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Abstract—We consider the problem of digital communication transmitter can send training signals that allow the receiver
in a Rayleigh flat fading environment using a multiple-antenna  to accurately estimate the fading coefficients; in this case, the
system, when the channel state information is available neither at results of [1], [2] are applicable.

the transmitter nor at the receiver. It is known that at high SNR, . h . -

or when the coherence interval is much larger than the number In fast. fading scenarlos,.however, fading coefficients C"?m
of transmit antennas, a constellation of unitary matrices can change into new, almost independent values before being
achieve the capacity of the non-coherent system. However, at low learned by the receiver through training signals. This problem
SNR, high spectral efficiencies, or for small values of coherence hecomes even more acute when large numbers of transmit
mterval_, the unitary constellations lose their optimality and fail and receive antennas are being used by the system, which
to provide an acceptable performance. . . . .

In this work, inspired by the Stein's lemma, we propose to use requires very Iong. training sequences to estimate the faFilng
the Kullback-Leibler distance between conditional distributions CO€fficients. Even if the channel does not change very rapidly,
to design space-time constellations for non-coherent communica- for applications which require transmission of short control
tion. In fast fading, i.e., when the coherence interval is equal packets (such as RTS and CTS in IEEE 802.11), long training
to one symbol period and the unitary construction provides gequences have a large overhead (in terms of the amount of
only one signal point, the new design criterion results in PAM- . L
type constellations with unequal spacing between constellation t'm,e, and power spent on them), and S|gn|f|cantly reduce the
points. We also show that in this case, the new design criterion €fficiency of the system. A non-coherent detection scheme,
is equivalent to design criteria based on the exact pairwise error where receiver detects the transmitted symbols without having
probability and the Chernoff information. any information about the current realization of the channel,

When the coherence interval is larger than the number is more suitable for these fast fading scenarios.

of transmit antennas, the resulting constellations overlap with Th itv of th h t t has b tudied
the unitary constellations at high SNR, but at low SNR they e capacily or tné non-coherent systems has been studie

have a multilevel structure and show significant performance in [5], [6], where it has been shown that at high SNR, or
improvement over unitary constellations of the same size. The when the coherence intervdl,, is much greater than the

performance improvement becomes especially more significant number of transmit antennad/, capacity can be achieved
when an appropriately designed outer code or multiple receive p, \sing g constellation of unitary matrices (i.e. matrices with

antennas are used. This property, together with the facts that the th | col Optimal unit tellati th
proposed constellations eliminate the need for training sequencesOr onormal columns). Optimal unitary constellations are the

and are most suitable for low SNR, makes them a good candidate Optimal packings in complex Grassmannian manifolds [9].
for uplink communication in wireless systems. These packings are usually obtained through exhaustive or
Index Terms— Fading channels, multiple antenna systems, non- random search, and their decoding complexity is exponential
coherent constellations, space-time modulation, wireless commu-in the rate of the constellation and the block length (usually
nications. assumed to be equal to the coherence interval of the channel),
or linear in the number of the points in the constellation.
l. INTRODUCTION In [7], a systematic method for designing unitary space-
time constellations has been proposed, however, the resulting
constellations still have exponential decoding complexity. A

I i aati h | %foup of low decoding complexity real unitary constellations
ess communication systems has been recently proposed 99 been proposed in [8]. These real constellations are optimal

studied using different approaches [1}-[8]. In [1], [2], it hag,pen the coherence interval is equal to two (symbol periods)
been shown that in a Rayleigh flat fading environment, the,y  mper of transmit antennas is equal to one. However,

capacity of a multiple antenna system increases linearly Wiy ,roh0sed extension to large coherence intervals or multiple
the smaller of the number of transmit and receive antenN@s;nsmit antennas does not maintain their optimality

provided that the fading coefficients are known at the receiver.In this paper, we consider constellations of orthogonal

In a .slowly fgdlng Ichannel, V\;here the fadijngll .COEff'(i'e”t&ather than orthonormal) matrices, and propose a new design
remain approximately constant for many symbol intervals, tiiierion for non-coherent space-time constellations based on
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design criterion are the following:

considering non-unitary constellations and proposing the né&wsr the above reasons, we propose the use of KL distance
between conditional distributions as the design criterion, and

construct constellations for single- and multiple-antenna sys-
« Thelong coherence timeequirement for the optimality tems in fast and block fading channels which outperform the
of the unitary constellations makes them less desirable fexisting unitary constellations.

high-mobility scenarios. For example, all of the unitary The main contributions of this paper are summarized in the
constellations of [6]-[8] have been designed for the cassliowing.

of ' > 1. For T' = 1, they provide only one signal
point, which is obviously incapable of transmitting any
information. The capacity of discrete-time fast Rayleigh
fading channel§T" = 1) has been studied in [11], and
has been shown to be greater than zero. It has also been
shown that the capacity achieving distribution fBr= 1

is discrete, with a finite number of points, and one of them
always located at the origin. In general, long coherence
interval means a slowly fading channel (in which case
a training based coherent transmission might be more
desirable), whereas the non-coherent constellations are
usually needed when channel changes rapidly and train-
ing is difficult or expensive (in terms of the amount of
time and power spent on that).

The high SNRrequirement for the optimality of the
unitary constellations implies low power efficiency. This
is because the capacity is a logarithmic function of the
average power, and thus, a linear increase in the power
results in only a logarithmic increase in the capacity.
Considering the power limitations in the battery operated
devices, the high SNR requirement cannot be easily
satisfied by mobile devices.

It appears that the unitary designs are not completely
using the information about the statistics of the fading
[12]. It can be easily shown that, e.g., in the case of real
constellations forM = 1 and T = 2, a non-Bayesian
approach (i.e., assuming that fading is unknown, with
no information about its distribution), would result in a
unitary design. If the statistics of the fading process are
known at the transmitter and the receiver, (e.g., if the
channel is assumed to be block Rayleigh flat fading, with
fading coefficients from the distributiaf\V/ (0, 1)), then a
design criterion which takes this knowledge into account
more efficiently, would result in better constellations (in
terms of error rate performance).

A common performance measure for evaluating different
constellations in communication systems is the average
symbol error probability. However, the expressions for

2)

3)

1) The relation between the KL distance and the ML

detector performanceUsing the fact that the KL dis-
tance is the expected value of the likelihood ratio, we
show that, for a large number of observations (e.g.,
receive antennas in our case), the performance of the
Maximum Likelihood (ML) detector is related to the KL
distance between the conditional distributions (Lemma
3). We also show that in some casés & 1), for
any number of receive antennas, the KL-based design
criterion is equivalent to the design criteria based on the
exact pairwise error probability and the Chernoff bound
(Section III).

KL-based design criterianWe derive the KL distance
between the conditional received distributions corre-
sponding to different transmit symbols for the general
case of multiple-antenna systems (Equation (31)), and
propose a design criterion based on maximizing the
minimum of this KL distance over the pairs of constel-
lation points. We also derive the simplified distance for
orthogonal constellations (Equation (34)).

Multi-level structure and decoupled optimizatioBy
imposing a multi-level unitary structure on the constella-
tion, we further simplify the KL distance, and decouple
the design problem into simpler optimizations. As a re-
sult, we can use any existing unitary design at the levels
of the multi-level constellation, and find the optimum
distribution of the points among the levels, and their
radiuses. In fast fading, i.e., wh@h= 1 and the unitary
construction provides only one signal point, the new
design criterion results in PAM-type constellations with
unequal spacing between constellation points (Section
V-A). When the coherence interval is larger than the
number of transmit antennas, the resulting constellations
overlap with the unitary constellations at high SNR,
but at low SNR they have a multilevel structure and
show significant performance improvement over unitary
constellations of the same size (Sections V-C and V-D).

the average error probability are usually very compli- The rest of this paper is organized as follows. In Section

cated, and do not provide much insight into the desigh we introduce the model for the system being considered
problem. Therefore, we initially consider the pairwis¢hroughout this paper. In Section Ill, we derive the exact
error probability as our performance and design criterioexpression and the Chernoff upper bound for the pairwise
Unfortunately, the exact expression and even the Cherneffor probability in the fast fading scenario, and show that
upper bound for the pairwise error probability do nothey result in the same design criterion as the one suggested
seem to be tractable for a general non-coherent constey-the KL distance. In Section IV, we derive the KL distance
lation. Moreover, except for the special case of unitatyetween conditional distributions of the received signal, and
constellations, the pairwise error probabilities are ngropose the design criterion based on that. In Section V, we
symmetric. The KL distance is an asymmetric distance, [isesent non-coherent constructions for several important cases
relatively easy to derive even for general multiple-antenramd compare their performance with known unitary space-
constellations, and is equal to the best achievable ertome constellations. We show that the new constellations can
exponent using hypothesis testing (Stein’s lemma [10]provide significant performance improvement compared to



the unitary constellations, especially at low SNR and whédar this system will have the following form
multiple receive antennas are used. Finally, in Section VI we _

. . _ T N
bring some concluding remarks. Smr = Sp,,, where Iyp = argleggg”pl (X). @)
Il. SYSTEM MODEL If L = 2, then the probability of error in ML detection of

We consider a communication system with transmit and 51 (detectingS; given that$, was transmitted) is given by

N receive antennas in a block Rayleigh flat fading channel
with coherence interval df' symbol periods (i.e., we assume

that the fading coefficients_ remain- constant durin_g blockShere we have used the notatibn,{R } to denote the proba-
of T consecutive symbol intervals, and change into ne‘ﬁqlity of set R with respect to the probability density function
p-

:{n(ljlep(_andent v?luets), at ;hedend O,f each block). We use eNow, if we also assume that and S, are transmitted with
ollowing complex baseband notation equal probabilities, then the average probability of error in ML

X=SH+W, 1) detection will be given by

Pr(S1 — S2) = Pr,x {X : p3'(X) > p'(X)},  (5)

whereS is theT x M matrix of transmitted signalsX is the P.(S1,8,) = lpr(gl — S) + lpr(gz — 51). (6)
T x N matrix of received signalsH is the M x N matrix 2 2

of fading coefficients, andV" is the T' x N matrix of the ¢ is known [10] that this average pairwise error probability
additive received noise. Elements &f and W are assumed gecays exponentially with the number of independent ob-
to be statistically independent, identically distributed circulfgryations. and the rate of this exponential decay is given
complex Gaussian random variables from the distributiqﬂ/ the Chernoff information [10] between the conditional
CN(0,1). We intentionally avoid using the scaling factor ofjistributions.

\/ 47 of [7] to account for the desired signal to noise ratio (or For L > 2, even though (5) and (6) are no longer exact, we

average power constraint on the constella_tlon). we will SEll still use them as an approximation for the pairwise error
in Section V, that the structure of the optimal constellatio

robability, which will, in turn, be used to derive the design
depends on the actual value of the signal to noise ratio, agﬁ Y g

tellati f th ) t diff ¢ SNR' A erion for space-time constellations.
constefiations of the same size at diteren S aré no For the special case of unitary transmit matrices, i.e., when
necessarily scaled versions of each other. Therefore we captyyg,

TP ;
the SNR factor in theS matrix itself, and use the power, ! 51 = (7)1, the exact expression and Chernoff upper
] T M 9 . bound for the pairwise error probability were calculated in
constraint >, > E{[sim|*} < P, wheresy,’s are , .
T £ut=1 fum= [6]. However, the corresponding expressions for the general
the elements of the signal matrix . : .
se of arbitrary matrix constellations do not seem to be

. . . C
With the above assumptions, each column of the rece'vsasily tractable. In the next section, we will calculate these

mattrlx, X"trl1$ a zerg—mean C'tr(‘f;'[lar cosnglex _l(_shausilan r?adog;(pressions for the case of a single transmit antenna in fast
vector with covariance matrixz -+ - jherefore, the fading, and will show that they result in the same design

conditional probability density function of,,, thenth column

criterion.
f the received matrixX n written . . -
of the received ma , can be en as Before proceeding to the next section and deriving the
p(XnlS) = Eg{p(X,|S,H)} expressions for the pairwise error probabilities, we notice that

the conditional probability density function in (3) depends on
. @) S only through the producSS*. Since the pairwise error
N nldet (I7 + SSH) ' probability in (5) (and also in general the average error proba-
Since the columns oK are statistically independent, we havebIIIty of't.he ML d'etector). IS de_te'rmlned only by the conditional
. ) 7. . . probability density functions, it is clear that the performance of
the following expression for the conditional probability densit . :
he non-coherent multiple-antenna constellation also depends

function of the whole received matri4, on the constellation matrice{.'~‘Sl}~lL=1 only through the prod-

exp {—X{L{ (It + SSH)_1 Xn}

N ucts{SlSlH}L_ . If M > T, using the Cholesky factorization
Nxls) = Jp(Xal9) H v i i i
p P\An SSH = QQY whereQ is aT x T lower triangular matrix,
n=1 . for any constellation of7" x M matrices one can find a
exp {—tf |:(IT + S55H) XXH} } corresponding constellation Gf x T' matrices with the same

= TTNGet™ (I 7 557) - (3) pairwise and average error probabilities. Als@'it> M, usilgg
the singular value decomposition, we can wifte= &1/ U,
Note that the superscrigV is not an exponent fop. It only where® and¥ areT x M and M x M unitary (orthonormal)
specifies the column size of and emphasizes the statisticamatrices andV is an M x M real non-negative diagonal
independence of its columns. Later, when calculating tmeatrix. Defining S’ = ®V, we haveS’S’# = SSH. This
pairwise error probabilities and error exponents, we will fintheans that for any constellation @fx M arbitrary matrices,
this notation convenient. one can find a constellation & x M orthogonal matrices
Assuming a signal set of sizé, {S;}~ ,, and defining with the same pairwise and average error probabilities. Since
pY (X) = p™(X|S;), the Maximum Likelihood (ML) detector the average power of the constellation also depends only on



the expected value of the produss’, where

1 & X 1 A = — 1 - 1n<1+32|z)
=72 2 E{lsuml’} = zE{w [SS"]}, (D) o~ er N
t=1m=1 _ A+ [s)A+]s) (1 + IsQF) (10)
the new constellation will also have the same average power |s2|? — [s1? 1+ [s1?

as the original constellation. Therefore, (similar to the resulf,q
of [5] for capacity) we have the following result. 1+ [s1)?
. . . B=——-.
Theorem 1:Increasing the number of transmit antennas 1+ |sg)?
beyondT" does not improve the error probability performance
of the non-coherent multiple-antenna systems. Furthermore,

(11)

Similarly, it can be shown that ifs;| > |s2|, we have

the optimum error probability performance can be achieved Pr(s; — s3) =1— BTE.
by a constellation of orthogonal matrices. _
Therefore, in the rest of this paper, we will assume thdtis completes the proof. u

M < T, and that the constellation matrices are orthogonal. Theorem 2:For a single transmit antenna communication
system (i.e.M = 1) in a fast fading environment (i.€[; = 1),
the pairwise error probability of non-coherent ML detector is
[1l. PAIRWISE ERRORPROBABILITY FOR FAST FADING given by
(T=1)

|:N n ( Nln(B)) ] ox (Nln(B))

Throughout this section, we will assume that there are =™ =B J

only two signal points in the constellation, i.€., = 2. As Pr(s, — so) = for B < 1;

mentioned in the previous section, there is no gain in using =Ly Nln(B) N In(B)

more transmit antennas thdh Therefore, we also assume that [nzo ol ( ) } P ( -B ) ’

M = 1. With this assumption, the transmit matrix is simply for B > 1;

a complex scalar. We denote this scalarsbyrhe conditional (12)

probability density of the received signal given the transmitte@there B is as in (11).

symbol is given by Proof: Proof is by induction, and is given in Appendix

A. [ ]
N(X|s) = 1 ox (—||X||2) () tisinteresting to notice that, in this case, the two pairwise

N (14 |s[2)N 1+ 1s|? error probabilities, i.e Pr(s; — s2) andPr(sy — s1) are not

equal, even in the limit af;| — |s2|™ or |s1| — |s2]|*. The
In the following, we derive the exact expression fofollowmg two identities can be verified easily.

Pr(s; — s2) in this case.

. . . N—-1
Lemma 1:For a single antenna communication system (i.e., . _ "
M = N = 1) in a fast fading environment (i.e] = 1), \51|1_I>I|I§2\—Pr<sl =)= Z;) r | PN (29)
the pairwise error probability of non-coherent ML detector is 711/__1
given by lim Pr(s; —s9)=1-— N— exp(—N). (14
Is1| 2]+ (s1 2) Z;) ol p( ). (14)
2 % "
(mjliz) 2Pl for |si| < |s2|; For N = 1, the above equalities reduce to the following:
Pr(s; — s2) = ’ +]s2]? 1
1— (ii}:}z) ‘§2‘2 |51‘2 , for |51| > |52|. ’ ‘hI‘Ii |*Pr(81 — 52) = - ~ 0.3679,
©) , !
Proof: Using (5) and (8) (withV = 1), and assuming ‘ lhffl n Pr(sy — s2) =1 - -~ 0.6321.
S1|—|s2

that |s1] < |s2|, we have
This discontinuity can be explained as follows. With the

Pr(s1 — s2) = Pr,, {z:p2(z) > pi(x)} ML detector, the decision region corresponding to each con-
N stellation point is the region in which that constellation point

Pr {x : —r—y €XP (%)
" (1+ 2‘2)1 1+ z‘iw has the largest likelihood among all of the constellation points.
e ()

T(1+]s5112) T+[s1]? The likelihood functions in this case (binary signaling, single
= Prp, {m sz)? > A} transmit antenna, fast fading, and non-coherent detection) are
oo 21 0 complex Gaussian probability density functions with zero
- \/fz Ofpl(pe Jpdddp mean and variance+ |s;|?, for [ = 1,2. The boundary of the
L L, two decision regions is the line along which the two likelihood
= e Jexp (ﬁ) d(p®) functions are equal. Fo¥ = 1, this boundary is a circle in the
‘f complex plane centered at the origin, with radigsl, where
= ©Xp (1+\91\2) A is as in (10). Fig. 1 shows a cross-section of the likelihood

= Bﬁ, functions and the boundary of the decision regionssfos 0
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Fig. 1. The likelihood functions fofs1| = 0, |s2| =1, and N =1

and sy = 1. Fig. 2 shows the radius of the boundary {5/, as shown in Fig. 2, e.g., fds;| = 2, where the radius of the
when ss = 1. As we can see in these figures, the boundaboundary is less than 2. Fig. 2 also compares the radius of the
is not defined whens;| = |s2|, because in this case the twdboundary of the decision region with the arithmetic mean of
likelihood functions are equal everywhere. However, both rigttte magnitudes of the constellation points (probably the most
and left limits of the boundary radius (&s;| — |s2|) exist intuitive, yet incorrect, value for the radius of the boundary).
and are, in fact, equal. It can be easily verified that the limits we see, for large values ¢f; |, the radius of the boundary

is equal to the standard deviation of the common distributiois, much smaller than the arithmetic mean.

or From Fig. 3, we observe that in the two disjoint regions
lm A=1+|ssf?. (15) {Is1] < |s2]} and{|s1| > |s2|}, the pairwise error probability
[s1]—|s2] is a monotonic function of3 as defined in (11). Therefore, as-

h ity of mistaki ‘ is th | suming|si| < |s2|, minimizing the pairwise error probability
The probability of mistaking; for s, is the volume under is equivalent to minimizing3.

the conditiqnal pdf c_orrespondir_lgt_;q in the decisio_n_ region  The next proposition gives the Chernoff bound on the
of so. The discontinuity of the pairwise error probability Comeﬁxponent for pairwise error probability in this case.

from the fact that, even though the radius of the boundary OfProposition 1: Consider a single transmit antenna commu-
the decision regions does not have a jump discontinuity at... system (i.e.M

[s1] = [s2|, the decision region of; itself suddenly changes ; o 7 _ 1), The largest achievable exponent for the average

from outside the boundary circle to inside the circle,ag probability of error (i.e., the Chernoff information [10]) for
changgs from a value smaller than| to a value Igrger thgn this system is given by the following expression
|s2|. Since the volumes under the Gaussian density function in

the two regions of inside and outside a circle with radius equalc( N Ny = { N [% —In (%) — 1} , B#1;
12 ) —

= 1), in a fast fading environment

to the standard deviation of the distribution are different, the

)

left and right limits of the pairwise error probability are also 7(16)
different, resulting in a jump discontinuity. This discontinuitywhere B is as in (11).

can be seen in Fig. 3 which shows the two pairwise error Proof: See Appendix B. [ |
probabilities as a function aB for N =1 (B <1 andB > 1 Notice that sinceB > 0, andIn(B) and B — 1 have the
correspond tds;| < [s2| and|si| > |sz, respectively). same sign, the Chernoff distance in (16) is well-defined, and

Another interesting point to observe in Figs. 1 and 2 is thaincex — In(z) — 1 > 0 for « > 0, it is always greater than
the signal points may not belong to their respective decisian equal to zero.
regions. As we see in Fig. 1, the radius of the boundary of theFig. 4 shows the exact average error probability, and the
decision region is greater than one (around 1.1774), wher&ztsernoff bound for the average error probability given by
both constellation points have magnitudes smaller than }z:mxp {—NC(p{V,pQ’)}, for N = 1. As we see, the Chernoff
equal to one. This is not the case for large valuegsef bound is also a monotonic function @& in the two regions
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Fig. 2. The radius of the decision region ys;| for [s2| =1 and N = 1.

M=1,N=1,T=1,L=2

25

Pairwise Error Probability

107 - 17 17 I .
10 10 10 10
B = (1+Is,)/(1+ls,1%)

Fig. 3. Pairwise error probabilities for single antenna in fast fading.
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Fig. 4. Average error probability and the Chernoff bound for single antenna in fast fading.

of {B < 1} and {B > 1}. We will see later in Section V- over all pairs of the constellation points. In [8], it has been
A, that the Kullback-Leibler (KL) distance between the twehown that this design criterion is approximately equivalent to
conditional distributions corresponding to the two differemnaximizing the minimum so-callesjuare Euclidean distance
transmitted symbols is given by between subspaces spanned by columns of the constellation
NN matrices. It can be shown (see Appendix F) that the square
Dl llpz) = N [B = In(B) —1]. (17) Euclidean distance between subspaces is equivalent to the
This expression is also a monotonic function Bf in the chordal distanceas defined in [13]. Therefore, unitary designs
two regions of{B < 1} and {B > 1}. Therefore, the can be considered as packings in the complex Grassmannian
three different criteria of (a) minimizing the maximum of themanifolds [13].
exact pairwise error probability, (b) maximizing the minimum The problem with the unitary constellations is that they
of the Chernoff distance, and (c) maximizing the minimurare optimal only at high SNR or whef > M. These
of the KL distance, are all equivalent to minimizing th@equirements are rather restrictive, and cannot be met in many
maximum of B (assumingB < 1), and will result in the same situations of practical importance. Operation at high SNR
constellation. In Section V-A, we design new constellationseans low power efficiency, which is in contradiction with
based on this design criterion and compare their performartbe low power requirements of the wireless systems. On the
with the performance of the conventional PAM constellationsther hand, large coherence interval means a slowly fading
channel, in which case a training based coherent signaling
IV. DESIGN CRITERION might be more desirable. In fact, the main motivation for non-

It is known [5] that the capacity achieving signal matrix foeoherent communication is to deal with fast fading scenarios
the non-coherent systems can be writterbas ®V, where® where training is either impossible or very expensive (in terms
is aT x M isotropically distributed unitary matrix, and is of the fraction of time and energy spent on that). Even if
an independend/ x M real, nonnegative, diagonal matrix. Itthe coherence interval is large, because of the exponential
is also known [6] that when the SNR is high or wHEns>- A/,  growth of the constellation size and (in most cases) decoding
the capacity can be achieved by a unitary signal matrix (i.€9mplexity with7", one might decide to design a constellation
a signal matrix with orthonormal columns obtained by settinigr a block length with is much smaller thdh At low SNR, or
V to a deterministic multiple of the identity matrix). when the block length is not much larger thah the unitary

Based on these results, unitary space-time modulation tegsigns lose their optimality and fail to provide a desirable
been studied in [6], where expressions for the exact pairwigerformance. For these reasons, in this work we do not assume
error probability as well as the Chernoff upper bound far unitary structure on the constellation matrices, and try to
the pairwise error probability of unitary matrices have beetesign non-coherent signal sets of matrices with orthogonal
derived. These expressions suggest a design criterion basedrater than orthonormal) columns.
minimizing the singular values of the product matrice§,®;, Unlike the case of unitary constellations, the pairwise error



probability of the non-coherent ML detector, which is approxP(po|lp2) < D(pollp1) < oo. Let Liy = H'r]jzl iggng

imately given by (5), does not appear to be tractable in theyq 7, — ngl Po())gn) denote the likelihood ratios for
more general case of orthogonal matrices. Even the Cherngff o tests, so tffét ﬂt’he probabilities of mistakipg for
distance (see Appendix B for the definition and an exampk;)l, and p, using the ML detector are given by.,y =
Wh'iCh' determines the. gxponential decay rate of the averaee (1,5 < 1} and Py = Pry, {Lony < 1}. Also denote
pairwise error probability of the ML detector [10], does Noby AD the difference between the two KL distances, i.e.,

seem to admit a simple closed form expression for arbitrafyp — p(p||p;) — D(po||p2) > 0. With these assumptions,
orthogonal multiple-antenna constellations. Therefore, inspirggh \vill have

by the Stein’s lemma [10], we will use, as our performance NAD

criterion, the upper bound on the exponential decay rate of the Prp, {LlN < €TL2N} —0 as N — oo. (23)
pairwise error probability, given by the Kullback-Leibler (KL)
distance [10] between conditional distributions.plf and p-

Proof: We have

are two probability density functions on the probability space : Lin 1 | N po(Xn)/p1(Xy)
(X, F), then the KL distance between them is defined as N (L2N> = N nll po(X,)/p2(X,)
216 al
D(pilp2) = Ep, {ln ( 12;;;)} S Y i (24)
D2 N el pl(Xn) .

pi(x)
/Xpl(x) In (pQ(I)) dr,  (18)  gince x;'s are assumed to be drawn i.id. according to the
probability density functionp,, by the weak law of large

whereE,, denotes expectation with respectpio We also use numbers, we have

the notationPr, {R} to denote the probability of st € F

with rgs’pect to the probability density functi@p 1 N pa(Xn) pa(X1)
Stein’s lemma [10] relates the KL distance with the pairwise =7 Z In — Ep, {In
iliti i iy N & p1(Xn) p1(X1)
error probabilities of hypothesis testing: n=1 ' 5
Lemma 2 (Stein’s lemma)et X, X,,..., Xy € X be in probability w.r.tpy. (25)

drawn i.i.d. according to the probability density functigron
X. Consider the hypothesis test betweea p; andq = po,
wherep; andp, are probability density functions of’, an
D(p1|p2) < oo. Let Ay € XN be an acceptance region for E,, {111 {m@ﬁ)]} _ E, {1 [Po(Xl)} } B

Multiplying the numerator and denominator of the argument
of the In(-) function bypy(x), we have

1
hypothesis 1. Denote the probabilities of error by p1(X1) p1(X1)
X

= Pr(ps = p2) = Pry, (A5}, 19) By {n | 2525}

fn = Pr(p2 — p1) = Pry, {An}, (20) = D(po|p1) — D(wollp2)
and define = AD. (26)

Ay = ANgEViflaNqﬁN' (21) From equations (24), (25), and (26) we have
1 L . -
Then 1 —In (lN> — AD in probability w.r.tp, (27)
lim lim —In 5§ = ~D(pa]|p2). (22) N\ Loy

) which means that for any > 0,
In other words, the best achievable error exponent for

Pr(Sy — S1) with the constraint thaPr(S; — S2) is smaller Pry, { 1 In (L“V> — AD’ > 6} —0asN — oco. (28)

than a given value, is given B (p(X|S71)||p(X|S2)). It turns N Lon

out that this error exponent is not achieved with the maximupyt 5§ — AD From (28) we will have,

likelihood detector, but with a detector which is highly biased

in favor of the second hypothesis. Nevertheless, it serves asPrp { 1 I <L1N> < AD
0

an upper bound on the pairwise error exponent of the ML N ! Loy 2
detector. The following lemma shows that the performance of 1 Lin 3AD
the ML detector is, in fact, related to the KL distance between or < In <L2N> } —0asN — oo, (29)

the distributions. (As we saw in Section Ill, at least in fas
fading, i.e., whenT' = 1, the KL-based design criterion is
equivalent to the design criterion based on the exact pairwise
error probability and also the Chernoff bound.) [ ]
Lemma 3:Let X1, X5,..., Xy € X be drawn i.i.d. ac- The above lemma states that, for sufficiently lafgewith
cording to the probability density functign, on X'. Consider high probability the likelihood ratio of the first test is greater
two hypothesis tests, one betwegn= p, and ¢ = p;, than the likelihood ratio of the second test, and the ratio of the
and the other betweep = py and ¢ = po, wWhere p; two likelihood ratios grows exponentially withV. Recalling
and p, are probability density functions o, and 0 < that the error probability of each test is the probability that its

Pr,, {LlN < eWLQN} —0asN —oo. (30



corresponding likelihood ratio is smaller than one, this impliashere we have used the notatid,, to denote themth
that for largeN, the first test will have a lower probability of column of S;. The expressions for KL distance in (34) is
error than the second test. not very illuminating as it is. Therefore, we study the signal
In the above lemma/N is the number of independentset construction problem through a series of special cases.
observations. In our case, independent observations canThese special cases will provide an understanding of the
obtained by using an outer code which operates over sevarature of the KL distance in (31) by breaking it down into
independent fading intervals, or simply by using multiplsimpler components. In most cases, this results in a systematic
receive antennas. technique for constellation design.
In Appendix C, we show that the KL distance betwegh Notice that Sections V-B and V-D correspond to single-
andp§v (obtained by substituting,; and.S; for S in (3)), is antenna and multiple-antenna unitary constellations, and are

given by special sub-cases of Sections V-C and V-E, respectively. It
is shown in these sections that, assuming orthonormal signal
D(p [Ip}) = Ntr {(Ir + S;S/")(Ir + S;5]) 7'} - matrices, the KL-based design criterion reduces to the previ-

Nlndet {(]T + Sy (Ir + SijH)‘l} — NT. (31) ously proposed design criterion for the unitary constellations
[6], [8]. Therefore, unitary designs can be considered as

Adopting the KL distance as performance criterion, the signgbecial cases of the more general constellations designed using
set design criterion in general will be maximization of thghe KL-based criterion. Simulation results corresponding to
minimum KL distance between conditional distributions COISections V-B and V-D are presented in Sections V-C and V-E,
responding to the signal points, i.e., assuming equiprobal&pectively, where the unitary designs are compared with their

signal points, multi-level versions designed using the KL-based criterion.
maximize min  D(p;i|lp;),
P i i (pillp;) (32) _
T L ISUPSTP iy A. Fast Fading T = 1)
where||S;||? = ZtT—1 Zf\f_l 1(S1)em|? is the Frobenious norm As stated in Theorem 1, there is no gain in using more
of S;, or the total _power_used to transnfi. thanT transmit antennas. Therefore, in this case we consider
If we denote, by); ;(¢),t =1,...,T, theT eigenvalues of only single transmit antenna systems, where signal matrices
(It + S; SH) (I + Sj’iS*H)*l the KL distance in (31) can be &€ complex scalars. The KL distance of (34) reduces to
ek} J ]
written as 1+ |s;]2 1+ |s;]2
Di(pillp) = Lt lsl s—In(——-]-1 (39
1+ sy 1+ s,

T
DY |pY) =N i) —In(N;(#)—-1}. (33
(i"lpy’) ;{ 4(B) = In (i (1)) } (33) It can be easily verified that, similar to the pairwise error

grobability (12) and the Chernoff information (19), the KL
ndistance is also a monotonic function Bf = }‘Hi‘P in the
fo regions of{B < 1} and {B > 1}. Therefore, for a
I|,ngle transmit antenna system in fast fading, maximizing the
'@imum of the KL distance is equivalent to minimizing the

imum of the exact pairwise error probability as well as

This expression, in spite of its notational simplicity a
also its resemblance to the well-knowesnk and determinant
criteria of coherent space-time codes [4], does not provi
much insight into the design problem. Moreover, the powé
constraint does not appear to be easily expressible in terfl

of the above eigenvalues. Therefore, in the next section, : .
will try to approach the design problem by imposing som e Chernoff bound. The following theorem characterizes the
eqution to the maximin problem in this case.

extra constraints on the signal set and directly simplifying e ) . -

original expression in (31). Since the actual valueNofdoes Theoremﬂj{hf SOLU;OE ;O _the _maX|kr)n|n %r()lalelnjl(SZi for
not affect the maximization in (32), in designing the signd['® ¢@se o =1andT =1, is given by|s;|* = o' —1,
constellations we will always assume thsit= 1. whereq« is the largest real root of the polynomial

fla)=a" -~ L(P+1)a+ (LP+L—-1). (36)

V. SIGNAL SET CONSTRUCTION Proof: See Appendix E. [ ]
In Theorem 1, we showed that any error probability pefNotice that, sincef(1) = 0, f'(1) = —LP < 0, and
formance achievable by a constellation of arbitrary matriceslit /(@) = +oo, this polynomial always has a real root

can also be achieved by a constellation of orthogonal matrickger than one.
Therefore, in this work we will only consider matrix constella- The constellations obtained from Theorem 3 are PAM-
tions with orthogonal columns. In Appendix D, we show thaype constellations but with unequal spacing between the
with this assumption, the KL distance expression in (31) caignal points, and the first point is always at the origin.
be written as The interesting fact is that even the relative locations of the
" , , constellation pc_)ints depend on thg SNR, and two constellations
Dilp;) = Z {1 + 1Sim* In (1 + [|Sim |l ) _, of the same size designed for different SNR values are not
R 14+ |Sjml? 14+ |Sjml? necessarily scaled versions of each other. Fig. 5 shows the
1Sim 21112 = ZM S - S ? locations of the_ signal points for a 4-point gonstellat|on vs.
4 Iem Jm k=1 1Pik " Djm }7 (34) average transmit power. As we see, the spacings between pairs
L+ [|Sjmll? of consecutive points are not equal. However, in terms of the

m=1
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Fig. 5. Magnitudes of the optimal signal points for a 4-point constellation With= 1, 7= 1, and N = 1.

KL distance, these points are, by construction, equally spacsiynal points). This is the same design criterion proposed for
At high SNR, the outer points have to be placed farther apantitary constellations [7], [8] if only one transmit antenna is
than the inner points, to maintain a constant KL distanceonsidered. Examples of such designs can also be found in [7]
Therefore, for a PAM constellation with equally spaced pointand [8].

the outer points have a smaller KL distance than the innerFor T = 2, if we confine ourselves to real con-
points. In fact, it can be easily shown that in (35), if the ratistellations, the above criterion results in the signal set
of the magnitudes of two constellation points is constant, bfy[ cos((i — 1)x/L L .
increasing SNR the KL distance between those two poin{; sin((((lf 1))7r;L)) L which is the same as the signal
converges to a finite constant. This results in an error floor feet proposed in [8]. As also mentioned in [8], these so-called
a PAM constellation as shown in Fig. 6. However, as we s&SK constellations, have the advantage of low complexity
in this figure, the optimal constellation does not see any errdecoding based on a single phase calculation and quantization.

floor. Therefore, we will use these constellations for a more general
design explained in the next subsection. Notice that the angle
B.T>1,M=1,and|S|2=TPfori=1,...,L between adjacent points is/L, not 2x/L. This is because

tms angle is actually the angle between subspaces containing

This is the case of single transmit antenna systems Ebe constellation points, and thus has to be considered modulo
block fading environment, with constellation points which ar P '

column vectors and all lie on a sphere @. Since all of
the points have the same magnitude, these constellations can
be considered as single antenna unitary constellation. The kT =1andM =1

.

distance of (34) reduces to This is the general case for single-antenna constellations.
Datoilps) = 1SilI2118;112 = 1S - S; 2 The KL distance in (34) reduces to
! 1+ 1551 Dinlly — LISl (TSI
| @ppaiiss) g, PO T sE " (s ) -
LyrP o D1 (plpy)
where- is the inner product operation, anth;, S; denotes the 19512115, 12 sin? (£S5, S;)
angle between signal vectafs andS;. This distance depends + d J DEIz
only on the angle between the signal points. L+ 11512 (38)
The optimum constellation in this case, is obviously the one IS:l” 1 (willp;)
that is designed to maximize the minimum angle between sub- 151 =2 \PiliPj

spaces spanned by the signal points (or equivalently, minimizes we see, the KL distance between any two points consists of
the maximum absolute inner product or correlation betwedno parts:D; (p;||p;) due to having different magnitudes (lying
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Fig. 6. Symbol error rate comparison with regular PAM for a 4-point constellation MWite= 1, 7= 1, and N = 1.

on different spheres ift”), and 'fg HQDQ(}QZHpJ ) due to the points S; € C; and S; € Ciy1, such thatD(p;||p;) =

angle between the points (lying on different one-dimension®;,.:..-(k, k+1). This assumption is not necessarily true for the
subspaces ofCT). If two points lie on the same sphereoptimal constellation. However, sin@(p;||p;) > D1 (p:|p;),

D1 (pillp;) = 0, and if they lie on the same complex plane (on# is guaranteed that the actual minimum KL distance of the
dimensional subspace, (p;||p;) = 0. In general, the overall resulting constellation from the above optimization will not
distance is greater than or equal to either of these parts. Thés smaller than the minimum in (41). Moreover, with this
property of the KL distance in (38) suggests partitioning thessumptlon for a fixed< and fixedly,...,lx such that
signal space into subsets of concentric sphétes. ., Ck, of Zz 1z = L, we can decouple the orlglnal optimization

radiusry, ..., 7k, containingly,...,lx points, respectively, problem into the following simpler problems:
and defining the intra-subset and inter-subset distances as 1) For each subset (eadh € {1,...,K?}), find the best
. rd sin (481,5 ) configuration_ of po_in'Fs on the .s.urface.of théth
Dintra(k) = _ min TR (39) sphere,Cy, i.e., maximize the minimum intra-subset
IECk "k distance inside théth subset. Notice that, appears
and iN Djnirq(k) only through a multiplicative factor, and
1+ Tk 1472 does not affect this optimization. Also notice that this
Dinter(k, k') = 7 2 (1 2 > -1 (40) step is equivalent to designing a single antenna unitary
] Tie W constellation ofl, points (see Section V-B), and any
Without loss of generality, we can assume that< r, < existing unitary design (e.g., [7] or [8]) can be used at

- < rg. With this assumption, and using the fact that if g step.

e > g > 1 then Dipger (K, K”) > Dinger (k, k'), We can 2) gplve the following continuous optimization to find the
reformulate the design problem as the following suboptimal ~ ,54iuses of the subsets:

maximin problem over«, ly,...,ly, andry,...,rk: . in A
maximize min A,
maximize min A, 0<r) <ro<-<rK (43)
=] i
ISK<L, L Lr2<TP, U=L (42) e
k=1 k=1 - b

<ry<re<---<r . . . .. .
OSTSras <K where A is as in (42). This optimization problem can

where be solved numerically, e.g., using tfrminimax func-
_ _ K _ K—1 tion of the Matlab program (which uses a Sequential
A= {{Dm”“(k)}k:l ADinter (ko + 1)}y } (42) Quadratic Programming method to solve the non-linear
The suboptimality of this approach comes from the fact that ~ constrained optimization problems).
in the above formulation 0D, (k, k'), it is assumed that The solution to the problem in (41) can then be obtained by
for any two subset§’;, andCy1, there are two constellation searching over all possible values fAr and!y,...,lx such
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thathil I, = L. The following proposition can be used to 5) IncreaseK by one. If K < L go to the second step.

further restrict the domain of search: 6) Among all of the above. candidates, choose the con-
Proposition 2: The solution of (41) satisfies the following stellation with the largest minimum KL distance, as the
inequalities: solution of (41).
h<lp<--<lg-1. (44) Assuming that the best unitary constellations (of the type
Proof: Let {K,li,...,lk,m1,...,7x} be the solution mentioned in Section V-B, and) of arbitrary size are known,
of (41), with [k > 1. Suppose, for the sake of contradictionhis approach significantly simplifies the design problem by
that Iy > lp4q for somek € {1,...,K — 2}. Now, by reducing the number of design parameters fedi’ (real and

removing one point from subsét+ 2 and adding it to subset jmaginary parts of the elements of the constellation vectors),

k + 1 (and rearranging the points in these two subsets {92k + 1 (number of the subsets, and radius and number of
maximize the minimum intra-subset distances), and specifyifge points in each subset).

the parameters of the new constellation by“asign (e.g.,  Notice that, since unlike the square Euclidean distance, the

ht1 =l + 1 andly o = liy2 — 1), we will have KL distance does not scale with the average power of the

1) Dintra is anincreasing function of the subset radius, ansbnstellation, the structure of the optimal constellation based

a non-increasing function of the subset size (number gf the above criterion depends on the actual value of the signal

points in the subset). Therefore, sincg,; > r;, and to noise ratio, and constellations of the same size at different

lj 1 <1}, we have SNR values are not scaled versions of each other. It is also

D, (k+1)>D,, (k) = Dintra(k), (45) worthwhile to notice that at high SNR (for Iarg(_a val_ues,r@f
or ri41 or both), we have the following approximations

1 / — /
and sincer) ,, = rry2 andly  , <lx12 We have, Doualk) ~ r2sin® (£5,.5))
Dintra(k +2) > Dintra(k + 2). (46) ‘ a ln(a)’ jl 7 if Tk —gq
- - 2 - W
Since all other intra-subset distances and also the intepint”(k’ k+1) 2 L AT .
, : In(r7 ) if 2 is kept fixed
subset distances are not affected by this change, the (47)

overall minimum KL distance of the new constellationrnis means thab; ., (k) increases almost linearly with SNR,
will be greater than or equal to the minimum KlLyhereasp;,,..(k, k + 1) either approaches a constant value,
d|sIt{ance of the 029'”5“ constellation. or increases at most logarithmically with SNR. As a result, at
2) >y li(r)? = 31 lirf = (rip)® = TR2 =781 —  high SNR, having multiple levels is not desirable, and one
Ti12 < 0. Therefore, the average power of the neWnoyid only consider constellations of constant magnitude.
constellation is smaller than the average power of thg this case, the KL-based design criterion reduces to the

original constellation. design criterion for the single antenna unitary constellations

Now, by appropriately scaling the new constellation, we cg8ee Section V-B), confirming the high SNR optimality of the
make the average powers of the two constellations equal, afikary constellations.

obtain a new constellation which has a larger minimum KL The decoding of the multi-level unitary constellations pro-
distance. This is a contradiction with our initial assumptiothosed in this section can be done in a similar way to that of
Therefore, the solution of (41) should satisfy (44). trellis coded modulation schemes, i.e., in two steps of “point
_ ) B in subset decoding” and “subset decoding”. If a unitary code

For a fixed K, the co!lectlolr} of all of the possible K-yith low decoding complexity, such as the schemes described

tuples (i, ..., lx), satisfying}",_, Iy = L and (44), can be i, [g] is used inside each subset, then the point in subset

found recursively. The details are omitted here for brevity. T%coding step can be done at a very low cost, and considering

optimization in (41) can then be solved through the followinghe fact that the number of subsets is usually much smaller

steps: than the size of the whole constellation, the overall decoding
1) SetK=1. complexity of the code will be much lower than the regular
2) Find the collection of gll of the possible K-tuplespL decoder.
(l,...,lx), satisfyingd ;" I, = L and (44). For the special case of real constellations with= 2,

3) For each member of the above collection, perform thle angle between adjacent points in it subset is simply
fqllowing steps, and find the best achievable minimum/lk (see Section V-B), and the maximin problem in (41) is
distance: relatively easy to solve. The resulting 2, 4, 8 and 16-point

a) For each subset (eadh e {1,...,K7}), find the constellations with average powers of 0.5 and 5 are shown in
best configuration of,. points on the surface of Figs. 7 and 8. Each axis in these figures actually represents a
the kth sphere,Cy, i.e., maximize the minimum complex plane corresponding to one transmit symbol interval.
intra-subset distance inside théh subset (unitary The symbol error rate performance of the 8 and 16-point

design). constellations atP = 5 (SNR ~ 7dB) are simulated for
b) Solve the continuous optimization in (43) to finddifferent values of N and compared with the corresponding
the radiuses of the subsets. constellations proposed in [8]. The results are shown in Figs.

4) Store the parameters of the constellation with the largeltand 10. As expected, due to the larger minimum KL
minimum KL distance from the previous step as the bedistance of the new constellations, the exponential decay of
candidate withK levels. the symbol error rate vsV has a much higher rate for the
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new constellations. The minimum KL distances of the neWs; spanned by columns &; and S}, defined as
constellations are 1.6005 and 0.7095 for 8-point and 16-point

constellations, respectively, whereas the corresponding PSK , M o Sim

constellations of [8] have minimum KL distances of 1.3313 dp(Ws;, Ws;) = Z:ldE(ﬁvWSj)

and 0.3460, respectively. o o )
-y [Sim > 3 |Sim - Skl (50)
d; d;d; ’
m=1 k=1

denotes the distance between two constellation points
ch represent the same -dimensional subspace of tHe
dimensional space, arll; denotes the distance between two
constellation points with the same power which represent two
different M -dimensional subspaces. In general, the overall
distance is greater than or equal to either of these parts.
Recalling that the unitary constellations are designed to max-

D.T>1,M>1,andS#S, = L1y fori=1,...,L

. . . . D
This is the case of unitary constellations. Since all of ﬂ\ﬁ;i
columns ofS; and.S; have the same square magnitu%,
the KL distance in (34) reduces to
M

Dipillpy) = )

m=1

(TP/M)[|S;ml|* = S5ty [Sik - Sjml?
1+TP/M

TP M , M Sim - Sikl? imiz_e' thg Euclidean di;tancebetween subquces, the apove
= MTTP Z 1Sjmll” — Z W partltlo_nmg of the KL dlst_ance suggests_ partitioning the_ signal
m=1 k=1 space into subsets of unitary constellatiofis, . . ., C'x, with
TP M ) columns of square normpy,...,pg, containingly,...,lg
= MLTP Z dg (Sjm, Ws,) points, respectively. Similar to the approach of Section V-C,
(TP)Qm:l we define the intra-subset and inter-subset distances as
2 2
= oy WseWs,), (48) Diira (k) in Pk g2(5.5,), (51

= min

Si,S;€Cy 1+ Pk
where Ws, and Wg, denote the subspaces of spanned ang
by columns of S; and S;, respectively,dg (Sjm, Ws,) is 1+ pr 1+ pr
the Euclidean distance of vectdf;,, from subspacé¥s,, Dinter(k, k') = M L —1In (1 ) — 1] . (52)
and dp (Ws,, Ws,) is the Euclidean distanceof subspaces + K +Pw
Ws, and Ws,, as defined in [8]. As we see, for unitary Without loss of generality, we can assume that< p; <
constellations, the KL-based design criterion reduces to the < px, and solve the simplified maximin problem
Euclidean-based design criterion, and therefore, the new non-

. X . . . maximize min B
coherent space-time constellations include the existing unitary P "
. . 1I<K<L,M ° 1, pp=TP, Ilx=L (53)
constellations as a special case. L, et
In Appendix F, we show that theuclidean distanceefined 0<p1<p2<-<pK

in [8] and thechordal distancedefined in [13] are equivalent. \; yare

Therefore, the unitary constellations are, in fact, packings

in complex Grassmannian manifolds. In [9], it has been B = {{Dintra(k)}szlv{Dinter(k7k+1) kK:_ll}- (54)
shown that, at high SNR, the calculation of capacity of the . _ . .
non-coherent multiple-antenna channel can also be viewed? find theL-point multilevel unitary constellation af x M

as sphere packing in the product space of Grassmannﬁgﬁm,ces W'_th average pO\,NQ' At each Ieyel,we can use any
existing unitary construction and substitute, 8f,,:-,(k) in

manifolds. (51), the best achievable KL distance with that construction
and with sizel,.
E.T>1,M>1,andSHS, =diIy fori=1,...,L As explained in Section V-C for the case of single transmit
o ) ] ) .. antenna, in (53)K andiy,...,lx are discrete variables, while
The assumption in this case is that each signal matrix is,a ~,  are continuous variables. For any fixed valugof
scalqr muItlp!e of a unitary matrix. With this assumption, thﬁndll, ...l satisfying the specified constraints, (53) reduces
KL distance in (31) reduces to to a continuous optimization over, ..., px, Which can be
l+d l+d solve_d numerically. Morgoyer, as shown in Proposition 2, the
D(pillp;)) = M { v 1n< Z) — 1} solution of (53) also satisfies the extra constrdin Iy <
L+d; L+d; ... < lx_1, which can be used to further restrict the domain
D (pillpy) of search.
dod. Similar to the case of single transmit antenna (Section V-
+ 7 L dy,(Ws,, Ws, ) . C), from (49) we also observe that at high SNIR, becomes
+d; . - S
(49) a constant, or its minimum grows at most logarithmically
%'Dg(pinpj) with SNR (whend; is kept fixed), wherea®, grows linearly

with SNR for non-zero constellation points from different
whered%(WSi,Wsj) is the squardcuclidean distancg8] or subspaces. As a result, at high SNR, becomes the domi-
chordal distance[13] between the two subspac&Bs, and nant term, and the KL-based design criterion reduces to the
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Fig. 11. Performance comparison of one and two transmit antenna systematic constellations of [7] and their multilevel versions vs. number of receive
antennas.

Euclideanbased design criterion of the unitary constellations, V1. CONCLUSIONS
confirming the high SNR optimality of the unitary constella-
tons. We considered the problem of non-coherent communica-
Figs. 11 and 12 show the error rate performance comparidf! In @ Rayleigh flat fading environment using a multiple
of the proposed constellations with their unitary counterpar@tenna system. We derived the design criterion for space-
In these examples, we have used the systematic unitary desﬂﬂ? constellanons in this scena.no_ba.f,ed on the Kullbgck-
of [7] as the constituent subsets of the multilevel constelizPler distance between the distributions of the received
tions. Fig. 11 shows the block error rate performance of tygnal conditioned on different transmitted values. We showed
16 and 32-point two-antenna constellations with= 3 and th_at glose-to-optlmal c_onstellatlons ;a_ccqrdmg to the proposed
T = 4 (resulting in spectral efficiencies of 1.33 and l.2j§me”°n can be obtained by partmo_nlng the_ S|g|_"|al_space
b/s/Hz), respectively. The horizontal axis is the number gito appropnatg subsets and using unitary deS|gn_s inside each
receive antennas, with SNR kept fixed at 0 dB. As we Se%fbset. We deS|gne_d new non—coherer_lt cons_tellatlons based on
the multilevel constellations can save up to 4 receive antenfid§ Proposed criterion, and through simulations, showed that
at SNR’s as low as 0 dB. they can provide a substantial improvement in the performance
over known unitary space-time constellations, especially at low
Fig. 12 compares the performances of 16-point, one ai(lj\lR and when !““'“p'e receive antennas are “S‘?d- We showed
that unitary designs can be considered as special cases of the

two-antenna constellations faf = 2 andT" = 3 (resulting q tollati hen the sianal i tio is high
in spectral efficiencies of 2 and 1.33 b/s/Hz), respectivel'i}.m':)Ose constefiations when the signal to noise ratio 1S ugn.

The horizontal axis is SNR, and the receiver is assumed to

have 10 receive antennas. Even if multiple receive antennas

are not available, similar gains can be obtained by encoding

across several fading blocks using an outer code. For each APPENDIXA

point in the curves corresponding to the multilevel constelld=XACT PAIRWISE ERRORPROBABILITY FOR FAST FADING
tions, a separate optimization problem with appropriate power

constraint has been solved and the resulting constellation haﬁ1 this appendix, we prove that the expression for the exact
been used to evaluate the performance. We observe that |£|5_’ '

. ; , . X Qﬁ’wise error probability of the single transmit antenna system
multilevel unitary constellation can provide up to 3 dB gait

) . ) i in fast fading is given by (12). For convenience, we use the
over its corresponding one-level unitary constellation at loYéSIIowing notation for the received vector:

SNR. We also notice that as SNR increases, the two curves
become closer, which is expected, recalling the optimality of
the unitary constellations at high SNR. XN =[xy an]. (55)
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Fig. 12. Performance comparison of one and two transmit antenna systematic constellations of [7] and their multilevel versions vs. SNR.

Using (5) and (8), and assuming tHat| < |sz|, we have Now assume that (58) is true fa¥ = K. We prove that it
will also be true forv = K + 1. Using (8) and the notation

Pr(si —s2) = Pry {XV:p)/(XY) > p (X))} defined in (55), we can write
—IxM)?
N exp( 1+]s2|? )
= Py : TN (1 + |82|2)N K41y K+1 K(yvK
pi (X)) = (X )pi(R4)- (60)

oxcp [ =1X1
p 1+‘31|2

TN+ |51 2)N Defining the regions?, Ry, and R, as

= Prv {XV | XV)? > NAY, (56)
where A is as in (10). R = (XK XK Y,
Similarly, for |si| > |s2| we have R, = {XK-H XK > C}, and
Pr(s; — s9) = Prn {XV: | XV|? < NA} 57) Ry = {XFHIXF|P<0o &
= 1= Pry {XV XV > NAJ e l? > C = | X5},

(sincep!’ does not have any mass accumulation point).
Equation (12) then follows by applying the following lemma

with ¢ = N A and using (10) and (11). we have
Lemma 4:For anyC > 0, we have

Prov { XV | XY > C} = RiUR2 =R,
Nz—:ll< C >n . ( _C > (58) RiNRe = ¢,
—nl \1+ [s1]? P 14 |s12 /)"
Proof: The proof is by induction, as follows. and
For N =1, we have
Pr, {IX1]2 > €} = exp [ ——— (59) Kty
p1 1 = exp 1+ ‘81|2 ’ Prp{<+1 {X : HX || < C} = Pl"p{<+1 {R}

which is true, and proven in Proposition 1. = Prycri{Ra} + Pryeea (R} (61)



The first term

in (61) can be calculated as
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Using (8) for the conditional probability densities, we will

have
Prpf{ﬂ{T\’d} = /p{{H(Xiﬂ_l)dXK'*'1 . - - -E 1+ |52 A
Ry (p1,p2) = — g In B\ (TTmE «
- P (X5 e Ao W:)H
IXK|2>C 1_+|81| 1J;|82|
— _ min In <1+51|2) %
/P1($K+1)d$1{+1 dxx 0<A<1 |\ 1+ [s2f?
c 2
E , (67
— Pr (XK XK > 0) o e (o)} |67
1
K-l n where
1 C A\ A\
- |5 () - o= e T
U 51 L+ [s12 1+ |sef
exp (—C) , (62) Using (8) again withs = s; for p;, we have
1+ |81|2

e 2
exp { s T alz|

where the last equality follows from the fact that we have E,, {exp (a|z|*)} dz

/

assumed (58) is true faV = K. m(1+]s1]?)
The second term in (61) can be calculated as 1
1—a(l+]s1?
Per+1{R2} = /p{(+1(XK+1)dXK+1 ( | 1|1 1—| . .
1 S1
= |[1=-A4+A|—F—F 68
R 1 (e)] @
= P (XF) x Substituting (68) in (67) and using (11), we have
[x%|2<C

C(p1,p2) —0r<n/\ir<11 {An(B) —In(1 - A+ AB)}. (69)

Now, sinceAIn(B) — In(1 — A + AB) is a strictly convex
function of A for B # 1, we can find the minimum by taking
derivative with respect ta and setting it to zero, which results

P1 ($K+1)de+1 dXK

k1 [2>C—|| X512

-C
exXp (W) dXK in 1
- K 2K A= ——— for B#1. (70)
(1 + |s1]?) xago In(B) B-1
K Substituting this value oA as the minimizer in (69) together
S N (A e (S (63) with (65) results in (16)
T K \1+s2) P\IFsp '

APPENDIXC
THE KL DISTANCE

In this appendix, we derive the expression for the KL
distance between two distributions of form (3). By definition,

N(X
D)) = Ey {m [ZNEXH } .

Using (3) and defining,;(X,,) = p(X,|S;) fori =1,... L,

where the third equality follows from (59) and (8), and the
last equality follows from the formula of the volume oR& -
dimensional sphere with radiu,

oK
K!

Substituting (62) and (63) in (61) shows that (58) is true
for N = K + 1. This completes the proof.

Var(R) = — R?*K, (64)

we have
APPENDIXB 1 pi(X)
CHERNOFFBOUND FOR THESINGLE ANTENNA CASE D(pf’“pf) = E,~ {ln [ ]nvzﬂ% = ] }
. ' Hn:1 pj (Xn)
It can be easily shown that N X.)
Di n
Cpy',p2) = NC(p1,p2)- (65) = 2Ep {1 [pj( Xn)}

Therefore, in the following we only derive the expression for
C(p1,p2). By definition, the Chernoff information (distance)
between two probability densitieg andp, is given by n=1

G ] e

In

C(p1,p2) = - min

ND(illpy), (71)



since X,,’s are independent and identically distributed.
Substituting (2) forp; andp;, we will have

det (I + S;SF)
det (Ip + S;SH)

~E,, {X/KX,},

D(pillp;) = n [
(72)

where
K= (Ir + S8 ' = (Ir + 5;58)
Again, using (2) forp;, we have
Ep {XFKX,} =tr{K (Ir + S;S)}
=t {Ir— (i +5;88) " (Ir + 55 |
=Tt {(br+S;87) (Ir + 5;81) '} (73)

Substituting (73) in (72), we will have
D(pillps) = tr { (I + $iS1) (Ir + 5;57) ™' } -
Wndet { (Ir + $;57) (Ir + 8;50) "} = 7. (74)

Equations (74) and (71) result in (31).
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and

tr{S;S7} = tw{sfs;} =tr{D;}

M M
D dim =D Sl
m=1 m=1
To find the trace of the last term in (77), we use the following
identity which can be easily verified
tr{AD} = tr {diag(A)D}, (80)

where A is an arbitrary square matrix) is a diagonal matrix
of the same size a4, and diagA4) denotes a diagonal matrix
constructed from the diagonal elementsdoiin the same order.

(79)

Defining A = 515,55}, we have
M M
A = > S Sk S Sjm =D |Gk - Sjml?, (81)
k=1 k=1
where a,,,, is the mth diagonal element ofd, and - is the

inner product operation. Using (80) and (81), we will have
tr {sisffsj (Ing + D;)~} sff}
=t {SI5iSHs; (I + D) '}

:tr{A(IM+Dj)_1}

APPENDIXD : -1
=trqdiag/A) (I D;
THE SIMPLIFIED KL DISTANCE FORORTHOGONAL { a4) (B + D;) }
MATRICES Z Sl 1Si - Sjml” (82)
In this appendix we derive a simplified version of the KL = 1+ [[SjmI?
dlstance in (31) for a constellation of orthogonal matrices, Equations (77), (78), (79), and (82) result in
{Sl}, L with S#S, = D, for I = 1,...,L. Here D; is a
diagonal matrix with itsnth d|agonal elemen'dlm, equal to " H
the magnitude square of theth column ofS;, ||S;., [|2. Using tr{(IT +8:87") (Ir + 855, } T+ Z 1Sim* =
the matrix inversion lemma [14] o m=1
_ Sim 2 Z |Szk m‘
(A+BCD) ' = A"~ A'B(C™'+ DA 'B)” DA™Y, Z 1 ll Hjs ” Z L+]IS, sz - (83)
(75) "
we can write Now we calculaj? the determinant of
-1 o (I + SiST') (Ir + 5;S}") . For this, we use the identity
(IT + SlSl ) =1Ir -5 (IM + Dl) Sl . (76) [14]
I+ AB) = I+ BA 4
Therefore, we will have det(I + AB) = det(I + BA), (84)
) to write
H H\ ™ H
(r+5:57) (Ir + 557) = Ir+ 557~ det (Ir + SiS{") = det (I + S/'S1)
Si (I + D;) " S = 8,518, (Iny + D) ST (77) = det (I + Dy)
We need to calculate the trace and determinant of this _ ﬁ (1+ dy)
matrix, and substitute for them in (31). To find the trace of B et tm
(77), we calculate the trace of each term separately. We have o
_ _ = L+ |Sm1?) - 85
w{S; (v + D)7 ST} = w{sfs; (I + D)7} El( S l%)- (89)
_ tr{Dj (In +Dj)_1} Using (85), we will have
B i djm det { (Ir + ;ST (1r + 8;88) '} =
m=1 1 + djm Hﬁ{:l (]‘ + ”Slm”2)
M ) 7 . (86)
_ 3 Sl 78) [y (1+ 18512
= 1+ [1Sjml? Substituting (83) and (86) in (31), results in (34).
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APPENDIXE form=1,..., M. We will use the following lemma to prove
THE OPTIMAL SINGLE ANTENNA CONSTELLATION FOR  the equivalence of thEuclideanand chordal distances.
FAST FADING Lemma 5:1f W, andWW; are twoM -dimensional subspaces

Without loss of generality, let's assume that< |s;| < ©f C’, and {Sim}m—1 and {Sjm}m—, are the principal
|so| < -+ < |si|. Sincef(z) = z—In(z)—1 is monotonically vectorscorrespondmg tdV; and W;, respectively, then

decreasing forr € (0,1) and monotonically increasing for a) {Sm}m , and {ng}m , form orthonormal

z € (1,00), with f(z) < f(2) for 2 € (0,1), it is clear bases forlV; and I, respectively, and

that the minimum KL distance will occur between a pair of b) Sim - Sjr =0 for m # k.

consecutive symbols from the above order, in the same order. Proof:

Moreover, in order to solve (32), it is sufficient to solve the a) By definition, each principal vector has unit

following minimax problem norm, and we have,,, - S;, = 0 for k < m.

minimize max 14 |si)? By exchanging the role ofn and k, we also
PL _ — - (87 have Sy, - Sim = 0 for m < k. Therefore, we
I LalslP<Poi=1,0-1 14 |s141]
- have S;.,, - S;x = 0 for m # k.
Defining , b) For any given m, lets define W =
o= min Lt |11 spar{S;m, ..., Sju). By definition,

=1, L—1 1+ |s]2 "’ .
PrOJWm (Szm) = (Sim . Sjm)Sjm, (91)

where Pr%m( Sim) is the projection ofS;,,
on Wi, Therefore we have

(Sim - (Szm : Sjm)Sjm) : Sjk =0 (92)
L L
L+ Z \81|2 > <Z o/1> (1 + |.91|2) ’ for k£ > m, which implies
=1 =1 Sim - Sjk = (Sim - Sjm)(Sjm - Sjx) =0 (93)
for &k > m. Similarly,
Projy « (Sjk) = (Sjk - Sik) Sir,  (94)

where W} = spar{S;, ..., Sin). Therefore,
we have

we will have,
Lt [sil* > a(l+[si?) = 1+]si]* > o'~ (1+]s1]*) (88)
fori=1,...,L, or

which implies

l-of LY, s> _ L+LP
l—a = 1+4]s12  — 1+4|s1]?’

(using the average power constraint). Now, srdeéL is a
monotonically increasing function af, it is clear that the
maximum of« is obtained if and only if; = 0, and 1= aa = (Sjr — (Sjk - Si)Sik) - Sim =0 (95)

L(1 + P). This requires that all of the mequalltres in (88)
hold with equality. Therefore, the optimum signal set can be

for m > k, which implies

obtained by setting Sjk - Sim = (Sjk - Sir.) (Six - Sim) =0 (96)
|12 = al=t =1, for m > k. Therefore, we havé,,, - Sj, =0
. o for m # k.
where« is the largest real number satlsfyrrigj% =L(1+ -
P), or Now, using {Si»}M_, and {S;,}_, as bases foiV;
ol —L(P+1a+(LP+L-1)=0. and W;, by definition of the Euclidean distancebetween

subspaces, we have

APPENDIXF M
EQUIVALENCE OF THE EUCLIDEAN AND CHORDAL ds (W, W;) = Z (Sim»Wj)
DISTANCES BETWEENSUBSPACES m=1
The chordal distancebetween twoM-dimensional sub- B i 1Sum 2 — Z |Sim - Sjkl?

spacesWV; andW;, of C”' is defined [13] as A e 1Sk 12

M M
d?(Wu W]) = Z Sin2 (éslmy Sjm) ) (89) = Z { zm : Sjm|2}
m=0 1=1
M
where {Sm}m , and {Sjm}m , are theprincipal vectors _ Z {1 — c05? (LSim, S, )}
- ims Pjm

corresponding tdV; andW;, respectively, and are recursively

m=1

defined as M
_ .2 , _
(Sim, Sjm) = arg max u-v  (90) - Z sin” (£Sim; Sjm)
(u,0) EW; X W [|uf|=(lv]=1 m=1

w-Sip=v-5;:=0 fOr k<m = dZ(Wi, Wj). (97)
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