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Alternative expressions are derived for the inverse of the sum of 

t"t-TO matrices, uhen at least one is nonsingul.ar. A variety of expressions 

are then formulated for (A + UBV)-l as A-l plus a matrix depending on 
.., --

A-l and the possibly rectangular u, B and V. vT:nereas some of these ... - .... 
expressions seem to be ne"t'r1 others are w·ell-lmmm, but for all of them 

our proofs contain the novelty that they are by derivation, rather than 

by verification. Applications are indicated for partitioned matrices, 

for certain special. suma of matrices, for maximum likelihood estimation 

of variance components, and for multivariate analysis. 

1. Introduction 

Various expressions for special cases of (A + UBVf1, "t'lhen A is nonsingular, 

are available in the literature. Most of them have been developed independently, 

during the last 40 years, in areas of application such as inverting a partitioned 

matrix, inverting a sum of matrices, and in statistics in variance component esti-

mation and in multivariate analysis (e.g., discriminant analysis). 
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One of the earliest, but implicit references is Frazer ~ al. [1938, p. 113] 

"Tho give, 1·1hen A is nonsingular but D possibly singular, 
N ~ 

+ A-lu(D - VA-lu)-lvA-l 
~ N ~ ~N ~ ~~ 

-(D - VA-~)-lvA-l 
(1) 

- - -
Hotelling [1~3], 't·rhen both A and D are nonsingular, obtains 

·. N 

l~ ~r. -~-~(£ - ~-~)-1] 
(D - VA-~fl , ,..,,.. ,.. 

(2) 

Equating the leading submatrices in (1) and (2) yields 

(A- UD-~rl =A-l +A-~(D- VA-~)-~A-l, (3) 
..., _., .,.,_ ""H 

a result which Hotelling (1943] perhaps surprisingly, seemed to be unaT!rare of. 

Duncan [1944], on the other hand, does give (3), this apparently being tbe first 

reference to such a result. His main interest.is not in (3), but in alternative 

and equivalent forms for the inverse of a partitioned matrix, including (1) and (2) 

which, he states, have '~een given by Dr. A. C. Aitken of Edinburgh in lectures to 

his students. " 

Direct development of results like {3) seems to have started vnth Sherman and 

Morrison [1949, 1950] ~rho consider inverting a matrix ,,rhen elements of a rm·r or 

column are altered. Bartlett [1951], from his interest in discriminant analysis, 

generalized this to adding a degenerate matrix uv' of rank one, so as to obtain 

-1 -1 
(A + uv 1 ) from A , iu the form 

(A + uv, r 1 = A -l 

-

-1 . 
1 +v'A u 

(4) 
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Hoodbury [1950] generalizes (4) to inv~:r:tj,ng -a 'modified matrix, giving 

(A+ UBV)-l = A-l- A-~(B + BVA-~)-~VA-l (5) 
,_ NN_, ,_, ,_ NN l'lf# ,.,.,_. ,.,.,.. _,.,.,._ 

and 

(6) 

;·rhen A and B are nonsingular, possibly of different order. He makes the interest-

ing comment that "none of the proofs are in the least difficult and are omitted 

but a considerable amount of exploration i'Tas necessary before the useful :forms 

i·rere discgvered. " 

It is not obvious that (5) requires the nonsingularity of B and in fact 

VJoodbury overlooked this. Our development ~'Till emphasize the need for it, ·which 

is illustrated by observing that for I an identity matrix and J a square matrix 

with every element unity, 1·rith both matrices of order n, 

(I + Jf1 f I - J(J + oF r 1J . 
""' ,.., ""* -- ,.,. 

Equation (5) w·ith A, U and V identity matrices and B = J, vTOuld have this as an 
,_. N A# N #Of# 

equality, "t·rhich is not so because J + J2 = (n + l)J which is singular. Indeed, as 

is 't·Tell-knmm, (I + Jf1 = I - J/ (n + 1). VJoodbury [1950] also overlooked the 
N #It!# ,_. _,. 

equivalence of (6) to Duncan's [1944] result (3), being apparently unaware of this 

\ITOrk in his discussion of applications of (6) to inverting partitioned matrices. 

On the other hand, he appears to have been the first to explicitly state that in-

verting partitioned matrices reduces to inverting sums of matrices. He also notes 

possible computational advantages of (6) 1-1hen A -l and B-l are knm-m and -
(B-l + VA -~r1 has smaller order than (A + UBvr1, "tdth (4) illustrating an extreme - ... 
case of this. 

Recently, Press [1972, p. 23] has called (5) the Binomial Inverse Theorem, 

stating '\'lithout comment that A and. B are both nonsingular. 
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The symmetric case of (A + UBVf1 1rith A =A', B = B' and V = U' occurs as a 
N ~~ ~ ~ ~ ~ ~ ~ 

dispersion matrix in many mixed models of the analysis of variance, vlith notation e 
V = R + ZDZ'. An early treatment in this context is Henderson et al. [1959], ';!here 

A and B are both taken as nonsingular, giving the symmetric counterpart of (6), -
(A + UBU' )-l = A-l - A-~(B-l + U'A-~f~'A-l . (7) ,.. ,.. #If#,...,., ,._,.. ... ,,., 

Lindley and Smith [1972] develop this, as they say, as an "unexpected byproduct" 

of a Bayesian process. In a discussion of their paper, Kempthorne [1972] draws 

attention to the earlier result and proof, Hhich vras by verification, of Henderson 

et al. [1959]. 

Harville [1976, 1977] gives an expression similar to (7) suited to B being 

singular, namely 

and also considers a generalized inverse of A + UBV. His results are of particular 

use in the maximum likelihood estimation of variance components. 

2. Useful Identities 

Results like (3) - (7) are usually proved by verification, through checking 

that an appropriate product reduces to an identity matrix. In contrast, w·e derive 

results of this nature using identities obtained from the "add and subtract" 

principle that effects factorizations that lead to desired, and in some cases net'~', 

identities, ne,.,r in particular for (A + UBVf1 uhen A is nonsingular and u, B and V -
are possibly rectangular. 

The starting point is I + P, for some P such that I + P is nonsingular. Then 

(I + P)-l = (I + P P)(I + P)-l = I P(I + Pf1 (8) - ... 
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Similarly, 

(I + P)-l = (I + P)-1 (I + P - P) = I - (I + P)-lP . (9) -
Note that equating (8) and (9) giv~s (I + P)-1P = P(I + P)-1. A generalization 

"" --
of this identity is based on 

P(I + Q,P) = (I + PQ)P . (10) _ ... 
vfhen P and Q, singular or nonsingular, are such that I + QP is nonsingular, then - -
so is I + PQ (because these matrices have equal determinants), in llhich case (10) 

.... -
gives 

(I + PQ)-~P = P(I + QP)-l . (11) 
IW ,.,,... -.. ,.. #¥ 

Note the nature of this equality: the right-hDnd side is derived by the apparent 

operation of shifting the operator (I + • )-l one position to the right in the 

sequence PQP, thus preserving the sequence of matrices 1nthout I. Repeated use of 

(11) is made in the sequel. 

3. Inverting A +X - -
Although A +X can be nonsingular 1·rhen both A and X are singular, identities 

for (A + X r 1 involving functions of A and X are of interest only '·rhen one of them 

is nonsingular. We choose to consider A as being nonsingular. Then ''~hen A + X is 

nonsingular so also are I +A-~ and I+ XA-1, and 
... -

(12) 

= A-l(I + XA-1)-l • (13) ... 

Then, P = A-~ used in (9) and substituted into (12), follolred by repeated appli-... 
cations of (11), gives 
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(A + xf1 = A -l - (I +A ·lxrl:A -lxA -l 1 (14) 
~ ~ M ~ - - ~ ~-

-1 -1( -1)-~-- -1 =A :A I+XA JCA , (15) .,. ,.,. ,., ,.,. ~ 

= A-l - A-lx(I + A-Ix)-lA-l , (16) 
_. ,.,. .... ,. , 

-1 -l_ __ -1( -1)-1 =A -AJ;A I+XA • (17) ... ,.,.,.,.,. ,., ,.,. 

For the special case uhen X is nonsingula.r we also have -
(I + XA~l)-l = (A-l + x·l)·lx-l = X(X + XA-lx)-l •. (18) 

,.,. ,..,.. ,.. ,.. .... ... ... 

Substituting this in (15) gives 

(A + X rJ,. = A-1 - A -l(A -1 + x·lrlA-1 ' (19) 
.. ,. ... ... 1/11# ,. .... 

-1 . -l__ ( . -l.._ )-l__- -1 
=A -AJCX+XA-x AA • (20) 

_,. N ~,_, ,.,_,. .,_ ,.,. 

Using (I +A -~r1, in a manner similar to (18), in (16) leads to the same results. e - - ... 
We think it might be more appropriate to call (19) the Binomial Inverse Theorem 

than the case ~men X = UBV, referred to by Press [1972] • 
.., --

4. Inverting A + UBV ... -
We now derive six alternative forms of (A + UBV)-1, in a sequence that dis-

... --
plays an interesting pattern. A is taken as nonsingular and u, B and V as rec-

- H ,_ ,.. 

tangular (or square) of order n X p, p X q and q X n, respectively. In (14) put 

X = UBV and then repeatedly apply (11) to obtain - --
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(A + UBVf1 =A -l - (I + A -~V),-lA -~VA-;l 1 (21) 
#fl# ~... ,.. ~ ,. ,.,.,.,..,. 

= A-l - A-1 (I + UBVA-l)-luBvA-l , (22) 
N ,_ IW I'WNftH/tll ~IWN 

= A-l - A-lu(r + BVA-luf~VA-l 1 
N ~ ~ N ~ N ~~ 

= A-l - A-lu.s(r + VA-luB)-lvA-l , 
,.. ,. ... ._ ...... ....,. #/ltflft# 

(24) 

= A-l - A-luav(I + A-luBv)-lA-l , (25) 
~ - ~ ~ H ~~ ~ 

= A-l - A-lusvA-1 (I + UBVA-l)-l • (26) 
_, ..,..,,., .., 

These six expressions differ from those available in the literature and dis-

cussed earlier, in that they require neither symmetry nor squareness of U, B or V, 
· , !- .. _IIIW tiW ,.. 

let alone nonsingularity of B. Furthermore, expressions (23) and (24) have not . ....... ,. .· .. -
been seen elsewhere; their existence is assured by arguments similar to those used 

( ) ( ) ( -l__)-1 in establishing 11 • For example, in 23 1 I + BVA -u exists because its -- -
determinant is nan-zero: 

lr + BVA-lul =II+ A~~vl = 
.. ,.,..,,.. --#lit#~ 

lA -l, lA + UBVI I= 0 . ,.. ,.. ,.._,,., 

An important feature of (23) and (24) is that their. use can be computationally 

advantageous. All of the expressions (21) - (26), other than (23) and (24), in-
-

volve inverses of order n, the order of A. But, apart ftomA-l~ (23) and (24) in-

volve inverses only of order p and q, respectively, which is attractive "1-Thenever p 

and/ or q are less than n, particularly if considerably less. 

A noticeable feature of the second term in each of (21) - (26) is that it is 

-1 -1 the product of matrices A , u, B, V and A ~n that sequence, together with an 
IW ,_,_.,_. IV 

inverse matrix "t·Thich is the inverse of I plus ·~ permuted form of A -~v. The exact - --
form is determined by the position of the inverse matrix in the product and is such 
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that the sequence of matrices, 1·rithout I, is A -~VA -~VA-l, a very easy memory ... ,.,.,,..,.. ~ 

crutch. 

5. S~cial Cases 

Of the many special cases that could be considered, at least six are ivorthy 

of mention. 

(1) Nonsingularity of B implies that both (23) and (24) can be revrritten as (5) -
or (6 ), 't'Thich are Woodbury's [1950] results. 

(2) The symmetric case 1<Tith A and B symmetric and V = U' does, of course, give 

(A + UBV)-l symmetric. Despite this, none of the right-hand sides of the 
,... ~,_.,. 

symmetric versions of (21) - (26) appear to be symmetric. This has been 

noted by Harville [1977], although he gives only one of our six results, 

namely (24), under symmetry. If, in addition, B is nonsingular, (23) and (24) 

become (5) or (6), as already noted, and (6) then reduces further, to (7) of ~ 

Henderson ~ al. [1959], in which the symmetry is plainly evident. 

(3) Many simple case~ can, of course, be deriv~d from (21) - (26). For example, 

putting B = I gives expressions for (A + UV)-1; using U = X and B ~ V = I 
~ ~ ~ N~ ~ ~ ~ ~ ~ 

gives the expressions for (A + Xf1 shortm in (14) - (17); and putting A :;;: I, 

U = P and B = V = I gives results (8) and (9) for (I + P)-1. 
,.. ,.,. ,.. ... , - ,.. 

(4) Another 1vell-lrnmm result is 

- b A-1 'A-1 
-1 uv 

1 + bv'A u- --
(27) ( ) -1 -1 

A + buv' =A 

w'hich comes from (23 ), "t"Tith B = b a scalar and consequently U = u and V = v - -
as vectors. VJith b = 1, (27) reduces to Bartlett's [1951] result (4 ). 
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(5) A further case of (27) is 1rith A = I. Then. 

(I + buv' ) -l = I b ----uv' ... - 1 + bv'u---
and uith b = 1 

uv' 
(I + uv' rl = I - __:;H:::;-:...-...;. , - 1 + v'u --

as is 1·rell-knrnm. 

(6) A final special case of (27) is uith u = v = 1, a vector of ones, so that -
uv' = 11' = J and 

(A + bJf1 = A -l 

-- ... 

For A = ai , >-re then have the familiar _n 

(ai + bJ )-l = l I - __ b_. J • 
_n _n a _n a(a + bn) _n 
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