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ON DERIVATIVES OF

p-ADIC L-SERIES AT s = 0

DAVID BURNS

Abstract. We use techniques of non-commutative Iwasawa theory to investigate the values
at zero of higher derivatives of p-adic Artin L-series.

1. Introduction

Let p be an odd prime. In this article we use techniques and results from non-commutative
Iwasawa theory to investigate detailed arithmetic properties of the values at zero of the higher
derivatives of p-adic Artin L-series.

As concrete applications of our approach we shall (unconditionally) extend the main results
of Federer and Gross in [11] from linear Qp-valued characters to general finite dimensional
p-adic characters, define a canonical refinement of Gross’s p-adic regulator map that gives
a natural description of the image of Gross’s map and also encodes p-adic valuations of the
values at zero of higher derivatives of p-adic Artin L-series, and describe an explicit non-abelian
generalisation of Gross’s p-adic analytic approach to Hilbert’s twelfth problem. At the same
time we prove natural p-adic analogues of the central conjecture of Chinburg in [9] and of a
natural non-abelian generalisation of the annihilation results proved by Rubin in [37].

In addition, our methods suggest the formulation of a natural conjectural ‘refined p-adic class
number formula’ for Gm and allow us to prove this conjecture modulo Iwasawa’s conjecture on
the vanishing of cyclotomic µ-invariants, and even in some interesting cases unconditionally
(see Remark 3.7).

We also deduce several concrete consequences of this refined p-adic class number formula,
including explicit formulas for the (non-commutative) Fitting invariants of Selmer groups that
are naturally associated to Gm over number fields.

In particular, in this way we are able to show that the validity of Gross’s conjecture on
the order of vanishing at zero of p-adic Artin L-series implies, in general modulo the above µ-
invariant hypothesis, the p-component of the ‘minus part’ of the equivariant Tamagawa number
conjecture for untwisted Tate motives over CM Galois extensions of totally real fields as well as
the non-abelian extensions of Brumer’s Conjecture and of the Brumer-Stark Conjecture that
were formulated independently by Nickel in [31] and by the present author in [2].

The latter results are of interest because they make no assumptions concerning the decom-
position behaviour of p-adic places and, ever since Wiles’ seminal work in [45], it has been clear

Key words and phrases. p-adic Artin L-series, trivial zeroes, non-commutative Iwasawa theory, Tamagawa
Number Conjecture, Brumer’s Conjecture.
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that trivial zeroes have a particularly important (if hitherto unclear) role to play in relation
to Brumer’s Conjecture and its variants.

In addition, and as first pointed out by Greither, there is a gap in the argument given in [45]
and, building on ideas of Greither in [14], all previous attempts to breach that gap have either
restricted to special classes of fields where trivial zeroes can be skilfully avoided or effectively
ignored the problem by dealing with imprimitive L-series.

By contrast, our approach now both makes clear that the difficulties caused by trivial zeroes
in relation to Brumer’s Conjecture (and the equivariant Tamagawa number conjecture) are
concerned solely with verifying that the order of vanishing at zero of all relevant p-adic Artin
L-series agrees with an explicit formula predicted by Gross and also provides a concrete strategy
for obtaining new results concerning these conjectures.

For example, in a subsequent article [5], jointly authored with Sano, we will show that the
approach described here can be used to obtain the first unconditional verifications of both the
minus part of the equivariant Tamagawa number conjecture for untwisted Tate motives and of
the (non-abelian) Brumer-Stark Conjecture in the technically most difficult case of non-abelian
Galois extensions that have degree divisible by p and characters for which the associated p-adic
L-series possess trivial zeroes.

Finally, we remark that our approach also leads to new evidence for the ‘refined class number
formula for Gm’ that was conjectured independently by Mazur and Rubin in [27] and by Sano
in [39]. A brief discussion of this aspect is given in §3.5 and full details can be found in [5].

In a little more detail, the main contents of this article is as follows. In §2 we review the p-adic
Gross-Stark conjecture and then, in §3, we state the main results of this article and formulate
a refined p-adic class number formula for Gm. In §4 we construct a canonical family of perfect
complexes that will play a key role in our arguments and in §5 we prove preliminary results in
(non-commutative) Iwasawa-theory, define a canonical refinement of Gross’s p-adic regulator
map in terms of natural Bockstein homomorphisms and interpret the order of vanishing at
zero of p-adic Artin L-series in terms of the semisimplicity of natural Iwasawa modules. In
§6 we prove all of our main results concerning orders of vanishing, valuations and the p-adic
analytic approach to Hilbert’s twelfth problem and then, finally, in §7 we prove that our refined
p-adic class number formula for Gm is valid modulo the vanishing of cyclotomic µ-invariants
and deduce several concrete consequences of this result.

This article is an updated version of a preprint (with the same title) that was posted on
the web in 2011. I am grateful to Masato Kurihara, Mahesh Kakde and Takamichi Sano for
some very interesting discussions. I am also very grateful to the referee for advise concerning
previous results in the literature.

2. The p-adic Gross-Stark Conjecture

In this section we quickly review certain conjectures of Gross concerning the derivatives at
zero of p-adic Artin L-series.

To do this we fix a finite CM Galois extension F of a totally real number field k with group
G. We write Ir(G) and Irp(G) for the set of irreducible characters of G over C and Cp and for
each such character ψ we fix a representation Vχ over C, respectively over Cp, of character χ.
For each such χ we also write χ̌ for its contragredient.
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We write F+ for the maximal totally real subfield of F and τ for the (unique) non-trivial
element of GF/F+ and obtain central idempotents of Q[G] by setting e± = (1± τ)/2. We write

Ir±p (G) and Ir±(G) for the subsets of Irp(G) and Ir(G) comprising characters with χ(τ) =

±χ(1). For any G-module M we also write M± for the G-submodule {m ∈M : τ(m) = ±m}.
We fix a finite set of places Σ of k which contains both the set S∞k of all archimedean places

and the set Spk of all p-adic places. For any extension E of k we write ΣE for the set of places
of E above those in Σ.

For a Galois extension of fields F/E we set GF/E := Gal(F/E). Unless explicitly specified
otherwise, modules are regarded as left modules. For an abelian group A and homomorphism
φ we write Ap and φp in place of Zp ⊗Z A and idZp ⊗Z φ.

2.1. We first recall (from, for example, [43, Chap. I, Prop. 3.4]) that if a character χ in
Ir(G) is not trivial, then the algebraic order rΣ(χ) at z = 0 of the Σ-truncated Artin L-series
LΣ(χ, z) of χ (as defined in [43, §1]) can be computed via the explicit formula

(1) rΣ,χ =
∑
v∈Σ

dimC(H0(Gw, Vχ)) = dimC(HomC[G](Vχ̌,C · YF,Σ)),

where Gw denotes the decomposition subgroup in G of any fixed place w of F above v and
YF,Σ the free abelian group on the set ΣF , regarded as a Z[G]-module via the natural action
of G on ΣF .

We observe this formula implies that rΣ,χ = rΣ,χα for all automorphisms α of C and so for
any character ψ in Irp(G) we may unambiguously set

rΣ,ψ := rΣ,χ

where χ is any character in Ir(G) with χj = ψ for some field isomorphism j : C ∼= Cp.
For each character ψ in Ir+

p (G) we write Lp,Σ(ψ, s) for the Σ-truncated Deligne-Ribet p-adic
Artin L-series of ψ (as discussed by Greenberg in [13]). We also write ωk for the Teichmüller
character Gk → Z×p .

We can now state Gross’s ‘Order of Vanishing Conjecture’ for p-adic Artin L-series (taken
from [17, Conj. 2.12a)]).

Conjecture 2.1. For each character ψ in Ir−p (G) the algebraic order at s = 0 of the series

Lp,Σ(ψ̌ωk, s) is equal to rΣ,ψ.

Remark 2.2. By using Brauer’s Induction Theorem (as in the proof of Proposition 2.6 below)
one shows easily that Conjecture 2.1 is valid if and only if it is valid for all L-series of the form
Lp,ΣK (φ̌ωK , s) where K is a totally real intermediate field of F/k and φ is a linear character
in Ir−p (GF/K).

2.2. In the sequel we write OF,Σ for the subring of F comprising elements that are integral at
all places outside ΣF . We also write

φF,Σ : O×,−F,Σ → Y −F,Σ

for the homomorphism of G-modules that sends each ε to
∑

w ordw(ε) ·w, where in the sum w
runs over all non-archimedean places in ΣF and ordw denotes the normalised additive valuation
at w. We further write

RF,Σ : R · O×,−F,Σ → R · Y −F,Σ
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for the isomorphism of R[G]-modules that sends each u in O×,−F,Σ to
∑

π∈ΣF
log|u|π · π, where

| · |π is the normalised absolute value at π.
The scalar extension C ⊗Z φF,Σ is bijective and so, for each χ in Ir−(G), we may define a

non-zero ‘regulator’ element in C by setting

RΣ(χ) := detC((C⊗R RF,Σ) ◦ (C⊗Z φF,Σ)−1 | HomC[G](Vχ̌,C · Y −F,Σ)) ∈ C.

By using an observation of Tate from [42, 2.6], it is shown in [17, Prop. 2.11] that RΣ(χ)
differs from the coefficient L

rΣ,χ
Σ (χ̌, 0) of zrΣ,χ in the Taylor expansion at z = 0 of LΣ(χ̌, z) by

multiplication by an element of Qc,× and further that for each all α in GQc/Q one has

(2) L
rΣ,χα

Σ (χ̌α, 0)/RΣ(χα) = (L
rΣ,χ
Σ (χ̌, 0)/RΣ(χ))α.

2.3. For each place w of F Gross defines in [17, §1] a local p-adic absolute value || · ||w,p on
F×w by means of the commutative diagram

(3) F×w
||·||w,p //

rw ## ##

Z×p

GF ab
w /Fw

χ−1
Fw

;;

where F ab
w denotes the maximal abelian extension of Fw in F cw, rw the reciprocity map of class

field theory and χFw the p-adic cyclotomic character.
We write

λF,Σ,p : O×,−F,Σ,p → Y −F,Σ,p

for the homomorphism of Zp[G]-modules sending each u in O×,−F,Σ to
∑

w∈ΣF
logp||u||w,p ·w. For

each ψ in Ir−p (G) we then define a canonical ‘L -invariant’ (or, if one prefers, ‘p-adic regulator’)
in Cp by setting

LΣ(ψ) := detCp((Cp ⊗Zp λF,Σ,p) ◦ (Cp ⊗Z φF,Σ)−1 | HomCp[G](Vψ̌,Cp · Y
−
F,Σ)).

We then also define an associated idempotent of Qc
p[G] by setting

(4) ess :=
∑
ψ

eψ

where the sum is over all ψ in Ir−p (G) for which LΣ(ψ) is non-zero. It is straightforward to
check that ess is independent of the set Σ and belongs to the centre of Qp[G].

Remark 2.3.
(i) In [17, Conj. 1.15] Gross conjectures LΣ(ψ) 6= 0 for all ψ in Ir−p (G), and hence that ess = e−.

(ii) For ψ in Ir−p (G) set rψ := rS∞k ∪S
p
k ,ψ

. If rψ = 0, then it is straightforward to verify directly

that LΣ(ψ) 6= 0. Excluding this case, however, the non-vanishing of LΣ(ψ) has only been
verified (by Gross in [17, Prop. 2.13]) in the case rψ = 1 when it follows as a consequence of
Brumer’s p-adic version of Baker’s theorem.
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For each integer m we write Lmp,Σ(ψ, 0) for the coefficient of sm in the power series expansion

of Lp,Σ(ψ, s) at s = 0.
We can now state the ‘Weak p-adic Gross-Stark Conjecture’ as formulated by Gross in [17,

Conj. 2.12b)].

Conjecture 2.4. For every finite set Σ of places of k containing S∞k ∪ S
p
k, every character ψ

in Ir−p (G) and every field isomorphism j : Cp ∼= C one has

L
rΣ,ψ
p,Σ (ψ̌ωk, 0) = LΣ(ψ) · j−1(L

rΣ,ψ
Σ (ψ̌j , 0)/RΣ(ψj)).

Remark 2.5.
(i) If ψ validates Conjecture 2.1, then L

rΣ,ψ
p,Σ (ψ̌ωk, 0) 6=0 and so Conjecture 2.4 implies LΣ(ψ) 6=0

(as is consistent with Remark 2.3(i)). One can in fact prove directly that a character ψ validates
Conjecture 2.1 if and only if LΣ(ψ) does not vanish (see Theorem 3.1(i) and (iii) below).
(ii) Taken together, Conjectures 2.1 and 2.4 constitute the ‘p-adic Gross-Stark Conjecture’.

The strongest evidence that one has in support of Conjecture 2.4 was obtained recently by
Dasgupta, Kakde and Ventullo in [10] and is recorded in the following result.

Theorem 2.6. Conjecture 2.4 is valid for all linear characters ψ. In general, the validity of
Conjecture 2.4 is implied by the validity of Conjecture 2.1 for all linear characters ψ.

Proof. One checks easily that for any ψ in Ir−p (G) both sides of the equality in Conjecture

2.4 are unchanged if one replaces F/k by F ker(ψ)/k. Given this observation, the first claim
coincides with the main result of [10].

To prove the second claim we use a refined version of Brauer’s Induction Theorem (due to
Serre and proved, for example, in [43, Chap. III, Lem. 1.3]). This result guarantees that for any
character ψ in Ir−p (G) there exists a (finite) set of totally real intermediate fields {Fi = Fψ,i}i∈I
of F/k and for each index i a linear character φψ,i in Ir−p (GF/Fi) and an integer ni = nψ,i such

that ψ̌ =
∑

i∈Ini · IndGGF/Fi
(φ̌ψ,i).

This equality combines with the functoriality properties of p-adic Artin L-series to imply
Lp,Σ(ψ̌ωk, s) =

∏
i∈ILp,Σi(φ̌ψ,iωFi , s)

ni with Σi := ΣFi , and with the formula (1) to imply
rΣ,ψ =

∑
i∈Ini · ri with ri := rΣi,φψ,i .

In particular, if the equality of Conjecture 2.1 is valid for each pair (Σi, φψ,i), then each term

Lrip,Σi(φ̌ψ,iωFi , 0) is non-zero and one has

L
rΣ,ψ
p,Σ (ψ̌ωk, 0) =

∏
i∈I
Lrip,Σi(φ̌ψ,iωFi , 0)ni .

In addition, since the equality in Conjecture 2.4 is known to be valid for each pair (Σi, φψ,i),
each L -invariant LΣi(φψ,i) is non-zero and the above product is equal to∏

i∈I
LΣi(φψ,i)

ni ·
∏

i∈I
j−1(L

rψ,i
Σi

(φ̌jψ,i, 0)/RΣi(φ
j
ψ,i))

ni .

To deduce the equality of Conjecture 2.4 it thus suffices to note that the standard func-

toriality properties of Artin L-series imply
∏
i∈IL

rψ,i
Σi

(φ̌jψ,i, 0)ni = L
rΣ,ψ
Σ (ψ̌j , 0) and that easy

computations show
∏
i∈ILΣi(φψ,i)

ni = LΣ(ψ) and
∏
i∈IRΣi(φ

j
ψ,i)

ni = RΣ(ψj). �
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3. Statement of the main results

3.1. For an extension of number fields L/K and finite disjoint sets of places Σ and Σ′ of K

with S∞K ⊆ Σ we write ClΣ
′

Σ (L) for the quotient of the group of fractional ideals of OL,Σ that
are coprime to all places in Σ′L by the subgroup of principal ideals with a generator congruent

to 1 modulo all of the places in Σ′L. If Σ = S∞K or Σ′ is empty, then we abbreviate ClΣ
′

Σ (L) to

ClΣ
′
(L) and ClΣ(L) respectively.

We recall that the ‘Σ-relative Σ′-trivialized integral Selmer group’ SelΣ
′

Σ (L) for the multi-
plicative group Gm over L is defined to be the cokernel of a canonical homomorphism∏

w

Z −→ HomZ(L×Σ′ ,Z)

(see [4, Def. 2.1] where the notation SΣ,Σ′(Gm/L) is used). Here in the product w runs over

all places of L outside ΣL ∪ Σ′L, L×Σ′ is the subgroup of L× comprising elements u for which
u− 1 has a strictly positive valuation at each place in Σ′L and the unlabeled arrow sends each
element (xw)w to the map (u 7→

∑
ordw(u)xw).

This group is a natural analogue for Gm of the integral Selmer groups of abelian varieties
that are defined by Mazur and Tate in [28] and, in particular, lies in a canonical exact sequence
of the form

(5) 0→ HomZ(ClΣ
′

Σ (L),Q/Z)→ SelΣ
′

Σ (L)→ HomZ(O×L,Σ,Σ′ ,Z)→ 0

(see [4, Prop. 2.2]), where O×L,Σ,Σ′ denotes the (finite index) subgroup L×Σ′ ∩ O
×
L,Σ of O×L,Σ

and, in the case that L/K is Galois, both duals are endowed with the contragredient action of
GL/K .

We further recall that SelΣ
′

Σ (L) has a canonical transpose SelΣ
′

Σ (L)tr, in the sense of Jannsen’s
homotopy theory of modules [20], which itself lies in a canonical exact sequence

(6) 0 −→ ClΣ
′

Σ (L) −→ SelΣ
′

Σ (L)tr −→ XL,Σ −→ 0,

where XL,Σ denotes the kernel of the homomorphism YL,Σ → Z induced by sending each place
in ΣL to 1.

For a finite group ∆ and a character ψ in Irp(∆) we fix a finite extension Oψ of Zp for
which there exists a finitely generated Oψ-lattice Tψ and a representation ∆→ AutOψ(Tψ) of
character ψ. For each homomorphism ε : M → N of Zp[∆]-modules we consider the composite
homomorphism of Oψ-modules

ε〈ψ〉 : H0(∆, Tψ ⊗Zp M)→ H0(∆, Tψ ⊗Zp N) ⊆ Tψ ⊗Zp N → H0(∆, Tψ ⊗Zp N)

where ∆ acts diagonally on each of the tensor products, the first arrow is the map induced by
idTψ ⊗Zp ε and the second is the tautological map.

We also write ζ(A) for the centre of a ring A.

3.2. We now return to consider the extension of number fields F/k that was fixed in §2. In the
sequel we shall also fix a finite non-empty set S of places of k containing both Spk and the set
Sram
F/k of places that ramify in F/k and a finite non-empty set of places T of k that is disjoint

from S and such that O×F,S,T is torsion-free (it is easy to see that, for a given set S, such a set

T always exists).
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For each character ψ in Ir−p (G) we then set

(7) Lp,S,T (ψωk, s) := Lp,S(ψωk, s) ·
∏
v∈T

detCp(1−Nv · Fr−1
w | Vψ̌)

where Nv is the cardinality of the residue field of v and Frw the Frobenius automorphism in
G of any given place w of F above v.

Our first result extends the main result of Gross and Federer in [11]. Before stating this
result we note that our techniques will construct (in Theorem 5.8(ii)) a canonical refinement
λF,S,T,p of Gross’s regulator map λF,S,p of the form

(8) SelTS (F )tr,−
p

%% %%
O×,−F,S,T,p

λF,S,T,p
88

λF,S,p // X−F,S,p,

where the unlabeled arrow is the surjective homomorphism induced by the exact sequence (6).
In the sequel we write DL/K for the different of a finite extension L/K of either local fields

or number fields.
In claim (iii) of the following result we also write F cl for the Galois closure of F over Q, fix

a primitive p-th root of unity ζp in Cp and write valp(−) for the canonical valuation on Cp.

Theorem 3.1. For each character ψ in Ir−p (G) the following claims are valid.

(i) Lp,S,T (ψ̌ωk, z) vanishes to order at least rS,ψ at z = 0.

(ii) L
rS,ψ
p,S,T (ψ̌ωk, 0) · Oψ = |G|−rS,ψFitOψ(cok(λ

〈ψ〉
F,S,T,p)).

(iii) L
rS,ψ
p,S (ψ̌ωk, 0) 6= 0 if and only if LS(ψ) 6= 0. In addition, if LS(ψ) 6= 0 and either ψ

is Q-valued, F cl * (F cl)+(ζp) or no p-adic place of F+ splits in F , then for each field
isomorphism j : Cp ∼= C one has

valp(L
rS,ψ
p,S (ψ̌ωk, 0)) = valp(LS(ψ) · j−1(L

rS,ψ
S (ψ̌j , 0)/RS(ψj))).

(iv) If LS(ψ) 6= 0 and aψ is any element of D−1
Qp(ψ)/Qp ·

⋂
v∈S FitOψ(Ĥ0(Gw, Tψ)), then the

sum

|G|rS,ψ
∑
g∈G

TrQp(ψ)/Qp(aψψ̌(g)L
rS,ψ
p,S,T (ψ̌ωk, 0)LS(ψ)−1)g

belongs to Zp[G] and annihilates the module ClT (F )p.

Remark 3.2.
(i) For linear characters ψ the assertion of Theorem 3.1(i) was already known to follow as a
consequence of Wiles’s proof of the main conjecture for totally real fields. For such characters
it has also recently been proved directly by Spiess [40] by using Shintani cocycles.
(ii) The equality in claim (iii) constitutes a natural weakening of Conjecture 2.4. The main
result of Gross and Federer in [11] is equivalent to the result of this claim in the case that ψ
is both linear and Qp-valued. The condition F cl * (F cl)+(ζp) is automatically satisfied if, for
example, p is unramified in F/Q.
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We next record a consequence of Theorem 3.1 that combines with Conjecture 2.4 (and
Remark 2.3(ii)) to predict a precise p-adic analytic construction of families of algebraic p-
units that both generate non-abelian Galois extensions of totally real fields and also encode
structural information about ideal class groups. (In particular, see Remark 3.4(iv) below).

In claim (iii)(b) of this result we use the first derivative of the T -modified Σ-truncated Artin
L-series of a character ψ in Ir(G) that is defined (just as in (7)) for each set of places Σ of k
with S∞k ⊆ Σ ⊆ S by setting

(9) LΣ,T (ψ, s) := LΣ(ψ, s) ·
∏
v∈T

detC(1−Nv · Fr−1
w | Vψ̃).

Corollary 3.3. Let v1 be a p-adic place in S that has absolute degree one and ψ a character
in Ir−(G) which satisfies

(10) LS(ψ, 0) = 0 and LS\{v1}(ψ, 0) · L′S(ψ, 0) 6= 0.

Fix a place w1 of F above v1 and set G1 := Gw1. Fix an embedding j : Qc → Qc
p whose

restriction to F corresponds to w1 and use it to identify F1 := FG1 as a subfield of Qp, ψ as

an element of Ir−p (G) and GQp(ψ)/Qp as a subgroup of GQ(ψ)/Q. Fix an element d in D−1
Q(ψ)/Q.

Then LS(ψγ) 6= 0 for every γ in GQp(ψ)/Qp and for every g in G the sum

aψ,d,g,p :=
∑
g′∈G1

(p− 1)

|G1|
∑

γ∈GQp(ψ)/Qp

L′p,S,T (ψ̌γωk, 0)LS(ψγ)−1ψ̌γ(gg′)dγ

belongs to Zp. Further, the element

εψ,d,p := paψ,d,id,p · expp(
(p− 1)

|G1|
∑
g′∈G1

∑
γ∈GQp(ψ)/Qp

L′p,S,T (ψ̌γωk, 0)ψ̌γ(g′)dγ)

belongs to O×,−F1,{v1},p and has all of the following properties.

(i) For every g in G one has

g(εψ,d,p) = paψ,d,g,p · expp(
(p− 1)

|G1|
∑
g′∈G1

∑
γ∈GQp(ψ)/Qp

L′p,S,T (ψ̌γωk, 0)ψ̌γ(gg′)dγ).

(ii) If d is an algebraic integer, then for every θ in HomZp[G](O
×,−
F,{v1},p,Zp[G]) the product

|G|2 · θ(εψ,d,p) belongs to Zp[G] and annihilates ClT{v1}(F )p.

(iii) Assume Conjecture 2.4 is valid for the character ψα for all α in GQc/Q. Fix a set of
representatives {ψi : i ∈ I} for the orbits of GQp(ψ)/Qp on {ψα : α ∈ GQc/Q} and set

εψ,d :=
∏
i∈I

εψi,d,p ∈ O
×,−
F1,{v1},p.

Then there exists an integer m that is prime to p and such that both of the following
claims are valid.
(a) If d 6= 0, then the element εmψ,d is a k[G]-generator of the field F ker(ψ).
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(b) For every g in G the sum

yψ,d,g,m :=
∑
g′∈G1

m(p− 1)

|G1|
∑

α∈GQ(ψ)/Q

L′S,T (ψ̌α, 0)RS(ψα)−1ψ̌α(gg′)dα

is a rational integer. Further, if B is the prime ideal of F that corresponds to w1,
then εmψ,d generates the ideal

∏
g g(B)yψ,d,g,m where in the product g runs over a

set of coset representatives for G1 in G.

Remark 3.4.
(i) In [5, Rem. 13.5] Sano and the present author describe explicit families of examples in
which all of the hypotheses of Corollary 3.3 are satisfied for characters ψ that are both faithful
and of arbitrarily large degree.
(ii) The result of Corollary 3.3(ii) is analogous to the main annihilation result proved (for
cyclotomic fields) by Rubin in [37]. A close analysis of our argument will also show that the
factor |G|2 in Corollary 3.3(ii) is not always best possible.
(iii) Let {ψj : j ∈ J} be a finite set of characters in Ir−(G) that satisfy the hypotheses of

Corollary 3.3(iii) and for each j fix an element dj of D−1
Q(ψj)/Q. Our proof of Corollary 3.3 will

show that if the GQc/Q-orbits of the characters ψj are distinct, then there exists an integer
m that is prime to p and such that the product (

∏
j∈J εψj ,dj )

m is a k[G]-generator of the

compositum of the fields F ker(ψj) as j runs over J .
(iv) In the spirit of Gross’s conjecture [17, Conj. 3.13] it is natural to predict that the claims
in Corollary 3.3(iii)(a) and (b) should both be valid with m = 1. In this way Corollary 3.3
both extends and refines an observation (concerning the case that ψ is linear) made by Gross
in [17, Prop. 3.14] and also provides a natural p-adic analogue of the question considered by
Stark in [41] and the conjecture formulated by Chinburg in [9] for characters ψ of degree two.

3.3. In this subsection we formulate a refined p-adic class number formula for Gm and state
several results related to it.

In the sequel, for any noetherian ring R we write D(R) for the derived category of left R-
modules and Dp(R) for the full triangulated subcategory of D(R) comprising complexes that
are isomorphic to a bounded complex of finitely generated projective R-modules.

We recall that for any homomorphism R → R′ of associative unital noetherian rings, any
object C of Dp(R) and any exact sequence of R′-modules

(11) ε : 0→ · · · → R′ ⊗R H i(C)→ R′ ⊗R H i+1(C)→ R′ ⊗R H i+2(C)→ · · · → 0

one can define a canonical element χR,R′(C, ε) in the relative algebraic K0-group K0(R,R′).
If, in addition, R′ is a semisimple Qp-algebra, then the associated reduced norm map

K1(R′)→ ζ(R′)× is bijective and so there exists a composite homomorphism

δR,R′ : ζ(R′)× → K1(R′)→ K0(R,R′)

where the first arrow is the inverse of the reduced norm map and the second is the canonical
connecting homomorphism of relative K-theory (normalised as in [7, §1.2]).

In the case that R′ is the total quotient ring of R we abbreviate χR,R′(−,−) and δR,R′ to
χR(−,−) and δR respectively.
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In the sequel we set

Λ[G]ss := Λ[G]ess

for any subring Λ of Cp, where ess is the idempotent of ζ(Qp[G]) defined in (4), and for any
object C of Dp(Λ[G]) we write Css for the associated object Λ[G]ss ⊗L

Λ[G] C of Dp(Λ[G]ss).

We note that if Λ[G] is semisimple, then in each degree i there is a natural identification
H i(Css) = ess ·H i(C).

We fix a set of places T of k as in §3.2 and note that in Lemma 4.1 (and Remark 4.2) below we
construct a canonical object RΓét,T (OF,S ,Zp(1)) of Dp(Zp[G]) which is acyclic outside degrees
one and two and is such that there are canonical identifications

(12) H i(RΓét,T (OF,S ,Zp(1)))− ∼=


O×,−F,S,T,p, if i = 1

SelTS (F )tr,−
p , if i = 2

0, otherwise

and hence also a canonical exact sequence of Qp[G]-modules

λss
F/k,S,p : 0→ Qp ·H1(RΓét,T (OF,S ,Zp(1))ss)

λF,S,p−−−−→ Qp ·H2(RΓét,T (OF,S ,Zp(1))ss)→ 0.

Finally we define a ζ(Cp[G])-valued meromorphic function of a p-adic variable z by setting

θp,F/k,S,T (z) :=
∑

ψ∈Ir−p (G)

eψLp,S,T (ψ̌ωk, z)

and we note that the leading term θ∗p,F/k,S,T (0) in the Taylor expansion of this function at

z = 0 belongs to ζ(Qp[G])×.
We can now state our conjectural refined p-adic class number formula for Gm.

Conjecture 3.5. In K0(Zp[G]ss,Qp[G]ss) one has

δZp[G]ss(θ
∗
p,F/k,S,T (0)ess) = −χZp[G]ss(RΓét,T (OF,S ,Zp(1))ss, λss

F/k,S,p)

The main evidence that we can currently provide in support of this conjecture is provided
by the next result.

In the sequel we write µp(E) for the p-adic µ-invariant of the cyclotomic Zp-extension of a
number field E. We recall Iwasawa has conjectured in [19] that µp(E) should always vanish.

Theorem 3.6. If µp(F ) vanishes or p does not divide [F : k], then Conjecture 3.5 is valid.

Remark 3.7. In [22] Johnston and Nickel identify families of extensions F/k for which one can
prove the main conjecture of non-commutative Iwasawa theory for F cyc/k without assuming
that either µp(F ) vanishes or p does not divide [F : k]. In all such cases our method shows
that the equality of Theorem 3.6, and all of its consequences described below in Corollaries
3.8, 3.10 and 3.11 are valid without any assumption on the odd prime p.

By replacing the role played by p-adic L-functions in the equality of Theorem 3.6 by Artin
L-functions we will directly obtain the following result.

Corollary 3.8. If either µp(F ) vanishes or p does not divide [F : k], then the following claims
are valid.
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(i) If the Weak p-adic Gross-Stark Conjecture (Conjecture 2.4) is valid for all ψ in Ir−p (G),

then the equivariant Tamagawa number conjecture for (h0(Spec(F )),Zp[G]−) is valid
modulo the subgroup δZp[G]−,Cp[G]−(ζ(Cp[G](e− − ess))

×).

(ii) If Gross’s Order of Vanishing Conjecture (Conjecture 2.1) is valid for all ψ in Ir−p (G),

then the equivariant Tamagawa number conjecture for (h0(Spec(F )),Zp[G]−) is valid.

Remark 3.9.
(i) If F/k is abelian and either µp(F ) vanishes or p does not divide [F : k], then Corollary
3.8(i) combines with the theorem of Dasgupta, Kakde and Ventullo recalled in Theorem 2.6
to imply the validity modulo δZp[G]−,Cp[G]−(ζ(Cp[G](e− − ess))

×) of the equivariant Tamagawa

number conjecture for (h0(Spec(F )),Zp[G]−).
(ii) In [5, Cor. 10.6 and Exam. 10.7] it is shown by Sano and the present author that
Corollary 3.8 can also be used to give the first verifications of the equivariant Tamagawa
number conjecture for (h0(Spec(F )),Zp[G]−) in the technically most difficult case that F/k is
non-abelian of degree divisible by p and the relevant p-adic L-series possess trivial zeroes.

In the rest of this section we record several concrete results that are obtained by deriving
consequences of Conjecture 3.5 and then applying Theorem 3.6.

3.4. For each non-negative integer r we now define an ‘r-th order p-adic Stickelberger series’
for the data F/k, S and T by setting

θ
(r)
p,F/k,S,T (z) := θp,F/k,S,T (z) ·

∑
ψ∈Ir−p (G)

eψz
−rψ(1) =

∑
ψ∈Ir−p (G)

eψz
−rψ(1)Lp,S,T (ψ̌ωk, z).

We also define a ζ(Qp[G])-valued L -invariant for F/k by setting

LS(F/k) :=
∑

ψ∈Ir−p (G)

eψLS(ψ).

For a finite group ∆ we write ξ(Zp[∆]) for the Zp-order in ζ(Qp[∆]) that is (additively)
generated over Zp by the reduced norms over the semisimple algebra Qp[∆] of all finite square
matrices with entries in Zp[∆]. If ∆ is abelian, then it is clear that ξ(Zp[∆]) = Zp[∆] but in
general one finds that ξ(Zp[∆]) is neither contained in nor contains ζ(Zp[∆])

A Zp[∆]-module N is said to have a ‘quadratic presentation’ if there exists a natural number

d and an exact sequence of Zp[∆]-modules of the form Zp[∆]d → Zp[∆]d → N → 0.
We recall that for such modules N there exists a canonical ξ(Zp[∆])-submodule FitZp[∆](N)

of ζ(Qp[∆]) that constitutes a natural generalization of the classical notion of zeroth Fitting
ideal (for more details of this construction see Parker [33] and Nickel [30]).

Corollary 3.10. Write V for the subset of S comprising all (non-archimedean) places that
split completely in F/k and set r := |V |. Then the following claims are valid.

(i) θ
(r)
p,F/k,S,T (z) is holomorphic at z = 0.

(ii) SelTS\V (F )p and SelTS\V (F )tr
p have quadratic Zp[G]-module presentations.

(iii) If µp(F ) vanishes or p does not divide [F : k], then one has both

ξ(Zp[G]) · θ(r)
p,F/k,S,T (0) = LS(F/k) · FitZp[G](SelTS\V (F )tr

p )
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and
ξ(Zp[G]) · θ(r)

p,F/k,S,T (0)# = LS(F/k)# · FitZp[G](SelTS\V (F )p).

Before stating the next result we recall that for every natural number m and matrix M in
Mm(Z[G]) there is a unique matrix M∗ in Mm(Q[G]) with MM∗ = M∗M = NrdQ[G](M) · Im
and such that for every primitive central idempotent e of Q[G] the matrix M∗e is invertible if
and only if NrdQ[G](M)e is non-zero: we then obtain an ideal of ζ(Z[G]) by setting

A(G) := {x ∈ ζ(Q[G]) : if d > 0 and M ∈ Md(Z[G]) then xM∗ ∈ Md(Z[G])}.
This ideal was introduced in [30] and is studied extensively by Johnston and Nickel in [21].

In the next result we state several consequences of Corollaries 3.8 and 3.10 that are in the
spirit of (stronger versions of) Brumer’s Conjecture.

In this result we continue to use the notation of Corollary 3.10. In claims (ii) and (iii) we
also use the ζ(Q[G])-valued ‘Stickelberger elements’ that are defined for sets of places Σ of k
with S∞k ⊆ Σ ⊆ S by setting

θF/k,Σ,T (0) =
∑

ψ∈Ir(G)

eψLΣ,T (ψ̌, 0).

Corollary 3.11. If either µp(F ) vanishes or p does not divide [F : k], then the following
claims are valid.

(i) For each a in A(G) the product a ·θ(r)
p,F/k,S,T (0) belongs to LS(F/k) ·AnnZ[G](ClT (F ))p.

(ii) Assume the Weak p-adic Gross-Stark Conjecture (Conjecture 2.4) to be valid for all
characters in Ir−p (G). Then for each a in A(G)∩Qp[G]ss the elements a ·θF/k,S\V,T (0)#

and a · θF/k,S\V,T (0) belong to Zp[G] and respectively annihilate SelTS\V (F )p and both

SelTS\V (F )tr
p and ClT (F )p.

(iii) Assume Gross’s Order of Vanishing Conjecture (Conjecture 2.1) to be valid for all
characters in Ir−p (G). Write Σ for the set Sram

F/k of places of k that ramify in F (and

note that Sk∞ ⊆ Σ). Then SelTΣ(F )p has a quadratic Zp[G]-module presentation and

ξ(Zp[G])− · θF/k,Σ,T (0)# = FitZp[G]−(SelTΣ(F )−p ).

In particular, for a in A(G)− the elements a · θF/k,Σ,T (0)# and a · θF/k,Σ,T (0) belong to

Zp[G] and respectively annihilate SelTΣ(F )p and both SelTΣ(F )tr
p and ClT (F )p.

Remark 3.12.
(i) In the context of Corollary 3.11(ii) recall that Conjecture 2.4 is known to be valid whenever
F/k is abelian (see Theorem 2.6).
(ii) The ‘non-abelian Brumer-Stark conjecture’ (as formulated independently by Nickel in [31]
and the present author in [2]) asserts that the element a · θF/k,Σ,T (0) occurring in Corollary

3.11(iii) belongs to Z[G] and annihilates ClT (F ). In the case that G is abelian, this prediction
recovers the classical Brumer-Stark Conjecture, as formulated by Tate in [43, Chap. IV, §6].
Previous investigations of these questions (such as in the recent work of Greither and Popescu
[15] and Johnston and Nickel [23]) study a weaker version of the conjectures in which θF/k,Σ,T (0)
is replaced by the ‘imprimitive’ Stickelberger element θF/k,Σ∪Spk ,T

(0) since that allows one to
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avoid technical difficulties arising from the existence of trivial zeros in the relevant p-adic
L-series. Corollary 3.11(iii) now provides a concrete strategy for proving the non-abelian
Brumer-Stark conjecture in the presence of trivial zeroes and is used by Sano and the present
author in [5] to give the first unconditional verifications of the conjecture in this setting.

3.5. We now assume G = GF/k is abelian. We also fix an ordering of S and for each v in S a
place wv of F lying over v. For each CM extension L of k in F we write wv,L for the restriction
of wv to L and VL for the subset of S comprising places that split completely in L/k (so that,
in the notation of Corollary 3.10, one has VF = V ) and we set rL := |VL|.

Then Theorem 3.1(iii) implies θ
(rL)
p,L/k,S,T (0) is stable under multiplication by ess and hence

that, with H = GF/L, there exists a unique element εpL/k,S,T of
∧rL

Qp[G/H]ess(Qp · O×L,S) with

(Qp ⊗Zp
∧rL

Zp[G/H]
λL,S,p)(ε

p
L/k,S,T ) = θ

(rL)
p,L/k,S,T (0) ·

∧
v∈VL

(wv,L − wv,L).

By using the approach of Kurihara, Sano and the present author in [4], one can show
Conjecture 3.5 implies that the family of elements εpL/k,S,T has the same arithmetic properties

that are conjectured for Rubin-Stark elements in loc. cit., including validating refinements
of the ‘refined class number formula for Gm’ that is formulated independently by Mazur and
Rubin in [27] and Sano in [39].

On the other hand, if Gross’s Order of Vanishing Conjecture (Conjecture 2.1) is valid for
all characters in Ir−p (G), then Theorem 2.6 implies that the p-adic Gross-Stark Conjecture is
valid for L/k for every CM-extension L of k in F and, in this case, a direct comparison of

definitions shows that εpL/k,S,T = e−(εVLL/k,S,T ) with εVLL/k,S,T the Rubin-Stark element for the

data (L/k, S, T, VL).
In this way one obtains concrete new evidence for the conjectures formulated in [4]. This

aspect of the theory is discussed by Sano and the present author in [5], where it is also extended
naturally to the setting of arbitrary Galois CM extensions of totally real fields.

4. Canonical complexes

In this section we explicitly describe the complex RΓét,T (OF,S ,Zp(1)) that occurs in Con-
jecture 3.5 and, in particular, describe its connection to the ‘T -modified compactly supported
Weil-étale cohomology complexes’ RΓc,T ((OF,S)W ,Z) that are defined in [4, Prop. 2.4].

For each finite Galois extension L of k in F cyc we write κw for the residue field of each place
w in TL.

Lemma 4.1. Let L be a finite Galois extension of k in F cyc and set G′ := GL/k. Then there
exists a canonical object RΓét,T (OL,S ,Zp(1)) in Dp(Zp[G′]) with all of the following properties.

We write H i
T (OL,S ,Zp(1)) for the cohomology of RΓét,T (OL,S ,Zp(1)) in each degree i.

(i) There is a canonical exact triangle in Dp(Zp[G′]) of the form

RΓét,T (OL,S ,Zp(1))→ RΓét(OL,S ,Zp(1))
θL,S,T−−−−→

⊕
w∈TL

RΓét(κw,Zp(1))→

in which H1(θL,S,T ) is induced by the natural projection maps O×L,S → κ×w .
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(ii) RΓét,T (OL,S ,Zp(1)) is acyclic outside degrees one and two, H1
T (OL,S ,Zp(1))) identifies

with O×L,S,T,p and there exists a canonical short exact sequence of Zp[G′]-modules

0→ H2
T (OL,S ,Zp(1))→ SelTS (L)tr

p → YL,S∞k ,p → 0

where the last arrow denotes the composite of the scalar extensions of the homomor-
phism SelTS (L)tr → XL,S in (6) and the natural projection XL,S → YL,S∞k .

(iii) There is a natural exact triangle in Dp(Zp[G′]) of the form

RΓT (OL,S ,Zp(1))→ Zp ⊗Z RHomZ(RΓc,T ((OL,S)W ,Z),Z)[−3]→ YL,S∞k ,p[−2]→,

where RHomZ(RΓc,T ((OL,S)W ,Z),Z) is endowed with contragredient G′-action.
(iv) Let ε be any exact sequence of the form (11) with C = RΓét,T (OL,S ,Zp(1))−, R =

Zp[G]− and R′ = Cp[G]−. Then in K0(R,R′) one has

χR,R′(C, ε) = χR,R′(RΓét(OL,S ,Zp(1))−, ε)− δR,R′(
∏
v∈T

NrdQp[G](1−Nv · Fr−1
wv )e−)

where each wv is a choice of place of L above v.

Proof. For each w in TL we write ιw for the closed immersion Spec(κw) → Spec(OL,S). We
then write θL,S,T for the morphism RΓét(OL,S ,Zp(1)) →

⊕
w∈TL RΓét(κw,Zp(1)) induced by

the inverse limits over n of the natural morphisms µpn →
⊕

w∈TL ιw,∗(µpn) on Spec(OL,S).

With respect to the natural identifications H1
ét(OL,S ,Zp(1)) = O×L,S,p and H1

ét(κw,Zp(1)) =

κ×w,p the map H1(θL,S,T ) is the natural map O×L,S,p →
⊕

w∈TL κ
×
w,p. In particular, by defining

RΓét,T (OL,S ,Zp(1)) to be the mapping fibre of θL,T one directly obtains an exact triangle
of the form stated in claim (i). (We are grateful to the referee for pointing out that an
alternative description of the complex RΓét,T (OL,S ,Zp(1)) is given by the approach of Greither
and Popescu in [16, Lem 5.6].)

Next we note that, as p is odd, the complex RΓét(OL,S ,Zp(1)) belongs to Dp(Zp[G′]) and is
acyclic outside degrees one and two. In addition,

⊕
w∈TL RΓét(κw,Zp(1)) belongs toDp(Zp[G′])

and is acyclic outside degree one. These facts combine with the triangle in claim (i) (and
its associated long exact sequence of cohomology) to imply RΓét,T (OL,S ,Zp(1)) belongs to
Dp(Zp[G′]), is acyclic outside degrees one and two and has cohomology in degree one that
identifies with the kernel O×L,S,T,p of H1(θL,S,T ).

The triangle in claim (i) fits into a commutative diagram of exact triangles in D(Zp[G′])

(13)

x
YL,S∞k ,p[−2]x

Zp ⊗Z RHomZ(C,Z)[−3] −→ RΓc(OL,S ,Zp)∗[−3] −→
⊕

w∈TL κ
×
w,p[−1] −→x x∼=

RΓT (OL,S ,Zp(1)) −→ RΓ(OL,S ,Zp(1))
θL,S,T−−−−→

⊕
w∈TL RΓét(κw,Zp(1)) −→ .
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Here we write C for RΓc,T ((OL,S)W ,Z) (as defined in [4, Prop. 2.4]) and set RΓc(OL,S ,Zp)∗ :=
RHomZp(RΓc(OL,S ,Zp),Zp). The existence of the vertical triangle follows from the Artin-
Verdier Duality theorem, the upper horizontal triangle is obtained by applying the exact functor
Zp ⊗Z RHomZ(−,Z)[−1] to the right hand vertical triangle in the diagram [4, (6)] and the
right hand vertical map is the natural isomorphism resulting from the fact that each complex
RΓét(κw,Zp(1)) is acyclic outside degree one.

Recalling that SelTS (L)tr is defined in [4] to be equal to H−1(RHomZ(RΓc,T ((OL,S)W ,Z),Z)),
it is then straightforward to check that this exact diagram gives rise to an exact sequence of
the form stated in claim (ii).

The exact triangle in claim (iii) is obtained directly upon completing the diagram (13) to a
morphism of exact triangles.

To deduce the equality in claim (iv) as a consequence of the exact triangle in claim (i) (and
the standard additivity properties of Euler characteristics in relative K-theory) it suffices to
prove that for each v in T one has

χR,R′(
⊕
w|v

RΓét(κw,Zp(1))−, 0) = δR,R′(NrdQp[G](1−Nv · Fr−1
wv )e−).

This equality follows directly from the fact that
⊕

w|v RΓét(κw,Zp(1))− is naturally isomorphic

to a complex R→ R, where the first term is placed in degree zero and the differential is right
multiplication by (1−Nv · Fr−1

wv )e−. �

Remark 4.2. If the field L in Lemma 4.1 is CM, then Y −L,S∞k ,p vanishes. This shows that the

identifications in (12) follow directly from Lemma 4.1(ii).

5. Iwasawa theoretic preliminaries

In this section we shall define the refined regulator map λF,S,T,p that occurs in diagram (8)
and also prove several Iwasawa-theoretic results that will be used in the proofs of Theorem 3.1
and Corollary 3.3.

5.1. In this subsection we discuss some preliminary algebraic constructions and introduce
convenient notation.

5.1.1. Let ∆ be a finite group. For each ψ in Irp(∆) we fix a subfield Eψ of Qc
p which is

both Galois and of finite degree over Qp and over which ψ can be realised. We also fix an
indecomposable idempotent fψ of Eψ[∆]eψ, write Oψ for the valuation ring of Eψ, choose a
maximal Oψ-orderMψ in Eψ[∆] which contains fψ and define an Oψ-free right Oψ[∆]-module
Tψ := fψMψ. The associated right Eψ[∆]-module Vψ := Eψ ⊗Oψ Tψ has character ψ.

For any (left) Zp[∆]-module M we set M [ψ] := Tψ ⊗Zp M , upon which ∆ acts on the left

by t⊗m 7→ tδ−1 ⊗ δ(m) for each t ∈ Tψ,m ∈M and δ ∈ ∆.

For any Zp[∆]-module M and subgroup Υ of ∆ we also write Ĥ i(Υ,M) for the Tate cohomol-
ogy group in degree i and MΥ, resp. MΥ, for the maximal submodule, resp. maximal quotient
module, of M upon which Υ acts trivially. We thereby obtain left, respectively right, exact
functors M 7→ M (ψ) and M 7→ M(ψ), from left Zp[∆]-modules to the category of Oψ-modules
by setting

M (ψ) := M [ψ]∆ and M(ψ) := M [ψ]∆ ∼= Tψ ⊗Zp[∆] M.
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The action on M of the element
∑

δ∈∆ δ then gives rise to a natural exact sequence of
Oψ-modules

(14) 0→ Ĥ−1(∆,M [ψ])→M(ψ)

Trψ∆,M−−−−→M (ψ) → Ĥ0(∆,M [ψ])→ 0.

In particular, if M , and hence also M [ψ], is a cohomologically-trivial ∆-module, then Trψ∆,M
is bijective and so the functors M(ψ) and M (ψ) extend to give naturally isomorphic (exact)
functors from the derived category of bounded complexes of cohomologically-trivial Zp[∆]-
modules to the derived category of bounded complexes of Oψ-modules.

The following technical result will be useful in subsequent sections.
In claims (ii) and (iii) of this result we use the construction ε 7→ ε〈ψ〉 introduced just prior

to the statement of Theorem 3.1.

Lemma 5.1. Fix ψ in Irp(∆) and set O := Oψ.

(i) Let C be a complex of cohomologically-trivial Zp[∆]-modules that is acyclic outside
degrees a and a+1 for an integer a. Then C(ψ) is acyclic outside degrees a and a+1 and

there are natural isomorphisms Ha(C(ψ)) ∼= Ha(C)(ψ) and Ha+1(C(ψ)) ∼= Ha+1(C)(ψ).
(ii) Let λ : M → N be an injective homomorphism of finitely generated Zp[∆]-modules

which induces an isomorphism QpM ∼= QpN . Then

FitO(cok(λ(ψ))) = |∆|−rFitO(cok(λ〈ψ〉)) · FitO(Ĥ0(∆, N [ψ])) · FitO(Ĥ−1(∆, N [ψ]))−1

with r = dimQcp(Q
c
p ·N (ψ)).

(iii) Let λ and λ̃ be injective homomorphisms M → N as in claim (ii). Then if M (ψ) is
torsion-free one has

FitO(cok(λ〈ψ〉))FitO(cok(λ̃〈ψ〉))−1 =FitO(cok(λ(ψ)))FitO(cok(λ̃(ψ)))−1

=detQcp((Q
c
p ⊗Zp λ) ◦ (Qc

p ⊗Zp λ̃)−1 | Qc
p ·N (ψ)) · O.

Proof. Fix a complex Ma d−→Ma+1 of cohomologically-trivial Zp[∆]-modules that is isomorphic
to C in D(Zp[∆]). Then there is an exact commutative diagram of O-modules

Ma
(ψ)

Trψ∆,Ma

��

d(ψ) // Ma+1
(ψ)

Trψ
∆,Ma+1

��

// // Ha+1(C)(ψ)

Ha(C)(ψ) � � // Ma,(ψ) d(ψ)
// Ma+1,(ψ)

with bijective vertical arrows. Claim (i) follows immediately from this diagram.
To prove claim (ii) we use the exact commutative diagram
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ker(τ)
id //id //

� _

��

ker(τ)� _

��
M (ψ)

id
��

λ(ψ)
// N (ψ)

τ

��

// // cok(λ(ψ))

��
M (ψ) λ〈ψ〉 // N(ψ)

����

// // cok(λ〈ψ〉)

����
cok(τ)

id // cok(τ)

where τ is the tautological map and the left hand square commutes by definition of λ〈ψ〉. All
modules in the last column of this diagram are finite and so one has

FitO(cok(λ(ψ))) = FitO(cok(λ〈ψ〉))FitO(ker(τ))FitO(cok(τ))−1.

In addition, the composite Trψ∆,N ◦ τ is equal to the endomorphism µ|∆| of N (ψ) induced by

multiplication by |∆| and so the kernel-cokernel sequence of this composite implies that

FitO(ker(τ))FitO(cok(τ))−1

= FitO(Ĥ0(∆, N [ψ]))FitO(Ĥ−1(∆, N [ψ]))−1FitO(ker(µ|∆|))FitO(cok(µ|∆|))
−1.

Claim (ii) now follows because an application of the Snake lemma to the exact commutative
diagram

N
(ψ)
tor
� � //

µ|∆|
��

N (ψ) // //

µ|∆|

��

N
(ψ)
tf� _

µ|∆|
��

N
(ψ)
tor
� � // N (ψ) // // N

(ψ)
tf

implies FitO(ker(µ|∆|))FitO(cok(µ|∆|))
−1 = detO(µ|∆| | N

(ψ)
tf )−1O = |∆|−rO.

Regarding claim (iii), the first equality is a direct consequence of the equality in claim (ii)
and so it suffices to prove the second equality.

The assumption that M (ψ) is torsion-free (and λ and λ̃ are injective) also implies that if κ

denotes either λ or λ̃, then FitO(cok(κ(ψ)) = FitO(N
(ψ)
tor ) · FitO(cok(κ

(ψ)
tf )) with κ

(ψ)
tf denoting

the composite of κ(ψ) and the tautological projection N (ψ) → N
(ψ)
tf and so it is actually enough

to prove the second equality with λ(ψ) and λ̃(ψ) replaced by λ
(ψ)
tf and λ̃

(ψ)
tf .

In this case, the required equality is true because, by definition, the ideal FitO(cok(κ
(ψ)
tf )) is

generated over O by the determinant of the matrix of Qc
p ⊗O κ(ψ) with respect to any choice

of O-bases of M (ψ) and N
(ψ)
tf . �
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5.1.2. We next recall some necessary background material concerning Bockstein homomor-
phisms in Iwasawa theory.

To do this we assume to be given any compact p-adic Lie group G that contains a closed
normal subgroup H such that the quotient group Γ := G/H is topologically isomorphic to Zp.
We fix a topological generator γ of Γ.

We also fix a finitely generated Zp-algebra R and a continuous homomorphism

ρ : G → AutR(Tρ)

with Tρ a finitely generated free left R-module. We set ΛR(Γ) := R⊗Zp Λ(Γ) and consider the
tensor product ΛR(Γ)⊗R Tρ as an (ΛR(Γ),Λ(G))-bimodule where ΛR(Γ) acts by multiplication
on the left and Λ(G) acts on the right via the rule ((r ⊗Zp λ) ⊗R t)g := (r ⊗Zp λḡ) ⊗R g−1(t)
for each r in R, λ ∈ Λ(Γ), t ∈ Tρ and g ∈ G with image ḡ in Γ.

Then for each bounded complex of finitely generated projective Λ(G)-modules C we obtain
a bounded complex of finitely generated projective ΛR(Γ)-modules by setting

Cρ := (ΛR(Γ)⊗R Tρ)⊗Λ(G) C.

For each open normal subgroup U of G we set CU := Zp[G/U ] ⊗Λ(G) C. In particular, if
U ⊆ ker(ρ), then there are natural isomorphisms of (left) R-modules

Zp ⊗Λ(Γ) Cρ ∼= Tρ ⊗Λ(G) C ∼= Tρ ⊗Zp[G/U ] CU .

Thus, if for each such U we extend the notation of §5.1.1 by setting CU,(ρ) := Tρ ⊗Zp[G/U ] CU ,
then one has a natural exact triangle in D(R)

(15) Cρ
γ−1−−→ Cρ → CU,(ρ) → Cρ[1].

In each degree i this triangle then induces a short exact sequence of R-modules

(16) 0→ H i(Cρ)Γ
αi−→ H i(CU,(ρ))

α̃i−→ H i+1(Cρ)
Γ → 0,

a composite homomorphism

βiC,ρ,γ : H i(CU,(ρ))
α̃i−→ H i+1(Cρ)

Γ
τ i+1
Cρ−−−→ H i+1(Cρ)Γ

αi+1

−−−→ H i+1(CU,(ρ))

where τ i+1
Cρ

denotes the tautological map, and a bounded complex of R-modules

∆Cρ,γ : · · ·
βi−1
C,ρ,γ−−−−→ H i(CU,(ρ))

βiC,ρ,γ−−−−→ H i+1(CU,(ρ))
βi+1
C,ρ,γ−−−−→ · · ·

where the term H i(CU,(ρ)) occurs in degree i.

We refer to βiC,ρ,γ as the ‘Bockstein homomorphism in degree i of the data (C, ρ, γ)’ and

abbreviate this notation to βiC,γ in the case that ρ is the trivial representation of G.
We also say that C is ‘semisimple at ρ’ if the complex Qp ⊗Zp ∆Cρ,γ is acyclic for any, and

therefore every, choice of topological generator γ of Γ.
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5.2. In this subsection we shall state the main result that is to be proved in §5.
To do this we fix in the sequel data F/k, G, S and T as in Theorem 3.1 and set Gk := Gkc/k.

We also set G := GF cyc/k, H := GF cyc/kcyc and Γ := G/H ∼= Gkcyc/k and note that the triple
(G,H,Γ) satisfies the conditions of §5.1.2.

If E is a field which is a finite extension of either Q or Q` for some prime `, then we write
χE for the p-adic cyclotomic character GE → Z×p .

We write Λ(G) for the p-adic Iwasawa algebra of G and for each integer a let Λ(G)#(a)
denote the (left) Λ(G)-module Λ(G) endowed with the action of Gk whereby each element σ
acts as right multiplication by σ̄−1χk(σ)a where σ̄ is the image of σ in G.

For any finite set of places Σ of k containing Spk ∪S
ram
F/k we regard Λ(G)#(a) as an étale sheaf

of Λ(G)-modules on Ok,Σ in the natural way and then (since p is odd) we obtain following the

approach of Nekovář in [29] a canonical object RΓét(Ok,Σ,Λ(G)#(a)) of Dp(Λ(G)).
We note that claim (iv) of the following result refers to the Strong Stark Conjecture formu-

lated by Chinburg in [8, Conj. 2.2].

Theorem 5.2. Fix a character ψ in Ir−p (G), recall the integer rS,ψ defined in §2.1 and write

rp,S,ψ for the order of vanishing of Lp,S(ψ̌ωk, s) at s = 0. Then all of the following assertions
are valid.

(i) rp,S,ψ ≥ rS,ψ.
(ii) The following conditions are equivalent.

(a) rp,S,ψ = rS,ψ.

(b) The complex RΓét(Ok,S ,Λ(G)#(1)) is semisimple at ψ.
(c) LS(ψ) 6= 0.

(iii) There exists a canonical homomorphism λF,S,T,p : O×,−F,S,T,p → SelTS (F )tr,−
p of Zp[G]-

modules that lies in a commutative diagram of the form (8) and for which the equality
in Theorem 3.1(ii) is valid.

(iv) Assume that the conditions in claim (ii) are satisfied and that the character ψj validates
the Strong-Stark Conjecture at p for any isomorphism of fields j : Cp ∼= C. Then

L
rS,ψ
p,S (ψ̌ωk, 0) is non-zero and satisfies the displayed equality in Theorem 3.1(iii).

After proving certain preliminary results in §5.3 and §5.4 we shall prove Theorem 5.2 in §5.5.
In the process we shall also show (in Theorem 5.8(ii)) that the map λF,S,T,p constructed in
Theorem 5.2(iii) naturally gives rise to an explicit description of the image of Gross’s regulator
map λF,S,p.

Remark 5.3. In the special case that F/k has degree two and ψ is the unique non-trivial
homomorphism G → Q×p , the equivalence of the conditions in Theorem 5.2(ii) can also be
directly derived from the observations of Sinnott given in [11, (6.3), (6.4)]. We are very
grateful to the referee for pointing this out to us.

5.3. With G,H and Γ as specified above, in this subsection we define an object of Dp(Λ(G))
that will be central to the proof of Theorem 5.2 and also establish some of its basic properties.

We write τ for the (unique) complex conjugation in G and, noting that τ is central in G, we
obtain idempotents e± in ζ(Λ(G)) by setting e± := (1± τ)/2. In particular, each Λ(G)-module
M decomposes as a direct sum M+ ⊕M− with M± := e± ·M and for objects C of Dp(Λ(G))
one can similarly define subcomplexes C+ and C−.
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We write A(G) for the set of continuous representations

ρ : G → GLn(O)

where O is a finite extension of Zp and ker(ρ) is open in G. We also write A+(G) and A−(G)
for the subsets of A(G) comprising representations that are respectively totally even (that is,
for which ρ(τ) = In) and totally odd (so ρ(τ) = −In).

5.3.1. For each open normal subgroup V of G, with FV := (F cyc)V , there are natural isomor-
phisms in Dp(Zp[G/V ]) of the form

Zp[G/V ]⊗L
Λ(G) RΓét(Ok,S ,Λ(G)#(1)) ∼= RΓét(OFV ,S ,Zp(1))

and for each place v of k also

Zp[G/V ]⊗L
Λ(G) RΓét(κv,Λ(G)#(1)) ∼=

⊕
w

RΓét(κw,Zp(1))

where in the direct sum w runs over all places of FV above v.
By passing to the inverse limit of the exact triangles in Lemma 4.1(i) over all finite extensions

L of F in F cyc one can thus construct an exact triangle in Dp(Λ(G)) of the form

(17) RΓét,T (Ok,S ,Λ(G)#(1))→ RΓét(Ok,S ,Λ(G)#(1))→
⊕
v∈T

RΓét(κv,Λ(G)#(1))→

in which, for each open normal subgroup V of G, there is a natural isomorphism in Dp(Zp[G/V ])

(18) Zp[G/V ]⊗L
Λ(G) RΓét,T (Ok,S ,Λ(G)#(1)) ∼= RΓét,T (OFV ,S ,Zp(1)).

The complex RΓét,T (Ok,S ,Λ(G)#(1))− will play a key role in the proof of Theorem 5.2.

5.3.2. To investigateRΓét,T (Ok,S ,Λ(G)#(1))− it is convenient to use the following construction
from non-commutative Iwasawa theory.

WriteQ(G) for the total quotient ring of Λ(G) and note each homomorphism ρ : G → GLn(O)
in A(G) gives rise to a ring homomorphism

Q(G)→ Mn(O)⊗Zp Q(Γ) ∼= Mn(QO(Γ))

that sends g in G to ρ(g) ⊗ g̃ ∈ Mn(QO(Γ)), where g̃ denotes the image of g in Γ and QO(Γ)
the total quotient ring of O ⊗Zp Λ(Γ).

We then fix a topological generator γ of Γ and note that the above ring homomorphism
induces a group homomorphism

Φρ : K1(Q(G))→ K1(Mn(QO(Γ))) ∼= K1(QO(Γ)) ∼= QO(Γ)× ∼= Q(O[[u]])×

where O[[u]] denotes the ring of power series over O in the formal variable u, the first isomor-
phism is induced by Morita equivalence, the second by taking determinants over QO(Γ) and
the last by sending γ − 1 to u.

The relevant properties of this homomorphism are recorded in the next result. Before stating
this result we recall (from the beginning of §3.3) that any C in Dp(Λ(G)) for which Q(G)⊗Λ(G)C
is acyclic gives a canonical element χΛ(G)(C, 0) of K0(Λ(G), Q(G)). In any such case we say
that an element ξ of K1(Q(G)) is a ‘characteristic element for C’ if one has

(19) ∂Λ(G)(ξ) = −χΛ(G)(C, 0).
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Here ∂Λ(G) denotes the natural connecting homomorphism K1(Q(G))→ K0(Λ(G), Q(G)) (nor-
malised as in §3.3) and the sign occurs in the displayed equality to ensure consistency with the
conventions fixed in [7, §1.4].

In the sequel we write x 7→ x∗ and x 7→ twa(ξ) for each integer a for the Qc
p-linear anti-

involution and ring automorphism of Qc
p ⊗Zp Λ(G) that respectively send each g in G to g−1

and to χk(g)ag. In claims (iv) and (v) of the following result we also use the same notation to
denote the induced group automorphisms of K1(Q(G)).

Lemma 5.4. For all elements ξ of K1(Q(G)) and all representations ρ : G → GLn(O) and ρ′

in A(G) the following properties are valid.

(i) Φρ⊕ρ′(ξ) = Φρ(ξ)Φρ′(ξ);
(ii) Φρα(ξ) = ια(Φρ(ξ)) for all α ∈ GQp, where ια is the automorphism of the Qp-algebra

Qc
p ⊗O Q(O[[u]]) obtained by letting α act on the coefficient of each power of u;

(iii) Φρ⊗ψ(ξ) = ιψ(Φρ(ξ)) for all ψ ∈ A(Γ), where ιψ is the automorphism of Q(O[[u]]) that
sends u to ψ(γ)(1 + u)− 1;

(iv) Φρ(ξ
∗) = ι∗(Φρ̌(ξ)) where ι∗ is the automorphism of Q(O[[u]]) sending u to (1+u)−1−1;

(v) Φρ(twa(ξ)) = ιa(Φρωak
(ξ)) for all integers a, where ιa is the automorphism of Q(O[[u]])

that sends u to κk(γ)a(1 + u)− 1;
(vi) For each open subgroup U of G, finite normal subgroup V of U and ψ in A(U/V) one has

ΦIndGU (InfUU/Vψ)(ξ) = Φψ(ξU/V) where ξU/V is the image of ξ under the natural composite

map K1(Q(G)) → K1(Q(U)) → K1(Q(U/V)) and Φψ(−) is computed with respect to
the unique topological generator of G(F cyc,U )cyc,V/F cyc,U whose restriction to Gkcyc,V/k

coincides with the restriction of an element of the form γp
n

with n > 0.
(vii) If ξ is a characteristic element for C in Dp(Λ(G)), then Φρ(ξ) is a characteristic

element for Cρ in Dp(O[[u]]).

Proof. Claims (i)-(iv) are obvious, (v) and (vi) are proved in [3, Lem. 9.5 and Lem. 3.6(i)] and
(vii) follows easily from the naturality of connecting homomorphisms in relative K-theory. �

5.3.3. In this section we prove the main result concerning the complexRΓét,T (Ok,S ,Λ(G)#(1))−

that will be used in the proof of Theorem 5.2.
Before stating this result we note that it suffices to prove Theorem 5.2 with F/k replaced by

F (ζp)/k for any primitive p-th root of unity ζp in kc. In particular, if necessary after replacing
F by F (ζp), we may and will assume in the sequel that F cyc contains all p-power roots of unity
in Qc.

In particular, in the cases we study the cyclotomic character χk will always factor through
the projection Gk → G. In addition, the homomorphism κk := χk · ω−1

k factors through the
restriction map Gk → Γ and we recall (from, for example, the discussion of Greenberg in [13])
that for any fixed topological generator γ of Γ and any representation ψ in A+(G) Deligne
and Ribet have shown that there exists a unique element fS,ψ(u) in the total quotient ring of
Qc
p ⊗Zp Zp[[u]] for which one has

(20) Lp,S(1− s, ψ) = fS,ψ(κk(γ)s − 1).
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Finally, for each v in T we fix a place wv of F cyc above v, write Frwv for the Frobenius
automorphism of wv in G and note that the product

κT :=
∏
v∈T

(1−Nv · Fr−1
wv )

belongs to Λ(G) ∩ Q(G)×. We write κ′T for the image of κT in K1(Q(G)) and then for each
representation ρ in A(G) set

κT,ρ(u) := Φρ(κ
′
T ).

Proposition 5.5. Assume F contains ζp and set C := RΓét,T (Ok,S ,Λ(G)#(1))−.

(i) Then C is acyclic outside degree two and the Λ(G)-module H2(C) is finitely generated,
torsion and of projective dimension at most one.

(ii) For each ρ in A−(G) the complex Cρ is acyclic outside degree two, the Oρ[[u]]-module
H2(Cρ) is finitely generated, torsion and of projective dimension at most one and its
characteristic ideal is generated by the series

fS,T,ρ(u) := κT,ρ(u) · fS,ρ̌ωk(κk(γ)(1 + u)−1 − 1).

Proof. The isomorphisms (18) imply each group H i(C) can be computed as the inverse limit
(with respect to the natural corestriction maps) of the groups H i

T (OL,S ,Zp(1)))− as L varies
over all finite extensions of F in F cyc.

In particular, by combining the explicit descriptions of H i
T (OL,S ,Zp(1)) given in (12) with

the exact sequences (6) one finds that C is acyclic outside degrees one and two, that H1(C)

identifies with lim←−LO
×,−
L,S,T,p and that there is a canonical exact sequence

0 −→ lim←−
L

ClTS (L)−p −→ H2(C) −→ lim←−
L

Y −L,S,p −→ 0,

where in each limit L runs over finite extensions of F in F cyc. Since each non-archimedean
place in S has open decomposition subgroup in G, it is then straightforward to deduce the
groups H1(C) and H2(C) are finitely generated torsion Λ(G)-modules.

To complete the proof of claim (i) it is thus enough to prove C is represented by a complex of
finitely generated projective Λ(G)-modules of the form P 1 → P 2 (since then H1(C) is a torsion
submodule of P 1, and hence zero, and so P 1 → P 2 is a projective resolution of H2(C)).

To do this it is turn enough to fix a bounded complex of finitely generated projective Λ(G)-

modules · · · → Q0 d0

−→ Q1 d1

−→ Q2 that is isomorphic in Dp(Λ(G)) to C and to prove that
cok(d0) is a projective Λ(G)-module.

To analyse cok(d0) we note first that for each open normal subgroup V of G the iso-

morphism (18) implies that the complex of V -coinvariants cok(d0
V )

d1
V−−→ Q2

V is isomorphic
in D(Zp[G/V ]) to RΓét,T (OFV ,S ,Zp(1))−. Since the Zp[G/V ]-module Q2

V is projective, this iso-

morphism implies that cok(d0
V ) is Zp-free (as both ker(d1

V ) ∼= H1
T (OFV ,S ,Zp(1))− = O×,−FV ,S,T,p

and im(d1
V ) ⊆ Q2

V are Zp-free) and also of finite projective dimension as a Zp[G/V ]-module
(since RΓét,T (OFV ,S ,Zp(1))− belongs to Dp(Zp[G/V ])). These facts then combine with [1, Th.
8] to imply that cok(d0

V ) is a projective Zp[G/V ]-module.
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Upon passing to the limit over V (and noting that all involved modules are compact) one
then deduces that cok(d0) ∼= lim←−V cok(d0)V = lim←−V cok(d0

V ) is a projective Λ(G)-module, as

required to prove claim (i).
Turning to claim (ii), the result of Lemma 5.6 below implies this claim is true if for any

given characteristic element ξ of RΓc,ét(Ok,S ,Λ(G)#(1))+ one has for each representation ρ in
A+(G) a containment of the form

(21) fS,ρ(u)/Φρ(ξ) ∈ O[[u]]×,

with O the valuation ring of any sufficiently large finite Galois extension of Qp in Qc
p.

Modulo a change of approach and notation, such containments were first deduced from
Wiles’ proof of the main conjecture for totally real fields by Ritter and Weiss in the course of
the proof of [35, Th. 16]. However, for completeness, we now quickly indicate how the above
containments can also be more directly deduced from Wiles’ result by using Lemma 5.4.

We recall first that the series fS,ρ(u) are known to satisfy precise analogues of the properties
given in Lemma 5.4(i)-(vi) (this is shown by Greenberg in [13]) and we shall often use this
point without explicit comment. In particular, since the naturality of connecting homomor-
phisms in relative algebraic K-theory implies, in the notation of Lemma 5.4(vi), that ξU/V is
a characteristic element for the complex

Λ(U/V)⊗L
Λ(U) RΓc,ét(Uk,S ,Λ(G)#(1)) ∼= RΓc,ét(UF cyc,U ,S ,Λ(U/V)#(1)),

a standard Brauer induction argument allows one to assume in the sequel that the extension
F/k is cyclic.

In this case we can choose a finite abelian CM extension F ′ of k for which F ′ ∩ kcyc = k and
F cyc = (F ′)cyc. The group G is then canonically isomorphic to the direct product GF ′/k × Γ

and, since each automorphism ιψ in Lemma 5.4(iii) preserves the group O[[u]]×, after replacing
F by F ′ and ρ by a suitable twist of the form ρ⊗ ψ with ψ in A(Γ) we can, and will, assume
in the sequel that Γ is contained in the kernel of ρ and hence that ρ identifies with a linear
character of the finite (cyclic) group H := GF cyc/kcyc ∼= GF ker(ρ)/k.

Write D(ρ) for the complex RΓc,ét(Ok,S ,Λ(G)#(1))ρ. Then, under the present hypotheses,
Lemma 5.1(i) implies D(ρ) is acyclic outside degrees two and three and gives identifications

H2(D(ρ)) = (Tρ ⊗Zp M
cyc
S )H , H3(D(ρ)) = (Tρ)H

where M cyc
S denotes the maximal abelian pro-p extension of F cyc unramified outside S.

Thus, since Lemma 5.4(vii) implies Φρ(ξ) is a characteristic element for D(ρ), to prove (21)
it is enough to show that the series

GS,ρ(u) := fS,ρ(u) · chO[[u]]((Tρ)H)

differs from chO[[u]]((Tρ ⊗Zp M
cyc
S )H) by a unit of O[[u]], where we write chO[[u]](N) for the

characteristic polynomial of any finitely generated torsion O[[u]]-module N .
Now, the O[[u]]-module (Tρ)H is isomorphic to Zp if ρ = 1G and is otherwise finite and so

chO[[u]]((Tρ)H) is equal to u if ρ = 1G and to 1 otherwise. Given this, the result of Wiles [44, Th.

1.3] asserts chO[[u]]((Tρ ⊗Zp M
cyc
S )H) is equal to the distinguished polynomial part of GS,ρ(u).

It thus suffices to show the powers µρ and µ′ρ of the uniformising parameter of O that occur
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in the Weierstrass decompositions of fS,ρ(u) and chO[[u]]((Tρ ⊗Zp M
cyc
S )H)chO[[u]]((Tρ)H)−1, or

equivalently of fS,ρ(u) and Φρ(ξ), coincide.
To do this we decompose H as Hp×H ′p with Hp its Sylow p-subgroup and accordingly write

ρ as a product ρp × ρ′p. Then there exists a finite set Υ of elements α of GQp for which∑
α∈Υ

ρα = IndHJ1×H′p(1J1 × ρ′p)− IndHJ2×H′p(1J2 × ρ′p)

for suitable subgroups J1 and J2 of Hp. Thus, since Lemma 5.4(ii) implies µρα = µρ and
µ′ρα = µ′ρ for α in GQp , the properties of Lemma 5.4(i) and (vi) combine to imply it is enough
to consider the case that ρ has order prime to p and in this case the equality µρ = µ′ρ is proved
directly by Wiles in [44, Th. 1.4].

This completes the proof of Proposition 5.5. �

Lemma 5.6. Assume F contains ζp and set C ′ := RΓc,ét(Ok,S ,Λ(G)#(1))+.

(i) Then C ′ belongs to Dp(Λ(G)) and Q(G)⊗Λ(G) C
′ is acyclic.

(ii) Proposition 5.5(ii) is true provided that for any characteristic element ξ of C ′ and each
representation ψ in A+(G) the quotient fS,ψ(u)/Φψ(ξ) belongs to O[[u]]× with O the
valuation ring of any sufficiently large finite Galois extension of Qp in Qc

p.

Proof. We set R := Λ(G) and Q := Q(G) and for each R-module M we regard M∗ :=
HomR(M,R) as a (left) R-module by setting x(θ)(m) := θ(m)x∗ for all x ∈ R, θ ∈ M∗

and m ∈M . We observe that this induces an exact functor E 7→ E∗ := RHomR(E,R[0]) from
Dp(R) to Dp(R) that is self-inverse.

Then, with this notation, the key point is that Artin-Verdier duality gives an isomorphism
RΓét(Ok,S ,Λ(G)#(1))[2] ∼= RΓc,ét(Ok,S ,Λ(G)#(1))∗ ⊗Zp Zp(1) in Dp(R) (where G acts diago-
nally on the tensor product) which in turn restricts to give an isomorphism

(22) RΓét(Ok,S ,Λ(G)#(1))−[2] ∼= (C ′)∗ ⊗Zp Zp(1).

Claim (i) follows directly from this isomorphism and the fact that the left hand complex
belongs to Dp(Λ(G)) and becomes acyclic after tensoring with Q(G) (by the same argument
as used in the proof of Proposition 5.5(i)).

To prove claim (ii) we use the complex C defined in Proposition 5.5. In particular, if we

represent C by the complex P 1 d−→ P 2 constructed in the proof of Proposition 5.5(i), then Cρ is

represented by (Tρ⊗Zp P
1)H

d′−→ (Tρ⊗Zp P
2)H with H the kernel of the projection map G → Γ

and the map d′ := (idTρ ⊗ d)H is injective since d′ is.
This shows that all but the final assertion of Proposition 5.5(ii) follow directly from Propo-

sition 5.5(i). To complete the proof of claim (ii) it thus suffices to show that the validity of the
containment (21) for each ρ in A+(G) implies that for each ρ in A−(G) the characteristic ideal
of the torsion O[[u]]-module H2(Cρ) is generated by the element fS,T,ρ defined in claim (ii).

As a first step we note that Lemma 5.7 below combines with the results of Lemma 5.4(iv)-
(vi) to imply that for each ρ in A−(G) the natural connecting homomorphism Q(O[[u]])× =
K1(Q(O[[u]]))× → K0(O[[u]], Q(O[[u]])) sends the element

Φρ(κT · tw−1(ξ∗)) = Φρ(κT )Φρ(tw−1(ξ∗)) = κT,ρ(u) · ι−1ι∗(Φρ̌ωk(ξ))

to −χO[[u]](Cρ, 0).
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Taken in conjunction with the assumed containment (21) this then implies that for each
such ρ the same is true of the product

κT,ρ(u) · ι−1ι∗(fS,ρ̌ωk(u)) = κT,ρ(u) · fS,ρ̌ωk(κk(γ)(1 + u)−1 − 1) = fS,T,ρ(u),

and, since Cρ is acyclic outside degree two, our chosen normalisation (19) of characteristic
element implies this last statement is equivalent to the final claim of Proposition 5.5(ii). �

Lemma 5.7. If ξ is any element as in Lemma 5.6(ii), then the product κT · tw−1(ξ∗) is a
characteristic element for the complex C in Proposition 5.5.

Proof. We use the module R ⊗R,tw−1 R
#(0) where the tensor product indicates that the first

term R is regarded a right R-module via the homomorphism tw−1. This module is endowed
with commuting left actions of R (via left multiplication on the first factor) and Gk (via the
given action on the second factor) and, with respect to these actions, the map 1⊗ g 7→ χk(g)g
induces an isomorphism of R× Zp[Gk]-modules R⊗R,tw−1 R

#(0) ∼= R#(1). This isomorphism
in turn induces for the complex C ′ in Lemma 5.6 an isomorphism in Dp(R) of the form

R⊗R,tw−1 (C ′)∗ ∼= (C ′)∗ ⊗Zp Zp(1).

Noting that the normalisation (19) implies ξ satisfies −∂R(ξ∗) = χR((C ′)∗, 0) (since if ξ
is represented by an automorphism α of Q, then ξ∗ is represented by the automorphism of
Q ⊗R R∗ that is induced by α), the displayed isomorphism combines with the naturality of
connecting homomorphisms in relative K-theory to imply

−∂R(tw−1(ξ∗))=χR(R⊗R,tw−1(C ′)∗, 0) = χR((C ′)∗⊗ZpZp(1), 0)=χR(RΓét(Ok,S ,Λ(G)#(1))−, 0)

where the last equality is a consequence of the isomorphism (22).
From the exact triangle (17) one also has an equality

χR(C, 0) = χR(RΓét(Ok,S ,Λ(G)#(1))−, 0)−
∑
v∈T

χR(RΓét(κv,Λ(G)#(1))−, 0).

We also note that, as each place v in T is prime to p, the complex RΓét(κv,Λ(G)#(1)) is
naturally isomorphic to a complex R → R, where the first term is placed in degree zero and
the differential is induced by right multiplication by the element 1−Nv ·Fr−1

wv , and hence that

∂R(e− · κT ) =
∑
v∈T

χR(RΓét(κv,Λ(G)#(1))−, 0).

Since ∂R(κT · tw−1(ξ∗)) = ∂R((e− ·κT ) · tw−1(ξ∗)) = ∂R(e− ·κT ) +∂R(tw−1(ξ∗)) the claimed
result is now a direct consequence of the last three displayed equalities. �

5.4. In this section we introduce a canonical refinement of Gross’s p-adic regulator map that
fits into a commutative diagram of the form (8) and deduce an explicit description of the image
of Gross’s map.

At the outset we fix groups G,H and Γ as in §5.2. For any finite Galois extension L of k in
F cyc we write ρL/k for the representation of G afforded by regarding T := Zp[GL/k] as a left

Zp[GL/k] ⊗Zp Λ(G)-module via the action (x ⊗Zp g)(t) = xtg−1
L for each x and t in Zp[GL/k]

and each g in G with image gL in GL/k.
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Then for a bounded complex of finitely generated projective Λ(G)-modules C and an open
normal subgroup U of G with U ⊆ GF cyc/L the complex CU,(ρL/k) described in §5.1.2 identifies

naturally with Zp[GL/k]⊗Λ(G) C and in each degree i we write

βiC,L/k,γ : H i(Zp[GL/k]⊗Λ(G) C)→ H i+1(Zp[GL/k]⊗Λ(G) C)

for the corresponding Bockstein homomorphism βiC,ρL/k,γ of Zp[GL/k]-modules.

In this section we regard the sets S and T as fixed and for each extension E of F in F cyc

write CE for the complex RΓét,T (Ok,S ,Λ(GE/k)
#(1))− in Dp(Λ(GE/k)). For simplicity we also

set Ccyc
F := CF cyc .

We can now state the main result that will be proved in this section.

Theorem 5.8. Fix a topological generator γ of Γ and set β1
F/k,γ := β1

Ccyc
F ,F/k,γ

and, for each

character ρ in Ir−p (G), also β1
ρ,γ := β1

Ccyc
F ,ρ,γ

. Then each of the following assertions is valid.

(i) There is a commutative diagram of Zp[G]-modules

H1(CF )
−logp(χk(γ))·β1

F/k,γ //

α1
F
��

H2(CF )

α2
F����

O×,−F,S,T,p

λF,S,p // Y −F,S,p,

in which α1
F and α2

F are respectively the canonical identification and surjection that are
induced by Lemma 4.1(ii) and the exact sequence (6).

(ii) For any fixed topological generator γF of ∆ := GF cyc/F one has

λF,S,p(O×,−F,S,T,p) = logp(χF (γF )) · πF (H2
T (OF,S ,Λ(ΓF )#(1))∆)−,

with πF the natural composite projection

H2
T (OF,S ,Λ(ΓF )#(1))→ H2

T (OF,S ,Zp(1))→ YF,S,p.

(iii) For each ψ in Ir−p (G) there is a commutative diagram

H1(CF )(ψ)

(α1
F )(ψ)

��

∼ // H1(CF,(ψ))
−logp(χk(γ))·β1

ψ,γ // H2(CF,(ψ))
∼ // H2(CF )(ψ)

|G|·(α2
F )(ψ)

��
(O×,−F,S,T,p)

(ψ)
λ
〈ψ〉
F,S,p // (Y −F,S,p)(ψ)

in which the unlabeled arrows are the isomorphisms induced by Lemma 5.1(i) (with
C = CF and ∆ = G).

The proof of this result occupies the next two subsections.
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5.4.1. We first prove commutativity of the diagram in Theorem 5.8(i).
We set d := [F : F ∩ kcyc] and use the restriction map to identify ∆ := GF cyc/F with the

subgroup of Γ of index d. Then Ccyc
F,ρF/k

is isomorphic in Dp(Λ(Γ)) to Λ(Γ)⊗Λ(∆) C
cyc
F and so

Lemma 5.9 below implies an equality of homomorphisms

logp(χk(γ)) · β1
F/k,γ = logp(χk(γ)) · (d× β1

F,γd) = logp(χF (γd)) · β1
F,γd .

It is therefore enough to prove the commutativity of the diagram in claim (i) after replacing
the upper map by logp(χF (γd)) · β1

F,γd
.

For each finite extension E of F in F cyc and each v in S \ S∞k we set Ev :=
∏
w Ew where

w runs over the set of places of E above v and we use the composite morphism

λvE : CE → RΓét(OE,S ,Zp(1))→ RΓét(Ev,Zp(1)),

where the first morphism is induced by the exact triangle in Lemma 4.1(i) and the second is
the natural localisation morphism. These morphisms are compatible with change of E and so,
by passing to the inverse limit over subfields E of F cyc that are of finite degree over F , one
obtains a morphism of exact triangles of Zp-modules

(23)

Ccyc
F

γd−1−−−→ Ccyc
F −→ CF −→ Ccyc

F [1]

λcyc
Fv

y λcyc
Fv

y λvF

y λcyc
Fv

[1]

y
Ccyc
Fv

γd−1−−−→ Ccyc
Fv
−→ RΓét(Fv,Zp(1)) −→ Ccyc

Fv
[1].

Here we fix a place w of F above v and set Ccyc
Fv

:= Λ(∆) ⊗Λ(∆w) C
cyc
Fw

with ∆w denoting the

decomposition subgroup of w in ∆ and Ccyc
Fw

the complex RΓét(F
cyc
w ,Zp(1)) where F cyc

w is the
p-cyclotomic extension of Fw in F cw.

In addition, setting dw := d · [∆ : ∆w], the result of Lemma 5.9 below applies (with Γ,∆, C
and γ replaced by ∆,∆w, C

cyc
Fw

and γd) to give an equality of homomorphisms

logp(χF (γd)) · β1
Ccyc
Fv

,γd = logp(χF (γd)) · ([∆ : ∆w]× β1
Ccyc
Fw

,γd·[∆:∆w ]) = logp(χFw(γdw)) · β1
Ccyc
Fw

,γdw .

The morphism of triangles (23) thus induces a commutative diagram of Zp-modules

(24)

H1(CF )
H1(λvF )
−−−−−→ H1

ét(Fv,Zp(1))
∼=−−−−→

∏
w|vH

1
ét(Fw,Zp(1))ylogp(χF (γd))·β1

F,γd

ylogp(χF (γd))·β1
C

cyc
Fv

,γd

y(logp(χFw (γdw ))·β1
C

cyc
Fw

,γdw
)w|v

H2(CF )
H2(λvF )
−−−−−→ H2

ét(Fv,Zp(1))
∼=−−−−→

∏
w|vH

2
ét(Fw,Zp(1))

in which both products are over all places w of F above v and, with respect to the iden-
tification H1(CF ) ∼= O×,−F,S,T,p and canonical surjection H2(CF ) → Y −F,S,p induced by Lemma

4.1(ii) and (6) and the natural identifications of H1
ét(Fw,Zp(1)) and H2

ét(Fw,Zp(1)) with the
pro-p-completion Zp⊗̂F×w of F×w and Zp respectively, the upper composite homomorphism is
induced by the natural localisation map O×F,S,T,p ⊂ F× →

∏
w|v F

×
w and the lower composite

homomorphism by the map YF,S,p →
∏
w|v Zp which sends each element (nw′)w′∈SF to (nw)w|v.
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To describe each map β1
w := β1

Ccyc
Fw

,γdw
explicitly we recall the argument of Rapoport and

Zink in [34, 1.2] (see also [6, §3.2.1]) implies this map is equal to cup product with the ele-
ment of H1

ét(Fw,Zp) = Homcont(GF cw/Fw ,Zp) obtained by composing the projection GF cw/Fw �
GF cyc

w /Fw together with the continuous homomorphism GF cyc
w /Fw → Zp that sends γdw to 1. In

particular, since cup products commute with corestriction, one has a commutative diagram

(25)

H1
ét(Fw,Qp(1))

κ1

−−−−→ H1
ét(Q`(w),Qp(1))

β1
w

y ye(γw)−1·β1
γw

H2
ét(Fw,Qp(1))

κ2

−−−−→ H2
ét(Q`(w),Qp(1))

in which we write `(w) for the residue characteristic of w, κ1 and κ2 for the natural corestriction
maps, e(γw) for the p-adic integer defined by the condition that γdw acts on Qcyc

`(w) as the

e(γw)-th power of a fixed topological generator γw of GQcyc
`(w)

/Q`(w)
and β1

γw for the Bockstein

homomorphism in degree one of the data (RΓét(Qcyc
`(w),Zp(1)), γw).

Now, with respect to the identifications H1
ét(Fw,Qp(1)) ∼= Qp⊗̂F×w and H2

ét(Fw,Qp(1)) ∼= Qp

(and similarly with Fw replaced by Q`(w)), the maps κ1 and κ2 in (25) are induced by NFw/Q`(w)

and the identity map respectively whilst an explicit exercise in local class field theory (as in
Kato [25, Chap. II, Lem. 1.4.5]) shows β1

γw is induced by the map logp(χQ`(w)
(γw))−1 · logp if

`(w) 6= p and by −1 times this map if `(w) = p. The diagram (25) therefore implies that β1
w

is equal to the composite

− (−1)a(w)e(γw)−1logp(χQ`(w)
(γw))−1 · logp ◦NFw/Q`(w)

= −logp(χFw(γdw))−1 · ((−1)a(w) × logp ◦NFw/Q`(w)
)

with a(w) = 0 if `(w) = p and a(w) = 1 if `(w) 6= p. In addition, for x in Zp⊗̂F×w one has

(−1)a(w) × logp(NFw/Qp(x)) = logp((Nw)−valw(x) ·NFw/Qp(x))

if `(w) = p (since then logp(Nw) = 0), and

(−1)a(w) × logp(NFw/Q`(w)
(x)) = logp(NFw/Q`(w)

(π−valw(x)
w )) = logp((Nw)−valw(x))

if `(w) 6= p and πw is any choice of uniformising parameter of Fw.
Given this explicit description of β1

w = β1
Ccyc
Fw

,γdw
, the commutativity of the diagram in

Theorem 5.8(i) follows directly from the commutativity of (24), the definition of λF,S,p and the
fact that (as observed by Gross in [17, (1.8)]) an explicit description of the local reciprocity
map combines with the commutative diagram (3) to imply that for each x in F×w one has

||x||w,p =

{
(Nw)−valw(x) ·NFw/Qp(x), if `(w) = p

(Nw)−valw(x), otherwise.

Lemma 5.9. Let C be an object of Dp(Λ(Γ)). Then for each open subgroup ∆ of Γ there is a
natural exact triangle in Dp(Λ(Γ))

Λ(Γ)⊗Λ(∆) C
1−γ−−→ Λ(Γ)⊗Λ(∆) C

π−→ C∆ → Λ(Γ)⊗Λ(∆) C[1],
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in which γ acts as multiplication on the first factor in each tensor product. In each degree i the
bockstein homomorphism H i(C∆)→ H i+1(C∆) of this triangle coincides with [Γ : ∆]×βi

C,γ[Γ:∆].

Proof. The existence of the displayed exact triangle is clear.
It is also clear that, setting d := [Γ : ∆], there is a morphism of exact triangles of Zp-modules

Λ(Γ)⊗Λ(∆) C
1−γ // Λ(Γ)⊗Λ(∆) C

π // C∆
// Λ(Γ)⊗Λ(∆) C[1]

C

td

OO

1−γd // C

1⊗id

OO

π′ // C∆

id

OO

// C[1]

td[1]

OO

in which, in each degree j, the map tjd sends x in Cj to
∑i=d−1

i=0 γi(1 ⊗ x) ∈ Λ(Γ) ⊗Λ(∆) C
j ,

πj sends x⊗ yj in Λ(Γ)⊗Λ(∆) C
j to x(yj∆) ∈ Cj∆ with yj∆ the image of yj in Cj∆ and π′ is the

natural projection.
Thus, by passing to cohomology this morphism of triangles gives a commutative diagram

H i(C∆) −−−−→ H i+1(Λ(Γ)⊗Λ(∆) C)Γ Hi+1(π)−−−−−→ H i+1(C∆)∥∥∥ Hi+1(td)

x x×d
H i(C∆) −−−−→ H i+1(C)∆ Hi+1(π′)−−−−−−→ H i+1(C∆)

and this implies the claimed result since the lower composite homomorphism in this diagram
is equal to βi

C,γd
. �

5.4.2. We now complete the proof of Theorem 5.8 by deriving claims (ii) and (iii) as conse-
quences of claim (i).

Regarding claim (ii) the commutativity of the diagram in claim (i) combines with the sur-
jectivity of the map α̃i in (16) to give an equality

λF,S,p(O×,−F,S,T,p) = α2
F (im(logp(χF (γF )) · β1

F/k,γ)) = logp(χF (γF )) · πF/k(H2(Ccyc
F,ρF/k

)Γ),

with πF/k the natural composite homomorphism

H2(Ccyc
F,ρF/k

)Γ ⊆ H2(Ccyc
F,ρF/k

)→ H2(Zp ⊗L
Λ(Γ) C

cyc
F,ρF/k

) ∼= H2
T (OF,S ,Zp(1))→ YF,S,p.

The equality in claim (ii) is the special case F = k of this equality.
To prove claim (iii) we use the subgroups U := GF cyc/F and H := GF cyc/kcyc of G = GF cyc/k

and the representative P 1 d−→ P 2 of Ccyc
F constructed in the proof of Proposition 5.5(i).

We note in particular that if ρ : G → AutR(Tρ) is any homomorphism as in §5.1.2 which
factors through the surjection G → G, then the map β1

Ccyc
F ,ρ,γ

: H1(CF,(ρ))→ H2(CF,(ρ)) can be

computed as πρ ◦κ1
ρ with κ1

ρ the connecting homomorphism H1(CF,(ρ))→ (Tρ⊗ZpH
2(Ccyc

F ))H
in the exact commutative diagram of R-modules
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(Tρ ⊗Zp P
1)H� _

1−γ
��

� �
(idTρ⊗Zpd)H

// (Tρ ⊗Zp P
2)H� _

1−γ
��

// // (Tρ ⊗Zp H
2(Ccyc

F ))H

1−γ
��

(Tρ ⊗Zp P
1)H

����

� �
(idTρ⊗Zpd)H

// (Tρ ⊗Zp P
2)H

����

// // (Tρ ⊗Zp H
2(Ccyc

F ))H

πρ
����

H1(CF,(ρ))
� � ιρ // Tρ ⊗Zp[G] P

1
U

idTρ⊗Zp[G]dU // Tρ ⊗Zp[G] P
2
U

// // H1(CF,(ρ))

where the maps ιρ and πρ are defined via the identifications H1(CF,(ρ)) = ker(idTρ ⊗Zp[G] dU )

and H2(CF,(ρ)) ∼= H2(CF )(ρ)
∼= (Tρ ⊗Zp H

2(Ccyc
F ))G .

Note that if ρ = ρF/k (so R = Tρ = Zp[G]), then β1
Ccyc
F ,ρ,γ

= β1
F/k,γ and there is a natural

identification of the Zp[G]-module H1(CF,(ρ)) with H1(CF ).

On the other hand, the above description means that for any ψ in Ir−p (G) one can compute
the upper row of the diagram in claim (iii) by first identifying the sublattice

H1(CF )(ψ) = (Tψ ⊗Zp ker(dU ))G = ker((idTψ ⊗Zp dU )G) ⊆ (Tψ ⊗Zp P
1
U )G = TrG(Tψ ⊗Zp P

1
U )

of Vψ⊗Zp[G]H
1(CF ) ⊆ Qc

p ·H1(CF ) with H1(CF,(ψ)) via the map sending each element TrG(x)

of ker((idTψ⊗Zp dU )G) to the image x of x in ker(idTψ⊗Zp[G]dU ) ⊆ (Tψ⊗ZpP
1
U )G = Tψ⊗Zp[G]P

1
U

and then applying πψ ◦ κ1
ψ to x.

In particular, since the image of TrG(x) in Tψ ⊗Zp[G] P
1
U is equal to |G| · x this gives a

commutative diagram of Oψ-modules

H1(CF )(ψ)

id
��

∼ // H1(CF,(ψ))
β1
ψ,γ // H2(CF,(ψ))

∼ // H2(CF )(ψ)

×|G|
��

H1(CF )(ψ)
(β1
F/k,γ

)〈ψ〉

// H2(CF )(ψ)

and the commutativity of the diagram in claim (iii) follows directly by combining this diagram
with that in claim (i).

This completes the proof of Theorem 5.8.

5.5. In this subsection we combine the results obtained above in order to prove Theorem 5.2.
To do this we set C := RΓét,T (Ok,S ,Λ(G)#(1))− and note that (by a standard Shapiro

Lemma argument) we may, and will, identify the complex CF defined just prior to Theorem
5.8 with RΓét,T (OF,S ,Zp(1))−.

We also fix a character ψ in Ir−p (G) and a corresponding representation G → AutO(Tψ) in

A−(G) which we continue to denote by ψ and we write E for the fraction field of O.
Then, since Cψ is acyclic outside degree two (by Proposition 5.5(ii)), the exact sequence

(16) induces an isomorphism of O-modules H1(CF )(ψ)
∼= H2(Cψ)Γ.
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Hence, as u annihilates H2(Cψ)Γ, the tautological short exact sequence

0→ H2(Cψ)Γ → H2(Cψ)→ H2(Cψ)/H2(Cψ)Γ → 0

implies that the maximal power ralg
p,S,ψ of u that divides chO[[u]](H

2(Cψ)) satisfies

ralg
p,S,ψ ≥ dimE(E ·H2(Cψ)Γ) = dimE(E ·H1(CF )(ψ)),

with equality if and only if u acts injectively on the quotient H2(Cψ)/H2(Cψ)Γ. In particular,
since the Qp[G]-modules Qp ·H1(CF ) and Qp ·H2(CF ) are isomorphic one therefore has

ralg
p,S,ψ ≥ dimE(E ·H1(CF )(ψ)) = dimE(E ·H2(CF )(ψ)) = dimE(E · YF,S,(ψ)) = rS,ψ

where the last equality is a direct consequence of (1).
Claim (i) now follows from the last displayed inequality because Proposition 5.5(ii) combines

with the interpolation property (20) to imply that ralg
p,S,ψ coincides with rp,S,ψ.

Next we note that, since CF is acyclic outside degrees one and two (by Lemma 4.1(ii)), the
complex C is semisimple at ψ if and only if the map β1

C,ψ,γ is bijective. In addition, as the

Qp[G]-modules Qp ·H1(CF ) and Qp ·H2(CF ) are isomorphic, the map β1
C,ψ,γ is bijective if and

only if it is injective. Given this, the equivalence of (b) and (c) in claim (ii) follows directly by
combining the explicit description of Theorem 5.8(ii) with the obvious fact that LS(ψ) 6= 0 if

and only if the map λ
〈ψ〉
F,S,p is injective.

The discussion in §5.1.2 also shows that the complex C is semisimple at ψ if and only if
the tautological map E · H1(Cψ)Γ → E · H1(Cψ)Γ is bijective, or equivalently the element

u = γ−1 acts invertibly on the quotient module E · (H1(Cψ)/H2(Cρ)
Γ). This implies that the

equivalence of the conditions (a) and (b) in claim (ii) also follows directly from the discussion
above.

To proceed we now set

λF,S,T,p := −logp(χk(γ)) · β1
F/k,γ

and note that Theorem 5.8(i) implies this homomorphism lies in a commutative diagram of
the form (8). To prove claim (iii) it is thus enough to show that this choice of λF,S,T,p also
satisfies the equality in Theorem 3.1(ii) for the character ψ.

To do this we assume first that β1
C,ψ,γ is not injective. In this case the map λ

〈ψ〉
F,S,T,p is not

injective, and hence the O-module cok(λ
〈ψ〉
F,S,p) is not torsion, whilst the above proof of claim

(ii) implies rp,S,ψ 6= rS,ψ so that (by claim (i)) L
rS,ψ
p,S,T (ψ̌ωk, 0) = 0. In this case, therefore, the

equality of Theorem 3.1(ii) is satisfied trivially since both sides are zero.
Assuming now β1

C,ψ,γ is injective, we derive the claimed equality by combining Proposition

5.5(ii) with the computation of generalised Euler characteristics given in [6, Prop. 3.19]. More

precisely, since C
(ψ)
F is acyclic outside degrees one and two and β1

C,ψ,γ is injective one finds in
this way a formula

(26) FitO(cok(β1
C,ψ,γ)) = f∗S,T,ψ(0) · O

where f∗S,T,ψ(0) is the leading term at u = 0 of the series fS,T,ψ(u).
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In addition, in this case the proof of claim (ii) and the formula (1) together imply that

rp,S,ψ = dimE(E ·H1(C
(ψ)
F )) and so the explicit description of Theorem 5.8(ii) combines with

Lemma 5.1(iii) to give a formula

FitO(cok(β1
C,ψ,γ)) = logp(κk(γ))−rp,S,ψ |G|−rp,S,ψFitO(cok(λ

〈ψ〉
F,S,T,p)).

In this case the equality of Theorem 3.1(ii) is now obtained by comparing the last equality
to (26) and then using the following explicit computation of the leading term.

Lemma 5.10. f∗S,T,ψ(0) = logp(κk(γ))−rp,S,ψL∗p,S,T (ψ̌ωk, 0).

Proof. We set f̃S,ψ(u) := fS,ψ̌ωk(κk(γ)(1 + u)−1 − 1) and rp := rp,S,ψ. Then the interpolation

property (20) implies f̃S,ψ(u) vanishes to order rp at u = 0 and hence that

f̃∗S,ψ(0) = lim
u→0

u−rpfS,ψ̌ωk(κk(γ)(1 + u)−1 − 1)

= (−1)rp lim
u→0

u−rpfS,ψ̌ωk(κk(γ)(1 + u)− 1)

= (−1)rp lim
s→0

(κk(γ)s − 1)−rpfS,ψ̌ωk(κk(γ)1+s − 1)

= (−1)rp logp(κk(γ))−rp lim
s→0

s−rpLp,S(ψ̌ωk,−s)

= logp(κk(γ))−rp lim
s→0

s−rpLp,S(ψ̌ωk, s)

= logp(κk(γ))−rpL∗p,S(ψ̌ωk, 0).

In addition, an explicit computation shows that the value of κT,ψ(u) := Φψ(κT ) at u = 0 is

equal to
∏
v∈T det(1−Nt · Fr−1

wv | Vψ) 6= 0 and so the definition of Lp,S,T (ψ̌ωk, s) in (7) implies

directly that L∗p,S,T (ψ̌ωk, 0) = κT,ψ(0)L∗p,S(ψ̌ωk, 0).

Since fS,T,ψ(u) is defined to be κT,ψ(u)f̃S,ψ(u) one therefore has

f∗S,T,ψ(0) = κT,ψ(0)f̃∗S,ψ(0) = logp(κk(γ))−rpκT,ψ(0)L∗p,S(ψ̌ωk, 0)

= logp(κk(γ))−rpL∗p,S,T (ψ̌ωk, 0),

as claimed. �

Turning to claim (iv) the isomorphism RΓc(OF,S ,Zp)∗[−3]− ∼= RΓ(OF,S ,Zp(1))− induced by
the vertical exact triangle in (13) combines with Lemma 4.1(iv) to imply the equivariant Tam-
agawa number conjecture for (h0(Spec(F ),Zp[G]−) is valid if and only if for any isomorphism
of fields j : C ∼= Cp there is an equality in K0(Zp[G]−,Cp[G]−)

(27) δZp[G]−,Cp[G]−(
∑

ψ∈Ir−(G)

eψjL
∗
S,T (ψ̌, 0)j) = −χZp[G]−,Cp[G]−(CF , RS,j),

where RS,j denotes the exact sequence of Cp[G]-modules

(28) 0→ Cp ·H1(CF )
Cp⊗R,jRF,S−−−−−−−→ Cp ·H2(CF )→ 0.



ON DERIVATIVES OF p-ADIC L-SERIES 33

Thus, if ψ validates the Strong Stark Conjecture, then [2, Remark 6.1.1(iii) and Lem. A.3]
together imply that for each such j one has

L∗S,T (ψ̌, 0)j · ∧rψOjH
2(CF )(ψj),tf = |G|−rS,ψFitO(H2(CF )(ψj),tor) · ∧

rψ
Oj (RS,j(H

1(CF ))(ψj))

where we set rψ := rS,ψ, O := Oψ and Oj := Oψj , or equivalently

(L∗S,T (ψ̌, 0)/RS(ψ))j · ∧rψOjH
2(CF )(ψj),tf = |G|−rψFitOj (H

2(CF )(ψj),tor) · ∧
rψ
Oj (φp(H

1(CF ))(ψj))

with φp := Zp ⊗Z φF,S .

In addition, as H1(CF )(ψj) is torsion-free, there is an exact diagram of Oj-modules

H2(CF )(ψj),tor� _

��
φp(H

1(CF ))(ψj)

id
��

� � // H2(CF )(ψj)

����

// // cok(φ
〈ψj〉
p )

φp(H
1(CF ))(ψj) � � // H2(CF )(ψj),tf

and hence an equality

∧rψOj (φp(H
1(CF ))(ψj)) = FitOj (cok(φ〈ψ

j〉
p ))FitOj (H

2(CF )(ψj),tor)
−1 · ∧rψOjH

2(CF )(ψj),tf .

Comparing the last two displayed equalities one deduces that

(29) (L∗S,T (ψ̌, 0)/RS(ψ))jOj = |G|−rψFitOj (cok(φ〈ψ
j〉

p )).

On the other hand, since we are assuming L (ψj) 6= 0, the equality of Theorem 3.1(ii) (with
ψ replaced by ψj) combines with Lemma 5.1(iii) to imply

(L∗p,S,T (ψ̌jωk, 0)/L (ψj)) · Oj = |G|−rψFitOj (cok(φ〈ψ
j〉

p ))

and the equality of Theorem 3.1(iii) follows immediately by comparing this formula with (29).
This completes the proof of Theorem 5.2.

6. Orders of vanishing, valuations and Hilbert’s twelfth problem

In this section we derive Theorem 3.1 and Corollary 3.3 as consequences of Theorem 5.2.

6.1. In this subsection we prove Theorem 3.1.
It is at first clear that Theorem 3.1(i) and (ii) follow directly from Theorem 5.2(i) and (iii)

respectively and that the equivalence of (a) and (c) in Theorem 5.2(ii) implies the first assertion
of Theorem 3.1(iii).

In addition, the remainder of Theorem 3.1(iii) follows from Theorem 5.2(iv) and the fact that
if either ψ is rational valued or no p-adic place of F+ splits in F whenever F cl * (F cl)+(ζp),
then it validates the Strong Stark Conjecture at p by Tate [43, Ch. II, Th. 6.8] and by Nickel
[32, Cor. 2] respectively.

It therefore only remains to prove Theorem 3.1(iv) and to do this we assume, as required,
that LS(ψ) 6= 0.
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Then to deduce the containment in claim (iv) from the result of Lemma 6.1 below one need

only note L
rS,ψ
p,S,T (ψ̌ωk, 0) = L∗p,S,T (ψ̌ωk, 0) (by Theorem 5.2(ii)) and that Fit(Ĥ0(G, Y −S,p[ψ]))

contains Fit(Ĥ0(G, YS,p[ψ])) =
∏
v∈S Fit(Ĥ0(Gv, Tψ)) and then apply a slight refinement of

(the natural p-adic analogue of) the result of [2, Lem. 11.1.2(i) and (ii)].
To be precise, one directly applies the result of [2, Lem. 11.1.2(ii)] in this context. However,

to obtain the containment stated in claim (iv) one must also note that, whilst the result of
[2, Lem. 11.1.2(i)] asserts (in the notation of loc. cit.) that for any yψ in AnnO(Mψ) one
has |G|yψprψ ∈ O ⊗ AnnZ[G](M), if one uses the natural isomorphism Hom(Mψ,Q/Z) ∼=
Hom(M,Q/Z)ψ̌ and equality AnnZ[G](Hom(M,Q/Z)) = AnnZ[G](M)# it follows easily from

the same argument as in loc. cit. that if yψ is any element of either AnnO(Mψ) or AnnO(Mψ),
then the product yψ · prψ belongs to O ⊗AnnZ[G](M).

This completes the proof of Theorem 3.1.

Lemma 6.1. If LS(ψ) 6= 0, then (L∗p,S,T (ψ̌ωk, 0)/LS(ψ)) ·FitO(Ĥ0(G, Y −F,S,p[ψ])) is contained

in FitO(ClT (F )
(ψ)
p ).

Proof. We regard ψ as fixed and so abbreviate Oψ and FitOψ(−) to O and Fit(−) respectively.

By the argument of [2, Lem. 5.1.1] we can choose a finite set S′′ of places of k that are not in
S, are totally split in F/k and are such that ClTS∞k ∪S′′

(F )p vanishes. Then, setting S′ := S∪S′′,
one has L∗p,S,T (ψ̌ωk, 0)/LS(ψ) = L∗p,S′,T (ψ̌ωk, 0)/LS′(ψ) (cf. [2, Lem. 5.1.3]).

To further analyse this quotient we write C ′F in place of RΓét,T (OF,S′ ,Zp(1))− and note
that the exact sequence (6) combines with Lemma 4.1(ii) to imply H2(C ′F ) identifies with

SelTS′(F )tr,−
p = Y −F,S′,p.

Hence, writing φS′,T,p for the restriction of φF,S′,p to O×F,S′,T , one has

(L∗p,S,T (ψ̃ωk, 0)/LS(ψ)) · O =(L∗p,S′,T (ψ̃ωk, 0)/LS′(ψ)) · O

=|G|−rp,S′,ψLS′(ψ)−1Fit(cok(λ
〈ψ〉
F,S′,T,p))

=|G|−rp,S′,ψFit(cok(φ
〈ψ〉
S′,T,p))

=Fit(cok(φ
(ψ)
S′,T,p))Fit(Ĥ−1(G, Y −F,S′,p[ψ]))Fit(Ĥ0(G, Y −F,S′,p[ψ]))−1

=Fit(cok(φ
(ψ)
S′,T,p))Fit(Ĥ−1(G, Y −F,S,p[ψ]))Fit(Ĥ0(G, Y −F,S,p[ψ]))−1.

Here the second equality is by Theorem 3.1(ii) (with S replaced by S′), the third follows from
Lemma 5.1(iii), the fourth from Lemma 5.1(ii) and the last from the fact that each place in
S′′ splits completely in F/k and so Y −F,S′′,p[ψ] is a cohomologically-trivial G-module.

We next note that the natural sequence 0 → O×,−F,S′,T,p

φS′,T,p−−−−→ Y −F,S′,p → ClT (F )−p → 0 is

exact (as ClTS∞k ∪S′′
(F ) vanishes) so that there is an induced exact sequence of O-modules

0→ cok(φ
(ψ)
S′,T,p)→ ClT (F )(ψ)

p → H1(G,O×,−F,S′,T,p[ψ])

and hence, by general properties of Fitting ideals over O, an inclusion

Fit(cok(φ
(ψ)
S′,T,p)) · Fit(H1(G,O×,−F,S′,T,p[ψ])) ⊆ Fit(ClT (F )(ψ)

p ).
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In addition, since C ′F belongs to Dp(Zp[G]) the descriptions in Lemma 4.1(ii) combine to imply

that the O-module H1(G,O×,−F,S′,T,p[ψ]) is isomorphic to Ĥ−1(G, Y −F,S′,p[ψ]) ∼= Ĥ−1(G, Y −F,S,p[ψ])

and hence that Fit(H1(G,O×,−F,S′,T,p[ψ])) = Fit(Ĥ−1(G, Y −F,S,p[ψ])).

The claimed inclusion therefore follows directly upon comparing the displayed equality and
inclusion above. �

6.2. We now prove Corollary 3.3.
To do this we set U := O×,−F,{v1},T,p and U1 := O×,−F1,{v1},T,p and for any set Σ of places of

k we abbreviate YF,Σ,p to YΣ. Regarding ψ as fixed, we also set E := Qp(ψ), O := Zp[ψ],

Γ := GEψ/Qp and n := ψ(1) and abbreviate FitO(−) to Fit(−) and Ĥ i(G,−) to Ĥ i(−).

Finally, we write λS,T in place of λF,S,T,p and λ̃S,T for the restriction of λF,S,p to O×,−F,S,T,p

and πS,T for the surjective homomorphism H2(CF )→ Y −S induced by (6).

6.2.1. At the outset we note the assumptions (10) combine with the formula (1), Theorem
5.2(ii) and the result of Gross recalled in Remark 2.3(ii) to imply rS,ψ = rp,S,ψ = 1 and hence

that the O-modules O×,(ψ)
F,S,T,p = U (ψ) and Y

(ψ)
S = Y

(ψ)
{v1} are both free of rank one and that the

map on U (ψ) induced by λ̃S,T is injective.
In particular, since in this case the formula in Theorem 3.1(ii) combines with Lemma 5.1(ii)

to imply that Fit(cok(λ̃
(ψ)
S,T )) is equal to

|G|−1Fit(cok(λ̃
〈ψ〉
S,T ))Fit(Ĥ0(Y −S [ψ]))Fit(Ĥ−1(Y −S [ψ]))−1

=|G|−1 · Fit(cok(λ
〈ψ〉
S,T ))Fit(ker(πS,T,(ψ)))

−1Fit(Ĥ0(Y −S [ψ]))Fit(Ĥ−1(Y −S [ψ]))−1

=L′p,S,T (ψ̃ωk, 0) · Fit(Ĥ0(Y −S [ψ]))Fit(Ĥ−1(Y −S [ψ]))−1Fit(ker(πS,T,(ψ)))
−1

one has

(30) L′p,S,T (ψ̌ωk, 0)Fit(Ĥ0(Y −S [ψ]))Fit(Ĥ−1(Y −S [ψ]))−1 ·Y (ψ)
{v1} = λ̃

(ψ)
S,T (Fit(ker(πS,T,(ψ)))·U (ψ)).

To investigate this equality we decompose eψ as a sum of (non-zero) indecomposable idem-
potents

∑m=n
m=1 fm,ψ in E[G]eψ. For each index m we choose a maximal O-orderMm,ψ in E[G]

which contains fm,ψ and then, as in §5.1.1, we set Tm,ψ := fm,ψMm,ψ and, for any Zp[G]-module

M , write M (ψ,m) and M(ψ,m) for the O-modules H0(G,Tm,ψ ⊗Zp M) and H0(G,Tm,ψ ⊗Zp M).
In particular, writing fm,ψ ·w1 for the image of fm,ψ⊗Zp[G]w1 in YS,(ψ,m),tf , and TrG for the

element
∑

g∈G g of Z[G], one has

|G|fm,ψ · w1 = TrG(fm,ψ · w1) ∈ TrG(YS,(ψ,m),tf) = TrG(YS,(ψ,m)) = Fit(Ĥ0(Y −S [ψ])) · Y (ψ,m)
{v1}

where the last equality is valid because Y
(ψ,m)
S = Y

(ψ,m)
{v1} is a free rank one O-module.

Thus, from (30), we deduce the existence of elements am,ψ of Fit(ker(πS,T,(ψ)))Fit(Ĥ−1(Y −S [ψ]))

and u′m,ψ of U (ψ,m) with L′p,S,T (ψ̌ωk, 0)|G|fm,ψ · w1 = λ̃S,T (am,ψu
′
m,ψ). In particular, for every

dψ in D−1
E/QpFit(Ĥ−1(Y −S [ψ]))−1 the element

η(ψ, dψ,m) := dψ · am,ψu′m,ψ ∈ D−1
E/QpFit(ker(πS,T,(ψ))) · U (ψ,m)
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satisfies dψL
′
p,S,T (ψ̌ωk, 0)|G|fm,ψ(w1) = λ̃S,T (η(ψ, dψ,m)).

This in turn implies that the element

(31) η(ψ, dψ) := n−1
m=n∑
m=1

η(ψ, dψ,m) = n−1
m=n∑
m=1

dψ · am,ψu′m,ψ

belongs to the lattice Ξψ,dψ := n−1D−1
E/QpFit(ker(πS,T,(ψ))) ·

⊕m=n
m=1 U (ψ,m) and satisfies∑

g∈G
L′p,S,T (ψ̌ωk, 0)ψ̌(g)dψ · g(w1) = L′p,S,T (ψ̃ωk, 0)n−1|G|dψeψ(w1)

=

m=n∑
m=1

L′p,S,T (ψ̌ωk, 0)n−1|G|dψfm,ψ(w1)

= λ̃S,T (η(ψ, dψ)).

Since λ̃S,T is injective on Ξψ,dψ this equality has two important consequences. Firstly, it
implies η(ψ, dψ) is fixed by the natural action of G1 on E · Ξψ,dψ = eψ(E · U). Secondly, since

for every γ in Γ one has L′p,S,T (ψ̌ωk, 0)γ = L′p,S,T (ψ̌γωk, 0) it implies η(dγψ, ψ
γ) = η(ψ, dψ)γ

with respect to the natural O-semi-linear action of Γ on Ξψ,dψ .

The element ε′ψ,dψ :=
∑

γ∈Γ η(ψ, dψ)γ therefore belongs to

H0(G1,TrE/Qp(Ξψ,dψ)) ⊆ H0(G1,U) = U1,

(where the first inclusion is true because both n−1 · U (ψ,m)
1 ⊆ O · U and TrE/Qp(D

−1
E/Qp) ⊆ Zp)

and satisfies ∑
g∈G

(
∑
γ∈Γ

L′p,S,T (ψ̌γωk, 0)ψ̌γ(g)dγψ)g(w1) = λ̃S,T (ε′ψ,dψ)

and hence for every g in G also

logp(p
−valw1 (g(ε′ψ,dψ

))
g(ε′ψ,dψ)) =

1

|G1|
∑
g′∈G1

∑
γ∈Γ

L′p,S,T (ψ̌γωk, 0)ψ̌γ(gg′)dγψ.

Finally we set
εψ,dψ := (ε′ψ,dψ)p−1.

Then for every g in G the element g(εψ,dψ) belongs to the subgroup pZ(1 + pZp) of Q×p and
so the above equalities imply

g(εψ,dψ) = p
valw1 (g(εψ,dψ ))

expp(
(p− 1)

|G1|
∑
g′∈G1

∑
γ∈Γ

L′p,S,T (ψ̃γωk, 0)ψ̌γ(gg′)dγψ).

In addition, one has

(32) φF,S(ε′ψ,dψ) =
∑
γ∈Γ

eψγφF,S(ε′ψ,dψ) =
∑
γ∈Γ

eψγLS(ψγ)−1λ̃S,T (ε′ψ,dψ)

=
∑
γ∈Γ

LS(ψγ)−1L′p,S,T (ψ̌γωk, 0)n−1|G|dγψeψγ (w1)
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and hence for every integer t also

(33) valw1(g(εtψ,dψ)) =
∑
g′∈G1

t(p− 1)

|G1|
∑
γ∈Γ

LS(ψγ)−1L′p,S,T (ψ̌γωk, 0)ψ̌γ(gg′)dγψ.

This verifies all of the assertions of Corollary 3.3 up to the end of claim (i).

6.2.2. To verify Corollary 3.3(ii) we regard each θ in HomZp[G](U ,Zp[G]) as an element of

HomE[G](E · U , E[G]) and note that θ(U (ψ)
1 ) ⊆ Zp[G](ψ) = |G| · Tψ ⊆ O · prψ.

In addition, the O-module Y −S,(ψ),tor is isomorphic to Ĥ−1(Y −S [ψ]) and so the exact sequence

of G-modules (6) induces an exact sequence Ĥ−2(Y −S [ψ])→ ClTS,p,(ψ) → ker(πS,T,(ψ)) and hence

an inclusion
AnnO(Ĥ−2(Y −S [ψ])) · Fit(ker(πS,T,(ψ))) ⊆ AnnO(ClTS,p,(ψ)).

Thus, if we fix any a in Zp (such as a = |G|) that annihilates Ĥ−2(Y −S [ψ]), and assume dψ
belongs to Fit(Ĥ−1(Y −S [ψ]))−1, then the explicit definition of ε′ψ,dψ implies that

aθ(εψ,dψ) = (p− 1)aθ(ε′ψ,dψ) = (p− 1)
∑
γ∈Γ

m=n∑
m=1

a(dγψam,ψγ )θ(um,ψγ )

∈
∑
γ∈Γ

AnnO(ClTS (F )p,(ψ)) · prψ ⊆ O ·AnnZp[G](ClTS (F )p)

where the inclusion follows from the observation made just before the statement of Lemma
6.1, and hence that aθ(εψ,dψ) belongs to Qp[G] ∩ (O ·AnnZ[G](ClTS (F ))) = AnnZ[G](ClTS (F ))p.

We next note that the idempotent e1 :=
∑

γ∈Γ eψγ fixes εψ,dψ and annihilates Qp · Y −S\{v1}.

By using the natural exact sequence Y −S\{v1} → ClT{v1}(F )−p → ClTS (F )−p → 0 we may therefore

deduce that |G|aθ(εψ,dψ) = (|G|e1)(aθ(εψ,dψ)) belongs to AnnZ[G](ClT{v1}(F ))p, as required to

complete the proof of claim (ii).
Turning to claim (iii) we note (32) combines with the assumed validity of Conjecture 2.4

(and a direct comparison of the definitions (7) and (9) of T -modified L-series) to imply that
for any integer m the element εψ,d :=

∏
i∈I εψi,d,p satisfies

(34) φF,S(εmψ,d) = m(p− 1)
∑

α∈GQ(ψ)/Q

L′S,T (ψ̌α, 0)RS(ψα)−1ψα(1)−1|G|dαeψα(w1),

whilst the expression on the right hand side of (33) implies valw1(g(εmψ,d)) is equal to the sum

yψ,g,d,m defined in claim 3.3(iii)(b).
Now the Galois invariance property (2) implies that the sum on the right hand side of (34)

belongs to Q · Y −F,{v1} ⊂ Qp · Y −{v1} and hence that εψ,d belongs to the localisation of O×,−F,{v1},T
at p. For some integer m prime to p one therefore has εmψ,d ∈ O

×,−
F,{v1},T .

For any such integer m claim (iii)(b) then follows directly from the formula (33) whilst claim
(iii)(a) is true because (34) combines with the injectivity of φF,S to imply that if d 6= 0, then
the largest normal subgroup N of G that fixes εmψ,d is ker(ψ). (In a similar way, one can justify

the claim in Remark 3.4(iii) by using a suitable sum of expressions of the form (34).)
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This completes the proof of Corollary 3.3.

7. The refined p-adic class number formula and some consequences

In this section we prove Theorem 3.6 and then deduce Corollaries 3.8, 3.10 and 3.11.

7.1. To prove Theorem 3.6 we fix data F/k, G, S and T as at the beginning of §3.2, set
G := GF cyc/k and write Ccyc

T for the complex RΓét,T (Ok,S ,Λ(G)#(1)).
We also write Σ for the multiplicatively closed left and right Ore set of non-zero divisors of

Λ(G) comprising elements f such that Λ(G)/Λ(G)f is a finitely generated Zp-module. We set

Q′(G) :=

{
Λ(G)Σ, if µp(F ) = 0,

Q(G), if both µp(F ) 6= 0 and p does not divide |G|

and write ∂Λ(G),Q′(G) for the connecting homomorphism K1(Q′(G))→ K0(Λ(G), Q′(G)).
The following result provides a convenient interpretation of the known validity of the main

conjecture of non-commutative Iwasawa theory for totally real fields.

Proposition 7.1. Assume either µp(F ) = 0 or both µp(F ) 6= 0 and p does not divide |G|.
Then Q′(G)⊗Λ(G) C

cyc
T is acyclic and there exists an element ξ of K1(Q′(G)) with

∂Λ(G),Q′(G)(ξ) = −χΛ(G),Q′(G)(C
cyc
T , 0)

and such that for all ψ in A−(G) one has

Φψ(ξ)∗(0) = logp(κk(γ))−rp,S,ψL∗p,S,T (ψ̌ωk, 0).

Proof. The complex C ′ := RΓc,ét(Ok,S ,Λ(G)#(1)) is acyclic outside degrees two and three and
its cohomology identifies with M cyc

S and Zp in these respective degrees. Since these groups are
finitely generated torsion Λ(G)-modules that are finitely generated over Zp if µp(F ) vanishes
the given assumptions on p imply the acyclicity of Q′(G)⊗Λ(G) C

′.
We next claim that there exists an element ξ′ of K1(Q′(G)) with both ∂Λ(G),Q′(G)(ξ

′) =

χΛ(G),Q′(G)(C
′, 0) and Φρ(ξ

′) = fS,ρ(u) for all ρ in A+(G).
If p does not divide |G|, then Λ(G) is a maximal Λ(GF cyc/F )-order in Q(G) and the existence

of a suitable element ξ′ in K1(Q(G)) can be directly deduced from the main result of Wiles
in [44]. To do this one can use the same reduction arguments as in the proof of Proposition
5.5(ii) or simply note that, after interpreting the homomorphisms Φρ in terms of the reduced
norm of the semisimple algebra Q(G) (as in [3, Lem. 3.1]), this result is equivalent to earlier
results of Ritter and Weiss in [35, Th. 16 and Rem. (H)].

In a similar way, if one assumes only that µp(F ) vanishes, then the existence of such an
element in K1(Λ(G)Σ) is equivalent to the validity of the main conjecture of non-commutative
Iwasawa theory for totally real fields, as proved independently by Ritter and Weiss in [36] and
by Kakde in [24].

These facts combine with the proof of Proposition 5.5 to imply the acyclicity of the com-
plex Q′(G) ⊗Λ(G) C

cyc
T and the existence of an element ξ of K1(Q′(G)) with ∂Λ(G),Q′(G)(ξ) =

−χΛ(G),Q′(G)(C
cyc
T , 0) and such that, for each ψ in A−(G), the image of ξ under Φψ is equal to

the series fS,T,ψ(u) that occurs in Proposition 5.5(ii).
The claimed formula for each leading term Φψ(ξ)∗(0) = f∗S,T,ψ(0) then follows directly from

Lemma 5.10. �
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Turning now to the proof of Theorem 3.6, the first assertion of Proposition 7.1 implies Ccyc
T

belongs to the category Dp
Σ(Λ(G)) defined in [6, §1.4]. Further, if ψ is any element of Ir−p (G)

that factors through the surjection Qp[G]− → Qp[G]ess, then Theorem 5.2(ii) implies Ccyc
T is

semisimple at ψ and Theorem 5.8 implies the Bockstein homomorphism in degree one of the
data (Ccyc

T , ψ, γ) is induced by the map −logp(κk(γ))−1 · λF,S,p.
The semisimplicity at ψ of Ccyc

T also combines with [7, Lem. 5.5(iv)] to imply that the term

(−1)rG(Ccyc
T )(ψ) that occurs in the descent formula proved by Venjakob and the present author

in [7, Th. 2.2] (for the groups G = G and G = G and the complex C = Ccyc
T ) is equal to

(−1)−rS,ψ = detQcp(−1 | Qc
p ·H1

ét,T (OF,S ,Zp(1))(ψ)).

Given these facts, the first displayed equality in Proposition 7.1 combines with [7, Th. 2.2]
to imply that

(35) δZp[G]ss(
∑

ψ∈Irss
p (G)

eψΦψ(ξ)∗(0)) = −χZp[G]ss(RΓét,T (OF,S ,Zp(1))ss, λ̂ss
F/k,S,p).

where λ̂ss
F/k,S,p denotes the exact sequence of Qp[G]-modules

0→ Qp ·H1(RΓét,T (OF,S ,Zp(1))ss)
logp(κk(γ))−1·λF,S,p−−−−−−−−−−−−−→ Qp ·H2(RΓét,T (OF,S ,Zp(1))ss)→ 0.

In addition, as Theorem 5.2(ii) combines with (1) to imply that

rp,S,ψ = rS,ψ = dimQcp(Q
c
p ·H2

ét,T (OF,S ,Zp(1))(ψ))

for each ψ in Irss
p (G), the result of [2, Lem. A.1(ii)] implies

χZp[G]ss(RΓét,T (OF,S ,Zp(1))ss, λ̂ss
F,S,p)− χZp[G]ss(RΓét,T (OF,S ,Zp(1))ss, λss

F,S,p)

=− δZp[G]ss(NrdQp[G]ss(logp(κk(γ))−1 | ess(Qp ·H2
T (OF,S ,Zp(1)))))

=− δZp[G]ss(
∑

ψ∈Irss
p (G)

eψlogp(κk(γ))−rp,S,ψ).

From the final assertion of Proposition 7.1 we also know that for each such character ψ one
has eψΦψ(ξ)∗(0) = eψlogp(κk(γ))−rp,S,ψ · 2θ∗p,F/k,S,T (0) and hence that

δZp[G]ss(
∑

ψ∈Irss
p (G)

eψΦψ(ξ)∗(0)) = δZp[G]ss(θ
∗
p,F/k,S,T (0)) + δZp[G]ss(

∑
ψ∈Irss

p (G)

eψlogp(κk(γ))−rp,S,ψ).

The assertion of Theorem 3.6 now follows directly upon substituting the last two displayed
equalities into (35).

7.2. To prove Corollary 3.8 we write χ(−,−) in place of χZp[G]ss,Cp[G]ss(−,−) and abbreviate

both δZp[G]ss,Cp[G]ss(−) and δZp[G]−,Cp[G]−(−) to δ(−) and δ−(−) respectively. We also use the

invertible element of ζ(C[G])× obtained by setting

RS(F/k) :=
∑

χ∈Ir(G)

RS(χ) · eχ.
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Then for each isomorphism of fields j : Cp ∼= C the validity of Conjecture 2.4 for F/k implies

(36) j−1
∗ (θ∗F/k,S,T (0))(θ∗p,F/k,S,T (0)ess)

−1 = j−1
∗ (RS(F/k))(LS(F/k)ess)

−1,

with j∗ the ring isomorphism Cp[G] ∼= C[G] induced by j.
This in turn combines with the result of Theorem 3.6 to imply that δ(j−1

∗ (θ∗F/k,S,T (0))ess) is

equal (under the hypotheses of Corollary 3.8) to

δ(θ∗p,F/k,S,T (0)ess) + δ(j−1
∗ (RS(F/k))(LS(F/k)ess)

−1)

=χ(RΓét,T (OF,S ,Zp(1))ss, λss
F,S,p) + δ(NrdCp[G]ss((Cp ⊗R,j RF,S) ◦ λ−1

F,S,p | ess(Cp · Y −F,S,p))
=χ(RΓét,T (OF,S ,Zp(1))ss, Rss

S,j),

where the last equality follows from [2, Lem. A.1(ii)].
This shows that the equality (27) is valid modulo the kernel of the natural homomorphism

π : K0(Zp[G]−,Cp[G]−)→ K0(Zp[G]ss,Cp[G]ss) and so to complete the proof of Corollary 3.8(i)
it is enough to prove that ker(π) = δ−(ζ(Cp[G](e− − ess))

×).
To show this we use the exact commutative diagram

(37) NrdCp[G]−(K1(Zp[G]−)) �
� //

π′′
����

ζ(Cp[G])−,×
δ− // //

π′

��

K0(Zp[G]−,Cp[G]−)

π

��
NrdCp[G]ss(K1(Zp[G]ss)) �

� // ζ(Cp[G])ss,× δ // // K0(Zp[G]ss,Cp[G]ss).

Here the rows are induced by the relevant exact sequences of relative K-theory and the vertical
arrows by the ring homomorphims Zp[G]− → Zp[G]ss and Cp[G]− → Cp[G]ss. In addition, the
map π′′ is surjective as a consequence of Bass’s Theorem (cf. [26, Chap. 7, (20.9)]) and the
fact that Zp[G]− is semi-local.

In particular, since ker(π′) = ζ(Cp[G])−,× ∩Cp[G](1− ess) = ζ(Cp[G](e−− ess))
×, we obtain

the required description of ker(π) by applying the Snake lemma to the above diagram.
To deduce Corollary 3.8(ii) from Corollary 3.8(i) it suffices to note that if Conjecture 2.1 is

valid for F/k, then Theorem 2.6 implies Conjecture 2.4 is valid for F/k whilst Remarks 2.3(i)
and 2.5(i) combine to imply ess = e− and hence that δ−(ζ(Cp[G](e− − ess))

×) vanishes.
This completes the proof of Corollary 3.8.

7.3. We now prove Corollary 3.10.
Claim (i) asserts that for each ψ in Ir−p (G) the order of vanishing at s = 0 of the series

LS,T (ψ̌ωk, s) is at least rψ(1). This follows directly from Theorem 3.1(i), the explicit formula

rS,ψ = dimCp(HomCp[G](Vψ̌,Cp ·Y
−
F,S,p) (implied by (1)) and the fact that Y −F,S,p has a quotient

Y −F,V,p that a free Zp[G]−-module of rank r.

Since S \V contains Sram
F/k (and hence also S∞k ) claim (ii) follows directly from the argument

of [4, Lem. 2.8].
To prove claim (iii) we must first fix a convenient resolution of SelTS (F )−.
To do this, for each normal subgroup N of G we set TrN :=

∑
g∈N g ∈ Z[G] and identify

YFN ,S with TrN (YF,S) by means of the map which sends each place w in SFN to TrN (w′) for any
choice of places w′ of F above w. For each natural number m we set [m] := {i ∈ Z : 1 ≤ i ≤ m}.
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We also set n := |S|, label (and hence order) the elements of S as {vi}i∈[n] and for each
index i choose a place wi of F above vi. For each Galois extension L of k in F we set
ZL := {i ∈ [n] : vi ∈ VL} and, for later convenience, we assume, as we may, that the labeling
of S is chosen so that VF = [r].

We then fix a surjective homomorphism % : P → SelTS (F )tr,−
p of Zp[G]−-modules in which

P is free of finite rank d and has an ordered basis {bi}i∈[d] for which the following property is
satisfied.

Write ξ for the composite of % and the canonical homomorphism SelTS (F )tr,−
p → Y −F,S,p

induced by (6) and for each normal subgroup N of G we identify the restriction ξN of ξ with

the composite homomorphism PN = TrN (P )
ξ−→ TrN (Y −F,S,p) = Y −

FN ,S,p
. Then in the sequel we

can (and will) assume that for each index i, and each normal subgroup N of G, the element
TrN (bi) is sent by ξN to wvi,FN − wvi,FN if i ∈ [n] and to 0 otherwise.

Now, since our choice of T implies O×,−F,S,T,p is Zp-free, the properties of the complex CF,T :=

RΓét,T (OF,S ,Zp(1))− that are described in Lemma 4.1(ii) imply the existence of an exact
sequence of Zp[G]−-modules

(38) 0→ O×,−F,S,T,p
ι−→ P

$−→ P
%−→ SelTS (F )tr,−

p → 0

for which there is an isomorphism P • → CF,T in Dp(Zp[G]) which induces the identity on

cohomology in degrees one and two. Here P • denotes the complex P
$−→ P , where the first

term is placed in degree one and the cohomology groups H1(P •) and H2(P •) are identified

with O×,−F,S,T,p and SelTS (F )tr,−
p by using the maps ι and %.

Noting that the algebra Qp[G] is semisimple we choose Qp[G]-equivariant sections ι1 and ι2
to the maps Qp ·P → Qp · im($) and Qp ·P → Qp · cok($) = Qp ·SelTS (F )tr,−

p that are induced
by $ and % respectively. We can, and will, also assume that for each Galois extension L of k
in F and each i in ZL one has ι2(wi,L − wi,L) = TrH(bi) with H = GF/L.

One has Qp ·P = Qp ·ker($)⊕ ι1(Qp · im($)) and for any homomorphism of Qp[G]-modules

κ : Qp · O×,−F,S,T,p → Qp · SelTS (F )tr,−
p = Qp · Y −F,S,p we write 〈κ,$〉ι1,ι2 for the endomorphism of

the Qp[G]-module Qp · P that is equal to ι2 ◦ κ ◦ (Qp ⊗Zp ι)
−1 on Qp · ker($) and to Qp ⊗Zp $

on ι1(Qp · im($)). Then [2, Lem. A.1(iii)] implies that

−χZp[G]ss(C
ss
F,T , λ

ss
F/k,S,p) = δZp[G]ss(NrdQp[G]ss(ess〈λF,S,p, $〉ι1,ι2))

and so the equality of Conjecture 3.5 combines with the exact diagram (37) to imply the
existence of an element u of NrdCp[G]−(K1(Zp[G]−)) with

θ∗p,F/k,S,T (0) · ess = u ·NrdQp[G](ess〈λF,S,p, $〉ι1,ι2)(39)

= uLS(F/k) ·NrdQp[G](ess〈φF,S,p, $〉ι1,ι2).

Here the second equality follows directly by comparing the explicit definition of LS(F/k)
with the fact that ess〈φF,S,p, $〉ι1,ι2 and ess〈λF,S,p, $〉ι1,ι2 coincide on ι1(Qp · im($)) whilst on
Qp · ker($) there is a commutative diagram
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Qp · ker($)
〈λF,S,p,$〉ι1,ι2−−−−−−−−−→ ι2(Qp · Y −F,S,p)

µ

y ∥∥∥
Qp · ker($)

〈φF,S,p,$〉ι1,ι2−−−−−−−−−→ ι2(Qp · Y −F,S,p)

with µ := (Qp ⊗Zp ι) ◦ (Q⊗Zp λF,S,p) ◦ (Q⊗Zp φF,S,p)
−1 ◦ (Qp ⊗Zp ι)

−1.

For each normal subgroup N of G with τ /∈ N we regard Ir−p (G/N) as a subset of Ir−p (G) in

the obvious way and then set ΥS,N := {ψ ∈ Ir−p (G/N) : rS,ψ,p = rFN · ψ(1)}.
Since ΥS,N is closed under the action of Aut(Cp) on Ir−p (G) the idempotent eS,N :=

∑
χ∈ΥS,N

eχ
belongs to ζ(Qp[G]). In addition, Theorem 5.2(i) and (ii) combine to imply eS,N = ess · eS,N
and so one can multiply the last displayed equality by eS,N to deduce that

θ
r
FN

p,FN/k,S,T
(0) = θ∗p,F/k,S,T (0) · eS,N

= θ∗p,F/k,S,T (0) · esseS,N

=uLS(F/k) · eS,NNrdQp[G](ess〈φF,S,p, $〉ι1,ι2)

=u ·LS(F/k)NrdQp[G](eS,N 〈φF,S,p, $〉ι1,ι2).

Taken into account both this equality and the result of Theorem 3.6, the first claim in
Corollary 3.10(iii) follows directly from the observation in Proposition 7.2 below (with N
taken to be the identity subgroup of G).

Turning to the second claim of Corollary 3.10(iii) we note that S \ V contains Sram
F/k (and

hence, in particular, Sk∞). To deduce the second claim from the validity of the first claim of
Corollary 3.10(iii) it is thus clearly enough to show that for any finite set of places Σ of k that
contains Sram

F/k one has

(40) FitZp[G](SelTΣ(F )p) = FitZp[G](SelTΣ(F )tr
p )#.

To prove this we recall from [4, Prop. 2.4] that Zp⊗ZRΓc,T ((OF,Σ)W ,Z) can be represented

by a complex P ′
θ−→ P ′, where P ′ is a finitely generated free Zp[G]-module and the first term

is placed in degree one. This representative combines with [4, Prop. 2.4(iii)] and [4, Def. 2.6]
to imply that the Zp[G]-modules SelTΣ(F )p and SelTΣ(F )tr

p are respectively isomorphic to the
cokernels of θ and of θ∗ := HomZp(θ,Zp).

The explicit definition of Fitting invariants therefore implies that FitZp[G](SelTΣ(F )p) and

FitZp[G](SelTΣ(F )tr
p ) are respectively generated over ξ(Zp[G]) by NrdQp[G](θ) and NrdQp[G](θ

∗)

and so (40) is true if NrdQp[G](θ
∗) = NrdQp[G](θ)

#.
The latter equality is then easily deduced from the fact that for any element x of Cp[G] and

any character ψ in Irp(G) the matrix, with respect to any fixed Cp-basis X of Vψ, of the action
of x on Vψ is the transpose of the matrix, with respect to the basis that is dual to X , of the

action of x# on HomCp(Vψ,Cp).
This completes the proof of Corollary 3.10.
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Proposition 7.2. For each normal subgroup N of G as above one has

ξ(Zp[G/N ]) ·LS(F/k)NrdQp[G](eS,N 〈φF,S,p, $〉ι1,ι2) = LS(F/k) · FitZp[G/N ](SelTS\V (FN )tr
p ).

Proof. The exact sequence (38) implies that cok(ι) is Zp-free and hence that the corresponding

restriction map HomZp[G](P, Y
−
F,S,p)→ HomZp[G](O

×,−
F,S,T,p, Y

−
F,S,p) is surjective. We choose a lift

φ̂ of φF,S,p through this restriction map and consider the composite homomorphism

(41) φ̂(N) : PN = TrN (P )→ TrN (Y −F,S,p) = Y −
FN ,S,p

→ Y −
FN ,V

FN
,p

where the first arrow is the restriction of φ̂ and the second the natural projection map to the
free Zp[G/N ]−-module Y −

FN ,V
FN

,p
.

For any integer pair (s, t) in [d] × ZFN we define a unique element MN,st of Zp[G/N ]− by
means of the equality

φ̂(N)(TrN (bs)) =
∑
t∈ZN

MN,st · (wi,FN − wi,FN ).

In addition, since the exact sequence (38) (and our explicit choice of %) implies that

im($N ) ⊆
∑

j∈[d]\ZN

Zp[G]− · TrN (bj),

for each (s, t) in [d] × ([d] \ ZFN ) there exists a unique element MN,st of Zp[G/N ]− which
satisfies

$(TrN (bs)) =
∑

t∈[d]\Z
FN

MN,st · TrN (bt).

We then define MN to be the matrix in Md(Q[G/N ]−) with each (i, j)-entry equal to the
given element MN,ij and claim that

(42) LS(F/k) ·NrdQp[G/N ]−(eS,N 〈φF,S,p, $〉ι1,ι2) = LS(F/k) ·NrdQp[G/N ]−(MN ).

It is enough to prove this equality after multiplication by eψ for each ψ in Ir−p (G/N) and
we assume first that eψeS,N = 0.

In this case the left hand side of (42) obviously vanishes. In addition, if eψess = 0, then
eψLS(F/k) = 0 and so the right hand side vanishes. It is thus enough in this case to show
that if both eψess = eψ and eψeS,N = 0, then eψNrdQp[G/N ]−(MN ) vanishes. But for any

such character ψ one has rS,ψ = rS,ψ,p > rFN · ψ(1) and so the exactness of (38) implies
dimCp(HomCp[G](Vψ̌,Cp · im($))) = dimCp(HomCp[G](Vψ̌,Cp · P )) − rS,ψ < d − rFN . This
in turn implies that the matrix obtained by splitting eψMN is singular and hence has zero
determinant, as required.

We now assume eψeS,N = eψ, and hence ψ ∈ ΥN,S , and in this case we prove the validity of
(42) after multiplication by eψ by showing that

NrdCp[G/N ]eψ(eψ(Cp ⊗Qp 〈φF,S,p, $〉ι1,ι2)) = NrdCp[G/N ]eψ(eψMN ).

To do this we note that for any ψ in ΥN,S the second arrow in (41) is bijective and so

eψ(Cp ⊗Qp 〈φF,S,p, $〉ι1,ι2) = eψ(ι2 ◦ (Cp ⊗Zp φ̂(N)) ◦ ι̂N1 ) + eψ(Cp ⊗Zp $)
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where ι̂1 is the projection Cp ·P → Cp ·ker($) induced by the chosen splitting ι1, whilst eψ(MN )
is the matrix, with respect to the basis {eψ(TrN (bi))}i∈[d] of eψ(Cp · P ), of the endomorphism

eψ(ι2 ◦ (Cp ⊗Zp φ̂(N))) + eψ(Cp ⊗Zp $).

To complete the proof of (42) it is enough to show that the last two displayed endomorphisms
have the same reduced norm. This is true because they restrict to eψ(Cp · ker($)) to give the

same isomorphism eψ(Cp · ker($)) ∼= eψ(ι2(Cp · Y −F,V
FN

,p)) and also restrict to eψ(Cp · im(ι1))

to induce the same composite homomorphism

eψ(Cp · im(ι1)N )→ eχ(Cp · PN )→ eψ((Cp · PN )/ι2(Cp · Y −F,V
FN

,p)).

Having proved (42) the claimed equality will now follow if we can show NrdQp[G/N ]−(MN )

is a generator of the ξ(Zp[G/N ])-module FitZp[G/N ]−(SelTS\V (FN )tr,−
p ).

But, if we identify MN as an endomorphism of Zp[G/N ]−,d (by means of the fixed Zp[G/N ]−-
basis {TrN (bi)}i∈[d] of PN ), then the tautological exact sequence

Zp[G/N ]−,d
MN−−→ Zp[G/N ]−,d → cok(MN )→ 0

combines with the definition of non-commutative Fitting invariants to imply directly that
NrdQp[G/N ]−(MN ) is a generator of the ξ(Zp[G/N ])-module FitZp[G/N ]−(cok(MN )) and hence
the claimed equality is a consequence of the isomorphism described in Lemma 7.3 below. �

Lemma 7.3. The Zp[G/N ]-module cok(MN ) is isomorphic to SelTS\V (FN )tr,−
p .

Proof. The isomorphism P • → CF,T in Dp(Zp[G]) discussed just after (38) combines with
the natural descent isomorphism Zp[G/N ] ⊗Zp[G] CF,T ∼= CFN ,T to induce an isomorphism in

Dp(Zp[G/N ]) between CFN ,T and the complex PN → PN , where the first module is placed

in degree one and the differential is $N . Hence, after replacing F/k by FN/k it is enough to
consider the case that N is the trivial group.

To do this we set r := rF , write P1 for the (free rank r) Zp[G]−-submodule of P with basis
{bi}i∈ZF and identify this with Y −F,V,p by sending each bi to wi − wi. We also write P •1 for the

complex P1
0−→ P1 with the first term in degree one.

We then choose a morphism of complexes of Zp[G]-modules α : P • → P •1 that represents
the composite morphism in Dp(Zp[G])

P • ∼= CF,T → Zp ⊗Z RHomZ(C,Z)[−3]− → RHomZp(
⊕
i∈ZF

RΓét(κwi ,Zp))
−,Zp[−2]) ∼= P •1 .

Here C denotes RΓc,T ((OF,S)W ,Z), the first arrow is the isomorphism induced by Lemma
4.1(iii), the second is induced by applying the exact functor Zp ⊗Z RHomZ(−,Z)[−3]− to
the triangle in [4, Prop. 2.4(ii)] and the third is the canonical isomorphism induced by our
identification of P1 with Y −F,V,p and the fact that for each i in ZF the place vi splits completely

in F/k.

With this definition H1(α) coincides with the composite O×,−F,S,T,p

φF,S,p−−−−→ Y −F,S,p → Y −F,V,p = P1

and so α1 is a suitable choice for the morphism φ̂ that is fixed at the beginning of the proof of
Proposition 7.2.
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We note next that there is a short exact sequence of complexes (with horizontal differentials
and the first term in the upper complex placed in degree two)

P1� _

(−id,ι1)
��

id // P1

id
��

P
(α1,$)//

id
��

P1 ⊕ P
(0,π1) //

(ι1,id)
����

P1

P
M // P.

Here ι1 and π1 denote the natural inclusion and projection and M denotes the matrix MN

(with N the trivial group) constructed after fixing φ̂ to be α0. Now the first complex in this
sequence is obviously acyclic and the second is Cone(α)[−1] and so the sequence induces an
isomorphism of H1(Cone(α)) with cok(MN ).

In addition, the exact triangle in [4, Prop. 2.4(ii)] induces an isomorphism in Dp(Zp[G])

Cone(α) ∼= Zp ⊗Z RHomZ(RΓc,T ((OF,S\V )W ,Z),Z)[−2]−

and hence an isomorphism of Zp[G]-modules

H1(Cone(α)) ∼= Zp ⊗Z H
−1(RHomZ(RΓc,T ((OF,S\V )W ,Z),Z))−.

It therefore suffices to recall that SelTS\V (F )tr is defined (in [4, Def. 2.6]) to be equal to the

cohomology group H−1(RHomZ(RΓc,T ((OF,S\V )W ,Z),Z)). �

7.4. We now prove Corollary 3.11.
This proof relies on two facts concerning annihilators of finitely generated Zp[G]-modules M

(that we shall use in the sequel without explicit comment). Firstly, the natural contragredient
action of G on M∨ := HomZp(M,Zp) implies that AnnZp[G](M

∨) = AnnZp[G](M)#. Secondly,
if M has a quadratic presentation, then for any element a of A(G) there is an inclusion
a · FitZp[G](M) ⊆ AnnZp[G](M) (see [23, Th. 4.2]).

To prove claim (i) of Corollary 3.11 we note that the long exact cohomology sequence of the
exact triangle constructed in [4, Prop. 2.4(ii)] induces a canonical surjective homomorphism
SelTS\V (F )p → SelTS∞k

(F )p and hence that the exact sequence (5) (with S = S∞k ) identifies

ClT (F )∨p as a subquotient of SelTS\V (F )p. This shows that

(43) AnnZp[G](SelTS\V (F )p)
# ⊆ AnnZp[G](ClT (F )∨p )# = AnnZp[G](ClT (F )p)

and hence that the second displayed equality in Corollary 3.10(iii) implies

a · θ(r)
p,F/k,S,T (0) = (a# · θ(r)

p,F/k,S,T (0)#)#(44)

∈LS(F/k)(a# · FitZp[G](SelTS\V (F )p))
#

∈LS(F/k) ·AnnZp[G](SelTS\V (F )p)
#

⊆LS(F/k) ·AnnZp[G](ClT (F )p),
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where the second containment uses the fact that A(G) is stable under the involution x 7→ x#.
This proves claim (i).

To prove claim (ii) we note θF/k,S\V,T (0) = θ
(r)
F/k,S,T (0) · RS(F/k)−1 since each place in V

splits completely in F/k.
The assumed validity of Conjecture 2.4 for F/k therefore implies that for each field isomor-

phism j : Cp ∼= C and each a in A(G) ∩Qp[G]ss one has

a · j−1
∗ (θF/k,S\V,T (0)) = a · j−1

∗ (essθ
(r)
F/k,S,T (0) ·RS(F/k)−1)

= a · θ(r)
p,F/k,S,T (0)(LS(F/k)ess)

−1

∈ a · essFitZp[G](SelTS\V (F )p)
#

⊆ AnnZp[G](SelTS\V (F )p)
#

⊆ AnnZp[G](ClT (F )p)

where the first equality and inclusion use a = a · ess, the second equality follows from (36), the
containment from the first containment in (44) and the final inclusion from (43).

This proves the assertions in claim (ii) concerning a · θF/k,S\V,T (0) and the assertions con-

cerning a · θF/k,S\V,T (0)# are then easily deduced by using the equality (40) with Σ = S \ V .
To prove claim (iii) we use the complex RΓc,T ((OF,Σ)W ,Z). In particular, we recall (from

[4, Prop. 2.4]) that this complex belongs to Dp(Z[G]), is acyclic outside degrees one and two
and that its cohomology in these degrees identifies with YF,Σ/∆Σ(Z) and SelTΣ(F ) respectively,
where ∆Σ denotes the natural diagonal map.

We also note that a straightforward (non-abelian) extension of the argument used to prove
[4, Prop. 3.4] shows that the equivariant Tamagawa number conjecture is valid for the pair
(h0(Spec(F )),Zp[G]−) if and only for every isomorphism j as above one has

(45) δZp[G]−,Cp[G]−(j−1
∗ (e−θ

∗
F/k,Σ,T (0)#)) = −χZp[G]−,Cp[G]−(RΓc,T ((OF,Σ)W ,Z)−p , R

∗
Σ,j)

where R∗Σ,j denotes the Cp-linear dual of the exact sequence (28) (with S replaced by Σ).

In particular, under the hypotheses of claim (iii), Corollary 3.8(ii) implies that the equality
(45) is valid.

To analyse this equality we represent RΓc,T ((OF,Σ)W ,Z)p by the complex P ′
θ−→ P ′ used in

the proof of (40) and write e0 for the idempotent of ζ(Qp[G]) obtained by summing eψ over
all ψ in Ir−p (G) for which the space HomCp[G](Vψ̌,Cp · ker(θ)) vanishes.

Then it is clear that NrdQp[G](θ
−) = e0NrdQp[G](θ) whilst [2, Lem. A.1(iii)] implies

−χZp[G]−,Cp[G]−(RΓc,T ((OF,Σ)W ,Z)−p , R
∗
Σ,j) = δZp[G]−,Cp[G]−(NrdCp[G]−(〈θ〉))

for an automorphism 〈θ〉 of the Cp[G]-module e−(Cp · P ′) which agrees with Cp ⊗Zp θ on

e0(Cp · P ′) and hence satisfies e0NrdCp[G](〈θ〉) = e0NrdQp[G](θ) = NrdQp[G](θ
−).

The last displayed equality combines with (45) and the exactness of the upper row in (37)
to imply the existence of an element u of NrdQp[G]−(K1(Zp[G]−)) with j−1

∗ (e−θ
∗
F/k,Σ,T (0)#) =
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u ·NrdCp[G]−(〈θ〉) and hence also

j−1
∗ (e−θF/k,Σ,T (0)#) = e0(j−1

∗ (e−θ
∗
F/k,Σ,T (0)#) = u · e0NrdCp[G]−(〈θ〉) = u ·NrdQp[G]−(θ−)

where the first equality follows from (1) and the isomorphism HomCp[G](Vψ̌,Cp · ker(θ)) ∼=
HomCp[G](Vψ̌,Cp · Y

−
F,Σ).

In particular, since SelTΣ(F )p is naturally isomorphic to cok(θ), the above equality implies

that j−1
∗ (e−θF/k,Σ,T (0)#) is a generator over ξ(Zp[G]) of FitZp[G]−(SelTΣ(F )−p ), as required to

prove the displayed equality in Corollary 3.11(iii).
The remaining assertions of claim (iii) are then derived from these facts by the same argu-

ments used to prove claim (ii).
This completes the proof of Corollary 3.11.
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und verschwindende Zyklen in ungleicher Charakteristik, Invent. Math. 68 (1982) 21-101.
[35] J. Ritter, A. Weiss, Toward equivariant Iwasawa theory, Part II, Indag. Math. (N.S.) 15 (2004)

549-572.
[36] J. Ritter, A. Weiss, On the ‘main conjecture’ of equivariant Iwasawa theory, J. Amer. Math. Soc. 24

(2011) 1015-1050.
[37] K. Rubin, Global units and ideal class groups, Invent. Math. 89 (1987) 511-526.
[38] K. Rubin, A Stark Conjecture ‘over Z’ for abelian L-functions with multiple zeros, Ann. Inst. Fourier

46 (1996) 33-62.
[39] T. Sano, Refined abelian Stark conjectures and the equivariant leading term conjecture of Burns,

Compositio Math. 150 (2014) 1809-1835.
[40] M. Spiess, Shintani cocycles and the order of vanishing of p-adic Hecke L-series at s = 0, Math. Ann.

359 (2014) 239-265.
[41] H. M. Stark, Derivatives of L-series at s = 0, in Automorphic forms, representation theory and

arithmetic (Bombay, 1979), pp. 261–273, Tata Inst. Fund. Res. Studies in Math., 10, Tata Inst.
Fund. Res., Bombay, 1981.

[42] J. Tate, On Stark’s conjectures on the behavior of L(s, χ) at s = 0, J. Fac. Sci. Univ. Tokyo Sect.
IA 28 (1981) 963-978.

[43] J. Tate, Les Conjectures de Stark sur les Fonctions L d’Artin en s = 0 (notes par D.Bernardi et N.
Schappacher), Progress in Math., 47, Birkhäuser, Boston, 1984.
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