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Abstract—In this paper, we evaluate the performance of
descent conjugate gradient methods and we propose a new
algorithm for training recurrent neural networks. The pre-
sented algorithm preserves the advantages of classical con-
jugate gradient methods while simultaneously avoids the
usually inefficient restarts. Simulation results are also pre-
sented using three different recurrent neural network archi-
tectures in a variety of benchmarks.

Index Terms—Recurrent neural networks, descent spec-
tral conjugate gradient methods, sufficient descent property,
performance profiles.

I. Introduction

Recurrent neural networks (RNN) constitute an elegant
way to provide better modeling accuracy compared to clas-
sical feedforward neural networks. It is well known that
recurrent neural networks can be trained in a similar way
with the feedforward neural networks [22], [23], such train-
ing requires a great deal of computation. More analytically,
the training process can be formulated as the minimization
of an error function E(w) that depends on the connection
weights w of the network. A traditional way to solve this
problem is by an iterative gradient-based training algo-
rithm which generates a sequence of weights {w}∞k=0 using
the recurrence

wk+1 = wk + ηkdk, k = 0, 1, . . . (1)

where k is the time step for a specific pattern, w0 ∈ R
n is

a given starting point, ηk > 0 is the learning rate and dk is
a descent search direction. In general, conjugate gradient
methods constitute an elegant choice for efficiently training
large neural networks due to their simplicity and their very
low memory requirements since they do not require the
evaluation of the Hessian matrix neither the impractical
storage of an approximation of it.

Despite the theoretical and practical advantages of con-
jugate gradient methods, the main drawback of these
methods is the use of restarting procedures in order to
guarantee convergence [17]. Nevertheless, there is also a
worry with restart algorithms that restarts may be trig-
gered too often, abandoning the second-order derivative
information; thus degrading the overall efficiency of the
method [14]. Recently, Yu and Guan [24] proposed a
new class of conjugate gradient methods which guarantee
sufficient descent independent of the accuracy of the line
search, avoiding thereby the usually inefficient restarting
procedures.
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In this work, we study the performance of this class of
methods and we propose a new conjugate gradient algo-
rithm for training recurrent neural networks. The pro-
posed algorithm preserves the advantages of classical con-
jugate gradient methods and simultaneously avoids the in-
efficient restarts.

The remainder of this paper is organized as follows. Sec-
tion II presents a brief summary of conjugate gradient
methods. In Section III are presented the new class of
descent conjugate gradient methods and our proposed al-
gorithm for training recurrent neural networks. Section
IV, reports our experimental results and in Section V are
presented our concluding remarks and our proposals for
future research.

Notations. Throughout this paper ‖ · ‖ denotes the Eu-
clidean norm, 〈·〉 stands for the inner product and the gra-
dient of the error function is indicated by ∇E(wk) = gk.

II. Conjugate Gradient Methods

In conjugate gradient methods the basic idea for deter-
mining the search direction in Eq. (1) is the linear combina-
tion of the negative gradient vector at the current iteration
with the previous search direction, namely

dk =
{ −gk, if k = 0;

−gk +βkdk−1, otherwise. (2)

In the literature, there have been proposed several choices
for defining the scalar parameter βk which give rise to dis-
tinct conjugate gradient methods. The most famous ones
were proposed by Fletcher-Reeves [5] and Polak-Ribière
[16]. However, probably the most efficient choice was in-
troduced by Perry [15], that is

βP
k =

gT
k (yk−1 − sk−1)

yT
k−1dk−1

(3)

where sk−1 = wk−wk−1 and yk−1 = gk−gk−1. The conver-
gence analysis of these methods is usually based on mild
conditions which refer to the Lipschitz and boundedness
assumptions and is closely connected with the sufficient
descent property

gT
k dk ≤ −c‖gk‖2 (4)

where c is a fixed constant. Hager and Zhang [9] have pre-
sented an excellent survey on conjugate gradient methods,
with special attention to their convergence properties.

Birgin and Mart́ınez [2] incorporated the spectral gradi-
ent [20] in the conjugate gradient framework as follows

dk =
{ −gk, if k = 0;

− 1
δk

gk +βkdk−1, otherwise, (5)
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where δk is a scalar parameter usually defined as

δk =
〈yk−1, sk−1〉
〈sk−1, sk−1〉 (6)

which lies between the largest and the smallest eigenvalue
of the average Hessian. The motivation for this selection
constitutes in providing a two point approximation to the
secant equation underlying Quasi-Newton methods [1]. Us-
ing a geometric interpretation for quadratic function min-
imization Birgin and Mart́ınez suggested the following ex-
pression for defining the update parameter βk in Eq. (5)

βSP =
gT

k (yk−1 − δksk−1)
δkyT

k−1dk−1
. (7)

Clearly, in case δk = 1 this formula is reduced to the clas-
sical formula (3), introduced by Perry [15].

Unfortunately even with exact line search conjugate gra-
dient methods, cannot guarantee to generate descent direc-
tions. Therefore, the use of a restarts are employed in order
to guarantee convergence. A more sophisticated restarting
criterion has been introduced by Birgin and Mart́ınez [2]
which consists of testing if the angle between the current
direction and the gradient is not acute enough, namely

dT
k gk ≤ 10−3‖dk‖2‖gk‖2.

In the literature there have been proposed several restart-
ing criteria [3], [17], [21] with various performances.

III. Descent Conjugate Gradient Methods

In more recent works, Yu and Guan [24] proposed a new
class of conjugate gradient methods which can guarantee
the sufficient descent property Eq. (4) independent of the
accuracy of the line search where the scalar parameter βk

is defined as

βDP
k = βP

k − C‖yk−1 − sk−1‖2

(yT
k−1dk−1)2

gT
k dk−1 (8)

Parameter C essentially controls the relative weight be-
tween conjugacy and descent and in case C ≥ 1/4 then all
generated directions are descent directions.

Along this line, Yu et al. [25] motivated by the previous
works [2], [8], [24], embedded the spectral gradient [1] in
the descent conjugate methods framework

βDSP
k = βSP

k − C‖yk−1 − sk−1‖2

δk(yT
k−1dk−1)2

gT
k dk−1 (9)

Obviously, if δk = 1 then the above formula will reduce to
the corresponding descent conjugate gradient (8).

In order to ensure global convergence of the conjugate
gradient methods for general nonconvex functions, it has
been proposed to truncate βDSP

k by restricting the lower
bound of the update parameter of being nonnegative [6],
[18]. However by restricting βDSP

k to be nonnegative, re-
sults that the convergence speed may be reduced. Thus,
Yu et al. [25] proposed two modified schemes in which

the lower bound on βk is dynamically adjusted, in order
to make the lower bound small as the iterates converge.
In particular, they proposed two variants for selecting the
truncated update parameter βDSP+

. The first variant of
the truncated scheme uses the update parameter

β
DSP+

1
k = max

{
βDSP

k ,−C‖yk−1 − δksk−1‖2

δ(yT
k−1dk−1)2

|gT
k sk−1|

}

(10)
while the second one is based on a scheme that was first
introduced by Hager and Zhang [8], namely

β
DSP+

2
k = max

{
βDSP

k ,− 1
δk‖dk−1‖min{ξ, ‖gk−1‖}

}
(11)

where ξ is some positive constant. Notice that when
‖gk−1‖ tends to zero as k grows, β

DSP+
2

k is reduced to the
descent spectral Perry (9), when ‖dk−1‖ is bounded [8].

In the following, we present a high level description of
our proposed algorithm for training recurrent neural net-
works, based on descent spectral conjugate gradient meth-
ods.

Step 1: Initiate w0, 0 < σ1 < σ2 < 1, Err and ε → 0;
set k = 0.

Step 2: If (E(wk) < Err) or (‖∇E(wk)‖2 < ε) termi-
nate.

Step 3: Compute the descent direction

dk =
{ −∇E(wk), if k = 0;

− 1
δk
∇E(wk)+βkdk−1, otherwise

where the update parameter βk is defined by one of
(9), (10) or (11).

Step 4: Find a step length ηk using the following line
search. For 0 < σ1 < σ2 < 1 at each iteration, choose
the step length satisfying the strong Wolfe line search
conditions

E(wk + ηkdk)−E(wk) ≤ σ1ηk〈∇E(wk)dk〉
|〈∇E(wk + ηkdk),dk〉| ≤ −σ2〈∇E(wk),dk〉

Step 5: Update the weights

wk+1 = wk + ηkdk

Step 6: Set k = k + 1 and goto Step 2.

IV. Experimental Results

In this section we will present experimental results in or-
der to evaluate the performance of the proposed conjugate
gradient algorithm in three famous benchmarks acquired
by the UCI Repository [12]. Subsequently, we briefly de-
scribe each problem and present the performance compari-
son between: the descent spectral Perry’s conjugate gradi-
ent (DSP) with the spectral Perry’s conjugate gradient (SP)
of Birgin and Mart́ınez [2]. Moreover we test the numerical
performance of two different truncation strategies for the
update parameter βk. So we evaluate the two versions of
the truncate spectral Perry conjugate gradient (DSP+): the
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first one (DSP+
1 ) uses the update parameter β

DSP+
1

k defined
in Eq. (10) and the other one (DSP+

2 ) uses the update pa-

rameter β
DSP+

2
k defined in Eq. (11). We have chosen three

classical first-order recurrent neural architectures:
• Feedforward Time Delay (FFTD),
• Nonlinear Autoregressive Network with Exogenous In-

puts (NARX)
• Elman’s Layered Recurrent Networks (ELRN)
For all algorithms the heuristic parameters were set as

σ1 = 10−4, σ2 = 0.5 and ξ = 0.01 for all experiments [24].
All networks have received the same sequence of input
patterns and the initial weights were initiated using the
Nguyen-Widrow method [13]. For evaluating classification
accuracy we have used the standard procedure called k-fold
cross-validation [10]. All algorithms were evaluated us-
ing the performance profiles proposed by Dolan and Morè
[4] for measuring their efficiency and robustness in terms
of computational cost (i.e. function/gradient evaluations).
The performance profile plots the fraction of simulations
for which any given algorithm is within a factor of the best
trainer. The horizontial axis of each plot shows the per-
centage of the simulations for which a method is the fastest
(efficiency), while the vertical side gives the percentage of
the simulations that the RNNs were successfully trained
by each method (robustness). The reported performance
profiles have been created using the Libopt environment
[7], an excellent set of tools written in Perl. The implemen-
tation has been carried out using Matlab version 7, based
on the SCG code of Birgin and Mart́ınez [2].

A. SPECT Heart Problem

This data set contains data instances derived from
cardiac Single Proton Emission Computed Tomography
(SPECT) images from the University of Colorado [12]. The
network architectures for this medical classification prob-
lem constitute of 1 hidden layer with 6 neurons and an
output layer of 1 neuron. The termination criterion is set
to E ≤ 0.1 within the limit of 1000 epochs.
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Fig. 1. Log10 scaled performance profiles for the spect heart problem.

Figure 1 presents the performance profiles for each recur-
rent neural network architecture for the spect heart prob-
lem. DSP is much more robust and efficient the SP since
the curve of the former lies above the curve of the latter.
Furthermore, DSP+

1 and DSP+
2 exhibit the highest probabil-

ity of being the optimal solver with the latter exhibiting
slightly better performance.

B. Australian credit approval problem

Australian Credit Approval dataset contains all the de-
tails about credit card applications. This dataset is in-
teresting because the data varies and has mixture of at-
tributes which is continuous, nominal with small numbers
of values, and nominal with larger numbers of values. We
have used neural networks with 2 hidden layers consist of
16 and 8 neurons and an output layer of 2 neurons [19].
The termination criterion is set to E ≤ 0.1 within the limit
of 1000 epochs and all networks were tested using 10-fold
cross validation.
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Fig. 2. Log10 scaled performance profiles for the Australian credit
approval problem.

In Figure 2 are presented the performance profiles for the
card problem investigating the efficiency and robustness of
each training method. DSP+

1 and DSP+
2 exhibit the best

performance regarding all recurrent neural network archi-
tectures. Moreover, the interpretation in Figure 2 implies
that the sufficient descent property led to a significant im-
provement of DSP, DSP+

1 and DSP+
2 over the SP method

since the curves of the former lie above the curve of the
latter.

C. Escherichia coli Problem

This problem is based on a drastically imbalanced data
set of 336 patterns and concerns the classification of the
E. coli protein localization patterns into eight localization
sites. E. coli, being a prokaryotic gram-negative bacterium,
is an important component of the biosphere. Three ma-
jor and distinctive types of proteins are characterized in
E. coli: enzymes, transporters and egulators. The largest
number of genes encodes enzymes (34%) (this should in-
clude all the cytoplasm proteins) followed by the genes for
transport functions and the genes for regulatory process
(11.5%) [11]. The network architectures constitute of 1
hidden layer with 16 neurons and an output layer of 8 neu-
rons. The stopping criterion is set to E ≤ 0.02 within the
limit of 2000 epochs. In all simulations the neural networks
were tested using 4-fold cross-validation.

Figure 3 illustrates the performance profiles for the ecoli
problem investigating the performance of each training
method. DSP is much more efficient and robust than SP
regarding all recurrent neural network architectures. Fur-
thermore, DSP+

1 and DSP+
2 perform similarly and exhibit

the best performance since they present the highest prob-
ability of being the optimal solver.
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Fig. 3. Log10 scaled performance profiles for the escherichia coli
problem.

V. Conclusions

In this work, we evaluate the performance of the pro-
posed conjugate gradient algorithm for training recurrent
neural networks. From the rigorous analysis of the sim-
ulation results is strongly demonstrated the sufficient de-
scent property led to a significant improvement of the DSP
method over SP method which provides faster, more stable
and reliable convergence.

Since RNNs have the ability to deal with time varying
input and output through their own natural temporal op-
eration, our future work will be concentrated on evaluat-
ing our proposed algorithm on time varying large datasets,
such as time series prediction.
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