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Abstract. Detecting local clustered anomalies is an intricate problem for many
existing anomaly detection methods. Distance-based and density-based methods
are inherently restricted by their basic assumptions—anomalies are either far
from normal points or being sparse. Clustered anomalies are able to avoid detec-
tion since they defy these assumptions by being dense and, in many cases, in close
proximity to normal instances. In this paper, without using any density or distance
measure, we propose a new method called SCiForest to detect clustered anoma-
lies. SCiForest separates clustered anomalies from normal points effectively even
when clustered anomalies are very close to normal points. It maintains the ability
of existing methods to detect scattered anomalies, and it has superior time and
space complexities against existing distance-based and density-based methods.

1 Introduction

“The identification of clusters of outliers can lead to important types of knowl-
edge discovery.” Edwin M. Knorr [12]

Anomaly detection identifies unusual data patterns that are different from the major-
ity of data. In this paper, we use the terms anomalies and outliers interchangeably. In
general, anomalies can be divided into four different types using two dimensions. The
first distinguishes anomalies by their proximity to normal instances — local versus
global. The second divides anomalies based on their data distribution — clustered ver-
sus scattered. For example, global clustered anomalies refer to anomalies that are far
from normal points, and very close to each others forming a cluster.

A number of existing anomaly detection methods, including distance-based [22,20]
and density-based methods [6], carry the assumption that anomalies are distant or
sparse with respect to normal instances. Therefore, these methods solely target scat-
tered anomalies, often only global scattered anomalies. However, this assumption does
not always hold. When anomalies gathered to form clusters, they become very difficult
to detect [23], due to their proximity and density, which is also known as the ‘masking’
effect [18].
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J.L. Balcázar et al. (Eds.): ECML PKDD 2010, Part II, LNAI 6322, pp. 274–290, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



On Detecting Clustered Anomalies Using SCiForest 275

Fig. 1. Burst of clustered anomalies can be observed through out the http data set

Identifying clustered anomalies is important since they may carry critical informa-
tion in circumstances such as disease outbreaks [27], burst of intrusions and fraudulent
activities [10]. In particular, detecting clustered anomalies are usually more rewarding
as such discovery often lead to greater benefits as compared to scattered anomalies. For
example, the detection of frequent fraudsters potentially prevents higher financial loss
as compared to occasional fraudsters.

A publicly available example of clustered anomalies can be found in KDDCUP 1999
data set 1, where bursts of attacks (clustered anomalies) can be observed in a subset
known as http [28] as shown in Figure 1. Three bursts of attacks are clustered, first in
the middle of the data stream; and two smaller ones appeared at the end of the stream.
These attacks are characterized by their arrival in a short period of time, and having the
same values in three attributes, i.e., 2091 out of 2211 anomalies in http have the same
values in attributes: duration, src bytes and dst bytes. It shows that the
problem of clustered anomalies exist and it is worthy for further investigation.

The detection of clustered anomalies is identified as a challenging future working
by Knorr [12] in 2002. Knorr motivates that occasional anomalies may be tolerated
or ignored in some applications, however when similar anomalies appear many times;
it is unwise to ignored them. Knorr defines that clustered anomalies are points which
are close to each other and far from normal points. When anomalies come very close
to normal points, the problem of detecting clustered anomalies becomes even more
challenging.

The challenges to detect the four types of anomalies are illustrated in Figure 2, where
clustered anomalies cg , cl, cn and scattered anomalies xg , xl are shown together with
two clusters of normal points. Subscript g denotes global anomalies, and l, n local
anomalies. Each anomaly cluster has twelve data points. Using popular anomaly de-
tectors, LOF [6], ORCA [5], iForest [16] and SCiForest – our proposed method
in this paper, the ranking result for each method is provided in Figure 2. There are a
total of 38 anomalies and SCiForest is the only method that correctly ranks all these
anomalies at the top of the list. The local clustered anomalies are very challenging to
the other three detectors for two reasons:

– Plurality and density — when the number of clustered anomalies is more than
a certain threshold, e.g., the k parameter of k-nn based methods, then clustered

1 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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(a) Data Distribution

Ranking xg xl cg cn, cl

SCiForest 7 38 1-6,8-13 14-37
iForest 12 28 1-11,13 -
LOF(k = 15) 1 14 2-13 -
LOF(k = 10) 1 2 - -
ORCA(k = 15) 1 27 2-13 -
ORCA(k = 10) 1 10 - -

(b) Rankings of Anomalies
Local clustered anomalies cn, cl are
difficult to detect. ‘-’ means ranking > 38.
Consecutive rankings are bold-faced.
Non-consecutive rankings mean
false-positives are ranked higher than
anomalies.

Fig. 2. SCiForest is the only detector that is able to detect all the anomalies in the data set
above. (a) illustrates the data distribution. (b) reports the anomaly rankings provided by different
anomaly detectors.

anomalies become undetectable by these methods; both LOF and ORCA miss de-
tecting Cg when k < 15; and

– Proximity — when anomalies are located close to normal instances, they are easily
mistaken as normal instances. All except SCiForest miss detecting local clustered
anomalies, Cn and Cl.

We propose SCiForest—an anomaly detector that is specialised in detecting local clus-
tered anomalies, in an efficient manner. Our contributions are four-fold:

– we tackle the problem of clustered anomalies, in particular local clustered
anomalies. We employ a split selection criterion to choose a split that separates
clustered anomalies from normal points. To the best of our knowledge, no existing
methods use the same technique to detect clustered anomalies;

– we analyse the properties of this split selection criterion and show that it is
effective even when anomalies are very close to normal instances, which is the
most challenging scenario presented in Figure 2;

– we introduce the use of randomly generated hyper-planes in order to provide
suitable projections that separate anomalies from normal points. The use of multiple
hyper-planes avoids costly computation to search for the optimal hyper-plane as in
SVM [25]; and

– the proposed method is able to separate anomalies without a significant in-
crease in processing time. In contrast to SVM, distance-based and density-based
methods, our method is superior in processing time especially in large data sets.

This paper is organised as follows: Section 2 defines key terms used in this paper.
Section 3 reviews existing methods in detecting clustered anomalies, especially local
clustered anomalies. Section 4 describes the construction of SCiForest, including the



On Detecting Clustered Anomalies Using SCiForest 277

proposed split-selection criterion, randomly generated hyper-planes and SCiForest’s
computational time complexity. Section 5 empirically evaluates the proposed method
with real-life data sets. We also evaluate the robustness of the proposed method us-
ing different scenarios with (i) high number of anomalies, (ii) clustered, and (iii) close
proximity to normal instances. Section 6 concludes this paper.

2 Definition

In this paper, we use the term ‘Isolation’ to refer to “separating each instance from the
rest”. Anomalies are data points that are more susceptible to isolation.
Definition 1. Anomalies are points that are few and different as compared with normal
points.
We define two different types of anomalies as follows:
Definition 2. Scattered anomalies are anomalies scattered outside the range of normal
points.

Definition 3. Clustered anomalies are anomalies which form clusters outside the
range of normal points.

3 Literature Review

Distance-based methods can be implemented in three ways: anomalies have (1) very
few neighbours within a certain distance [13] or (2) a distant kth nearest neighbour
or (3) distant k nearest neighbours [22,3]. If anomalies have short pair-wise distances
among themselves, then k is required to be larger than the size of the largest anomaly
cluster in order to detect them successfully. Note that increases k also increases process-
ing time. It is also known that distance-based methods break down when data contain
varying densities since distance is measured uniformly across a data set. Most distance-
based methods have a time complexity of O(n2). Many recent implementations im-
prove performance in terms of speed, e.g., ORCA [5], DOLPHIN [2]. However, very
little work is done to detect clustered anomalies.

Density-based methods assume that normal instances have higher density than
anomalies. Under this assumption, density-based methods also have problem with vary-
ing densities. In order to cater for this problem, Local Outlier Factor (LOF) [6] was
proposed which measures relative density rather than absolute density. This improves
the ability to detect local scattered anomalies. However, the ability to detect clustered
anomalies is still limited by LOF’s underlying algorithm—k nearest neighbours, in
which k has to be larger than the size of the largest anomaly cluster. The time com-
plexity for LOF is also O(n2).

Clustering-based methods. Some methods use clustering methods to detect anoma-
lies. The three assumptions in clustering-based methods are: a) anomalies are points that
do not belong to any cluster, b) anomalies are points that are far away from their closest
cluster centroid, and c) anomalies belong to small or sparse clusters [8]. Since many
clustering methods are based on distance and density measures, clustering-based meth-
ods suffer similar problems as distance or density based methods in which anomalies



278 F.T. Liu, K.M. Ting, and Z.-H. Zhou

can evade detection by being very dense or by being very close to normal clusters. The
time complexity of clustering algorithms is often O(n2d).

Other methods. In order for density-based methods to address the problem of clus-
tered anomalies, LOCI [21] utilizes multi-granularity deviation factor (MDEF) which
captures the discrepancy between a point and its neighbours at different granularities.
Anomalies are detected by comparing, for a point, the number of neighbours with the
average number of neighbours’ neighbours. For each point, difference between the two
counts at a coarse granularity indicates clustered anomaly. LOCI requires to have a
working radius larger than the radius of an anomaly cluster in order to achieve suc-
cessful detection. A grid-based variant aLOCI has a time complexity of O(nLdg) for
building a quad tree, andO(nL(dg+2d)) for scoring and flagging, where L is the total
numbers of levels and 10 ≤ g ≤ 30. LOCI is able to detect clustered anomalies, how-
ever, detecting anomalies is not a straight-forward exercise, it requires an interpretation
of LOCI curve for each point.
OutRank [17] is another method which can handle clustered anomalies, OutRank

maps a data set to a weighted undirected graph. Each node represents a data point
and each edge represents the similarity between instances. The edge weights are trans-
formed to transition probabilities so that the dominant eigenvector can be found. The
eigenvector is then used to determine anomalies. The weighted graph requires a signif-
icant amount of computing resources which is a bottleneck for real life applications.

At the time of writing, none of LOCI and OutRank implementations is available
for comparison and none of them are to handle local clustered anomalies.

Collective anomalies are different from clustered anomalies. Collective anomalies
are anomalous due to their unusual temporal or sequential relationship among them-
selves [9]. In comparison, cluster anomalies are anomalous because they are clustered
and different from normal points.

A recently proposed method Isolation Forest (iForest) [16], adopts a fundamentally
different approach that takes advantage of anomalies’ intrinsic properties of being ‘few
and different’. In many methods, these two properties are measured individually by
different measurements, e.g., density and distance. By applying the concept of isolation
expressed as path length of isolation tree, iForest simplifies the fundamental mechanism
to detect anomalies which avoids many costly computations, e.g., distance calculation.
The time complexity of iForest is O(tψ logψ + nt logψ), where ψ and t are small
constants. SCiForest and iForest share the use of path length to formulate anomaly
scores; they are different in terms of how they construct their models.

4 Constructing SCiForest

The proposed method consists of two stages. In the first stage (training stage), t num-
ber of trees are generated, and the process of building a tree is illustrated in Algorithm
1 which trains a tree in SCiForest from a randomly selected sub-sample. Let X =
{x1, ...,xn} be a data set with d-variate distribution and an instance x = [x1, ..., xd].
An isolation tree is constructed by (a) selecting a random sub-sample of data (without
replacement for each tree), X ′ ⊂ X , |X ′| = ψ, and (b) selecting a separating hyper-
plane f using Sdgain criterion in every recursive subdivision ofX ′. We call our method
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Algorithm 1. Building a single tree in SCiForest(X ′, q, τ)
Input: X ′ - input data, q - number of attributes used in a hyperplane, τ - number of hyperplanes
considered in a node
Output: an iTree T

1: if |X ′| ≤ 2 then
2: return exNode{Size← |X ′|}
3: else
4: f ← a hyper-plane with the best split point p that yields the highest Sdgain among τ

hyper-planes of q randomly selected attributes.
5: Xl ← {x ∈ X ′|f(x) < 0}
6: Xr ← {x ∈ X ′|f(x) ≥ 0}
7: v← maxx∈X′(f(x))−minx∈X′(f(x))
8: return inNode{Left← iTree(Xl, q, τ ),
9: Right← iTree(Xr, q, τ ),

10: SplitP lane← f,
11: UpperLimit← +v,
12: LowerLimit← −v}
13: end if

SCiForest, which stands for Isolation Forest with Split-selection Criterion. The formu-
lation of hyperplane will be explained in Section 4.1 and Sdgain criterion in Section 4.2.

The second stage (evaluation stage) is illustrated in Algorithm 2 to evaluate path
length h(x) for each data point x. The path length h(x) of a data point x of a tree is
measured by counting the number of edges x traverses from the root node to a leaf
node. The expected path length E(h(x)) over t trees is used as an anomaly measure
which encapsulates the two properties of anomalies: long expected path length implies
normal instances and short expected path length implies anomalies which are few and
different as compared with normal points.

The PathLength function in Algorithm 2 basically counts the number of edges e
x traverses from the root node to an external node in T . A acceptable range is defined
at each node to omit the counting of path length for unseen anomalies; this facility will
be explained in details in Section 4.3. When x reaches an external node, the value of
c(T.Size) is used as a path length estimation for an unbuilt sub-tree; c(m) the average
tree height of binary tree is defined as :

c(m) = 2H(m− 1) − 2(m− 1)/n for m > 2, (1)

c(m) = 1 form = 2 and c(m) = 0 otherwise; H(i) is the harmonic number which can
be estimated by ln(i) + 0.5772156649 (Euler’s constant).

The time complexity to construct SCiForest consists of three major components: a)
computing hyper-plane values, b) sorting hyper-plane values and c) computing the cri-
terion. They are repeated τ times in a node and there are maximum ψ−1 internal nodes
in a tree. Using the three major components mentioned above, the time complexity of
training a SCiForest of t trees is O(tτψ(qψ + logψ + ψ)). In the evaluation stage,
the time complexity of SCiForest is O(qntψ), where n is the number of instances to
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Algorithm 2. PathLength(x, T, e)
Inputs : x - an instance, T - an iTree, e - number of edges from the root node; it is to be initialised
to zero when the function is first called
Output: path length of x

1: if T is an exNode then
2: return e + c(T.size) {c(.) is defined in Equation 1}
3: end if
4: y ← T.SplitP lane(x)
5: if 0 ≤ y then
6: return PathLength(x, T.right, e + (y < T.UpperLimit ? 1 : 0))
7: else if y < 0 then
8: return PathLength(x, T.left, e + (T.LowerLimit ≤ y ? 1 : 0))
9: end if

be evaluated. The time complexity of SCiForest is low since t, τ , ψ and q are small
constants and only the evaluation stage grows linear with n.

4.1 Random Hyper-Planes

When anomalies can only be detected by considering multiple attributes at the same
time, individual attributes are not effective to separate anomalies from normal points.
Hence, we introduce random hyper-planes which are non-axis-parallel to the original
attributes. SCiForest is a tree ensemble model; it is not necessary to have the optimal
hyper-plane in every node. In each node, given sufficient trials of randomly generated
hyper-planes, a good enough hyper-plane will emerge, guided by Sdgain. Although
individual hyper-planes may be less than optimal, the resulting model is still highly
effective as a whole, due to the aggregating power of ensemble learner.

The idea of hyper-plane is similar to Oblique Decision Tree [19]; but we generate
hyper-planes with randomly chosen attributes and coefficients, and we use them in the
context of isolation trees rather than decision trees.

At each division in constructing a tree, a separating hyper-plane f is constructed
using the best split point p and the best hyperplane that yields the highest Sdgain among
τ randomly generated hyper-planes. f is formulated as follows:

f(x) =
∑

j∈Q

cj
xj

σ(X ′
j)

− p, (2)

where Q has q attribute indices, randomly selected without replacement from
{1, 2, ..., d}; cj is a coefficient, randomly selected between [−1, 1];X ′

j are jth attribute
values ofX ′. After f is constructed, steps 5 and 6 in Algorithm 1 return subsetsX l and
Xr, X l ∪ Xr = X ′, according to f . This tree building process continues recursively
with the filtered subsetsX l andXr until the size of a subset is less than or equal to two.

4.2 Detecting Clustered Anomalies Using Sdgain Criterion

Hawkins defines, “anomalies are suspicious of being generated by a different mecha-
nism” [11], this infers that clustered anomalies are likely to have their own distribution
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(a) Separate an anomaly from
the main distribution

(b) Isolate an anomaly cluster
close to the main distribution

(c) Separate an anomaly clus-
ter from the main distribution

Fig. 3. Examples of Sdgain selected split points in three projected distributions

under certain projections. For this reason, we introduce a split-selection criterion that
isolates clustered anomalies from normal points based on their distinct distributions.

When a split clearly separates two different distributions, their dispersions are mini-
mized. Using this simple but effective mechanism, our proposed split-selection criterion
(Sdgain) is defined as:

Sdgain(Y ) =
σ(Y ) − avg(σ(Y l), σ(Y r))

σ(Y )
, (3)

where Y l ∪ Y r = Y ; Y is a set of real values obtained by projecting X ′ onto a hyper-
plane f . σ(.) is the standard deviation function and avg(a, b) simply returns a+b

2 . A
split point p is required to separate Y into Y l and Y r such that yl < p ≤ yr, yl ∈
Y l, yr ∈ Y r. The criterion is normalised using σ(Y ), which allows a comparison of
different scales from different attributes. To find the best split p from a given sample
Y , we pass the data twice. The first pass computes the base standard deviation σ(Y ).
The second pass finds the best split p which gives the maximum Sdgain across all
possible combinations of Y l and Y r, using Equation 3. Standard deviation measures
the dispersion of a data distribution; when an anomaly cluster is presented in Y , it is
separated first as this reduces the average dispersion of Y l and Y r the most. To calculate
standard deviation, a reliable one-pass solution can be found in [14, p. 232, vol. 2, 3rd
ed.]. This solution is not subjected to cancellation error2 and allows us to keep the
computational cost to a minimum.

We illustrate the effectiveness of Sdgain in Figure 3. This criterion is shown to be
able to (a) separate a normal cluster from an anomaly, (b) separate an anomaly cluster
which is very close to the main distribution, and (c) separate an anomaly cluster from
the main distribution.
Sdgain is able to separate two overlapping distributions. Using the analysis in [24],

we can see that as long as the combined distribution for any two distributions is bi-
modal, Sdgain is able to separate the two distributions early in the tree construction
process. Using two distributions of the same variance i.e. σ2

1 = σ2
2 , with their respec-

tive means μ1 and μ2, it is shown that the combined distribution can only be bimodal
when |μ2 − μ1| > 2σ [24]. In the case when σ2

1 �= σ2
2 , the condition of bi-modality

is |μ2 − μ1| > S(r)(σ1 + σ2), where the ratio r = σ2
1/σ

2
2 and separation factor

2 Cancellation error refers to the inaccuracy in computing very large or very small numbers,
which are out of the precision of ordinary computational representation.
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S(r) =

√
−2+3r+3r2−2r3+2(1−r+r2)

3
2√

r(1+
√

r)
[24]. S(r) equals to 1 when r = 1, and S de-

creases slowly when r increases. That means bi-modality holds when one-standard de-
viation regions of the two distributions do not overlap. This condition is generalised for
any population ratio between the two distributions and it is further relaxed when their
standard derivations are different. Based on this condition of bi-modality, it is clear that
Sdgain is able to separate any two distributions that are indeed very close to each other.

In SciForest, Sdgain has two purposes: (a) to select the best split point among all
possible split points and (b) to select the best hyper-plane among randomly generated
hyper-planes.

4.3 Acceptable Range

Fig. 4. An example of acceptable range with
reference to hyper-plane f (SplitP lane)

In the training stage, SCiForest always fo-
cuses on separating clustered anomalies. For
this reason, setting up a acceptable range at
the evaluation stage is helpful to fence off any
unseen anomalies that are out-of-range. An il-
lustration of acceptable range is shown in Fig-
ure 4. In steps 6 and 8 of Algorithm 2, any
instance x that falls outside of the acceptable
range of a node, i.e. f(x) > UpperLimit or f(x) < LowerLimit, is penalized with-
out a path length increment for that node. The effect of acceptable range is to reduce
the path length measures of unseen data points which are more suspicious of being
anomalies.

5 Empirical Evaluation

Our empirical evaluation consists of five subsections. Section 5.1 provides a comparison
in detecting clustered anomalies in real-life data sets. Section 5.2 contrasts the detection
behaviour between SCiForest and iForest, and explores the utility of hyper-plane. Sec-
tion 5.3 examines the robustness of the four anomaly detectors against dense anomaly
clusters in terms of density and plurality of anomalies. Section 5.4 examines the break-
down behaviours of the four detectors in terms of the proximity of both clustered and
scattered anomalies. Section 5.5 provides a comparison with other real-life data sets,
which contain different scattered anomalies.

Performance measures include Area Under receiver operating characteristic Curve
(AUC) and processing time (training time plus evaluation time). Ten runs averages are
reported. Significance tests are conducted using paired t-test at 5% significance level.
Experiments are conducted as single-threaded jobs processed at 2.3GHz in a Linux
cluster (www.vpac.org).

In our empirical evaluation, the panel of anomaly detectors includes SCiForest, iFor-
est [16], ORCA [5], LOF [6] (from R’s package dprep) and one-class SVM [26]. As
for SCiForest and iForest, the common default settings are ψ = 256 and t = 100, as
used in [16]. For SCiForest, the default settings for hyper-plane are q = 2 and τ = 10.
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Table 1. Performance comparison of five anomalies detectors on selected data sets containing
only clustered anomalies. Boldfaced are best performance. Mulcross’ setting is (D = 1, d =
4, n = 262144, cl = 2, a = 0.1).

AUC Time (seconds)
size SCiF iF ORCA LOF SVM SCiF iF ORCA LOF SVM

Http 567,497 1.00 1.00 0.36 NA 0.90 39.22 14.13 9487.47 NA 34979.76
Mulcross 262,144 1.00 0.93 0.83 0.90 0.59 61.64 8.37 2521.55 156,044.13 7366.09

Annthyroid 6,832 0.91 0.84 0.69 0.72 0.63 5.91 0.39 2.39 121.58 4.17
Dermatology 366 0.89 0.78 0.77 0.41 0.74 1.04 0.27 0.04 0.91 0.04

The use of parameter q depends on the characteristic of anomalies; an analysis can be
found in Section 5.2. Setting q = 2 is suitable for most data. Parameter τ produces
similar result when τ > 5 in most data sets, the average variance of AUC for the eight
data sets used is 0.00087 for 30 ≥ τ ≥ 5. Setting τ = 10 is adequate for most data sets.

In this paper, ORCA’s parameter settings3 are k = 10 and N = n
8 , where N the

number of anomalies detected. LOF’s default parameter is the commonly used k =
10. One-class SVM is using the Radial Basis Function kernel and its inverse width
parameter is estimated by the method suggested in [7].

5.1 Performance on Data Sets Containing Only Clustered Anomalies

In our first experiment, we compare five detectors with data sets containing known
clustered anomalies. Using data visualization, we find that the following four data sets
contains only clustered anomalies. Data sets included are: a data generator Mulcross4

[23] which is designed to evaluate anomaly detectors, and three other anomaly detec-
tion data sets from UCI repository [4]: http,Annthyroid andDermatology. Previous
usage can be found in [28,23,15]. Http is the largest subset from KDD CUP 99 net-
work intrusion data [28]; attack instances are treated as anomalies. Annthyroid and
Dermatology are selected as they have known clustered anomalies. In Dermatology,
the smallest class is defined as anomalies; in Annthyroid classes 1 and 2. All nominal
and binary attributes are removed.

Mulcross has five parameters, which control the number of dimensions d, the number
of anomaly clusters cl, the distance between normal instance and anomaliesD, the per-
centage of anomalies a (contamination level) and the number of generated data points
n. Settings for Mulcross will be provided for different experiments.

Their detection performance and processing time are reported in Table 1. SCiForest
(SCiF) has the best detection performance, attributed by its ability to detect clustered
anomalies in data. SCiForest is significant better than iForest, ORCA and SVM using
paired t-test. iForest (iF) has slightly lower AUC in Mulcross, Annthyroid and Derma-
tology as compared with SCiForest. In terms of processing time, iForest and SCiForest
are very competitive, especially in large data sets, including http and Mulcross. LOF
result on http is not reported as the process runs for more than two weeks.

3 ORCA’s default setting of k = 5, N = 30 returns AUC = 0.5 for most data sets.
4 http://lib.stat.cmu.edu/jasasoftware/rocke
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Table 2. SCiForest targets clustered anomalies while iForest targets scattered anomalies.
SCiForest has a higher hit rate in Annthyroid data. Instances with similar high z-scores implies
clustered anomalies, i.e., attribute t3 under SCiForest. Top ten identified anomalies are presented
with their z-scores which measure their deviation from the mean values. Z-scores > 3 are bold-
faced meaning outlying values. ∗ denotes ground truth anomaly.

SCiForest iForest

id tsh t3 tt4 t4u tfi tbg id tsh t3 tt4 t4u tfi tbg
*3287 -1.7 21.5 -2.0 -2.9 1.1 -3.0 1645 -1.5 -0.2 21.2 8.9 -1.6 14.6
*5638 -1.8 20.6 -1.4 -1.8 1.7 -2.2 2114 1.3 -0.2 15.0 8.4 -1.0 11.2
*1640 1.5 21.3 -2.0 -2.7 2.2 -2.9 *3287 -1.7 21.5 -2.0 -2.9 1.1 -3.0
*2602 -1.4 19.8 -2.0 -2.4 2.1 -2.7 *1640 1.5 21.3 -2.0 -2.7 2.2 -2.9
*4953 -2.6 20.3 -0.4 -2.1 1.0 -2.3 3323 1.7 0.4 6.2 4.7 -0.7 6.0
*5311 -1.4 20.2 -1.7 -2.5 0.6 -2.6 *6203 -1.8 18.9 -2.0 -2.4 1.8 -2.6
*5932 0.4 22.9 0.0 -2.8 0.7 -2.9 *2602 -1.4 19.8 -2.0 -2.4 2.1 -2.7
*6203 -1.8 18.9 -2.0 -2.4 1.8 -2.6 2744 -1.2 0.4 4.8 4.7 -1.0 6.7
*1353 0.1 18.8 -1.4 -2.7 0.2 -2.8 *4953 -2.6 20.3 -0.4 -2.1 1.0 -2.3
*6360 0.4 17.2 -2.0 -2.7 1.1 -2.9 4171 -0.6 -0.2 7.0 8.9 0.6 7.8

Top 10 anomalies’ z-scores on Annthyroid data set.

5.2 SCiForest’s Detection Behaviour and the Utility of Hyper-Plane

By examining attributes’ z-scores in top anomalies, we can contrast the behavioural
differences between SCiForest and iForest in terms of their ranking preferences. In
Table 2, SCiForest (on the left hand side) prefers to rank an anomaly cluster first, which
has distinct values in attribute ‘t3’, as shown by similar high z-scores in ‘t3’. However,
iForest (on the right hand side of Table 2) prefers to rank scattered anomalies first the
same anomaly cluster. SCiForest’s preference allows it to focus on clustered anomalies,
while iForest focuses on scattered anomalies in general.

When anomalies are depended on multiple attributes, SCiForest’s detection perfor-
mance increases when q the number of attributes used in hyper-planes increases. In Figure
5, Dermatology data set has an increasing AUC as q increases due to the dependence of its
anomalies on multiple attributes. On the other hand, Annthyroid data set has a decrease
in detection performance since its anomalies are depended on only a single attribute “t3”
as shown above. Both data sets are presented with AUC of SCiForest with various q val-
ues in comparison with iForest, LOF and ORCA in their default settings. In both cases,
their maximum AUC are above 0.95, which show that room for further improvement is
minimal. From these examples, we can see that the parameter q allows further tuning of
hyperplanes in order to obtain a better detection performance in SCiForest.

5.3 Global Clustered Anomalies

To demonstrate the robustness of SCiForest, we analyse performance of four anomaly
detectors using data generated by Mulcross with various contamination levels. This
provides us with an opportunity to examine the robustness of detectors in detecting
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q
Dermatology

q
Annthyroid

Fig. 5. Performance analysis on the utility of Hyper-plane. AUC (y-axis) increases with q the
number of attributes used in the hyper-plane (x-axis) when anomalies are depends on multiple
attributes as in Dermatology

global clustered anomalies under increasing density and plurality of anomalies. Mul-
cross is designed to generate dense anomaly clusters when the contamination level in-
creases, in which case the density and the number of anomalies also increase, making
the problem of detecting global clustered anomalies gradually harder. When the con-
tamination level increases, the number of normal points remains at 4096, which pro-
vides the basis for comparison. When AUC drops to 0.5 or below, the performance is
equal to random ranking. Figure 6(c) illustrates an example of Mulcross’s data with one
anomaly cluster.

In Figure 6(a) where there is only one anomaly cluster, SCiForest clearly performs
better than iForest. SCiForest is able to stay above AUC = 0.8 even when the con-
tamination level reaches a = 0.3; whereas iForest drops below AUC = 0.6 at around
a = 0.15. The other two detectors; ORCA and LOF, have sharper drop rates as com-
pared to SCiForest and iForest between a = 1

212 to 0.05. In Figure 6(b) where there
are ten anomaly clusters, it is actually an easier problem because the size of anomaly
clusters becomes smaller and the density of anomaly clusters is reduced for the same
contamination level as compared to Figure 6(a). In this case, SCiForest is still the most
robust detector, having AUC stay above 0.95 for the entire range. iForest is a close sec-
ond with a sharper drop between a = 0.02 to a = 0.3. The other two detectors have a
marginal improvement from the case with one anomaly cluster. This analysis confirms
that SCiForest is robust in detecting dense global anomaly clusters even when they are
large and dense. SVM’s result is omitted for clarity.

5.4 Local Clustered Anomalies and Local Scattered Anomalies

When clustered anomalies become too close to normal instances, anomaly detectors
based on density and distance measures breakdown due to the proximity of anomalies.
To examine the robustness of different detectors against local clustered anomalies, we
generate a cluster of twelve anomalies with various distances from a normal cluster in
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AUC

a
(a) One anomaly cluster

a
(b) Ten anomaly clusters

(c) Mulcross’s data

Fig. 6. SCiForest is robust against dense clustered anomalies at various contamination levels Pre-
sented is the AUC performance (y-axis) of the four detectors on Mulcross (D = 1, d = 2, n =
4096/(1 − a)) data with contamination level a = { 1

212 , ..., 0.3} (x-axis).

the context of two normal clusters. We use a distance factor = h
r , where h is the distance

between anomaly cluster and the center of a normal cluster and r is the radius of the
normal cluster. When the distance factor is equal to one, the anomaly cluster is located
right at the edge of the dense normal cluster. In this evaluation, LOF and ORCA are
given k = 15 so that k is larger than the size of anomaly groups.

As shown in Figure 7(a), the result confirms that SCiForest has the best performance
in detecting local clustered anomalies, followed by iForest, LOF and ORCA. Figure
7(b) shows the scenario of distance factor = 1.5. When distance factor is equal to or
slightly less than one in Figure 7(a), SCiForest’s AUC remains high despite the fact
that local anomalies have come into contact with normal instances. By inspecting the
actual model, we find that many hyper-planes close to the root node are still separating
anomalies from normal instances, resulting in a high detection performance.

A similar evaluation is also conducted for scattered anomalies. In Figure 7(c), SCi-
Forest also has the best performance in detecting local scattered anomalies, then fol-
lowed by LOF, iForest and ORCA. Note that LOF is slightly better than iForest from
distance factor > 0.7 onwards. Figure 7(d) illustrates the data distribution when dis-
tance factor is equal to 1.5.

5.5 Performance on Data Sets Containing Scattered Anomalies

As for data sets which contain scattered anomalies, we find that SCiForest has a similar
and comparable performance as compared with other detectors. In Table 3, four data
sets from UCI repository [4] including Satellite, Pima, Breastw and Ionosphere are
used for a comparison. They are selected as they are previously used in literature, e.g.,
[15] and [1]. In terms of anomaly class definition, the three smallest classes in Satellite
are defined as anomalies, class positive in Pima, class malignant in Breastw and class
bad in Ionosphere.
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(a) Clustered anomalies (b) Distance Factor = 1.5

AUC

distance Factor
(c) Scattered anomalies (d) Distance Factor = 1.5

Fig. 7. Performance in detecting Local Anomalies. Results are shown in (a) and (c) with AUC (y-
axis) versus distance factor (x-axis). (b) and (d) illustrate the data distributions in both scattered
and clustered cases when distance factor = 1.5.

SCiForest’s detection performance is significantly better than LOF and SVM, and
SCiForest is not significantly different from iForest and ORCA. This result shows that
SCiForest maintains the ability to detect scattered anomalies as compared with other
detectors. In terms of processing time, although SCiForest is not the fastest detector
among the fives in these small data sets, its processing time is in the same order as
compared with other detectors.

One may ask how SCiForest can detect anomalies if none of the anomalies is seen by
the model due to a small sampling size ψ. To answer this question, we provide a short
discussion below. Let a be the number of clustered anomalies over n the number of
data instances in a data set and ψ the sampling size for each tree used in SCiForest. The
probability P for selecting anomalies in a sub-sample is P = aψ. Once a member of
the anomalies is considered, appropriate hyper-planes will be formed in order to detect
anomalies from the same cluster. ψ can be increased to increase P . The higher the P ,
the higher the number of trees in SCiForest’s model that are catered to detect this kind
of anomalies. In cases where P is small, the facility of acceptable range would reduce
the path lengths for unseen anomalies, hence exposes them for detection, as long as
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Table 3. Performance comparison of five anomalies detectors on data sets containing scattered
anomalies. Boldfaced are best performance

AUC Time (seconds)
size SCiF iF ORCA LOF SVM SCiF iF ORCA LOF SVM

Satellite 6,435 0.74 0.72 0.65 0.52 0.61 5.38 0.74 8.97 528.58 9.13
Pima 768 0.65 0.67 0.71 0.49 0.55 1.10 0.21 2.08 1.50 0.06

Breastw 683 0.98 0.98 0.98 0.37 0.66 1.16 0.21 0.04 2.14 0.08
Ionosphere 351 0.91 0.84 0.92 0.90 0.71 4.43 0.28 0.04 0.96 0.04

they are located outside of the range of normal instances. In either cases, SCiForest is
equipped with the facilities to detect anomalies, seen or unseen.

6 Conclusions

In this study, we find that when local clustered anomalies are present, the proposed
method — SCiForest consistently delivers better detection performance than other de-
tectors and the additional time cost of this performance is small. The ability to detect
clustered anomalies is brought about by a simple and effective mechanism, which min-
imizes the post-split dispersion of the data in the tree growing process. We introduce
random hyper-planes for anomalies that are undetectable by single attributes. When the
detection of anomalies depends on multiple attributes, using higher number of attributes
in hyper-planes yields better detection performance.

Our analysis shows that SCiForest is able to separate clustered anomalies from nor-
mal points even when clustered anomalies are very close to or at the edge of normal
cluster. In our experiments, SCiForest is shown to have better detection performance
than iForest, ORCA, SVM and LOF in detecting clustered anomalies, global or local.
Our empirical evaluation shows that SCiForest maintains a fast processing time in the
same order of magnitude as iForest’s.
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