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ABSTRACT

Machine learning and deep learning in particular has advanced tremendously on
perceptual tasks in recent years. However, it remains vulnerable against adversarial
perturbations of the input that have been crafted specifically to fool the system
while being quasi-imperceptible to a human. In this work, we propose to augment
deep neural networks with a small “detector” subnetwork which is trained on
the binary classification task of distinguishing genuine data from data containing
adversarial perturbations. Our method is orthogonal to prior work on addressing
adversarial perturbations, which has mostly focused on making the classification
network itself more robust. We show empirically that adversarial perturbations can
be detected surprisingly well even though they are quasi-imperceptible to humans.
Moreover, while the detectors have been trained to detect only a specific adversary,
they generalize to similar and weaker adversaries. In addition, we propose an
adversarial attack that fools both the classifier and the detector and a novel training
procedure for the detector that counteracts this attack.

1 INTRODUCTION

In the last years, machine learning and in particular deep learning methods have led to impressive
performance on various challenging perceptual tasks, such as image classification (Russakovsky
et al., 2015; He et al., 2016) and speech recognition (Amodei et al., 2016). Despite these advances,
perceptual systems of humans and machines still differ significantly. As Szegedy et al. (2014)
have shown, small but carefully directed perturbations of images can lead to incorrect classification
with high confidence on artificial systems. Yet, for humans these perturbations are often visually
imperceptible and do not stir any doubt about the correct classification. In fact, so called adversarial
examples are crucially characterized by requiring minimal perturbations that are quasi-imperceptible
to a human observer. For computer vision tasks, multiple techniques to create such adversarial
examples have been developed recently. Perhaps most strikingly, adversarial examples have been
shown to transfer between different network architectures, and networks trained on disjoint subsets of
data (Szegedy et al., 2014). Adversarial examples have also been shown to translate to the real world
(Kurakin et al., 2016), e.g., adversarial images can remain adversarial even after being printed and
recaptured with a cell phone camera. Moreover, Papernot et al. (2016a) have shown that a potential
attacker can construct adversarial examples for a network of unknown architecture by training an
auxiliary network on similar data and exploiting the transferability of adversarial inputs.

The vulnerability to adversarial inputs can be problematic and even prevent the application of deep
learning methods in safety- and security-critical applications. The problem is particularly severe
when human safety is involved, for example in the case of perceptual tasks for autonomous driving.
Methods to increase robustness against adversarial attacks have been proposed and range from
augmenting the training data (Goodfellow et al., 2015) over applying JPEG compression to the input
(Dziugaite et al., 2016) to distilling a hardened network from the original classifier network (Papernot
et al., 2016b). However, for some recently published attacks (Carlini & Wagner, 2016), no effective
counter-measures are known yet.

In this paper, we propose to train a binary detector network, which obtains inputs from intermediate
feature representations of a classifier, to discriminate between samples from the original data set
and adversarial examples. Being able to detect adversarial perturbations might help in safety- and
security-critical semi-autonomous systems as it would allow disabling autonomous operation and
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requesting human intervention (along with a warning that someone might be manipulating the system).
However, it might intuitively seem very difficult to train such a detector since adversarial inputs are
generated by tiny, sometimes visually imperceptible, perturbations of genuine examples. Despite this
intuition, our results on CIFAR10 and a 10-class subset of ImageNet show that a detector network
that achieves high accuracy in detection of adversarial inputs can be trained successfully. Moreover,
while we train a detector network to detect perturbations of a specific adversary, our experiments
show that detectors generalize to similar and weaker adversaries. An obvious attack against our
approach would be to develop adversaries that take into account both networks, the classification and
the adversarial detection network. We present one such adversary and show that we can harden the
detector against such an adversary using a novel training procedure.

2 BACKGROUND

Since their discovery by Szegedy et al. (2014), several methods to generate adversarial examples have
been proposed. Most of these methods generate adversarial examples by optimizing an image w.r.t.
the linearized classification cost function of the classification network by maximizing the probability
for all but the true class or minimizing the probability of the true class (e.g., (Goodfellow et al.,
2015), (Kurakin et al., 2016)). The method introduced by Moosavi-Dezfooli et al. (2016b) estimates
a linearization of decision boundaries between classes in image space and iteratively shifts an image
towards the closest of these linearized boundaries. For more details about these methods, please refer
to Section 3.1.

Several approaches exist to increase a model’s robustness against adversarial attacks. Goodfellow
et al. (2015) propose to augment the training set with adversarial examples. At training time, they
minimize the loss for real and adversarial examples, while adversarial examples are chosen to fool
the current version of the model. In contrast, Zheng et al. (2016) propose to append a stability term to
the objective function, which forces the model to have similar outputs for samples of the training set
and their perturbed versions. This differs from data augmentation since it encourages smoothness of
the model output between original and distorted samples instead of minimizing the original objective
on the adversarial examples directly. Another defense-measure against certain adversarial attack
methods is defensive distillation (Papernot et al., 2016b), a special form of network distillation, to
train a network that becomes almost completely resistant against attacks such as the L-BFGS attack
(Szegedy et al., 2014) and the fast gradient sign attack (Goodfellow et al., 2015). However, Carlini
& Wagner (2016) recently introduced a novel method for constructing adversarial examples that
manages to (very successfully) break many defense methods, including defensive distillation. In
fact, the authors find that previous attacks were very fragile and could easily fail to find adversarial
examples even when they existed. An experiment on the cross-model adversarial portability (Rozsa
et al., 2016) has shown that models with higher accuracies tend to be more robust against adversarial
examples, while examples that fool them are more portable to less accurate models.

Even though the existence of adversarial examples has been demonstrated several times on many
different classification tasks, the question of why adversarial examples exist in the first place and
whether they are sufficiently regular to be detectable, which is studied in this paper, has remained
open. Szegedy et al. (2014) speculated that the data-manifold is filled with “pockets” of adversarial
inputs that occur with very low probability and thus are almost never observed in the test set. Yet,
these pockets are dense and so an adversarial example is found virtually near every test case. The
authors further speculated that the high non-linearity of deep networks might be the cause for the
existence of these low-probability pockets. Later, Goodfellow et al. (2015) introduced the linear
explanation: Given an input and some adversarial noise η (subject to: ||η||∞ < ε), the dot product
between a weight vector w and an adversarial input xadv = x+ η is given by wTxadv = wTx+ wTη.
The adversarial noise η causes a neuron’s activation to grow by wTη. The max-norm constraint on
η does not allow for large values in one dimension, but if x and thus η are high-dimensional, many
small changes in each dimension of η can accumulate to a large change in a neuron’s activation. The
conclusion was that “linear behavior in high-dimensional spaces is sufficient to cause adversarial
examples”.

Tanay & Griffin (2016) challenged the linear-explanation hypothesis by constructing classes of images
that do not suffer from adversarial examples under a linear classifier. They also point out that if the
change in activation wTη grows linearly with the dimensionality of the problem, so does the activation
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wTx. Instead of the linear explanation, Tanay et al. provide a different explanation for the existence of
adversarial examples, including a strict condition for the non-existence of adversarial inputs, a novel
measure for the strength of adversarial examples and a taxonomy of different classes of adversarial
inputs. Their main argument is that if a learned class boundary lies close to the data manifold, but the
boundary is (slightly) tilted with respect to the manifold1, then adversarial examples can be found by
perturbing points from the data manifold towards the classification boundary until the perturbed input
crosses the boundary. If the boundary is only slightly tilted, the distance required by the perturbation
to cross the decision-boundary is very small, leading to strong adversarial examples that are visually
almost imperceptibly close to the data. Tanay et. al further argue that such situations are particularly
likely to occur along directions of low variance in the data and thus speculate that adversarial
examples can be considered an effect of an over-fitting phenomenon that could be alleviated by proper
regularization, though it is completely unclear how to regularize neural networks accordingly.

Recently, Moosavi-Dezfooli et al. (2016a) demonstrated that there even exist universal, image-
agnostic perturbations which, when added to all data points, fool deep nets on a large fraction of
ImageNet validation images. Moreover, they showed that these universal perturbations are to a
certain extent also transferable between different network architectures. While this observation raises
interesting questions about geometric properties and correlations of different parts of the decision
boundary of deep nets, potential regularities in adversarial perturbations may also help detecting them.
However, the existence of universal perturbations does not necessarily imply that the adversarial
examples generated by data-dependent adversaries will be regular. Actually, Moosavi-Dezfooli et al.
(2016a) show that universal perturbations are not unique and that there even exist many different
universal perturbations which have little in common. This paper studies if data-dependent adversarial
perturbations can nevertheless be detected reliably and answers this question affirmatively.

3 METHODS

In this section, we introduce the adversarial attacks used in the experiments, propose an approach
for detecting adversarial perturbations, introduce a novel adversary that aims at fooling both the
classification network and the detector, and propose a training method for the detector that aims at
counteracting this novel adversary.

3.1 GENERATING ADVERSARIAL EXAMPLES

Let x be an input image x ∈ R3×width×height, ytrue(x) be a one-hot encoding of the true class of
image x, and Jcls(x, y(x)) be the cost function of the classifier (typically cross-entropy). We briefly
introduce different adversarial attacks used in the remainder of the paper.

Fast method: One simple approach to compute adversarial examples was described by Goodfellow
et al. (2015). The applied perturbation is the direction in image space which yields the highest
increase of the linearized cost function under `∞-norm. This can be achieved by performing one step
in the direction of the gradient’s sign with step-width ε:

xadv = x+ ε sgn(∇xJcls(x, ytrue(x)))

Here, ε is a hyper-parameter governing the distance between adversarial and original image. As
suggested in Kurakin et al. (2016) we also refer to this as the fast method due to its non-iterative and
hence fast computation.

Basic Iterative method (`∞ and `2): As an extension, Kurakin et al. (2016) introduced an iterative
version of the fast method, by applying it several times with a smaller step size α and clipping all
pixels after each iteration to ensure results stay in the ε-neighborhood of the original image:

xadv
0 = x, xadv

n+1 = Clipε
x

{
xadv
n + α sgn(∇xJcls(x

adv
n , ytrue(x)))

}
1It is easier to imagine a linear decision-boundary - for neural networks this argument must be translated into

a non-linear equivalent of boundary tilting.
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Following Kurakin et al. (2016), we refer to this method as the basic iterative method and use α = 1,
i.e., we change each pixel maximally by 1. The number of iterations is set to 10. In addition to this
method, which is based on the `∞-norm, we propose an analogous method based on the `2-norm: in
each step this method moves in the direction of the (normalized) gradient and projects the adversarial
examples back on the ε-ball around x (points with `2 distance ε to x) if the `2 distance exceeds ε:

xadv
0 = x, xadv

n+1 = Projectεx

{
xadv
n + α

∇xJcls(x
adv
n , ytrue(x))

||∇xJcls(xadv
n , ytrue(x))||2

}
DeepFool method: Moosavi-Dezfooli et al. (2016b) introduced the DeepFool adversary which
iteratively perturbs an image xadv

0 . Therefore, in each step the classifier is linearized around xadv
n and

the closest class boundary is determined. The minimal step according to the `p distance from xadv
n

to traverse this class boundary is determined and the resulting point is used as xadv
n+1. The algorithm

stops once xadv
n+1 changes the class of the actual (not linearized) classifier. Arbitrary `p-norms can

be used within DeepFool, and here we focus on the `2- and `∞-norm. The technical details can be
found in (Moosavi-Dezfooli et al., 2016b). We would like to note that we use the variant of DeepFool
presented in the first version of the paper (https://arxiv.org/abs/1511.04599v1) since
we found it to be more stable compared to the variant reported in the final version.

3.2 DETECTING ADVERSARIAL EXAMPLES

We augment classification networks by (relatively small) subnetworks, which branch off the main
network at some layer and produce an output padv ∈ [0, 1] which is interpreted as the probability of
the input being adversarial. We call this subnetwork “adversary detection network” (or “detector” for
short) and train it to classify network inputs into being regular examples or examples generated by a
specific adversary. For this, we first train the classification networks on the regular (non-adversarial)
dataset as usual and subsequently generate adversarial examples for each data point of the train set
using one of the methods discussed in Section 3.1. We thus obtain a balanced, binary classification
dataset of twice the size of the original dataset consisting of the original data (label zero) and the
corresponding adversarial examples (label one). Thereupon, we freeze the weights of the classification
network and train the detector such that it minimizes the cross-entropy of padv and the labels. The
details of the adversary detection subnetwork and how it is attached to the classification network are
specific for datasets and classification networks. Thus, evaluation and discussion of various design
choices of the detector network are provided in the respective section of the experimental results.

3.3 DYNAMIC ADVERSARIES AND DETECTORS

In the worst case, an adversary might not only have access to the classification network and its gradient
but also to the adversary detector and its gradient2. In this case, the adversary might potentially
generate inputs to the network that fool both the classifier (i.e., get classified wrongly) and fool the
detector (i.e., look innocuous). In principle, this can be achieved by replacing the cost Jcls(x, ytrue(x))
by (1 − σ)Jcls(x, ytrue(x)) + σJdet(x, 1), where σ ∈ [0, 1] is a hyperparameter and Jdet(x, 1) is the
cost (cross-entropy) of the detector for the generated x and the label one, i.e., being adversarial. An
adversary maximizing this cost would thus aim at letting the classifier mis-label the input x and
making the detectors output padv as small as possible. The parameter σ allows trading off these two
objectives. For generating x, we propose the following extension of the basic iterative (`∞) method:

xadv
0 = x; xadv

n+1 = Clipεx
{
xadv
n + α

[
(1− σ) sgn(∇xJcls(x

adv
n , ytrue(x))) + σ sgn(∇xJdet(x

adv
n , 1))

]}
Note that we found a smaller α to be essential for this method to work; more specifically, we use
α = 0.25. Since such an adversary can adapt to the detector, we call it a dynamic adversary. To

2We would like to emphasize that is a stronger assumption than granting the adversary access to only the
original classifier’s predictions and gradients since the classifier’s predictions need often be presented to a user
(and thus also to an adversary). The same is typically not true for the predictions of the adversary detector as
they will only be used internally.
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Figure 1: (Top) ResNet used for classification. Numbers on top of arrows denote the number of
feature maps and numbers below arrows denote spatial resolutions. Conv denotes a convolutional
layer, Res∗5 denotes a sequence of 5 residual blocks as introduced by He et al. (2016), GAP denotes
a global-average pooling layer and Dens a fully-connected layer. Spatial resolutions are decreased
by strided convolution and the number of feature maps on the residual’s shortcut is increased by
1x1 convolutions. All convolutional layers have 3x3 receptive fields and are followed by batch
normalization and rectified linear units. (Bottom) Topology of detector network, which is attached to
one of the AD(i) positions. MP denotes max-pooling and is optional: for AD(3), the second pooling
layer is skipped, and for AD(4), both pooling layers are skipped.

counteract dynamic adversaries, we propose dynamic adversary training, a method for hardening
detectors against dynamic adversaries. Based on the approach proposed by Goodfellow et al. (2015),
instead of precomputing a dataset of adversarial examples, we compute the adversarial examples
on-the-fly for each mini-batch and let the adversary modify each data point with probability 0.5.
Note that a dynamic adversary will modify a data point differently every time it encounters the data
point since it depends on the detector’s gradient and the detector changes over time. We extend this
approach to dynamic adversaries by employing a dynamic adversary, whose parameter σ is selected
uniform randomly from [0, 1], for generating the adversarial data points during training. By training
the detector in this way, we implicitly train it to resist dynamic adversaries for various values of σ. In
principle, this approach bears the risk of oscillation and unlearning for σ > 0 since both, the detector
and adversary, adapt to each other (i.e., there is no fixed data distribution). In practice, however, we
found this approach to converge stably without requiring careful tuning of hyperparameters.

4 EXPERIMENTAL RESULTS

In this section, we present results on the detectability of adversarial perturbations on the CIFAR10
dataset (Krizhevsky, 2009), both for static and dynamic adversaries. Moreover, we investigate
whether adversarial perturbations are also detectable in higher-resolution images based on a subset of
the ImageNet dataset (Russakovsky et al., 2015).

4.1 CIFAR10

We use a 32-layer Residual Network (He et al., 2016, ResNet) as classifier. The structure of the
network is shown in Figure 1. The network has been trained for 100 epochs with stochastic gradient
descent and momentum on 45000 data points from the train set. The momentum term was set to 0.9
and the initial learning rate was set to 0.1, reduced to 0.01 after 41 epochs, and further reduced to 0.001
after 61 epochs. After each epoch, the network’s performance on the validation data (the remaining
5000 data points from the train set) was determined. The network with maximal performance on
the validation data was used in the subsequent experiments (with all tunable weights being fixed).
This network’s accuracy on non-adversarial test data is 91.3%. We attach an adversary detection
subnetwork (called “detector” below) to the ResNet. The detector is a convolutional neural network
using batch normalization (Ioffe & Szegedy, 2015) and rectified linear units. In the experiments, we
investigate different positions where the detector can be attached (see also Figure 1).
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Figure 2: (Left) Illustration of detectability of different adversaries and values for ε on CIFAR10.
The x-axis shows the predictive accuracy of the CIFAR10 classifier on adversarial examples of the
test data for different adversaries. The y-axis shows the corresponding detectability of the adversarial
examples, with 0.5 corresponding to chance level. “No” corresponds to an “adversary” that leaves the
input unchanged. (Right) Analysis of the detectability of adversarial examples of different adversaries
for different attachment depths of the detector.

4.1.1 STATIC ADVERSARIES

In this subsection, we investigate a static adversary, i.e., an adversary that only has access to the
classification network but not to the detector. The detector was trained for 20 epochs on 45000 data
points from the train set and their corresponding adversarial examples using the Adam optimizer
(Kingma & Ba, 2015) with a learning rate of 0.0001 and β1 = 0.99, β2 = 0.999. The remaining
5000 data points from the CIFAR10 train set are used as validation data and used for model selection.
The detector was attached to position AD(2) (see Figure 1) except for the DeepFool-based adversaries
where the detector was attached to AD(4); see below for a discussion. For the “Fast” and “Iterative”
adversaries, the parameter ε from Section 3.1 was chosen from [1, 2, 3, 4] for `∞-based methods and
from [20, 40, 60, 80] for `2-based methods; larger values of ε generally result in reduced accuracy of
the classifier but increased detectability. For the “Iterative” method with `2-norm, we used α = 20,
i.e., in each iteration we make a step of `2 distance 20. Please note that these values of ε are based on
assuming a range of [0, 255] per color channel of the input.

Figure 2 (left) compares the detectability3 of different adversaries. In general, points in the lower
left of the plot correspond to stronger adversaries because their adversarial examples are harder to
detect and at the same time fool the classifier on most of the images. Detecting adversarial examples
works surprisingly well given that no differences are perceivable to humans for all shown settings:
the detectability is above 80% for all adversaries which decrease classification accuracy below 30%
and above 90% for adversaries which decrease classification accuracy below 10%. Comparing the
different adversaries, the “Fast” adversary can generally be considered as a weak adversary, the
DeepFool based methods as relatively strong adversaries, and the “Iterative” method being somewhere
in-between. Moreover, the methods based on the `2-norm are generally slightly stronger than their
`∞-norm counter-parts.

Figure 2 (right) compares the detectability of different adversaries for detectors attached at different
points to the classification network. ε was chosen minimal under the constraint that the classification
accuracy is below 30%. For the “Fast” and “Iterative” adversaries, the attachment position AD(2)
works best, i.e., attaching to a middle layer where more abstract features are already extracted but
still the full spatial resolution is maintained. For the DeepFool methods, the general pattern is similar
except for AD(4), which works best for these adversaries.

Figure 3 illustrates the generalizability of trained detectors for the same adversary with different
choices of ε: while a detector trained for large ε does not generalize well to small ε, the other direction
works reasonably well. Figure 4 shows the generalizability of detectors trained for one adversary
when tested on data from other adversaries (ε was chosen again minimal under the constraint that the

3Detectability refers to the accuracy of the detector. The detectability on the test data is calculated as follows:
for every test sample, a corresponding adversarial example is generated. The original and the corresponding
adversarial examples form a joint test set (twice the size of the original test set). This test set is shuffled and
the detector is evaluated on this dataset. Original and corresponding adversarial example are thus processed
independently.

6



Published as a conference paper at ICLR 2017

Figure 3: Transferability on CIFAR10 of detector trained for adversary with maximal distortion εfit
when tested on the same adversary with distortion εtest. Different plots show different adversaries.
Numbers correspond to the accuracy of detector on unseen test data.

Figure 4: Transferability on CIFAR10 of detector trained for one adversary when tested on other
adversaries. The maximal distortion ε of the adversary (when applicable) has been chosen minimally
such that the predictive accuracy of the classifier is below 30%. Numbers correspond to the accuracy
of the detector on unseen test data.

classification accuracy is below 30%): we can see that detectors generalize well between `∞- and
`2-norm based variants of the same approach. Moreover, detectors trained on the stronger “Iterative”
adversary generalize well to the weaker “Fast” adversary but not vice versa. Detectors trained for the
DeepFool-based methods do not generalize well to other adversaries; however, detectors trained for
the “Iterative” adversaries generalize relatively well to the DeepFool adversaries.

4.1.2 DYNAMIC ADVERSARIES

In this section, we evaluate the robustness of detector networks to dynamic adversaries (see Section
3.3). For this, we evaluate the detectability of dynamic adversaries for σ ∈ {0.0, 0.1, . . . , 1.0}. We
use the same optimizer and detector network as in Section 4.1.1. When evaluating the detectability of
dynamic adversaries with σ close to 1, we need to take into account that the adversary might choose
to solely focus on fooling the detector, which is trivially achieved by leaving the input unmodified.
Thus, we ignore adversarial examples that do not cause a misclassification in the evaluation of
the detector and evaluate the detector’s accuracy on regular data versus the successful adversarial
examples. Figure 5 shows the results of a dynamic adversary with ε = 1 against a static detector,
which was trained to only detect static adversaries, and a dynamic detector, which was explicitly
trained to resist dynamic adversaries. As can be seen, the static detector is not robust to dynamic
adversaries since for certain values of σ, namely σ = 0.3 and σ = 0.4, the detectability is close to
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Figure 5: Illustration of detectability versus classification accuracy of a dynamic adversary for
different values of σ against a static and dynamic detector. The parameter σ has been chosen as
σ ∈ {0.0, 0.1, . . . , 1.0}, with smaller values of σ corresponding to lower predictive accuracy, i.e.,
being further on the left.

chance level while the predictive performance of the classifier is severely reduced to less than 30%
accuracy. A dynamic detector is considerably more robust and achieves a detectability of more than
70% for any choice of σ.

4.2 10-CLASS IMAGENET

In this section, we report results for static adversaries on a subset of ImageNet consisting of all data
from ten randomly selected classes4. The motivation for this section is to investigate whether adver-
sarial perturbations can be detected in higher-resolution images and for other network architectures
than residual networks. We limit the experiment to ten classes in order to keep the computational
resources required for computing the adversarial examples small and avoid having too similar classes
which would oversimplify the task for the adversary. We use a pretrained VGG16 (Simonyan &
Zisserman, 2015) as classification network and add a layer before the softmax which selects only
the 10 relevant class entries from the logits vector. Based on preliminary experiments, we attach the
detector network after the fourth max-pooling layer. The detector network consists of a sequence
of five 3x3 convolutions with 196 feature maps each using batch-normalization and rectified linear
units, followed by a 1x1 convolution which maps onto the 10 classes, global-average pooling, and
a softmax layer. An additional 2x2 max-pooling layer is added after the first convolution. Note
that we did not tune the specific details of the detector network; other topologies might perform
better than the results reported below. When applicable, we vary ε ∈ [2, 4, 6] for `∞-based methods
and ε ∈ [400, 800, 1200] for `2. Moreover, we limit changes of the DeepFool adversaries to an `∞
distance of 6 since the adversary would otherwise sometimes generate distortions which are clearly
perceptible. We train the detector for 500 epochs using the Adam optimizer with a learning rate of
0.0001 and β1 = 0.99, β2 = 0.999.

Figure 6 compares the detectability of different static adversaries. All adversaries fail to decrease
predictive accuracy of the classifier below the chance level of 0.1 (note that predictive accuracy refers
to the accuracy on the 10-class problem not on the full 1000-class problem) for the given values of
ε. Nevertheless, detectability is 85% percent or more with the exception of the “Iterative” `2-based
adversary with ε = 400. For this adversary, the detector only reaches chance level. Other choices of
the detector’s attachment depth, internal structure, or hyperparameters of the optimizer might achieve

4The synsets of the selected classes are: palace; joystick; bee; dugong, Dugong dugon; cardigan; modem;
confectionery, confectionary, candy store; valley, vale; Persian cat; stone wall. Classes were selected by
randomly drawing 10 ILSVRC2012 Synset-IDs (i.e. integers from [1, 1000]), using the randint function of the
python-package numpy after initializing numpy’s random number generator seed with 0. This results in a train
set of 10000 images, a validation set of 2848 images, and a test set (from ImageNet’s validation data) of 500
images.
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Figure 6: Illustration of detectability of different adversaries and values for ε on 10-class ImageNet.
The x-axis shows the predictive accuracy of the ImageNet classifier on adversarial examples of the
test data for different adversaries. The y-axis shows the corresponding detectability of the adversarial
examples, with 0.5 corresponding to chance level.

Figure 7: Transferability on 10-class ImageNet of detector trained for adversary with maximal
distortion εfit when tested on the same adversary with distortion εtest. Different plots show different
adversaries. Numbers correspond to the accuracy of the detector on unseen test data.

better results; however, this failure case emphasizes that the detector has to detect very subtle patterns
and the optimizer might get stuck in bad local optima or plateaus.

Figure 7 illustrates the transferability of the detector between different values of ε. The results are
roughly analogous to the results on CIFAR10 in Section 4.1.1: detectors trained for an adversary
for a small value of ε work well for the same adversary with larger ε but not vice versa. Note that
a detector trained for the “Iterative” `2-based adversary with ε = 1200 can detect the changes of
the same adversary with ε = 400 with 78% accuracy; this emphasizes that this adversary is not
principally undetectable but that rather the optimization of a detector for this setting is difficult.
Figure 8 shows the transferability between adversaries: transferring the detector works well between
similar adversaries such as between the two DeepFool adversaries and between the Fast and Iterative
adversary based on the `∞ distance. Moreover, detectors trained for DeepFool adversaries work
well on all other adversaries. In summary, transferability is not symmetric and typically works best
between similar adversaries and from stronger to weaker adversary.

5 DISCUSSION

Why can tiny adversarial perturbations be detected that well? Adopting the boundary tilting perspec-
tive of Tanay & Griffin (2016), strong adversarial examples occur in situations in which classification
boundaries are tilted against the data manifold such that they lie close and nearly parallel to the
data manifold. A detector could (potentially) identify adversarial examples by detecting inputs
which are slightly off the data manifold’s center in the direction of a nearby class boundary. Thus,
the detector can focus on detecting inputs which move away from the data manifold in a certain
direction, namely one of the directions to a nearby class boundary (the detector does not have explicit
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Figure 8: Transferability on 10-class ImageNet of detector trained for one adversary when tested on
other adversaries. The maximal distortion of the `∞-based Iterative adversary has been chosen as
ε = 2 and as ε = 800 for the `2-based adversary. Numbers correspond to the accuracy of detector on
unseen test data.

knowledge of class boundaries but it might learn about their direction implicitly from the adversarial
training data). However, training a detector which captures these directions in a model with small
capacity and generalizes to unseen data requires certain regularities in adversarial perturbations. The
results of Moosavi-Dezfooli et al. (2016a) suggest that there may exist regularities in the adversarial
perturbations since universal perturbations exist. However, these perturbations are not unique and
data-dependent adversaries might potentially choose among many different possible perturbations
in a non-regular way, which would be hard to detect. Our positive results on detectability suggest
that this is not the case for the tested adversaries. Thus, our results are somewhat complementary
to Moosavi-Dezfooli et al. (2016a): while they show that universal, image-agnostic perturbations
exist, we show that image-dependent perturbations are sufficiently regular to be detectable. Whether
a detector generalizes over different adversaries depends mainly on whether the adversaries choose
among many different possible perturbations in a consistent way.

Why is the joint classifier/detector system harder to fool? For a static detector, there might be areas
which are adversarial to both classifier and detector; however, this will be a (small) subset of the areas
which are adversarial to the classifier alone. Nevertheless, results in Section 4.1.2 show that such a
static detector can be fooled along with the classifier. However, a dynamic detector is considerably
harder to fool: on the one hand, it might further reduce the number of areas which are both adversarial
to classifier and detector. On the other hand, the areas which are adversarial to the detector might
become increasingly non-regular and difficult to find by gradient descent-based adversaries.

6 CONCLUSION AND OUTLOOK

In this paper, we have shown empirically that adversarial examples can be detected surprisingly well
using a detector subnetwork attached to the main classification network. While this does not directly
allow classifying adversarial examples correctly, it allows mitigating adversarial attacks against
machine learning systems by resorting to fallback solutions, e.g., a face recognition might request
human intervention when verifying a person’s identity and detecting a potential adversarial attack.
Moreover, being able to detect adversarial perturbations may in the future enable a better understand-
ing of adversarial examples by applying network introspection to the detector network. Furthermore,
the gradient propagated back through the detector may be used as a source of regularization of the
classifier against adversarial examples. We leave this to future work. Additional future work will be
developing stronger adversaries that are harder to detect by adding effective randomization which
would make selection of adversarial perturbations less regular. Finally, developing methods for
training detectors explicitly such that they can detect many different kinds of attacks reliably at the
same time would be essential for safety- and security-related applications.
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