was obtained recently by
Dasgupta, Kakde and Ventullo in [10] and is recorded in the following result.

Theorem 2.6. Conjecture 2.4 is valid for all linear characters v. In general, the validity of
Conjecture 2.4 is implied by the validity of Conjecture 2.1 for all linear characters 1.

Proof. One checks easily that for any ¢ in Ir, (G) both sides of the equality in Conjecture
2.4 are unchanged if one replaces F'/k by F ker(¥) /. Given this observation, the first claim
coincides with the main result of [10].

To prove the second claim we use a refined version of Brauer’s Induction Theorem (due to
Serre and proved, for example, in [43, Chap. III, Lem. 1.3]). This result guarantees that for any
character ¢ in Ir, (G) there exists a (finite) set of totally real intermediate fields {F; = Fy ; }ier
of F'/k and for each index i a linear character ¢y ; in I, (Gp/F,) and an integer n; = ny ; such
that ¢ = 3, /n; - Ind§ e (G00).

This equality combines with the functoriality properties of p-adic Artin L-series to imply
Lys(Ywy, 8) = [LierLp.s: (g iwr,;, s)" with ¥; := S, and with the formula (1) to imply
sy = Ziani T with r; ‘= Tzi@w,i‘

In particular, if the equality of Conjecture 2.1 is valid for each pair (X;, ¢y ;), then each term
L;izi(ﬁgw,iwﬂa 0) is non-zero and one has

L% (oo, 0) = T _ Ly, (Dioom, 0.

In addition, since the equality in Conjecture 2.4 is known to be valid for each pair (£;, ¢y ),
each Z-invariant %, (¢y;) is non-zero and the above product is equal to

1.2 u)™ 11, 07 L5 (6),,0)/Rs (6, )™

To deduce the equality of Conjecture 2.4 it thus suffices to note that the standard func-

toriality properties of Artin L-series imply ]];c IL;”ZZ( vé} L0 = L (17,0) and that easy

computations show [[,c; 25, (¢y:)" = Lx(v) and [[;¢;Rx,( 31;1)”1 = Ry (7). O
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3. STATEMENT OF THE MAIN RESULTS

3.1. For an extension of number fields L/K and finite disjoint sets of places ¥ and ¥ of K
with S C ¥ we write Cl%l(L) for the quotient of the group of fractional ideals of Op 5, that
are coprime to all places in 37 by the subgroup of principal ideals with a generator congruent
to 1 modulo all of the places in X . If ¥ = S% or ¥’ is empty, then we abbreviate Clg(L) to
CI¥ (L) and Cly(L) respectively.

We recall that the ‘X-relative ¥'-trivialized integral Selmer group’ Selg (L) for the multi-
plicative group G,, over L is defined to be the cokernel of a canonical homomorphism

HZ — Homg (L3, Z)
w

(see [4, Def. 2.1] where the notation Sy /(G ) is used). Here in the product w runs over
all places of L outside X U X7, Lg, is the subgroup of L* comprising elements u for which
u — 1 has a strictly positive valuation at each place in ¥ and the unlabeled arrow sends each
element (), to the map (u+— " ordy, (u)zy).

This group is a natural analogue for G, of the integral Selmer groups of abelian varieties
that are defined by Mazur and Tate in [28] and, in particular, lies in a canonical exact sequence
of the form

(5) 0 — Homg(CIE (L), Q/Z) — Sel¥ (L) — Homyz (O y v, Z) — 0

(see [4, Prop. 2.2]), where Of sy, denotes the (finite index) subgroup L, N O, of Of .
and, in the case that L/K is Gzil(;is, both duals are endowed with the contragredieﬂt action of
GL/K-

We further recall that Sel3 (L) has a canonical transpose Sely (L)™, in the sense of Jannsen’s
homotopy theory of modules [20], which itself lies in a canonical exact sequence

(6) 0 — CIE (L) — Sel¥ (L) — Xpx — 0,
where X7, 57 denotes the kernel of the homomorphism Y7, s — Z induced by sending each place
in X7, to 1.

For a finite group A and a character v in Ir,(A) we fix a finite extension Oy of Z, for
which there exists a finitely generated Oy-lattice Ty and a representation A — Autp,, (Ty) of

character 1. For each homomorphism € : M — N of Zy[A]-modules we consider the composite
homomorphism of Oy-modules

e HY(A, Ty @z, M) — H(A, Ty ®z, N) C Ty @z, N — Ho(A, Ty @z, N)

where A acts diagonally on each of the tensor products, the first arrow is the map induced by
idTw ®z, € and the second is the tautological map.
We also write ((A) for the centre of a ring A.

3.2. We now return to consider the extension of number fields F'/k that was fixed in §2. In the
sequel we shall also fix a finite non-empty set S of places of k containing both Sﬁ and the set
S?/I}; of places that ramify in F'/k and a finite non-empty set of places T" of k that is disjoint
from S and such that O ¢ is torsion-free (it is easy to see that, for a given set .S, such a set
T always exists).
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For each character ¢ in Ir, (G) we then set

(7) Ly, 57wk, ) := Ly s(wg, s) - [ ] dete, (1 — Nv-Fr,,' | V)
veT
where Nv is the cardinality of the residue field of v and Fr,, the Frobenius automorphism in
G of any given place w of F' above v.
Our first result extends the main result of Gross and Federer in [11]. Before stating this
result we note that our techniques will construct (in Theorem 5.8(ii)) a canonical refinement
ArsT,p of Gross’s regulator map Ar g, of the form

(8) Sel% (F)y~
)\V \
X,— )\F,S,p _
Or’s1p XFpsp

where the unlabeled arrow is the surjective homomorphism induced by the exact sequence (6).
In the sequel we write D/ for the different of a finite extension L/K of either local fields
or number fields.
In claim (iii) of the following result we also write F'! for the Galois closure of F' over Q, fix
a primitive p-th root of unity ¢, in C, and write val,(—) for the canonical valuation on C,.

Theorem 3.1. For each character v in Ir, (G) the following claims are valid.

(i) Lp.sr(Ywr, 2) vanishes to order at least rs. at z = 0.
(ii) L)% (dwr, 0) - Oy = |G| 7"5¥Fito, (cok(Ah 1.,))-
(iii) L;:qé‘f” (Ywy,0) # 0 if and only if Ls(v) # 0. In addition, if Ls(v) # 0 and either ¢
is Q-valued, F' ¢ (F)*((p) or no p-adic place of F'* splits in F, then for each field
isomorphism j : C, = C one has

valy(Lyg (dwr, 0) = valp(Ls(v) - = (L™ (47,0)/ Rs (1))).

(iv) If Zs(p) # 0 and ay is any element of D@i(lﬂ)/(@p Nyes Fito, (fIO(Gw,T¢)), then the
sum
G50 > Trg, /@, (ap(9) L, 5 (Pwr, 0).ZLs () 1)g

geG
belongs to Z,|G] and annihilates the module C1T (F),.

Remark 3.2.

(i) For linear characters v the assertion of Theorem 3.1(i) was already known to follow as a
consequence of Wiles’s proof of the main conjecture for totally real fields. For such characters
it has also recently been proved directly by Spiess [40] by using Shintani cocycles.

(ii) The equality in claim (iii) constitutes a natural weakening of Conjecture 2.4. The main
result of Gross and Federer in [11] is equivalent to the result of this claim in the case that 1
is both linear and Q,-valued. The condition F< ¢ (F%)*(¢,) is automatically satisfied if, for
example, p is unramified in F/Q.
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We next record a consequence of Theorem 3.1 that combines with Conjecture 2.4 (and
Remark 2.3(ii)) to predict a precise p-adic analytic construction of families of algebraic p-
units that both generate non-abelian Galois extensions of totally real fields and also encode
structural information about ideal class groups. (In particular, see Remark 3.4(iv) below).

In claim (iii)(b) of this result we use the first derivative of the T-modified ¥-truncated Artin
L-series of a character ¢ in Ir(G) that is defined (just as in (7)) for each set of places ¥ of k
with Sp° C ¥ C § by setting

9) Lyr(,s) = Ly(y,s) - [] dete(1 = No-Fr)t | V).

veT

Corollary 3.3. Let v; be a p-adic place in S that has absolute degree one and ¥ a character
in Ir™ (G) which satisfies

Fiz a place wy of F' above vi and set Gi := Gy,. Fiz an embedding j : Q° — Q) whose

restriction to F corresponds to wy and use it to identify Fy := FC as a subfield of Qp, ¥ as

an element of Ir;(G) and G, (4)/0, a5 a subgroup of Goy)/q- Fiz an element d in D&w/{@.
Then ZLs(7) # 0 for every v in Go,(y)/q, and for every g in G the sum

Wpdgp = Y (p‘gll) > L g (7w, 0)Ls () 1 (g9g))d

g'eGr YEGQ,(v)/Qp

belongs to Z,. Further, the element

_ 1 - .
€p,dp = prObide . epr Z > L s wg, 0)97(g)dY)

9'€G17EG, (v)/0p

belongs to OIX’;:[m},p and has all of the following properties.
(i) For every g in G one has

g(epap) = prvter 'epr L, s (0w, 047 (gg")d").

9'€G17v€Gq, (v)/ap

(ii) If d is an algebraic integer, then for every 6 in HomZp[G]((’);El}p,Zp[G]) the product
|G| - 0(epap) belongs to Zy|G] and annihilates Cl{Tvl}(F)p.

(iii) Assume Conjecture 2.4 is valid for the character * for all a in Gge . Fiz a set of
representatives {1; : i € I'} for the orbits of Go,(y)/q, on {¥* : a € Ggejq} and set

Gw,d = Hewz: d,p € OFl {vl}p
el

Then there exists an integer m that is prime to p and such that both of the following

claims are valid.
(a) If d # 0, then the element € ; is a k[G]-generator of the field Fler(¥)
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(b) For every g in G the sum

Yodgm = ) e - 1) Yo Lsz(*,0Rs(v) 9% (gg')d"

g'eGy Gl a€Gy(y)/Q

1s a rational integer. Further, if B s the prime ideal of F' that corresponds to wy,
then €, generates the ideal Hgg(%)y%d’g»m where in the product g runs over a
set of coset representatives for Gy in G.

Remark 3.4.

(i) In [5, Rem. 13.5] Sano and the present author describe explicit families of examples in
which all of the hypotheses of Corollary 3.3 are satisfied for characters ¢ that are both faithful
and of arbitrarily large degree.

(ii) The result of Corollary 3.3(ii) is analogous to the main annihilation result proved (for
cyclotomic fields) by Rubin in [37]. A close analysis of our argument will also show that the
factor |G|? in Corollary 3.3(ii) is not always best possible.

(iii) Let {¢; : j € J} be a finite set of characters in Ir™(G) that satisfy the hypotheses of
Corollary 3.3(iii) and for each j fix an element d; of D@(le)/(@. Our proof of Corollary 3.3 will
show that if the Gge/g-orbits of the characters 1; are distinct, then there exists an integer
m that is prime to p and such that the product (]];c;eyp;q,)™ is a k[G]-generator of the

compositum of the fields F¥*(¥3) as j runs over J.

(iv) In the spirit of Gross’s conjecture [17, Conj. 3.13] it is natural to predict that the claims
in Corollary 3.3(iii)(a) and (b) should both be valid with m = 1. In this way Corollary 3.3
both extends and refines an observation (concerning the case that v is linear) made by Gross
in [17, Prop. 3.14] and also provides a natural p-adic analogue of the question considered by
Stark in [41] and the conjecture formulated by Chinburg in [9] for characters i of degree two.

3.3. In this subsection we formulate a refined p-adic class number formula for G,, and state
several results related to it.

In the sequel, for any noetherian ring R we write D(R) for the derived category of left R-
modules and DP(R) for the full triangulated subcategory of D(R) comprising complexes that
are isomorphic to a bounded complex of finitely generated projective R-modules.

We recall that for any homomorphism R — R’ of associative unital noetherian rings, any
object C' of DP(R) and any exact sequence of R’-modules

(11)  €: 0=+ R@gH(C) = R 9r H'(C) = R 9r H**(C) = --- = 0

one can define a canonical element x g r/(C,€) in the relative algebraic Ko-group Ko(R, R').
If, in addition, R’ is a semisimple Qp-algebra, then the associated reduced norm map
K1 (R') — ¢(R')* is bijective and so there exists a composite homomorphism

orr: ((R)* — K1(R') = Ko(R, R')

where the first arrow is the inverse of the reduced norm map and the second is the canonical
connecting homomorphism of relative K-theory (normalised as in [7, §1.2]).

In the case that R’ is the total quotient ring of R we abbreviate xr r/(—, —) and dg p to
Xr(—,—) and Jp respectively.
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In the sequel we set
A[G]* := A[Glesgs

for any subring A of C,, where ey is the idempotent of ((Q,[G]) defined in (4), and for any
object C' of DP(A[G]) we write C* for the associated object A[G]* ®%[G] C of DP(A[G]™).
We note that if A[G] is semisimple, then in each degree i there is a natural identification
H(C%) = eg - H(C).

We fix a set of places T" of k as in §3.2 and note that in Lemma 4.1 (and Remark 4.2) below we
construct a canonical object RI'¢; 7(OF,s, Zy(1)) of DP(Zy[G]) which is acyclic outside degrees
one and two and is such that there are canonical identifications

OFSTp; ifi=1
(12) H'(RT¢1(OF,5,Zy(1)))” = < SelL(F)y™, ifi=2
0, otherwise

and hence also a canonical exact sequence of Q,[G]-modules

A
Tresp 0= Q- HY(RUs1(OF.s, Zy(1))*) Z222 Q,, - HX(RUe, 7(Or.5, Zp(1))™) — 0.

Finally we define a ((C,[G])-valued meromorphic function of a p-adic variable z by setting

Op,F/k,5,7(2) = Z epLp st (Pwi, 2)
pelr, (G)

and we note that the leading term 9;’ F /k,S,T(O) in the Taylor expansion of this function at

z = 0 belongs to ((Q,[G])*.
We can now state our conjectural refined p-adic class number formula for G,,.

Conjecture 3.5. In Ko(Zy|G]*®,Q,[G]*) one has

6ZP [G]SS (9;7F/k7S7T(0)€SS) = _XZP[G]SS (Rl—‘ét,T(OF,S7 Zp(l))b&" %S/kvsvp)
The main evidence that we can currently provide in support of this conjecture is provided
by the next result.
In the sequel we write u,(E) for the p-adic p-invariant of the cyclotomic Z,-extension of a
number field E. We recall Iwasawa has conjectured in [19] that ,(£) should always vanish.

Theorem 3.6. If 1u,(F') vanishes or p does not divide [F' : k], then Conjecture 3.5 is valid.

Remark 3.7. In [22] Johnston and Nickel identify families of extensions F'/k for which one can
prove the main conjecture of non-commutative Iwasawa theory for F¢/k without assuming
that either p,(F') vanishes or p does not divide [F' : k]. In all such cases our method shows
that the equality of Theorem 3.6, and all of its consequences described below in Corollaries
3.8, 3.10 and 3.11 are valid without any assumption on the odd prime p.

By replacing the role played by p-adic L-functions in the equality of Theorem 3.6 by Artin
L-functions we will directly obtain the following result.

Corollary 3.8. If either u,(F') vanishes or p does not divide [F : k], then the following claims
are valid.
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(i) If the Weak p-adic Gross-Stark Conjecture (Conjecture 2.4) is valid for all in Ir, (G),
then the equivariant Tamagawa number conjecture for (h°(Spec(F)),Zy[G]™) is valid
modulo the subgroup 6z, (1 c,ic)- (C(Cp[G](e— — ess)) ™).

(ii) If Gross’s Order of Vanishing Conjecture (Conjecture 2.1) is valid for all ¢ in Ir, (G),
then the equivariant Tamagawa number conjecture for (h°(Spec(F)), Z,[G]™) is valid.

Remark 3.9.

(i) If F/k is abelian and either p,(F') vanishes or p does not divide [F' : k], then Corollary
3.8(i) combines with the theorem of Dasgupta, Kakde and Ventullo recalled in Theorem 2.6
to imply the validity modulo 6z, ()~ c,[a)- (C(Cp[G](e— — ess))*) of the equivariant Tamagawa
number conjecture for (h°(Spec(F)), Z,[G]™).

(ii) In [5, Cor. 10.6 and Exam. 10.7] it is shown by Sano and the present author that
Corollary 3.8 can also be used to give the first verifications of the equivariant Tamagawa
number conjecture for (h%(Spec(F)),Z,[G]~) in the technically most difficult case that F/k is
non-abelian of degree divisible by p and the relevant p-adic L-series possess trivial zeroes.

In the rest of this section we record several concrete results that are obtained by deriving
consequences of Conjecture 3.5 and then applying Theorem 3.6.

3.4. For each non-negative integer r» we now define an ‘r-th order p-adic Stickelberger series’
for the data F'/k,S and T by setting

00 ) pesr(®) = Oprsr(z) - Y ez W = 3 ey VL, o (o, 2).
Yelr, (G) Yelr, (G)

We also define a ((Q,[G])-valued Z-invariant for F'/k by setting
Ls(Flk) = > epLs(¥).

Yelr; (G)

For a finite group A we write {(Zy[A]) for the Zy,-order in ((Qp[A]) that is (additively)
generated over Z, by the reduced norms over the semisimple algebra Q,[A] of all finite square
matrices with entries in Zy[A]. If A is abelian, then it is clear that £(Z,[A]) = Z,[A] but in
general one finds that {(Z,[A]) is neither contained in nor contains ¢(Z,[A])

A Z,[A]-module N is said to have a ‘quadratic presentation’ if there exists a natural number
d and an exact sequence of Z,[A]-modules of the form Z,[A]? — Z,[A]? — N — 0.

We recall that for such modules N there exists a canonical £(Zp[A])-submodule Fitz A](NV)
of ((Qp[A]) that constitutes a natural generalization of the classical notion of zeroth Fitting
ideal (for more details of this construction see Parker [33] and Nickel [30]).

Corollary 3.10. Write V for the subset of S comprising all (non-archimedean) places that
split completely in F/k and set r := |V|. Then the following claims are valid.

(1) Hz()rl)a/k g (%) is holomorphic at z = 0.
(ii) Selg\V(F)p and Selg\V(F);r have quadratic Z,[G]-module presentations.
iii) If p,(F') vanishes or p does not divide |F : k], then one has both

p

E(Z[G) - 01 . 5.7(0) = ZLs(F/k) - Fitg, i (Selly o (F))
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and

E(Z[G) - 0 ) o 57 (0)F = Ls(F/)* - Fitg, ) (Selly  (F),).

Before stating the next result we recall that for every natural number m and matrix M in
M, (Z[G]) there is a unique matrix M™* in M, (Q[G]) with MM* = M*M = Nrdg(g(M) - Im
and such that for every primitive central idempotent e of Q[G] the matrix M*e is invertible if
and only if Nrdgg)(M)e is non-zero: we then obtain an ideal of ((Z[G]) by setting

A(G) :={z € {(Q[G]) : if d>0and M € My(Z[G]) then xM* € My(Z[G])}.

This ideal was introduced in [30] and is studied extensively by Johnston and Nickel in [21].
In the next result we state several consequences of Corollaries 3.8 and 3.10 that are in the
spirit of (stronger versions of) Brumer’s Conjecture.
In this result we continue to use the notation of Corollary 3.10. In claims (ii) and (iii) we
also use the ((Q[G])-valued ‘Stickelberger elements’ that are defined for sets of places ¥ of k
with Sp° C ¥ C § by setting

Or/k,5r(0) = Z eyLy,r(1),0).
Yelr(Q)

Corollary 3.11. If either pu,(F) vanishes or p does not divide [F : k|, then the following
claims are valid.

(i) For each a in A(G) the product a-HZ(?T]):/k757T(O) belongs to ZLs(F/k) -AnnZ[G](ClT(F))p.

(ii) Assume the Weak p-adic Gross-Stark Conjecture (Conjecture 2.4) to be wvalid for all
characters in Ir, (G). Then for each a in A(G)NQp[G|* the elements a'eF/k,S\V,T(O)#
and a - Op/, 5\v.7(0) belong to Zy[G] and respectively annihilate Selg\V(F)p and both
Selg\V(F);ff and C1T(F),.

(iii) Assume Gross’s Order of Vanishing Conjecture (Conjecture 2.1) to be wvalid for all
characters in Ir, (G). Write ¥ for the set f;a/l}; of places of k that ramify in F (and

note that S¥, C X2). Then Sel&(F), has a quadratic Z,|G)-module presentation and
S(Zp[GN)™ - Oy s m (0)F = Fitg, () (Sely:(F),).

In particular, for a in A(G)~ the elements a - HF/;C,&T(O)# and a- gy, 5 7(0) belong to
Z,[G] and respectively annihilate Sel&(F), and both Selg(F);r and C1T(F),.

Remark 3.12.

(i) In the context of Corollary 3.11(ii) recall that Conjecture 2.4 is known to be valid whenever
F/k is abelian (see Theorem 2.6).

(ii) The ‘non-abelian Brumer-Stark conjecture’ (as formulated independently by Nickel in [31]
and the present author in [2]) asserts that the element a - 0/ 5 7(0) occurring in Corollary
3.11(iii) belongs to Z[G] and annihilates C17 (F). In the case that G is abelian, this prediction
recovers the classical Brumer-Stark Conjecture, as formulated by Tate in [43, Chap. IV, §6].
Previous investigations of these questions (such as in the recent work of Greither and Popescu
[15] and Johnston and Nickel [23]) study a weaker version of the conjectures in which 65/, 5 7(0)
is replaced by the ‘imprimitive’ Stickelberger element 6 /k,EuSﬁ,T(O) since that allows one to
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avoid technical difficulties arising from the existence of trivial zeros in the relevant p-adic
L-series. Corollary 3.11(iii) now provides a concrete strategy for proving the non-abelian
Brumer-Stark conjecture in the presence of trivial zeroes and is used by Sano and the present
author in [5] to give the first unconditional verifications of the conjecture in this setting.

3.5. We now assume G = Gy, is abelian. We also fix an ordering of S and for each v in S a
place w, of F' lying over v. For each CM extension L of k in F' we write w, 1, for the restriction
of w, to L and V7, for the subset of S comprising places that split completely in L/k (so that,
in the notation of Corollary 3.10, one has Vp = V') and we set rp := |V |.

Then Theorem 3.1(iii) implies 01(:3’{7 s,7(0) is stable under multiplication by ess and hence

that, with H = G/, there exists a unique element e’th’T of /\TQLP[G/H} ess(Qp - ES) with

rL _ plrr) —_—
(Qp ®Zp /\ZP[G/H])\L’S’p)(ei/k:SvT) = 0p7£/1€,57T(0) ) é\/ (wv,L - wv,L)-
veVL

By using the approach of Kurihara, Sano and the present author in [4], one can show
Conjecture 3.5 implies that the family of elements ei h,S.T has the same arithmetic properties
that are conjectured for Rubin-Stark elements in loc. cit., including validating refinements
of the ‘refined class number formula for G,,’ that is formulated independently by Mazur and
Rubin in [27] and Sano in [39].

On the other hand, if Gross’s Order of Vanishing Conjecture (Conjecture 2.1) is valid for
all characters in Ir, (G), then Theorem 2.6 implies that the p-adic Gross-Stark Conjecture is
valid for L/k for every CM-extension L of k in F' and, in this case, a direct comparison of
definitions shows that €} ST = e_(egﬁk’ s) with GZ%C,S,T the Rubin-Stark element for the
data (L/k,S,T,VL).

In this way one obtains concrete new evidence for the conjectures formulated in [4]. This
aspect of the theory is discussed by Sano and the present author in [5], where it is also extended
naturally to the setting of arbitrary Galois CM extensions of totally real fields.

4. CANONICAL COMPLEXES

In this section we explicitly describe the complex RI'¢; 7(Op g, Zy(1)) that occurs in Con-
jecture 3.5 and, in particular, describe its connection to the ‘T-modified compactly supported
Weil-étale cohomology complexes’ RT'.7((OF,s)w,Z) that are defined in [4, Prop. 2.4].

For each finite Galois extension L of k in F'¥° we write k,, for the residue field of each place
w in TL.

Lemma 4.1. Let L be a finite Galois extension of k in FY¢ and set G' := Grjk- Then there
ezists a canonical object RU¢, 7(Or. 5, Zy(1)) in DP(Zy[G']) with all of the following properties.
We write H.(Op,.g,Zy(1)) for the cohomology of RT¢ (O s, Zy(1)) in each degree i.

(i) There is a canonical exact triangle in DP(Zy[G']) of the form

0
RTe,7(OL,5,Zp(1)) = RU&t(OL5,Zp(1)) =25 @ RUe(ku, Zp(1)) —

weTr,

i which H1(9L75’T) is induced by the natural projection maps Of ¢ — k5.
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(ii) RTe1(OL.s,Zy(1)) is acyclic outside degrees one and two, HA(Oy, s, Z,(1))) identifies
with OESTp and there exists a canonical short exact sequence of Zy|G']-modules

0 — H7(OL,s,Zy(1)) = Sel§ (L) — Yi 50 — 0

where the last arrow denotes the composite of the scalar extensions of the homomor-
phism Selg(L)“r — X1.5 in (6) and the natural projection Xy, g — YL,s0-
(iii) There is a natural exact triangle in DP(Zy|G']) of the form

RFT(OLys, Zp(l)) — Zp Rz RHOmz(RFC7T((OL7S)W, Z), Z)[—S] — YL,S}?W[_Q] —,

where RHomyz (R . 7((Or.s)w,Z),Z) is endowed with contragredient G'-action.
(iv) Let € be any exact sequence of the form (11) with C = RU¢ 1(Or,5,Zy(1))",R =
Zp|G)~ and R = C,[G]~. Then in Ko(R, R') one has

Xgr,r (C,€) = xr,r (RL¢(OL,5, Zp(1)) ", €) — 5R,R'(H Nrdg, (¢ (1 — Nv - Fr,le_)
veT

where each w, 1s a choice of place of L above v.

Proof. For each w in Ty, we write ¢, for the closed immersion Spec(k,) — Spec(Or.s). We
then write 07, g7 for the morphism RI'«(Op g, Zy(1)) — GawGTL RT¢(Kw, Zp(1)) induced by
the inverse limits over n of the natural morphisms pin — €@,,c7, tw(fpn) on Spec(Of.s).

With respect to the natural identifications HZ (Op s,Z,(1)) = (925713 and H} (K, Zp(1)) =
k5 p the map H'(0r 57) is the natural map Of sp = Duer, Furp:
RT47(OL,s,Zy(1)) to be the mapping fibre of 1 7 one directly obtains an exact triangle
of the form stated in claim (i). (We are grateful to the referee for pointing out that an
alternative description of the complex RI'¢; 7(Op s, Zy(1)) is given by the approach of Greither
and Popescu in [16, Lem 5.6].)

Next we note that, as p is odd, the complex RT¢(Or s, Z,(1)) belongs to DP(Z,[G’]) and is
acyclic outside degrees one and two. In addition, @7, Rt (kw, Zy(1)) belongs to DP(Z,[G'])
and is acyclic outside degree one. These facts combine with the triangle in claim (i) (and
its associated long exact sequence of cohomology) to imply RI'¢ 7(Or.s,Z,(1)) belongs to
DP(Z,|G"]), is acyclic outside degrees one and two and has cohomology in degree one that
identifies with the kernel OF g, of HY(0ps7).

The triangle in claim (i) fits into a commutative diagram of exact triangles in D(Z,[G’])

In particular, by defining

YL,s00 p[—2]

(13)
Z, ®7 RHomy(C,Z)[~3] — RU(Op5,Z,)[-3] — Ouer, Kipl-1 =

Tg

@weTL RUs(Kuw, Zp(1)) — .

0r,s,T

RI'7(Or,s,Zy(1)) —  RI(Ors,Zy(1))
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Here we write C for RT'.7((Or,s)w, Z) (as defined in [4, Prop. 2.4]) and set RT'.(Op, 5, Z,)* :=
RHomgz, (RI'.(OL,s,Zy),Zy). The existence of the vertical triangle follows from the Artin-
Verdier Duality theorem, the upper horizontal triangle is obtained by applying the exact functor
Zp ®7 RHomyz(—,Z)[—1] to the right hand vertical triangle in the diagram [4, (6)] and the
right hand vertical map is the natural isomorphism resulting from the fact that each complex
RT¢(kw, Zp(1)) is acyclic outside degree one.

Recalling that Sel% (L)™ is defined in [4] to be equal to H (R Homz(RT . 7((Or s)w,Z), Z)),
it is then straightforward to check that this exact diagram gives rise to an exact sequence of
the form stated in claim (ii).

The exact triangle in claim (iii) is obtained directly upon completing the diagram (13) to a
morphism of exact triangles.

To deduce the equality in claim (iv) as a consequence of the exact triangle in claim (i) (and
the standard additivity properties of Euler characteristics in relative K-theory) it suffices to
prove that for each v in T one has

Xa.r (D Rl (K, Zp(1))~,0) = 0 (Nrdg, gy (1 — Nv - Fryle ).

wlv

This equality follows directly from the fact that €D, Rl'ét(kw, Zp(1))~ is naturally isomorphic
to a complex R — R, where the first term is placed in degree zero and the differential is right
multiplication by (1 — Nv - Fryle_. O

Remark 4.2. If the field L in Lemma 4.1 is CM, then YL_S,?’ » vanishes. This shows that the
identifications in (12) follow directly from Lemma 4.1(ii).

5. IWASAWA THEORETIC PRELIMINARIES

In this section we shall define the refined regulator map Ap s, that occurs in diagram (8)
and also prove several Iwasawa-theoretic results that will be used in the proofs of Theorem 3.1
and Corollary 3.3.

5.1. In this subsection we discuss some preliminary algebraic constructions and introduce
convenient notation.

5.1.1. Let A be a finite group. For each ¢ in Irp(A) we fix a subfield Ey of Qf which is
both Galois and of finite degree over @, and over which v can be realised. We also fix an
indecomposable idempotent fy, of Ey[Aley, write Oy for the valuation ring of Ey, choose a
maximal Oy-order My, in £ [A] which contains f,, and define an Oy-free right Oy[A]-module
Ty = fypMy. The associated right Ey[A]-module V;, := Ey ®0,, Ty has character .

For any (left) Zy[A]-module M we set M[1)] := Ty ®z, M, upon which A acts on the left
by t @ m +— t6~1 ® 6(m) for each t € Tyy,m € M and § € A.

For any Z,[A]-module M and subgroup T of A we also write H*(T, M) for the Tate cohomol-
ogy group in degree i and MY, resp. M~, for the maximal submodule, resp. maximal quotient
module, of M upon which T acts trivially. We thereby obtain left, respectively right, exact
functors M — M®) and M My, from left Zy[A]-modules to the category of Oy-modules
by setting

MW = M[y]* and My = M|a = Ty @7,a) M.
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The action on M of the element ) 5. ¢ then gives rise to a natural exact sequence of
Oy-modules

I‘w ~
(14) 0 (A, M[Y]) — My —2% M) 5 FO(A, M[p]) 0.

In particular, if M, and hence also M[v], is a cohomologically-trivial A-module, then Trx M

is bijective and so the functors M) and M (¥) extend to give naturally isomorphic (exact)
functors from the derived category of bounded complexes of cohomologically-trivial Z,[A]-
modules to the derived category of bounded complexes of Oy-modules.

The following technical result will be useful in subsequent sections.

In claims (i) and (iii) of this result we use the construction € — €% introduced just prior
to the statement of Theorem 3.1.

Lemma 5.1. Fiz ¢ in Irp(A) and set O := Oy.

(i) Let C be a complex of cohomologically-trivial Zy[A]-modules that is acyclic outside
degrees a and a+1 for an integer a. Then C(y) 1s acyclic outside degrees a and a+1 and

there are natural isomorphisms H®(C\y)) = HY(CYY) and HH(Cyy) = HH(O) gy
(ii) Let A : M — N be an injective homomorphism of finitely generated Z,[A]-modules
which induces an isomorphism QpM = Q,N. Then

Fito (cok(A"))) = |A] " Fito(cok(A?)) - Fito (H*(A, N[¢])) - Fito (H (A, N[¢])) ™!

with r = dimgg (Q5 - N™)).
(iii) Let A and X be injective homomorphisms M — N as in claim (ii). Then if M®) is
torsion-free one has
Fito (cok(AY))Fite (cok(A¥)) ™! =Fite (cok(A™)))Fite (cok(A¥)))
=detqg (Q; ®z, A) © (@ ®z, )™ | Q5 - N¥)) - 0.

Proof. Fix a complex M® 9 ppotl of cohomologically-trivial Z;,[A]-modules that is isomorphic
to C' in D(Zy[A]). Then there is an exact commutative diagram of O-modules

d(y)
Mgy == My} ——= H* 1 (C)y)
T&"K,MG TrX,MaJrl

HY(C) s ppo(®) 2¥L ppatL(w)

with bijective vertical arrows. Claim (i) follows immediately from this diagram.
To prove claim (ii) we use the exact commutative diagram
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M@®) N@) cok(A(¥))
iid T
M@ 22 N, cok(A))

cok(7) — 4. cok(T)

where 7 is the tautological map and the left hand square commutes by definition of A¥?. All
modules in the last column of this diagram are finite and so one has

Fito (cok(AM)) = Fito(cok(A¥))Fite (ker(7))Fito (cok(r)) L.

In addition, the composite Trlﬁ n ©7 is equal to the endomorphism pya| of N () induced by
multiplication by |A| and so the kernel-cokernel sequence of this composite implies that

Fito (ker(r))Fito(cok(r)) !
= Fito (H(A, N[]))Fito(H (A, N[$]))~'Fito (ker(a)) Fito (cok(pa ) .

Claim (ii) now follows because an application of the Snake lemma to the exact commutative
diagram

P ()

N, t(or) ¢ N®) N, t(f )
l“li\ l”lﬁ \{“IN

Nt(;pr) C N () Nt(fw)

implies Fito (ker(ua)))Fito(cok(pa))) ™! = deto(pa) | Nt(;”)—lo = |A|7TO.

Regarding claim (iii), the first equality is a direct consequence of the equality in claim (ii)
and so it suffices to prove the second equality. B

The assumption that M ®) is torsion-free (and X and X are injective) also implies that if &
denotes either A or A, then Fito(cok(k(*)) = Fito(Nt(;br)) : Fit@(cok(mgf))) with /@E?}) denoting
the composite of £(¥) and the tautological projection N¥) — Nt(fw ) and so it is actually enough

to prove the second equality with A®) and A®) replaced by )\E?) and ;\E?)

In this case, the required equality is true because, by definition, the ideal Fit@(cok(ﬂgf))) is
generated over O by the determinant of the matrix of Q ®o x(¥) with respect to any choice

of O-bases of M) and Nt(fw). O
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5.1.2. We next recall some necessary background material concerning Bockstein homomor-
phisms in Iwasawa theory.

To do this we assume to be given any compact p-adic Lie group G that contains a closed
normal subgroup H such that the quotient group I' := G/H is topologically isomorphic to Z,,.
We fix a topological generator v of T

We also fix a finitely generated Z,-algebra R and a continuous homomorphism

p:G — Autgr(T))

with 7}, a finitely generated free left R-module. We set Ag(I') := R®z, A(I') and consider the
tensor product Ag(I') ®rT), as an (Ag(I"), A(G))-bimodule where Agr(I") acts by multiplication
on the left and A(G) acts on the right via the rule ((r ®z, A) ®g t)g := (r ®z, A\g) @r g~ 1(t)
for each 7 in R, A € A(T'), t € T,, and g € G with image g in T".

Then for each bounded complex of finitely generated projective A(G)-modules C' we obtain
a bounded complex of finitely generated projective Agr(I')-modules by setting

Cp = (Ar(T') ®r T)) @p(g) C-
For each open normal subgroup U of G we set Cy := Zp[G/U] ®)(g) C. In particular, if
U C ker(p), then there are natural isomorphisms of (left) R-modules
Zp a1y Cp 2T, Q7 (g) C =T, ®7,[6/U] Cy.

Thus, if for each such U we extend the notation of §5.1.1 by setting Cy, () := T, ®z,g/v) CU,
then one has a natural exact triangle in D(R)

-1
(15) C, T C, — Cuypy — Cy[1].
In each degree ¢ this triangle then induces a short exact sequence of R-modules
(16) 0= H(C,)r 25 H'(Cyy,y) <5 HHHC,)T — 0,

a composite homomorphism

i+1
. . dL i Tc i ai+1 i
Bbpry : H(Cyy () — HTHC)" — H™(Cp)r —— H™(Cy(p))

where ngl denotes the tautological map, and a bounded complex of R-modules
i1 ' i . ﬁi+1
Acyq: =5 H (Cyypy) =5 HH (Cpp) =% -

where the term H'(Cy(,)) occurs in degree i.

We refer to ¢, as the ‘Bockstein homomorphism in degree ¢ of the data (C,p,7v) and
abbreviate this notation to 51077 in the case that p is the trivial representation of G.

We also say that C'is ‘semisimple at p’ if the complex Q, ®z, Ac, 5 is acyclic for any, and
therefore every, choice of topological generator v of I'.
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5.2. In this subsection we shall state the main result that is to be proved in §5.

To do this we fix in the sequel data F'/k, G, S and T' as in Theorem 3.1 and set Gy := Ge .-
We also set G := Gpeye/, H := Gpevejpeye and I' := G/H = Gjeyey;, and note that the triple
(G,H,T) satisfies the conditions of §5.1.2.

If F is a field which is a finite extension of either Q or Qy for some prime ¢, then we write
xe for the p-adic cyclotomic character Gg — Z,, .

We write A(G) for the p-adic Iwasawa algebra of G and for each integer a let A(G)¥(a)
denote the (left) A(G)-module A(G) endowed with the action of Gy whereby each element o
acts as right multiplication by 51y (c)* where & is the image of o in G.

For any finite set of places ¥ of k containing S} U S?/IE we regard A(G)¥(a) as an étale sheaf

of A(G)-modules on Oy, x. in the natural way and then (since p is odd) we obtain following the
approach of Nekovéf in [29] a canonical object RT¢(Ok s, A(G)¥ (a)) of DP(A(G)).

We note that claim (iv) of the following result refers to the Strong Stark Conjecture formu-
lated by Chinburg in [8, Conj. 2.2].

Theorem 5.2. Fir a character ¢ in Ir, (G), recall the integer rs .y defined in §2.1 and write

Tp.S for the order of vanishing of Lp7g(1ﬁwk, s) at s = 0. Then all of the following assertions
are valid.
(i) rpsy > 5y
(ii) The following conditions are equivalent.
(a) 7.5y = Tsy-
(b) The complex RT¢ (O, A(G)¥ (1)) is semisimple at .
(c) Zs(¥) # 0.

(iii) There exists a canonical homomorphism ApsTp : O;,’;TJ) — SelL(F))"™ of Z,[G]-
modules that lies in a commutative diagram of the form (8) and for which the equality
in Theorem 8.1(11) is valid.

(iv) Assume that the conditions in claim (ii) are satisfied and that the character 1’ validates
the Strong-Stark Conjecture at p for any isomorphism of fields j : C, = C. Then
L;i’gw (Ywy, 0) is non-zero and satisfies the displayed equality in Theorem 3.1 (iii).

After proving certain preliminary results in §5.3 and §5.4 we shall prove Theorem 5.2 in §5.5.
In the process we shall also show (in Theorem 5.8(ii)) that the map Ap g7, constructed in
Theorem 5.2(iii) naturally gives rise to an explicit description of the image of Gross’s regulator
map Ap,s,p-

Remark 5.3. In the special case that F'/k has degree two and % is the unique non-trivial
homomorphism G — Q,, the equivalence of the conditions in Theorem 5.2(ii) can also be
directly derived from the observations of Sinnott given in [11, (6.3), (6.4)]. We are very
grateful to the referee for pointing this out to us.

5.3. With G,H and T as specified above, in this subsection we define an object of DP(A(G))
that will be central to the proof of Theorem 5.2 and also establish some of its basic properties.

We write 7 for the (unique) complex conjugation in G and, noting that 7 is central in G, we
obtain idempotents ex in ((A(G)) by setting ey := (1 £7)/2. In particular, each A(G)-module
M decomposes as a direct sum M+ @& M~ with M* := e4 - M and for objects C' of DP(A(G))
one can similarly define subcomplexes C™ and C~.
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We write A(G) for the set of continuous representations
p:G— GL,(0)

where O is a finite extension of Z, and ker(p) is open in G. We also write A1 (G) and A~ (G)
for the subsets of A(G) comprising representations that are respectively totally even (that is,
for which p(7) = I,,) and totally odd (so p(7) = —1I,,).

5.3.1. For each open normal subgroup V of G, with Fy, := (F%°)V | there are natural isomor-
phisms in DP(Z,[G/V]) of the form

ZolG/V] ®(g) RUet(On,5, M(G)* (1)) 2 RUet(Op, 5, Zp(1))
and for each place v of k also

Zy[G/V] ®5 gy Rl (o, AG)¥ (1)) = €D Rt (k. Zy(1))

where in the direct sum w runs over all places of Fy above v.
By passing to the inverse limit of the exact triangles in Lemma 4.1(i) over all finite extensions
L of F in F° one can thus construct an exact triangle in DP(A(G)) of the form

(17)  RTar(Oks, AMG)*(1)) = RTe(Ok.s, A(G)* (1)) = €D RTat(k0, AG)#(1)) —
veT

in which, for each open normal subgroup V' of G, there is a natural isomorphism in DP(Z,[G/V])
(18) Zp|G/V] % gy Rlé.,7(Ok,s, AM(G)7 (1)) = RTs; 7(OF, 5, Zp(1))-
The complex Rl (O 5, A(G)# (1))~ will play a key role in the proof of Theorem 5.2.

5.3.2. To investigate RT¢; 7(Ok.s, A(G)* (1))~ it is convenient to use the following construction
from non-commutative Iwasawa theory.

Write Q(G) for the total quotient ring of A(G) and note each homomorphism p : G — GL,(O)
in A(G) gives rise to a ring homomorphism

Q(G) = My (0) @z, Q(I') = Mp(Qo(I'))
that sends ¢ in G to p(g9) ® § € M, (Qo(T")), where g denotes the image of g in I' and Qo (T")
the total quotient ring of O ®z, A(T').
We then fix a topological generator v of I' and note that the above ring homomorphism
induces a group homomorphism

®, 1 K1(Q(9)) = Ki(Mn(Qo(I))) = K1 (Qo(T) = Qo(I)* = Q(O[[u]])*

where OJ[u]] denotes the ring of power series over O in the formal variable u, the first isomor-
phism is induced by Morita equivalence, the second by taking determinants over Qo (I") and
the last by sending v — 1 to u.

The relevant properties of this homomorphism are recorded in the next result. Before stating
this result we recall (from the beginning of §3.3) that any C'in DP(A(G)) for which Q(G)®4(g)C
is acyclic gives a canonical element x5 g)(C,0) of Ko(A(G),Q(G)). In any such case we say
that an element & of K;(Q(G)) is a ‘characteristic element for C” if one has

(19) Ing) (&) = —xa(g)(C,0).
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Here 0, (g) denotes the natural connecting homomorphism K1(Q(G)) — Ko(A(G),Q(G)) (nor-
malised as in §3.3) and the sign occurs in the displayed equality to ensure consistency with the
conventions fixed in [7, §1.4].

In the sequel we write z + z* and = +— tw,(§) for each integer a for the Qf-linear anti-
involution and ring automorphism of Q ®z, A(G) that respectively send each g in G to g~ !
and to xx(g)*g. In claims (iv) and (v) of the following result we also use the same notation to
denote the induced group automorphisms of Ki(Q(G)).

Lemma 5.4. For all elements & of K1(Q(G)) and all representations p : G — GL,(O) and p’
in A(G) the following properties are valid.

(i) (I)peap (5) = <I>p(§)<I)p/ (f);

(i) ®pa(§) = ta(Pp(&)) for all a € Go,, where 1o is the automorphism of the Qp-algebra
Q; ®o Q( [[u ]]) obtained by letting o act on the coefficient of each power of u;

(iii) CI>p®w( ) = 1y(®,()) for all w € A(I"), where vy, is the automorphism of Q(O[[u]]) that
sends u to 1,/1( (1 +u) —

(iv) @,(&") = te(P3(9)) where L* is the automorphism of Q(O[[u]]) sending u to (1+u)~1—1;

(v) ®p(twa(§)) = La(q)pwk a(£)) for all integers a, where 14 is the automorphism of Q(O][u]])
that sends u to ki(y)*(1 +u) —1;

(vi) For each open subgroup U of G, finite normal subgroup V of U and 1) in A(U/V) one has
q)Indg(Ian/vw) (§) = Py (§uyv) where &y is the image of & under the natural composite

map K1(Q(G)) = Ki1(QU)) — K1(QU/V)) and ®y(—) is computed with respect to
the unique topological generator of G (peyeuyeye jpeveut whose restriction to Gieyev y,

—1;
]

coincides with the restriction of an element of the form v?" with n > 0.
(vii) If £ is a characteristic element for C in DP(A(G)), then ®,(§) is a characteristic
element for C, in DP(O[[u]]).

Proof. Claims (i)-(iv) are obvious, (v) and (vi) are proved in [3, Lem. 9.5 and Lem. 3.6(i)] and
(vii) follows easily from the naturality of connecting homomorphisms in relative K-theory. [

5.3.3. In this section we prove the main result concerning the complex RI'¢; 7(O,s, A(G)7(1))
that will be used in the proof of Theorem 5.2.

Before stating this result we note that it suffices to prove Theorem 5.2 with F'/k replaced by
F({p)/k for any primitive p-th root of unity ¢, in k°. In particular, if necessary after replacing
F by F((p), we may and will assume in the sequel that F'Y¢ contains all p-power roots of unity
in Q°.

In particular, in the cases we study the cyclotomic character y; will always factor through
the projection Gy — G. In addition, the homomorphism kj := xy - w,;l factors through the
restriction map Gy — I' and we recall (from, for example, the discussion of Greenberg in [13])
that for any fixed topological generator v of I' and any representation v in A*(G) Deligne
and Ribet have shown that there exists a unique element fg,(u) in the total quotient ring of
Q}, ®z, Zp|[u]] for which one has

(20) Lps(1—5,¢) = fou(kr(y)* —1).
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Finally, for each v in T" we fix a place w, of F¥¢ above v, write Fr,, for the Frobenius
automorphism of w, in G and note that the product

K 1= H(l —Nv- Fr:ui)
veT

belongs to A(G) N Q(G)*. We write s/ for the image of k7 in K;(Q(G)) and then for each
representation p in A(G) set

RT,p(u) = @ (k7).
Proposition 5.5. Assume F contains ¢, and set C := Rl 1(Ok.s, A(G)¥(1))".

(i) Then C is acyclic outside degree two and the A(G)-module H?(C) is finitely generated,
torsion and of projective dimension at most one.

(ii) For each p in A=(G) the complex C, is acyclic outside degree two, the O,|[u]]-module
HQ(C’p) s finitely generated, torsion and of projective dimension at most one and its
characteristic ideal is generated by the series

Fsrp(w) = wr,p(1) - fs o (R (V) (L +u) "t = 1).

Proof. The isomorphisms (18) imply each group H*(C) can be computed as the inverse limit
(with respect to the natural corestriction maps) of the groups H(Op s,Z,(1)))~ as L varies
over all finite extensions of F' in F'¥°.

In particular, by combining the explicit descriptions of H%:(Op s,Z,(1)) given in (12) with
the exact sequences (6) one finds that C is acyclic outside degrees one and two, that H'(C)
identifies with @1 I (’);S_ Tp and that there is a canonical exact sequence

0 — lim CI§(L), — H*(C) — lmY; ¢ — 0,
L L

where in each limit L runs over finite extensions of F' in F¥°. Since each non-archimedean

place in S has open decomposition subgroup in G, it is then straightforward to deduce the

groups H'(C) and H?(C) are finitely generated torsion A(G)-modules.

To complete the proof of claim (i) it is thus enough to prove C is represented by a complex of
finitely generated projective A(G)-modules of the form P! — P2 (since then H'(C) is a torsion
submodule of P!, and hence zero, and so P! — P2 is a projective resolution of H?(C)).

To do this it is turn enough to fix a bounded complex of finitely generated projective A(G)-

modules --- — QO ﬂ Q! i> Q? that is isomorphic in DP(A(G)) to C and to prove that
cok(d") is a projective A(G)-module.

To analyse cok(d’) we note first that for each open normal subgroup V of G the iso-
1

morphism (18) implies that the complex of V-coinvariants cok(dy,) d—v> Q% is isomorphic
in D(Z,[G/V]) to RUé 17(Op,.s,Zp(1))~. Since the Z,[G/V]-module Q% is projective, this iso-
morphism implies that cok(dY,) is Z,-free (as both ker(di,) & HL(Op, .5,Z,(1))” = O;"/_’&T,p
and im(di,) C Q3% are Zy-free) and also of finite projective dimension as a Z,[G/V]-module
(since RT¢ 7(OFy s, Zy(1))~ belongs to DP(Z,[G/V])). These facts then combine with [1, Th.
8] to imply that cok(d),) is a projective Z,[G/V]-module.



ON DERIVATIVES OF p-ADIC L-SERIES 23

Upon passing to the limit over V' (and noting that all involved modules are compact) one
then deduces that cok(d’) = lm, cok(d)y = Hm, cok(dy,) is a projective A(G)-module, as
required to prove claim (i).

Turning to claim (ii), the result of Lemma 5.6 below implies this claim is true if for any
given characteristic element & of RT. ¢ (O, A(G)# (1)) one has for each representation p in
AT(G) a containment of the form

(21) f5.0(uw)/®p(£) € Of[u]]”,

with O the valuation ring of any sufficiently large finite Galois extension of Q, in Q.

Modulo a change of approach and notation, such containments were first deduced from
Wiles’ proof of the main conjecture for totally real fields by Ritter and Weiss in the course of
the proof of [35, Th. 16]. However, for completeness, we now quickly indicate how the above
containments can also be more directly deduced from Wiles’ result by using Lemma 5.4.

We recall first that the series fg ,(u) are known to satisfy precise analogues of the properties
given in Lemma 5.4(i)-(vi) (this is shown by Greenberg in [13]) and we shall often use this
point without explicit comment. In particular, since the naturality of connecting homomor-
phisms in relative algebraic K-theory implies, in the notation of Lemma 5.4(vi), that &,y is
a characteristic element for the complex

AU/Y) @50 B et (Ur,s, MG (1)) & RTc.et(Upevens 5, AU/V)F (1),

a standard Brauer induction argument allows one to assume in the sequel that the extension
F/k is cyclic.

In this case we can choose a finite abelian CM extension F’ of k for which F' Nk%¢ = k and
F¥¢ = (F')¥¢. The group § is then canonically isomorphic to the direct product Ggs/, x T
and, since each automorphism ¢,, in Lemma 5.4(iii) preserves the group O[[u]]*, after replacing
F by F’ and p by a suitable twist of the form p ® 1 with ¢ in A(T') we can, and will, assume
in the sequel that I' is contained in the kernel of p and hence that p identifies with a linear
character of the finite (cyclic) group H := G peye jpeve = G prer(p) Ik

Write D(p) for the complex RI'.4 (O s, A(G)#(1)),. Then, under the present hypotheses,
Lemma 5.1(i) implies D(p) is acyclic outside degrees two and three and gives identifications

H*(D(p)) = (T, @z, M§)", H*(D(p)) = (Tp)n

where ngc denotes the maximal abelian pro-p extension of F'° unramified outside S.
Thus, since Lemma 5.4(vii) implies ®,(£) is a characteristic element for D(p), to prove (21)
it is enough to show that the series

Gs,p(u) = fs,(u) - chopu ((Tp) )

differs from choyp (T, ®z, MJ“)?) by a unit of O[[u]], where we write chop,(N) for the
characteristic polynomial of any finitely generated torsion O[[u]]-module N.

Now, the O[[u]]-module (T},)y is isomorphic to Z, if p = 1g and is otherwise finite and so
choyr) ((Tp) i) is equal to u if p = 1g and to 1 otherwise. Given this, the result of Wiles [44, Th.
1.3] asserts choyp, (T, ®z, Mg )) is equal to the distinguished polynomial part of Gg,,(u).
It thus suffices to show the powers i, and ,u;) of the uniformising parameter of O that occur
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in the Weierstrass decompositions of fs,(u) and cho) (T, ®z, Mg )?)choy ((T,)a) ™", or
equivalently of fg ,(u) and ®,(€), coincide.

To do this we decompose H as H), x HI'J with H), its Sylow p-subgroup and accordingly write
p as a product p, X p;). Then there exists a finite set T of elements « of Gg,, for which

Z p* = Ind{filez’)(lJl X P;)) - Indile’,(lJz X P;)
acY
for suitable subgroups J; and Jy of H,. Thus, since Lemma 5.4(ii) implies ppe = p, and
e = 1, for a in G, the properties of Lemma 5.4(i) and (vi) combine to imply it is enough
to consider the case that p has order prime to p and in this case the equality p, = ,u; is proved
directly by Wiles in [44, Th. 1.4].
This completes the proof of Proposition 5.5. g

Lemma 5.6. Assume F contains (, and set C' := RT. & (0.5, A(G)# (1)) 7.
(i) Then C' belongs to DP(A(G)) and Q(G) @x(gy C' is acyclic.
(ii) Proposition 5.5(4i) is true provided that for any characteristic element & of C' and each
representation 1 in AT(G) the quotient fg,(u)/Py(E) belongs to O[[u]]* with O the
valuation ring of any sufficiently large finite Galois extension of Qp in Q.

Proof. We set R := A(G) and @ := Q(G) and for each R-module M we regard M* :=
Homp(M, R) as a (left) R-module by setting z(0)(m) := 6(m)z* for all x € R, § € M*
and m € M. We observe that this induces an exact functor E +— E* := RHompg(F, R[0]) from
DP(R) to DP(R) that is self-inverse.

Then, with this notation, the key point is that Artin-Verdier duality gives an isomorphism
RU(Of,5, A(G)#(1))[2] & RT¢¢t(Ok,s, A(G)¥(1))* @z, Zy(1) in DP(R) (where G acts diago-
nally on the tensor product) which in turn restricts to give an isomorphism

(22) RUé(Or,s, AG)* (1)) 7[2] = (C")* @z, Zy(1).

Claim (i) follows directly from this isomorphism and the fact that the left hand complex
belongs to DP(A(G)) and becomes acyclic after tensoring with Q(G) (by the same argument
as used in the proof of Proposition 5.5(i)).

To prove claim (ii) we use the complex C' defined in Proposition 5.5. In particular, if we

represent C' by the complex P! 9 P2 constructed in the proof of Proposition 5.5(i), then C,, is

represented by (T, ®z, P')" LN (T, ®z, P*)* with H the kernel of the projection map G — I’
and the map d' := (idy, ® d)* is injective since d’ is.

This shows that all but the final assertion of Proposition 5.5(ii) follow directly from Propo-
sition 5.5(i). To complete the proof of claim (ii) it thus suffices to show that the validity of the
containment (21) for each p in AT(G) implies that for each p in A7(G) the characteristic ideal
of the torsion O[[u]]-module H?(C,) is generated by the element fs 7, defined in claim (ii).

As a first step we note that Lemma 5.7 below combines with the results of Lemma 5.4(iv)-
(vi) to imply that for each p in A7(G) the natural connecting homomorphism Q(O[[u]])* =
K1 (Q(O[[u]])* — Ko(O[[u]], Q(O[[u]])) sends the element

Pp(hr - two1(§7)) = Pp(rr)Pp(tw-1(£7)) = Frp(w) - 1102 (P, (€))
to —Xo[[u]](cp,()).
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Taken in conjunction with the assumed containment (21) this then implies that for each
such p the same is true of the product

KT,p(1) - to1(f5, oy (W) = K75 (1) - o, (R (V) (L + )™ = 1) = for,p(u),

and, since C, is acyclic outside degree two, our chosen normalisation (19) of characteristic
element implies this last statement is equivalent to the final claim of Proposition 5.5(ii). O

Lemma 5.7. If € is any element as in Lemma 5.6(1i), then the product kp - tw_1(£*) is a
characteristic element for the complex C' in Proposition 5.5.

Proof. We use the module R ®pg ,_, R¥(0) where the tensor product indicates that the first
term R is regarded a right R-module via the homomorphism tw_;. This module is endowed
with commuting left actions of R (via left multiplication on the first factor) and Gy, (via the
given action on the second factor) and, with respect to these actions, the map 1 ® g — xx(9)g
induces an isomorphism of R x Z,[G]-modules R ®g w_, R#(0) = R¥(1). This isomorphism
in turn induces for the complex C’ in Lemma 5.6 an isomorphism in DP(R) of the form

R@ptw_, (C)" = (C)" @z, Zy(1).

Noting that the normalisation (19) implies ¢ satisfies —0r(£*) = xr((C")*,0) (since if &
is represented by an automorphism « of @Q, then £* is represented by the automorphism of
Q ®r R* that is induced by «), the displayed isomorphism combines with the naturality of
connecting homomorphisms in relative K-theory to imply

~Or(tw-1(6") =xrR(R®Rew_, (C")*,0) = xr((C') @z, Zp(1), 0) = XR(RLet(O,5, A(G)7 (1)), 0)

where the last equality is a consequence of the isomorphism (22).
From the exact triangle (17) one also has an equality

Xr(C,0) = Xr(RTe(Ors, AMG)#(1))7,0) = Y xr(RTei(r0, A(G)#(1)),0).
veT

We also note that, as each place v in T is prime to p, the complex R (ky, A(G)7 (1)) is
naturally isomorphic to a complex R — R, where the first term is placed in degree zero and
the differential is induced by right multiplication by the element 1 — Nv - Fr;vl, and hence that

Or(e— - rr) =Y Xr(Rlet(ro, A(G)#(1))7,0).

veT
Since Or (k7 - tw_1(£%)) = Or((e— - kr) - tw_1(£*)) = Or(e— - k1) + Or(tw_1(£*)) the claimed
result is now a direct consequence of the last three displayed equalities. O

5.4. In this section we introduce a canonical refinement of Gross’s p-adic regulator map that
fits into a commutative diagram of the form (8) and deduce an explicit description of the image
of Gross’s map.

At the outset we fix groups G,’H and I" as in §5.2. For any finite Galois extension L of k in
FY¢ we write py, . for the representation of G afforded by regarding T' := Zy[G1 ;] as a left
Zp|G k] ®z, A(G)-module via the action (r ®z, g)(t) = wtg; ! for each  and ¢ in Zy|G k]
and each g in G with image g, in G .
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Then for a bounded complex of finitely generated projective A(G)-modules C' and an open
normal subgroup U of G with U C Gpeyey, the complex Cy,(,, /) described in §5.1.2 identifies

naturally with Zy[Gp ;] ®4(g) C and in each degree i we write
Btnkn : H' (LGl @ag) C) = HHZy[G L) @agg) ©)

for the corresponding Bockstein homomorphism ﬂg’ pLjey of Zy[G,/x]-modules.

In this section we regard the sets S and T as fixed and for each extension E of F in F<¢
write Cg for the complex RLé; 17(Op,s, A(Gg/)* (1))~ in DP(A(Gpyy)). For simplicity we also
set CF° 1= Cpeye.

We can now state the main result that will be proved in this section.

Theorem 5.8. Fiz a topological generator v of I' and set Bll;/kv = Bécyc Flkny and, for each
) F )

character p in Ir, (G), also B;W = Bécyc ooy’ Then each of the following assertions is valid.
’ F P

(i) There is a commutative diagram of Zy|G]|-modules

—log, (xk (1)) Bl

H'(CF) H?*(CF)
ot |t

X, — >‘F,S,p _
OF,S,T,p YF,S,p’

i which a}; and a% are respectively the canonical identification and surjection that are
induced by Lemma 4.1(ii) and the exact sequence (6).
(ii) For any fived topological generator yr of A := Gpeye/p one has

Ar5p(Ofsr,) = log,(xr(vr)) - mr(HF(Ops, ATF)¥ (1)),

with g the natural composite projection
H}(Ors, ATr)*(1)) = HF(OF,s,Zy(1)) = Yrs,.
(iii) For each 1 in Ir, (G) there is a commutative diagram

~log, (xk(1))-B,

l(a}m)(w)

H?(Cry)) — H*(Cr)(y)
i IGl-(a%) ()

S ]

(OFsTp) (Yes,)w)

in which the unlabeled arrows are the isomorphisms induced by Lemma 5.1(i) (with

C=Cp and A =G).

The proof of this result occupies the next two subsections.



ON DERIVATIVES OF p-ADIC L-SERIES 27

5.4.1. We first prove commutativity of the diagram in Theorem 5.8(i).
We set d := [F : ' kY] and use the restriction map to identify A := Gpeye/p with the
subgroup of I" of index d. Then C%y;F/k is isomorphic in DP(A(T')) to A(T') ®xa) C* and so

Lemma 5.9 below implies an equality of homomorphisms

108, (Xk(7)) - Br iy = 108, (xk(7)) - (d X Bja) = log, (xr(v") - Bfa-

It is therefore enough to prove the commutativity of the diagram in claim (i) after replacing
the upper map by log, (x#(1%)) - B}_..

For each finite extension E of F in F¥ and each v in S\ S;° we set E, := [[,, Ew where
w runs over the set of places of E above v and we use the composite morphism

)\% :Cg — RFét(OE,S,Zp(l)) — RFét(Ev,Zp(l)),

where the first morphism is induced by the exact triangle in Lemma 4.1(i) and the second is
the natural localisation morphism. These morphisms are compatible with change of F and so,
by passing to the inverse limit over subfields E of F¥¢ that are of finite degree over F', one
obtains a morphism of exact triangles of Z,-modules

Ccyc - Ccyc Cr N C;yc[l]
(23) )\”;Cl w;l A;l A%}C[l]l
d__
CW° X O — RT4(F,,Zy(1)) — CE°[].

Here we fix a place w of F' above v and set Ccyc = A(A) ®p(a,) C’Fy with A, denoting the
decomposition subgroup of w in A and C° the complex R« (F.7°, Z,(1)) where F,;° is the
p-cyclotomic extension of Fy, in F.

In addition, setting d,, :=d - [A : Ay), the result of Lemma 5.9 below applies (with T'; A, C'
and ~y replaced by A, A, C" and 7%) to give an equality of homomorphisms

10gp(XF( )) /BCCYC d = 1ng(XF( )) ([A T Ayl x Bé‘%ﬁ:‘fﬁd{A:Aw]) = Ing(XFw (’de)) ‘55?;1077%‘

The morphism of triangles (23) thus induces a commutative diagram of Z,-modules

H'(\Y) ~
HY(Cp) — H(Fy, Zp(1)) — Tl Hi(Fus Zp(1))
(24) llOgP(XF('Yd))',B;Wd llng(XF(’Y )): /Bé,?;c d l(lng(XFw('de))'ﬁé?sndw)w\v
H2(\Y)
H2(Cp) —=25 H2(F,,7Z,(1)) —— [Lojo HE (Fu, Zp(1))

in which both products are over all places w of F' above v and, with respect to the iden-
tification H!(Cp) = O;,ET,p and canonical surjection H?(Cr) — Yj g, induced by Lemma
4.1(ii) and (6) and the natural identifications of H}, (Fy,Zy(1)) and HZ (F,, Zy(1)) with the
pro-p-completion ZP®F1§ of F, and Z, respectively, the upper composite homomorphism is
induced by the natural localisation map (’); sTp CF X = wa E} and the lower composite
homomorphism by the map Yp,5, — [1,,, Zp Which sends each element (ny/)uwesy t0 (Ruw)wfo-
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To describe each map B := ,BCcyc 4, €xplicitly we recall the argument of Rapoport and

Zink in [34, 1.2] (see also [6, §3.2. 1]) 1mphes this map is equal to cup product with the ele-
ment of H}, (Fy,Zy) = Homeont (G re s, » Zp) obtained by composing the projection G e/, —

Greve s, together with the continuous homomorphism G peve)p, — Zp that sends 7% to 1. In
particular, since cup products commute with corestriction, one has a commutative diagram

Hét(Fwa Qp(1)) —il—) Hélt(@f(w)’ Qp(1))
(25) 5 | [etmrras,

2
HE (Fu, Qp(1) —— HE Q) Qp(1))
in which we write £(w) for the residue characteristic of w, ! and &2 for the natural corestriction
maps, e(7,) for the p-adic integer defined by the condition that 4% acts on Q%Z) as the
e(yw)-th power of a fixed topological generator 7, of GQcyc) Qe and Béw for the Bockstein
homomorphism in degree one of the data (Rl ¢ (QZY;), p(1)), Yw)-

Now, with respect to the identifications HZ (F,,, Q,(1)) & Q,@F.¢ and HZ (F,, Qp(1)) 2 Q,
(and similarly with F, replaced by Qy(,,), the maps k! and £? in (25) are induced by Ny, /Qu(w)
and the identity map respectively whilst an explicit exercise in local class field theory (as in
Kato [25, Chap. II, Lem. 1.4.5]) shows ] is induced by the map 10g), (XQy () (Yw)) ™t - log, if
{(w) # p and by —1 times this map if £(w) = p. The diagram (25) therefore implies that 3}
is equal to the composite

- (_1)a(w)e(7w)_1logp(x(@z(w) (’.Yw))_l ' logp © NFw/Qg(w)
= —log,(xr, (Y™) ™" - (=1)**) x log, o N, jg,,.,,)
with a(w) = 0 if /(w) = p and a(w) = 1 if £(w) # p. In addition, for z in Z,&F. one has
(—1)*) x log,(Np, g, (%)) = log,(Nw) @ . N, o (x))
if £(w) = p (since then log,(Nw) = 0), and
(=1)*) x log, (N, /0y, () =108, (N, /0, (7)) = log, (Nw) 7))

if /(w) # p and 7, is any choice of uniformising parameter of F,,.
Given this explicit description of B} = Bécyc S the commutativity of the diagram in
Fu?

Theorem 5.8(i) follows directly from the commutativity of (24), the definition of Ar g, and the
fact that (as observed by Gross in [17, (1.8)]) an explicit description of the local reciprocity
map combines with the commutative diagram (3) to imply that for each x in F, one has

e (Nw)—valw(z) ‘Np,0,(@), if {(w) =
w,p (Nw) —valy () , otherwise.

Lemma 5.9. Let C be an object of DP(A(T')). Then for each open subgroup A of T' there is a
natural exact triangle in DP(A(T"))

1— ™
A(T) ®aa) € St A(T) ®pa) C — Ca — A(T) Qa(a) C[1],



ON DERIVATIVES OF p-ADIC L-SERIES 29

in which v acts as multiplication on the first factor in each tensor product. In each degree i the
bockstein homomorphism H (Cp) — HY(Cn) of this triangle coincides with [T : A XBZCW[FA]'

Proof. The existence of the displayed exact triangle is clear.
It is also clear that, setting d := [I" : A], there is a morphism of exact triangles of Z,-modules

- .
A(D) ®p(a) C —> A(D) ®p(a) C Ca A(T) ®p¢a) C[1]
tq T 1®idT idT ta[1] T
1—~4 /

C C U Ca C[1]

in which, in each degree j, the map tfi sends z in C7 to Zg_l Y1l ®z) e AT) @A) I,
7/ sends x ® ¢/ in A(T) ®A(A) C7 to x(yy) € C with ¢\ the image of ¥/ in C% and 7’ is the
natural projection.

Thus, by passing to cohomology this morphism of triangles gives a commutative diagram

. . i+l r .
Hi(Ca) —— HH(AT) ©pa) O)F LT Hi+1(Cy)

H H”l(td)T Txd
Hi(CA) - Hi—i—l(C)A m Hi—i—l(CA)

and this implies the claimed result since the lower composite homomorphism in this diagram
is equal to B, - O

5.4.2. We now complete the proof of Theorem 5.8 by deriving claims (ii) and (iii) as conse-
quences of claim (i).

Regarding claim (ii) the commutativity of the diagram in claim (i) combines with the sur-
jectivity of the map &' in (16) to give an equality

A 5p(OF5my) = o (im(log, (xr(1r)) - Bhjk.)) = log, (xr () - mryu(HA(CEE, ),

with 7p/;, the natural composite homomorphism

2 r 2 2 L ~ 772
HACES, )T C HACES, ) — HAZy &) O, ) = HOrs. Zy(1)) = Yins,s
The equality in claim (ii) is the special case F' = k of this equality.

To prove claim (iii) we use the subgroups U := Gpeve/p and H := G peye jpeyve of G = G peye
and the representative P! 4 P2 of CF° constructed in the proof of Proposition 5.5(i).

We note in particular that if p : G — Autg(7T),) is any homomorphism as in §5.1.2 which
factors through the surjection G — G, then the map ,Bé;ycvpﬁ : HI(CF,(p)) — HQ(CF,(p)) can be
computed as 7, 0 s} with £} the connecting homomorphism H'(Cp,,)) = (T, @z, H*(CF))x
in the exact commutative diagram of R-modules
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(id7, ®z, d)n
(Tp ®Zp PI)H% (Tp ®Zp P2)7—L — (T ®Zp HQ(CCyC))H

T
(id7, ®z,d)n

(T, ®z, P! )H(—> (T, ®z, P*)y — (T, ®z, H*(C¥))u

| "

1 tp 1 id7, ®z,[G1du 1
HY(Cryp) T, ®z,c) Py T, ®z,ic1 b H(Cryp)

where the maps ¢, and 7, are defined via the identifications H'(CF,,)) = ker(idz, ®z ¢ du)
and H (CF( )) H (CF)(p) (T ®Zp Hz(CCyC»

Note that if p = pp/p (s0o R =T, = Z,[G]), then Bé;ycypm = 511[«“/16,7 and there is a natural
identification of the Z,[G]-module H*(Cp,,)) with H'(CF).

On the other hand, the above description means that for any ¢ in Ir, (G) one can compute
the upper row of the diagram in claim (iii) by first identifying the sublattice

(CF)(w) (Tw ®Z ker(du)) = ker((idTw ®Zp du)G) C (T¢ ®Zp PLll)G = TI‘G'(Td, ®Zp Pz/l{)

of Vyy ®z,ic) H(Cr) € Q- H'(Cr) with H'(Cp,y)) via the map sending each element Trg ()
of ker((idr, ®z, dy7)%) to the image 7 of z in ker(idr, ®z,(q1du) € (Ty ®z, Phe =Ty ®z,1c) Py
and then applying 7y, o /{w to .

In particular, since the image of Trg(z) in Ty ®z,(q Pl is equal to |G| - T this gives a
commutative diagram of Oy-modules

~ By, ~
Hl(CF)(w) 4>H1(CF,(¢)) L Hz(CF,(w)) 4>H2(CF)(¢;)
idJ{ lX|G|
B,
HY(Cp)®) il H?(Cr)(y)

and the commutativity of the diagram in claim (iii) follows directly by combining this diagram
with that in claim (i).
This completes the proof of Theorem 5.8.

5.5. In this subsection we combine the results obtained above in order to prove Theorem 5.2.

To do this we set C := Rl 1(Oks,A(G)¥ (1)) and note that (by a standard Shapiro
Lemma argument) we may, and will, identify the complex Cr defined just prior to Theorem
5.8 with Rréth(ORS, Zp(l))_.

We also fix a character ¢ in Ir, (G) and a corresponding representation G — Auto(Ty) in
A7 (G) which we continue to denote by ¥ and we write E for the fraction field of O.

Then, since Cy is acyclic outside degree two (by Proposition 5.5(ii)), the exact sequence
(16) induces an isomorphism of O-modules H'(CF) ) = H?*(Cy)".
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Hence, as u annihilates H 2(Cw)F , the tautological short exact sequence
0— H2(C¢)F — H2(0¢) — HQ(Cw)/HQ(Cw>F -0
implies that the maximal power 7”21% » of u that divides chop,) (H?(Cy)) satisfies

rog = dimp(E- H*(Cy)") = dimp(E - H'(Cr) ),

with equality if and only if u acts injectively on the quotient H?(Cy)/H?(Cy)''. In particular,
since the Q,[G]-modules Q, - H!(Cr) and Q, - H*>(CF) are isomorphic one therefore has

r;}g’w Z dlmE(E . Hl(CF)(d,)) = dln’lE(E . HQ(CF)(T/))) = dll’nE(E : YF,S,(d))) = 7‘5711,

where the last equality is a direct consequence of (1).

Claim (i) now follows from the last displayed inequality because Proposition 5.5(ii) combines
with the interpolation property (20) to imply that T;}gw coincides with 7, g .

Next we note that, since Cr is acyclic outside degrees one and two (by Lemma 4.1(ii)), the
complex C' is semisimple at @ if and only if the map Bé,w,v is bijective. In addition, as the
Qp[G]-modules Q, - H'(Cg) and Q, - H*(CF) are isomorphic, the map ﬁé‘,w,v is bijective if and
only if it is injective. Given this, the equivalence of (b) and (c) in claim (ii) follows directly by
combining the explicit description of Theorem 5.8(ii) with the obvious fact that Zg() # 0 if

and only if the map )\Sl% » is injective.

The discussion in §5.1.2 also shows that the complex C' is semisimple at v if and only if
the tautological map E - HY(Cy)l' — E - HY(Cy)r is bijective, or equivalently the element
u = v — 1 acts invertibly on the quotient module E - (H'(Cy)/H?(C,)"). This implies that the
equivalence of the conditions (a) and (b) in claim (ii) also follows directly from the discussion
above.

To proceed we now set

ArsTp = —log,(xk (7)) - Bflv/m
and note that Theorem 5.8(i) implies this homomorphism lies in a commutative diagram of
the form (8). To prove claim (iii) it is thus enough to show that this choice of Ap g7, also
satisfies the equality in Theorem 3.1(ii) for the character .
To do this we assume first that 6(11?%7 is not injective. In this case the map )‘%{}Bq,T,p is not

injective, and hence the O-module cok()\g/g p) is not torsion, whilst the above proof of claim

(ii) implies 7p 5.4 # 5,4 so that (by claim (i)) L;félfT(zﬁwk,O) = 0. In this case, therefore, the
equality of Theorem 3.1(ii) is satisfied trivially since both sides are zero.

Assuming now 6}; b~ 18 injective, we derive the claimed equality by combining Proposition
5.5(ii) with the computation of generalised Euler characteristics given in [6, Prop. 3.19]. More

precisely, since Cl([,w) is acyclic outside degrees one and two and 5(1; 4~ 18 injective one finds in
this way a formula

(26) Fito(cok(Bgy,)) = f51.,4(0)- O

where f& 0) is the leading term at u = 0 of the series fg 7., (u).
S, T NIRY
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In addition, in this case the proof of claim (ii) and the formula (1) together imply that

rp.sy = dimp(E - H 1(01(?@)) and so the explicit description of Theorem 5.8(ii) combines with
Lemma 5.1(iii) to give a formula

Fito (cok(BL,,,)) = log, (k(7)) "5+ |G| "5+ Fito (cok(A) 1,)).

In this case the equality of Theorem 3.1(ii) is now obtained by comparing the last equality
to (26) and then using the following explicit computation of the leading term.

Lemma 5.10. f§,,(0) = logp(/ﬁk(7))’TP’S”PL;7S7T(1ka,O).

Proof. We set fg.(u) := f5 500y, (B (1) (1 + u)™' —1) and rp := 7, 5. Then the interpolation
property (20) implies fg,w (u) vanishes to order r, at u = 0 and hence that

F§p(0) = lim u™" fg 5, (e()(1+u) ™! = 1)
= (=

1) lm ™ fg 5, (e (v) (1 +u) — 1)
= (=1 hm(ﬁk( )* = 1) fg g (R (1) = 1)
= (- 1)Tp10gp(ff (7)™ lim 577 Ly 5 (twr, —5)
gp(rx (7)) lim s~ L Ly s(Pwy, )

)"

)
) Tpr s(d)%, 0).

In addition, an explicit computation shows that the value of rr .y (u) := ®y(k7) at u =0 is
equal to [[,cpdet(1 — Nt - Fry! | V) # 0 and so the definition of L, g7 (¢wy, s) in (7) implies
directly that L7 ST(wwk, 0) = K;Tﬂ/,(O)L;’S(Qka, 0).

Since fs7.4(u) is defined to be ki (u) fs.(u) one therefore has

= log, (ki (v

Fa,6(0) = K1.4(0) f§,(0) = log, (K (7))~ K5 (0) Ly 5 (P, 0)
= log,, (kk (7)) ™" Ly, 57 (¢wr, 0),
as claimed. 0
Turning to claim (iv) the isomorphism RI.(OF.g, Z,)*[—3]” = RI'(OF,s,Zy(1))~ induced by
the vertical exact triangle in (13) combines with Lemma 4.1(iv) to imply the equivariant Tam-

agawa number conjecture for (h°(Spec(F),Z,[G] ™) is valid if and only if for any isomorphism
of fields j : C = C,, there is an equality in Ko(Z,[G]~,Cp,[G]7)

(27) Szpc-coia-( Y ewlir(¥,0)) = —xz,¢- ¢, (- (Cr. Rs,),
Yelr™ (G)
where Rg; denotes the exact sequence of Cp,[G]-modules

Cp®r,jRF,s
S

(28) 0—C,-H (Cp) C,- H*(Cp) =0
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Thus, if ¢ validates the Strong Stark Conjecture, then [2, Remark 6.1.1(iii) and Lem. A.3]
together imply that for each such j one has

L (0,01 - A6 HA(Cr)gaae = G775 Fito(HA(Cr) g, ior) - AG, (R (' (Cr) )
where we set 7y 1= 15y, O := Oy and O; := O, or equivalently
(L (0,0)/Rs () - Ay H*(Cr) oy = |GI " Fito, (H(CF)y9)a01) - 1S, (6p(H' (Cr)) ™)
with ¢p = Zp ®Z ¢F,S~

In addition, as H!(Cr)®") is torsion-free, there is an exact diagram of Oj-modules

H?(CF) (43 tor

N

Gp(H(Cp)) ) H(Cp) ) — cok(p)

B

Gp(H (Cp)) ) HA(CF) (o) st

and hence an equality
Aroﬁ(qﬁp(Hl(CF))(W)) = Fito, (cok(¢{""))Fito, (H*(Cr) i tor) - N H(CF) (y) at-
Comparing the last two displayed equalities one deduces that
(29) (L%(,0)/Rs($)Y Oy = |G| " Fito, (cok(¢{""))).

On the other hand, since we are assuming .&’ (1) # 0, the equality of Theorem 3.1(ii) (with
1 replaced by 17) combines with Lemma 5.1(iii) to imply

(L0 (70r,0)/ L (@) - O = |G| " Fito, (cok(9”)))

and the equality of Theorem 3.1(iii) follows immediately by comparing this formula with (29).
This completes the proof of Theorem 5.2.

6. ORDERS OF VANISHING, VALUATIONS AND HILBERT’S TWELFTH PROBLEM
In this section we derive Theorem 3.1 and Corollary 3.3 as consequences of Theorem 5.2.

6.1. In this subsection we prove Theorem 3.1.

It is at first clear that Theorem 3.1(i) and (ii) follow directly from Theorem 5.2(i) and (iii)
respectively and that the equivalence of (a) and (c) in Theorem 5.2(ii) implies the first assertion
of Theorem 3.1(iii).

In addition, the remainder of Theorem 3.1(iii) follows from Theorem 5.2(iv) and the fact that
if either ¢ is rational valued or no p-adic place of F™ splits in F whenever F ¢ (F)*(¢,),
then it validates the Strong Stark Conjecture at p by Tate [43, Ch. II, Th. 6.8] and by Nickel
[32, Cor. 2] respectively.

It therefore only remains to prove Theorem 3.1(iv) and to do this we assume, as required,

that Zs(¢) # 0.
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Then to deduce the containment in claim (iv) from the result of Lemma 6.1 below one need
only note L o (Ywg, 0) = L} s 7(Ywy, 0) (by Theorem 5.2(ii)) and that Fit(HO(G,ng[w]))
contains Flt(HO(G, Ysplt]) = Ilpes Fit(ﬁ[o(Gv,T¢)) and then apply a slight refinement of
(the natural p-adic analogue of) the result of [2, Lem. 11.1.2(i) and (ii)].

To be precise, one directly applies the result of [2, Lem. 11.1.2(ii)] in this context. However,
to obtain the containment stated in claim (iv) one must also note that, whilst the result of
[2, Lem. 11.1.2(i)] asserts (in the notation of loc. cit.) that for any y, in Annp(M,) one
has |Glyypry, € O ® Anngg (M), if one uses the natural isomorphism Hom(My,Q/Z) =
Hom(M,Q/Z)¥ and equality Anng g (Hom(M,Q/Z)) = Anng (M )# it follows easily from
the same argument as in loc. cit. that if yy is any element of either Annp(My) or Annp(MY),
then the product y, - pry, belongs to O @ Anng g (M).

This completes the proof of Theorem 3.1.

Lemma 6.1. If Zs(v) # 0, then (L;&T(@wk, 0)/ZLs (1)) - Fito (H°(G, Yis,[¥])) is contained
in Fito (CIT(F)).
Proof. We regard ¢ as fixed and so abbreviate O, and Fitp, (—) to O and Fit(—) respectively.

By the argument of [2, Lem. 5.1.1] we can choose a finite set S” of places of k that are not in
S, are totally split in F'/k and are such that Clggou gn(F)p vanishes. Then, setting S" := SUS”,
one has L7 ¢ 1 ( Ywy, 0)/Ls (1) = LY o 7 (Pwg, 0)/ Ls (1) (cf. [2, Lem. 5.1.3]).

To further analyse this quotient we write C', in place of RT'¢ 7(OF s/, Zp(1))” and note
that the exact sequence (6) combines with Lemma 4.1(ii) to imply H?(C%) identifies with
Sel ( ) = YFTS/

Hence, writing ¢g 1, for the restriction of ¢rg , to Of o 1, one has

(L 5.7 (P, 0)/ Lo (1) - © =(Lf g p(thwi, 0) | L (1)) - O
= |G| 75" Lo (1) Fit (cok(A & 1.)
:|G]*’"p75’7wFit(cok(¢Sq’fTp))
=Fit(cok(¢%,))Fit (G, Yig W) Fit(HO(C, Vg [4])) "

=Fit(cok(6g, r,,))Fit(H (G, Vg [U]) Fit (H(G, Vi [11]) 7.

Here the second equality is by Theorem 3.1(ii) (with S replaced by S’), the third follows from
Lemma 5.1(iii), the fourth from Lemma 5.1(ii) and the last from the fact that each place in
S" splits completely in F/k and so Y ¢ (Y] is a cohomologically-trivial G-module.

_ ¢
We next note that the natural sequence 0 — Op’g, Tp RELLUN — Ypg, & CIT(F); — 0 is

exact (as Clggou gn(F') vanishes) so that there is an induced exact sequence of @-modules

0 — cok(¢y ) — CI(F)Y) — HY(G, 0 7, 1))
and hence, by general properties of Fitting ideals over O, an inclusion

Fit(cok(9§ ) - Fit(H'(G, 05 1, [0])) € Fit(CIT(F){).
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In addition, since C belongs to DP(Z,[G]) the descriptions in Lemma 4.1(ii) combine to imply
that the O-module H'(G, (’);’E,’T’p [¢]) is isomorphic to f[fl(G, YF_’S,’p [Y]) = I:I*l(G, Yisy [¥])
and hence that Fit(H'(G, Og'g, 1, [¥])) = Fit(H (G, Yi g, [4]))-

The claimed inclusion therefore follows directly upon comparing the displayed equality and
inclusion above. O

6.2. We now prove Corollary 3.3.
To do this we set U := O;:{_m},T,p and Uy = (’);&vl}’T’p and for any set ¥ of places of
k we abbreviate Yryx , to Ys. Regarding ¢ as fixed, we also set E := Qp,(¢0), O := Zp[¢],
I':=Gg, g, and n := ¢(1) and abbreviate Fito(—~) to Fit(—) and H* (G, —) to H'(—).
Finally, we write Ag7 in place of Ap g1, and Ag7 for the restriction of Ap g, to O;g Tp

and g7 for the surjective homomorphism H?(Cp) — Yy induced by (6).

6.2.1. At the outset we note the assumptions (10) combine with the formula (1), Theorem
5.2(ii) and the result of Gross recalled in Remark 2.3(ii) to imply g = 7 g, = 1 and hence

that the O-modules (’);’ng) = U and Yéw) = Y{(:ﬁ)} are both free of rank one and that the

map on U¥) induced by 5\57T is injective.
In particular, since in this case the formula in Theorem 3.1(ii) combines with Lemma 5.1(ii)

to imply that Fit(cok(xg%%)) is equal to

|G|~ Fit(cok(AY)))Fit(HO(Yg []))Fit(H 1 (Yg [¥]) !
=|G| ™" - Fit(cok(AY)))Fit(ker(ms 1 y)) " Fit(H°(Yg [¢]))Fit(H 1 (Yg [¢]))
=L 57wy, 0) - Fit(HO(Yg [9])Fit(H 1 (Vg [9])) " Fit(ker(ms 1))

one has

(30) Lp, s (o, O)Fit(HO (Vg [0])Fit(H (Vg [0]) 7 Y{) = A} (Fit(ker(mp,)))-UW)).

To investigate this equality we decompose ey, as a sum of (non-zero) indecomposable idem-
potents Y~ fi4 in E[Gley. For each index m we choose a maximal O-order M,,, 4 in E[G]
which contains fi,, ,, and then, asin §5.1.1, we set Ty, 5 1= fin 0 M and, for any Z,[GJ-module
M, write M¥™ and M, for the O-modules H*(G, Ty, ®z, M) and Ho(G, T, 4 ®7, M).

In particular, writing fi, - w1 for the image of fi, y ®z,[G) w1 In Yg (4 m) tf, and Trg for the

element »_ . g of Z[G], one has

Gl s+ w1 = TrG(fon - w1) € T (Y (myat) = Tra (Vs (pmy) = Fit(AO(Vg [1])) - V™

where the last equality is valid because Yéw’m) = y»m

(1} is a free rank one O-module.
Thus, from (30), we deduce thevexistence of elements [ of Fit(kel‘(ﬂ's’T’(d,)))Fit(ﬁ_l (Y [¥]))
and «  of U™ with L’ YW, 0)|G| e - w1 = Ag7(ampt!, ). In particular, for every
m,zp p,S,T 71/) ’ 7,¢) m,¢

dy in Dg}@pFi‘u(ﬁ_l(YSf [4]))~! the element

MW, dy,m) = dy - @yt € Dl Fit(ker(ms 1)) - U™
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satisfies depST(z/ka, |G| frn(w1) = Asr(n(1h, dy, m)).
This in turn implies that the element

m=n =n

(31) U(%Z)vdw) =n Z (¢,d¢, -1 Z dw am ’lﬁuml/}
m=1 m=1
belongs to the lattice =y 4, :==n" DE/Q Fit(ker(7s.7,(4))) - @z U™ and satisfies
> L s (Pwr, 0)(g)dy - g(wr) = L, g 7(wp, 0)n ! |Gldyey (w)
geG

Ly, s (Ywi, 0)n ™t |Gldy frmp(wr)

—_

= Asr (N, dy)).

Since S\S,T is injective on =y 4, this equality has two important consequences. Firstly, it
implies 7(1, dy) is fixed by the natural action of G1 on E - Zy 4, = ey (£ -U). Secondly, since
for every v in I' one has L;7S7T(1ﬁwk,0)7 = L;S,T(Lﬁwk,()) it implies n(dz,vﬁ) = n(,dy)?
with respect to the natural O-semi-linear action of I' on Zy, 4, .

The element 62/;,% i= > er N(¥, dy)7 therefore belongs to

v 3

HO(leTrE/Qp(Ew,dw)) Q HO(Gl,U) = Lll,

(where the first inclusion is true because both n=1 ~Z/I1(w’m) C O-U and Trg/q, (DE}QP) C Zp)

and satisfies

Z(Z L;:),S,T(QZJA/WM 0)@57(9)%)9(101) = 5\S,T(fip,dw)
geG ~el’
and hence for every ¢ in G also

—valy, (9(5/ )
Ing(p ! oy g(eip,dw) ‘G ‘ Z Z p,S,T %Z’ Wi, )@Z}’y(gg )d7
1 g'eGy yel
Finally we set
€pdy (Qp,dw Pt
Then for every g in G the element g(ey 4,) belongs to the subgroup p?(1+ pZy) of Q, and
so the above equalities imply

valw, (9(€y,d,,))

9(epa,) =p epr Ly, s (§7wr, 0)47 (gg")d,).

g'eGy el
In addition, one has

(32) Grsleya,) =Y ewdrs(eya,) = eprLsW) Asr(eyq,)
yel ~yel

=Y L) Ly s (wr, 0)n Gl d ey (wr)
vyerl’
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and hence for every integer t also

(33) valu, (9(eha,) = >

g9'€G1

tip—1)

|Gl

This verifies all of the assertions of Corollary 3.3 up to the end of claim (i).

> L)L, 50 (0w, 0047 (99')
er

6.2.2. To verify Corollary 3.3(ii) we regard each ¢ in Homg, (U, Zp[G]) as an element of
Hompq(E - U, E[G]) and note that H(Ul(w)) CZ,G)W) = |G| - Ty CO- Iy

In addition, the O-module Y ) (., is isomorphic to H~'(Yg []) and so the exact sequence

of G-modules (6) induces an exact sequence H~2(Yg [¢]) — Clg,p,(w) — ker(mg 1, (y)) and hence
an inclusion

Anno(ﬁfz(YS_ [])) - Fit(ker(ms 7,(4))) € Ann@(Clg,n(d})).
Thus, if we fix any a in Z, (such as a = |G|) that annihilates H (Y5 [¢]), and assume dy,
belongs to Fit(H “1(YS [4])) 7", then the explicit definition of €. 4, implies that

ab(ep.a,) = (p—1)ab(eyq,) = (0= 1) D D a(d)amy)0(twm,yo)
yel' m=1
€ Amo(CI(F), ) - pry € O - Anng (CIE(F),)
yer

where the inclusion follows from the observation made just before the statement of Lemma
6.1, and hence that af(ey q,) belongs to Q,[G] N (O - AnnZ[G](Clg(F))) = AnnZ[G](Clg(F))p.

We next note that the idempotent e := Zyer ey fixes €y g , and annihilates Qyp - YS_\ (1}
By using the natural exact sequence Y, y — Clﬂl}(F )y = ClL(F )p — 0 we may therefore
deduce that |Glaf(epa,) = (|Gle1)(ab(ep,a,)) belongs to AnnZ[G}(Cl{Ul}(F))p, as required to
complete the proof of claim (ii).

Turning to claim (iii) we note (32) combines with the assumed validity of Conjecture 2.4

(and a direct comparison of the definitions (7) and (9) of T-modified L-series) to imply that

for any integer m the element €y 4 := [[;c; €y,,a,p satisfies

(34) drs(epy) =mp—1) > Lgp(% 0)Rs(v®) 9% (1) ! |Gldeya (w),
a€Go(y)/Q

whilst the expression on the right hand side of (33) implies valy,, (g(€7} ;) is equal to the sum
Yop,g,d,m defined in claim 3.3(iii)(b).
Now the Galois invariance property (2) implies that the sum on the right hand side of (34)

belongs to Q - YF_’{M} C Q- Y{;l} and hence that €, 4 belongs to the localisation of C’);”{_Ul},T

at p. For some integer m prime to p one therefore has eZL q € (9;{_” T

For any such integer m claim (iii)(b) then follows directly from the formula (33) whilst claim
(iii)(a) is true because (34) combines with the injectivity of ¢ g to imply that if d # 0, then
the largest normal subgroup N of GG that fixes € a 18 ker(e). (In a similar way, one can justify
the claim in Remark 3.4(iii) by using a suitable sum of expressions of the form (34).)



38 DAVID BURNS

This completes the proof of Corollary 3.3.

7. THE REFINED p-ADIC CLASS NUMBER FORMULA AND SOME CONSEQUENCES
In this section we prove Theorem 3.6 and then deduce Corollaries 3.8, 3.10 and 3.11.

7.1. To prove Theorem 3.6 we fix data F/k, G, S and T as at the beginning of §3.2, set
G := Gpeye i, and write C7° for the complex RT¢ 7(Og,s, A(G)#(1)).

We also write X for the multiplicatively closed left and right Ore set of non-zero divisors of
A(G) comprising elements f such that A(G)/A(G)f is a finitely generated Z,-module. We set

Q/(g) - A(g)zﬁ lf IUP(F> = 07
' Q(G), if both u,(F) # 0 and p does not divide |G|

and write dx(g),q/(g) for the connecting homomorphism K1(Q'(G)) — Ko(A(G), Q'(G)).
The following result provides a convenient interpretation of the known validity of the main
conjecture of non-commutative Iwasawa theory for totally real fields.

Proposition 7.1. Assume either p,(F) =0 or both p,(F) # 0 and p does not divide |G|.
Then Q'(G) ®agy CF* is acyclic and there exists an element & of K1(Q'(G)) with

In9).2©(€) = X109 @@ (Cr",0)
and such that for all ¢ in A~ (G) one has

©(€)"(0) = log, (kk(7)) ™5 Ly g1 (Y, 0).

Proof. The complex C' := Rl ¢(Ok s, A(G)* (1)) is acyclic outside degrees two and three and
its cohomology identifies with M;yc and Z, in these respective degrees. Since these groups are
finitely generated torsion A(G)-modules that are finitely generated over Z, if u,(F') vanishes
the given assumptions on p imply the acyclicity of Q'(G) ®ag) C'-

We next claim that there exists an element &' of K1(Q'(G)) with both 9y(g) /g (§) =
XA9).Q(6)(C",0) and @,(¢') = fs,,(u) for all p in AT(G).

If p does not divide |G|, then A(G) is a maximal A(G peye/p)-order in Q(G) and the existence
of a suitable element ¢’ in K;(Q(G)) can be directly deduced from the main result of Wiles
in [44]. To do this one can use the same reduction arguments as in the proof of Proposition
5.5(ii) or simply note that, after interpreting the homomorphisms ®, in terms of the reduced
norm of the semisimple algebra Q(G) (as in [3, Lem. 3.1]), this result is equivalent to earlier
results of Ritter and Weiss in [35, Th. 16 and Rem. (H)].

In a similar way, if one assumes only that p,(F) vanishes, then the existence of such an
element in K1(A(G)yx) is equivalent to the validity of the main conjecture of non-commutative
Iwasawa theory for totally real fields, as proved independently by Ritter and Weiss in [36] and
by Kakde in [24].

These facts combine with the proof of Proposition 5.5 to imply the acyclicity of the com-
plex Q'(G) @p(g) C7° and the existence of an element & of K1(Q'(G)) with dx(gy.q/(g)(§) =
—XA9),0/(6)(CF ¢, 0) and such that, for each ¢ in A~(G), the image of £ under ®y, is equal to
the series fg 1. (u) that occurs in Proposition 5.5(ii).

The claimed formula for each leading term @ (£)*(0) = f 1 ,(0) then follows directly from
Lemma 5.10. U
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Turning now to the proof of Theorem 3.6, the first assertion of Proposition 7.1 implies C7°
belongs to the category DY,(A(G)) defined in [6, §1.4]. Further, if ¢ is any element of Ir, (G)
that factors through the surjection Qp[G]™ — Qp[Gless, then Theorem 5.2(ii) implies C77° is
semisimple at ¢ and Theorem 5.8 implies the Bockstein homomorphism in degree one of the
data (CF°,9,7) is induced by the map —logp(nk(’y))*l “AF.Sp-

The semisimplicity at ¢ of C¥° also combines with [7, Lem. 5.5(iv)] to imply that the term
(=1)re (C7)(¥) that occurs in the descent formula proved by Venjakob and the present author
in [7, Th. 2.2] (for the groups G = G and G = G and the complex C' = C7°) is equal to
(—1)~rsw = detgg(—1| Q5 - HY 1(Ors, Zy(1) ™).

Given these facts, the first displayed equality in Proposition 7.1 combines with [7, Th. 2.2]
to imply that

(35) Szpicp( Y ep®y(€)*(0)) = —xz,jcp (RTet0(Ors, Zp(1)™, Xk 6.)-
Yelrs (G)

where S\SI? /k.5,p denotes the exact sequence of Q,[G]-modules

log, (kK (1) "1 Ap,s,p

0— Q- HY(RTs,7(OFs,Z,(1))*) Qp - H*(RT 4, 17(OF.5,Zy(1))*) — 0.

In addition, as Theorem 5.2(ii) combines with (1) to imply that
rpsw = rsp = dimgg (Qf - HE 1(Or.s, Zp(1)™)
for each ¢ in Irj’(G), the result of [2, Lem. A.1(ii)] implies

Xz, (G (Rler 7(OF.s, Zp(1))*, X 5.0) — Xz, (= (R0, 7(OF,5, Zp(1))™, Mg ,)
= — 6z, ()= (Nrdg, (g (10g, (kk (7)) " | ess(Qp - H7(Or,s, Zp(1)))))

=0z ( D> eylog,(kr(7))P5Y).
VeI (G)

—~ =

From the final assertion of Proposition 7.1 we also know that for each such character ¢ one
has e, ®,(£)*(0) = eplog,(kk(y))~P5v - 29;,F/k,S,T(O) and hence that

Szicr=( Y ep®y(€)*(0)) = bz, i1 (0 p/s0(0) + 0z, 0cp= (Y eglog,(kk(7)) " ™5%).
Vel (G) Vel (G)

The assertion of Theorem 3.6 now follows directly upon substituting the last two displayed

equalities into (35).

7.2. To prove Corollary 3.8 we write x(—, —) in place of xz, (g} c,[q)=(—, —) and abbreviate
both dz, (g c,(cs (—) and 7 (- c,[q)- (—) to 6(—) and 07 (—) respectively. We also use the
invertible element of ((C[G])* obtained by setting

Rs(F/k) = 3 Rs(x) - ex.

XE€Ir(G)
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Then for each isomorphism of fields j : C, = C the validity of Conjecture 2.4 for F'/k implies
(36) e O (0) (O s (0)ess) ™ = ji (Rs(F/k) (Ls(F/k)ess) ™,

with j, the ring isomorphism C,[G] = C[G] induced by j.
This in turn combines with the result of Theorem 3.6 to imply that 6(j*_1(0}/k s r(0))ess) is

equal (under the hypotheses of Corollary 3.8) to
(6, /k,5,7(0)ess) + 5(j. (Rs(F/k))(Ls(F/k)ess) ™)
=X(RT¢;.7(OF,s,Zp(1)), A& 5,,) + 6(Nrdg, = ((Cp @R j REs) 0 A, | €ss(Cp - Yirg )
:X<Rrét,T(OF,S7Zp(1))SS7 %S,])a
where the last equality follows from [2, Lem. A.1(ii)].
This shows that the equality (27) is valid modulo the kernel of the natural homomorphism
7 Ko(Zp[G]~,Cp[G]7) = Ko(Zp|G]*, Cp[G]*) and so to complete the proof of Corollary 3.8(i)

it is enough to prove that ker(m) = 7 (¢(Cp[G](e— — ess))™).
To show this we use the exact commutative diagram

(37)  Nrdg,g- (K1(Zy[G]7) —— ((Cp[G]) ™~

P

Nrdg, (g (K1(Zp[G]*)) —— C(Cp[G]) ™ Ko(Zp|GI*, Cp[GI™).

Here the rows are induced by the relevant exact sequences of relative K-theory and the vertical
arrows by the ring homomorphims Z,[G]~ — Z,[G]* and C,[G]~ — C,[G]**. In addition, the
map 7" is surjective as a consequence of Bass’s Theorem (cf. [26, Chap. 7, (20.9)]) and the
fact that Z,[G]~ is semi-local.

In particular, since ker(n’) = ((C,[G]) ™ * NCp[G](1 — ess) = ¢(Cp[G] (e~ — ess)) ™, we obtain
the required description of ker(7) by applying the Snake lemma to the above diagram.

To deduce Corollary 3.8(ii) from Corollary 3.8(i) it suffices to note that if Conjecture 2.1 is
valid for F'/k, then Theorem 2.6 implies Conjecture 2.4 is valid for F'/k whilst Remarks 2.3(i)
and 2.5(i) combine to imply ess = e_ and hence that 6 ({(C,[G](e— — ess))™) vanishes.

This completes the proof of Corollary 3.8.

7.3. We now prove Corollary 3.10.

Claim (i) asserts that for each ¢ in Ir, (G) the order of vanishing at s = 0 of the series
Ls (1w, s) is at least 7¢(1). This follows directly from Theorem 3.1(i), the explicit formula
rsy = dimg, (Home,6)(Vy;, Cp - Y g,,) (implied by (1)) and the fact that Y ¢  has a quotient
Vi, that a free Z,[G]™-module of rank r.

Since S\ V contains SEk (and hence also S;°) claim (ii) follows directly from the argument
of [4, Lem. 2.8].

To prove claim (iii) we must first fix a convenient resolution of Sel (F)~.

To do this, for each normal subgroup N of G we set Try 1= > .y g € Z[G] and identify
Yp~ g with Try(Yr,s) by means of the map which sends each place w in Spx to Try (w') for any
choice of places w’ of F' above w. For each natural number m we set [m] :={i € Z : 1 <1i < m}.
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We also set n := [S], label (and hence order) the elements of S as {v;};c|,) and for each
index ¢ choose a place w; of ' above v;. For each Galois extension L of k in F we set
Zr :={i € [n] : v; € V1.} and, for later convenience, we assume, as we may, that the labeling
of S is chosen so that Vi = [r].

We then fix a surjective homomorphism ¢ : P — Sel%(F)y"~ of Zp|G]~-modules in which
P is free of finite rank d and has an ordered basis {b;};c[q for which the following property is
satisfied.

Write £ for the composite of ¢ and the canonical homomorphism Selg(F);r’_ = Yeg,

induced by (6) and for each normal subgroup N of G we identify the restriction ¢V of ¢ with

the composite homomorphism PV = Try(P) STy NYrs,) =Ypn s, Then in the sequel we
can (and will) assume that for each index 4, and each normal subéréup N of G, the element
Try (b;) is sent by &V to w,, v — W, pn if i € [n] and to 0 otherwise.

Now, since our choice of T" implies O;; Tp is Zy-free, the properties of the complex Cpr :=
RT 17(OFs,Zy(1))” that are described in Lemma 4.1(ii) imply the existence of an exact
sequence of Z,[G]~-modules

(38) 0= Opgpy, = P =5 PS5 Sel§(F)y™ —0

for which there is an isomorphism P* — Cpr in DP(Z,[G]) which induces the identity on
cohomology in degrees one and two. Here P* denotes the complex P = P, where the first
term is placed in degree one and the cohomology groups H'(P®) and H?(P®) are identified
with O;ST T, and SelL(F);"~ by using the maps ¢ and o.

Noting that the algebra Q,[G] is semisimple we choose Q,[G]-equivariant sections ¢; and ¢o
to the maps Q, - P — Q,-im(w) and Q, - P — Q, - cok(w) = Q, - SelL(F);"~ that are induced
by w and p respectively. We can, and will, also assume that for each Galois extension L of k
in F and each ¢ in Zy, one has ta(w; 1, —w; ) = Try(b;) with H = Gr/L-

One has Q- P = Q, - ker(w) & ¢1(Q) - im(w)) and for any homomorphism of Q,[G]-modules
k:Qp- O;‘,E,T,p - Q,-Selk(F)yy ™ =Q,- Yr 5, We write (k,@),, ., for the endomorphism of
the Qp[G]-module Q, - P that is equal to t3 0 ko (Q, ®z, t) " on Q- ker(w) and to Q, ®z, @
on ¢1(Qp - im(w)). Then [2, Lem. A.1(iii)] implies that

—XZ,[G]ss (C}?T, )\?/k,S,p) = 5ZP[G]SS (Nrde[G}SS (ess <>‘F,S,pa w>b1,b2))

and so the equality of Conjecture 3.5 combines with the exact diagram (37) to imply the
existence of an element u of Nrdc, q- (K1(Zp[G] ™)) with

(39) ;,F/k,S,T(O) ress = u - Nrdg, g (ess{ARS,p) @it z)
= uZs(F/k) 'Nrde[G](esst,S,pvw>L1,L2)~
Here the second equality follows directly by comparing the explicit definition of Zg(F'/k)

with the fact that es(dr.sp, @)1 0, and es(Ap,sp, @), . coincide on ¢1(Qy - im(w)) whilst on
Qp - ker(w) there is a commutative diagram
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AF,8,p:@)uq 0o
e

Q- ker(w) 2(Q Vi,
g H
Q- ker(w) LT, (@, - Vg,

with p = (Qp ®3z, t) 0 (Q®z, Arsp) © (Q®z, drsp) " 0 (Qp @z, ).

For each normal subgroup N of G with 7 ¢ N we regard Ir, (G/N) as a subset of Ir, (G) in
the obvious way and then set Yg n := {¢ € Ir, (G/N) : r54p = rpn - (1)}

Since Tg v is closed under the action of Aut(C,) on Ir,, (G) the idempotent es y := erTs,N ey
belongs to ((Qp[G]). In addition, Theorem 5.2(i) and (ii) combine to imply egn = egs - €5 N
and so one can multiply the last displayed equality by es n to deduce that

r *
QP?N/IC,S,T(O) :Op,F/k,S,T(O) “ €SN

- 0;,F/k,S,T(O) * €ss€S N
=uZLs(F/k) - es nNrdg,(q)(ess(PF.sp, @)1 .0)
=U- gS(F/k?)NI'de[G] (eS,N<¢F,S,p, w>L17L2)'

Taken into account both this equality and the result of Theorem 3.6, the first claim in
Corollary 3.10(iii) follows directly from the observation in Proposition 7.2 below (with N
taken to be the identity subgroup of G).

Turning to the second claim of Corollary 3.10(iii) we note that S\ V contains Fn (and

hence, in particular, S¥ ). To deduce the second claim from the validity of the first claim of
Corollary 3.10(iii) it is thus clearly enough to show that for any finite set of places ¥ of k that
contains S;?/I}; one has

(40) Fitg, (q)(Selt(F),) = Fitg, (c)(Sels,(F);)*.
To prove this we recall from [4, Prop. 2.4] that Z, ®z RT'. 7((OFx)w,Z) can be represented

by a complex P’ 4 pr , where P’ is a finitely generated free Z,[G]-module and the first term
is placed in degree one. This representative combines with [4, Prop. 2.4(iii)] and [4, Def. 2.6]
to imply that the Z,[G]-modules Sel&(F), and Selk(F )y are respectively isomorphic to the
cokernels of § and of 0* := Homg, (0, Z,).

The explicit definition of Fitting invariants therefore implies that FitZP[G](Selg(F )p) and

Fith[G}(Selg(F );) are respectively generated over £(Zy[G]) by Nrdg,(g)(#) and Nrdg,g(6*)
and so (40) is true if Nrdg, g (0%) = Nrde[G}(H)#.

The latter equality is then easily deduced from the fact that for any element z of C,[G] and
any character ¢ in Ir,(G) the matrix, with respect to any fixed C,-basis X’ of V;;, of the action
of x on V; is the transpose of the matrix, with respect to the basis that is dual to X', of the
action of z# on Homg, (Vy, Cp).

This completes the proof of Corollary 3.10.
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Proposition 7.2. For each normal subgroup N of G as above one has
§(Zp[G/N)) - Zs(F/k)Nrdg,jcy(es,N(DF5p )i ia) = Ls(F/k) - Fitg,jayn (Selgyy (FV)).

Proof. The exact sequence (38) implies that cok(¢) is Zy-free and hence that the corresponding
restriction map Homgz, ¢)(P, Yr 5 ,,) — Homgz, (g (Opsr 0 Yr5,) is surjective. We choose a lift

qAS of ¢r s, through this restriction map and consider the composite homomorphism

(41) Sy : PNV =Ten(P) = Ten(Yig,) = Vin g, = Yiwy wm

where the first arrow is the restriction of qg and the second the natural projection map to the

free Z,[G/N]~-module Y,y Von '

For any integer pair (s, t) in [d] x Zp~ we define a unique element My & of Z,[G/N|~ by
means of the equality

Sy (Trn(bs) = > My st - (wy pv — Wy 7).
teZn

In addition, since the exact sequence (38) (and our explicit choice of g) implies that

m(=Y) € S 26 T (),
j€ld\Zn
for each (s,t) in [d] x ([d] \ Zp~) there exists a unique element My o of Z,[G/N]~ which
satisfies
@ (Try(bs)) = Z My s - Try (be).
te[d}\ZFN

We then define My to be the matrix in M4(Q[G/N]|~) with each (i, j)-entry equal to the

given element My ;; and claim that

(42) gg(F/k‘) . Nrde[G/Nr (eS,N<¢F,S,p7 w>L1,L2) = gg(F/k) . Nrd@p[G/N]f (MN)

It is enough to prove this equality after multiplication by ey, for each ¢ in Ir, (G/N) and
we assume first that eyeg y = 0.

In this case the left hand side of (42) obviously vanishes. In addition, if egess = 0, then
eyZLs(F/k) = 0 and so the right hand side vanishes. It is thus enough in this case to show
that if both eyess = ey and eypesy = 0, then erid@p[G/N}_(MN) vanishes. But for any
such character ¢ one has rgy = 754, > ey - (1) and so the exactness of (38) implies
dimcp(Hom(Cp[G}(VJnCp : 1m(w))) = dime(Hom(Cp[G](VJ;an : P)) —Trsy < d— TEFN. This
in turn implies that the matrix obtained by splitting e, My is singular and hence has zero
determinant, as required.

We now assume eyes y = ey, and hence ¢ € T g, and in this case we prove the validity of
(42) after multiplication by e, by showing that

Nrdc,(6/Ne, (€4(Cp ®q, (DF,5ps @)i1y2)) = Nrde, (6N, (€ Mn ).
To do this we note that for any ¢ in T g the second arrow in (41) is bijective and so

%(Cp XQ, <¢F,S,pa @)i1yin) = ew(bz o (Cp Xz, QB(N)) i ) + ew((c Kz, @ @)
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where {; is the projection C,-P — C,-ker(w) induced by the chosen splitting ¢1, whilst e, (My)
is the matrix, with respect to the basis {ey(Trn(b;))}ic[q of e4(Cp - P), of the endomorphism

ey(12 © (Cp ®2z, dv))) + €4(Cp ®2z, ).

To complete the proof of (42) it is enough to show that the last two displayed endomorphisms

have the same reduced norm. This is true because they restrict to e, (C, - ker(w)) to give the

same isomorphism ey (C,, - ker(w)) = ey (2(C, - YI*:,VFN,p)) and also restrict to ey (Cp - im(eq))
to induce the same composite homomorphism

eyp(Cp - im(e1)™) = ey (Cp - PY) = ey ((Cp - PY)/12(Cy - Yy,

F

va)).
Having proved (42) the claimed equality will now follow if we can show Nrdg, q/n- (MN)
is a generator of the {(Zy[G/N])-module Fity 1 n]- (Selg\v(FN)ff’*).

But, if we identify My as an endomorphism of Z,[G/N]~¢ (by means of the fixed Z,[G /N]~-
basis {Try(bi)}iejq of PY), then the tautological exact sequence

Z,[G/N) 4 25y 7, [G/N]™ — cok(My) — 0

combines with the definition of non-commutative Fitting invariants to imply directly that
Nrdg, (/N (Mn) is a generator of the {(Z,[G /N])-module Fitz q/n]-(cok(My)) and hence
the claimed equality is a consequence of the isomorphism described in Lemma 7.3 below. [

Lemma 7.3. The Zy|G/N]-module cok(Mpy) is isomorphic to Selg\V(FN);,r’_.

Proof. The isomorphism P* — Cpr in DP(Z,[G]) discussed just after (38) combines with
the natural descent isomorphism Z,[G/N] ®z,(q) Crr = Cpn ¢ to induce an isomorphism in
DP(Zy|G/N]) between Cpn 7 and the complex PN — PN, where the first module is placed
in degree one and the differential is V. Hence, after replacing F/k by FV /k it is enough to
consider the case that N is the trivial group.

To do this we set r := rp, write P; for the (free rank r) Z,[G]~-submodule of P with basis
{bi}iez, and identify this with YI;,V,p by sending each b; to w; — w;. We also write P for the

complex P; 2) P, with the first term in degree one.
We then choose a morphism of complexes of Z,[G]-modules o : P* — P that represents
the composite morphism in DP(Z,[G])

P* = Cpr — Zy ®z RHomgz(C, Z)[-3]” — RHomg,( @ RY¢t(Kw;», Zp)) ™, Zp[—2]) = Py.
1€Zp
Here C denotes RI'.7((Ors)w,Z), the first arrow is the isomorphism induced by Lemma
4.1(iii), the second is induced by applying the exact functor Z, ®z RHomgz(—,Z)[—3]" to
the triangle in [4, Prop. 2.4(ii)] and the third is the canonical isomorphism induced by our
identification of P; with Y}; Vip and the fact that for each ¢ in Zp the place v; splits completely
in F/k.

With this definition H'(c) coincides with the composite Op'g 1 » orsy, Yesy, 2> Yey,=D

and so ! is a suitable choice for the morphism ¢ that is fixed at the beginning of the proof of

Proposition 7.2.
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We note next that there is a short exact sequence of complexes (with horizontal differentials
and the first term in the upper complex placed in degree two)

id
P —

(—id,e1) lid
1 (0,71)

(a',@)

P—P eoP——P

idi i(uzid)
r—Y.p
Here +; and m; denote the natural inclusion and projection and M denotes the matrix My
(with N the trivial group) constructed after fixing é to be a®. Now the first complex in this
sequence is obviously acyclic and the second is Cone(a))[—1] and so the sequence induces an
isomorphism of H!(Cone(a)) with cok(My).
In addition, the exact triangle in [4, Prop. 2.4(ii)] induces an isomorphism in DP(Z,[G])

Cone(«) = Zy, @z RHomz (BT ((Ops\v)w, 2), Z)[ 2]~

Py

and hence an isomorphism of Z,[G]-modules
H'(Cone(a)) = Z, ®z H ' (RHomz(RL .7 (Ops\v)w» Z), Z)) "

It therefore suffices to recall that Selig\v(F ) is defined (in [4, Def. 2.6]) to be equal to the
cohomology group H ' (RHomz(RT.7((Ops\v)w, Z),Z)). O

7.4. We now prove Corollary 3.11.

This proof relies on two facts concerning annihilators of finitely generated Z,|G]-modules M
(that we shall use in the sequel without explicit comment). Firstly, the natural contragredient
action of G on MY := Homg, (M, Z,) implies that Anng_ (M) = Anng, j¢(M)#. Secondly,
if M has a quadratic presentation, then for any element a of A(G) there is an inclusion
a - Fitg g1 (M) C Anng, (M) (see [23, Th. 4.2]).

To prove claim (i) of Corollary 3.11 we note that the long exact cohomology sequence of the
exact triangle constructed in [4, Prop. 2.4(ii)] induces a canonical surjective homomorphism
Selg\V(F )p — Selglgo (F)p and hence that the exact sequence (5) (with S = Sp°) identifies

CIT(F)X as a subquotient of Selg\V(F)p. This shows that

(43) AHHZP[G] (Selg\V(F)p)# C AnnZP[G](ClT(F);)/)# = Anan[G](ClT(F)p)
and hence that the second displayed equality in Corollary 3.10(iii) implies

= (a? - ez()f})T‘/k,S,T(O)#)#

€ Ls(F/k)(a* - Fitg, () (Selg y (F)p))*
€ Zs(F/k) - AnnZP[G}(Selg\V(F)p)#

C Zs(F/k) - Anng,g)(CIT (F)y),

(44) a0 57(0)
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where the second containment uses the fact that A(G) is stable under the involution z + x7.
This proves claim (i).

To prove claim (ii) we note 0p/; o\v,7(0) = eg/)k,S,T(O) - Rg(F/k)~! since each place in V
splits completely in F/k.

The assumed validity of Conjecture 2.4 for F'/k therefore implies that for each field isomor-
phism j : C, = C and each a in A(G) N Q,[G]* one has

a- J‘*_l(eF/k,S\V,T(O)) =a -jll(ess9¥/)k,s,T(0) : RS(F/k>_1)
= a0} 57 (0)(Ls(F/R)ess) ™!
€ a- e Fity, (g)(Sel§y (F)p)*
C Anng, g (Sel§,y (F),)*
- ADHZP[G](CIT(F)p)

where the first equality and inclusion use a = a - g, the second equality follows from (36), the
containment from the first containment in (44) and the final inclusion from (43).

This proves the assertions in claim (ii) concerning a - 0/ s\v,r(0) and the assertions con-
cerning a - O, S\V,T(O)# are then easily deduced by using the equality (40) with ¥ = S\ V.

To prove claim (iii) we use the complex RT'.7((OFx)w,Z). In particular, we recall (from
[4, Prop. 2.4]) that this complex belongs to DP(Z[G]), is acyclic outside degrees one and two
and that its cohomology in these degrees identifies with Yy /Ax(Z) and SelL(F) respectively,
where Ay, denotes the natural diagonal map.

We also note that a straightforward (non-abelian) extension of the argument used to prove
[4, Prop. 3.4] shows that the equivariant Tamagawa number conjecture is valid for the pair
(h9(Spec(F)), Z,[G] ™) if and only for every isomorphism j as above one has

(45) 5ZP[G]*,(CP[G]*(j*_1<e—9;7/k:,2,T(0)#)) = —xz,(¢)-.c,lq- (BLer((Ors)w, Z), , By, ;)

where R, ; denotes the Cp-linear dual of the exact sequence (28) (with S replaced by X).

In particular, under the hypotheses of claim (iii), Corollary 3.8(ii) implies that the equality
(45) is valid.

To analyse this equality we represent RT'.7((Opx)w,Z), by the complex P’ % P used in
the proof of (40) and write eg for the idempotent of ((Q,[G]) obtained by summing e, over
all ¢ in I (G) for which the space Homc, g(V;;, Cp - ker(0)) vanishes.

Then it is clear that Nrdg,(q(67) = eoNrdg, () (¢) whilst [2, Lem. A.1(iii)] implies

—Xz,c-c,ylc)- BLer(Ors)w, Z), , RS, j) = 67, 1c1- c,jc1- Nrde, jq- ((0)))

for an automorphism (¢) of the C,[G]-module e_(C, - P’) which agrees with C, ®z, § on
eo(Cp - P') and hence satisfies eoNrdc,()((0)) = eoNrdg,()(0) = Nrdg, ¢ (07)-

The last displayed equality combines with (45) and the exactness of the upper row in (37)
to imply the existence of an element u of Nrdg, 1q- (K1(Zp[G] 7)) with j;l(e_G}/k727T(O)#) =
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u - Nrdg, (- ((9)) and hence also

j;l(e_ﬁp/hE’T(O)#) = eo(j**l(e_Q}/k’Z,T(O)#) =1U- eONrd(Cp[G]*(<0>> =Uu- Nrde[Gr(G*)

where the first equality follows from (1) and the isomorphism Homg,g)(V;, Cp - ker(0)) =

~

Homcp[g](vd;, (Cp : YFT,E)

In particular, since Sel&(F )p is naturally isomorphic to cok(f), the above equality implies
that j;l(e,ﬁp/k,E,T(O)#) is a generator over {(Z,[G]) of Fitzp[g]—(Selg(F);), as required to
prove the displayed equality in Corollary 3.11(iii).

The remaining assertions of claim (iii) are then derived from these facts by the same argu-
ments used to prove claim (ii).

This completes the proof of Corollary 3.11.
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