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Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland
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Abstract. Modern cloud environments allow users to consume com-
putational and storage resources in the form of virtual machines. Even
though machines running on the same cloud server are logically isolated
from each other, a malicious customer can create various side channels
to obtain sensitive information from co-located machines. In this study,
we concentrate on timely detection of intentional co-residence attempts
in cloud environments that utilize software-defined networking. SDN en-
ables global visibility of the network state which allows the cloud provider
to monitor and extract necessary information from each flow in every
virtual network in online mode. We analyze the extracted statistics on
different levels in order to find anomalous patterns. The detection re-
sults obtained show us that the co-residence verification attack can be
detected with the methods that are usually employed for botnet analysis.

1 Introduction

Cloud environments allow users to consume computational and storage resources
in an on-demand manner with low management overhead. As a rule, these re-
sources are provided to the users in the form of virtual machines (VMs). In
theory, VMs running on the same cloud server (i.e., co-resident VMs) are logi-
cally isolated from each other. However, in practice, a malicious customer can
create various side channels to circumvent the logical isolation, and obtain sen-
sitive information from co-resident VMs that may include machine workloads
[1] and even cryptographic keys [2]. Unfortunately, a straightforward solution to
this type of the attack that is eliminating all possible side channels [3] is not
suitable for immediate deployment due to the required modifications to current
cloud platforms [4]. For this reason, the problem of preventing malicious users
from spawning their virtual instances on the same cloud server as the victim’s
VM is of greatest interest for modern cloud providers [2, 4] .

There are several approaches a malicious cloud customer can employ to in-
tentionally co-locate his VMs with victim instances to run on the same physical
cloud server. Probably the easiest and for this reason the most popular approach
relies on networking. Co-residency verification can be carried out by measuring
network round-trip time between pairs of VM instances [1], the number of net-
work hops [5], or the network interference injected by the attacker [6].
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In this study, we concentrate on the problem of timely detection of such
malicious customers in cloud environments that utilize software-defined net-
working (SDN). SDN is a hardware independent next generation networking
paradigm, which breaks the vertical integration in traditional networks to pro-
vide the flexibility to program the network through centralized network control.
In SDN, the control logic is separated from individual forwarding devices, such
as routers and switches, and implemented in a logically centralized controller.
The separation of control and data planes in SDN enables the network control
to be programmable and the underlying infrastructure to be abstracted for ap-
plications and network services. Moreover, SDN enhances network security with
the centralized control of network behavior, global visibility of the network state
and run-time manipulation of traffic forwarding rules. Updating security policies
in SDN requires updating the security applications or adding security modules
to the controller platform, rather than changing the hardware or updating its
firmware [7]. For these reasons, cloud computing environments can benefit from
moving towards SDN technology [8].

To the best of our knowledge, there are no any studies that try to detect
intentional co-residence attempts in cloud environments with the help of SDN.
However, there are various approaches for detecting different sorts of cyber at-
tacks carried out in clouds that utilize software-defined networking. Study [9]
addresses man-in-the-middle and denial of service attacks caused by address
resolution protocol bug in cloud centers using SDN technology. Authors propose
a detection algorithm which uses Bayesian formula to calculate the probability
of a virtual instance being an attacker. In [10], a new framework for DDoS detec-
tion and mitigation using sFlow and OpenFlow is proposed. The mechanism first
matches an incoming flow with a legitimate sample of traffic and then installs
mitigation actions if a flow found is not lying in the bounds of legitimate traffic
pattern.

The rest of the paper is organized as follows. The problem in more details
is formulated in Section 2. Section 3 describes several approaches of co-resident
verification attack detection. In Section 4, we evaluate the performance of the
techniques proposed. Section 5 draws the conclusions and outlines future work.

2 Problem Formulation

In this section, first, we specify assumptions for the cloud environment in which
we detect the attack. After that, the attack vector is described in more details.
Finally, we outline our solution that relies on software-defined networking.

2.1 Cloud Environment

We consider a cloud environment that consists of one controller and several com-
pute nodes. A cloud customer can create several virtual networks and connect
them to the existing public external network with the help of virtual routers. In
addition, the customer is allowed to spawn several virtual instances in his own
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virtual networks. It is worth noting that each such instance is automatically as-
signed to a specific compute node according to some predefined allocation policy.
For example, according to this policy, VMs can be concentrated to a number of
compute nodes, in order to decrease the power consumption and maximize the
utilization rate, or distributed across the whole data center, for the purpose of
workload balance and higher reliability [4]. The allocation policy remains un-
known to the customers.

Each customer operates inside one of the projects created by a system ad-
ministrator for a particular set of user accounts. We assume that neither user or
administrator accounts have been compromised. Thus, the cloud service provider
guarantees that customer networks in every project are isolated from the direct
intrusion of other customers. Cloud customers can only access each other’s ser-
vices via external public networks. Further, we assume that the networking inside
the cloud is carried out with the help of SDN. SDN controller and switches com-
municate between each other inside the cloud’s management network and are
not available directly from the data center’s virtual machines or external hosts.
Scenarios in which either the controller or one of the switches is compromised
are out of scope of this paper.

2.2 Attack Vector

In such environment, network-based co-residence verification technique such as
time-to-live (TTL) probing [5] is not working. TTL values of network packets
from two VMs belonging to two different cloud customers and communicating
via an external public network are reduced only by routers of this network.
Since virtual SDN switches usually operate on a different layer of the ISO/OSI
model, they do not alter the IP payload. Furthermore, the co-location verification
technique based on measuring packet round-trip times (RTT) [1] cannot be used
either. Since VMs that belong to different cloud customers can communicate only
over an external network, the traffic between them goes through this network’s
routers. For this reason, packet round-trip time to the target VM will most
likely be the same from a VM located on the same server and from a VM that
is on another server of the cloud. However, for machines from the same virtual
network, RTT between two co-located VMs is slightly less than between VMs
located on different servers. Therefore, the attacker can use this approach if one
machine from the target’s network has been compromised, but, in this research,
we do not take this scenario into consideration.

In this study, we focus on the process of co-residence verification that relies
on the fact that co-resident VMs share the same physical network interfaces.
This opens an explicitly communicative channel that can be used by the mali-
cious customer for co-residency verification. Study [6] proposes the co-resident
watermarking attack which involves launching several virtual machines and per-
forming statistical side channel tests from them. One of these machines plays
role of a master host whereas the rest are flooders and sinks. The attack begins
when the master initiates a web session with the target instance. Systematically,
the master iterates through its list of the flooders and commands them to start
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injecting network activity into the outbound interface of their physical host ma-
chines by sending portions of traffic to sinks. In case one or several flooders are
co-located with the target server, this activity creates delay in the legitimate
server’s flow initiated by the master.

The attacker can define whether one of his flooders is co-located with the
target by measuring packet arrivals per interval over the length of the flow.
After each measurement, the intervals are divided into two samples X1 and
X0 based on the pre-negotiated co-resident activity respectively representing
intervals when flooders were active and when they were not. In study [6], authors
model packet arrivals by a Poisson distribution and employ the non-parametric
Kolmogorov-Smirnov test for independence. The null hypothesis that the two
samples are from the same distribution can be rejected with confidence α if it is
bigger than αmin that is equal to:

αmin = 2 exp

(
−2

|X0||X1|
|X0|+ |X1|

sup(|F1(X1)− F0(X0)|)2
)
, (1)

where Fi(Xi) for i = 0, 1 is empirical cumulative distribution of Xi. In other
words, the less αmin the more confident the attacker that his flooder is co-located
with the target server.

2.3 SDN Solution

There are at least two mechanisms that can help cloud data centers operating in
software-defined networks in mitigation of network-based co-residence attacks.
First, SDN allows the cloud provider manipulate traffic forwarding rules on fly.
In particular, this means that the provider can redirect traffic of customers’
VMs located in the same virtual subnet flow through different virtual switches.
As a result, the traffic between VMs located on the same compute node may go
via a switch that is located on another node. This would make the co-location
verification technique based on measuring RTT hard for the attacker to use,
especially if the forwarding rules change over time.

Second, SDN enables global visibility of the network state. Each flow from ev-
ery virtual network can be monitored and analyzed in online mode. In particular,
network flows can be captured on each SDN forwarding device and sent to the
controller with the help of some flow collector. Once these statistics have been
analyzed by the controller, it commands the SDN forwarders to either block the
traffic or reroute it to security middle boxes for deeper payload-based analysis.

In this study, we rely on this second advantage of SDN for timely detection
of the co-residence verification attack described in the previous subsection. For
this purpose, each SDN forwarding device sends to the controller statistics of all
the network flows initiated by or directed to VMs located on the corresponding
compute node. These statistics may include the flow source and destination IP
address and port, time stamp, duration of the flow, number of packets and bytes
sent and received, presence of packets with different flags for TCP flows, and
probably several others. The controller investigates the flow statistics received
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searching for anomalous behavior patterns of the cloud’s virtual instances and
external hosts. The further analysis of these patterns can help to detect potential
attacks and timely mitigate them by blocking the traffic that belongs to malicious
agents.

3 Co-residence Verification Detection

As can be seen from the attack vector description, the malicious cloud customer
requires to spawn a large number of virtual instances on the cloud. Thus, one
potential approach for co-residence verification detection would rely on the num-
ber of VMs created per a time interval by a particular customer. However, such
approach cannot be scaled well on big modern cloud data centers, since there
can be thousands of newly created instances that only run for a short period
of time and belong to different user projects. For this reason, we try to detect
malicious customers by collecting traffic in cloud’s private and external public
networks. The traffic is then analyzed in three different domains: flow, session
and time.

3.1 Flow Domain

A flow is a group of IP packets with some common properties passing a monitor-
ing point in a specified time interval. These common properties include transport
protocol, the IP address and port of the source (client) and IP address and port
of the destination (server). For each flow at each time interval, we may extract
several features including the flow duration, average number of packets sent or
received per second, average size of packet, and some other information. Once
all relevant features have been extracted and standardized, the resulting feature
vectors can be divided into several groups by applying a clustering algorithm.
There are many different clustering algorithms which can be categorized based
on the notation of a cluster. The most popular categories include centroid-based
clustering algorithms, hierarchical clustering algorithms and density-based clus-
tering algorithms. The flow clusters can be found during the training phase when
there is only legitimate traffic in the cloud. During the detection phase, if a new
feature vector does not belong to any of the clusters obtained, the corresponding
flow is labeled as malicious.

3.2 Session Domain

In the next stage, we can analyze sequences of flows belonging to one user session.
Such approach is often used for application-based DDoS attacks detection [11]. If
packet’s payload is encrypted and session ID cannot be extracted, we can group
all flows which are extracted in certain time interval and have the same source
IP address, destination IP address and destination port together and analyze
each such group separately. We can interpret a group of such flows as a rough
approximation of the user session [12].
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One detection approach in the session domain is counting flows from each
cluster defined by one of the clustering algorithms mentioned in the previous
subsection initiated by each user during the session. If flows between a flooder
and a sink are shaped to follow legitimate traffic patterns, the attacker would
probably need to increase the number of flows sent by each flooder to increase de-
lays for packets arriving at the master host, therefore, improving the co-residence
verification rate. For this reason, the number of flows of at least one certain type
initiated by the attacker should exceed the number of flows of this type during
legitimate user sessions. This pattern can be detected with the help of one of
the clustering algorithms specified above or any anomaly detection technique.

Another approach is to analyze conditional probabilities of observing a se-
quence of flows in a session of particular length. Given a sequence of flow labels
c1, ..., cN we can factorize joint probability distribution over sequences of length
N as the following product:

P (c1, ..., cN |N) =
n(c1, N)∑k
j=1 n(cj , N)

×
N∏
i=2

n(ci−1, ci, N)

n(ci−1, N)
, (2)

where k is the number of flow clusters, and n(ci, N) and n(ci−1, ci, N) denote
respectively count of observations of label ci and pairs (ci−1, ci) in all sequences
of length N over all time intervals and sessions. Resulting joint probability values
can be compared to each other in order to find anomalous sessions.

3.3 Time Domain

Finally, in order to detect the malicious customer, we can exploit the fact that
the master’s and flooder’s network activity should be synchronized during the
attack. Such approach is sometimes used for botnet detection [13]. Since virtual
instances from the same project are able to communicate via the project’s private
network, it is very unlikely that there will be synchronized sessions between VMs
over external public network.

In order to obtain feature vectors, we calculate Pearson correlation coeffi-
cient [14] between two different virtual instances:

ρij =

∑
t(ri(t)− r̄i)(rj(t)− r̄j)√∑

t(ri(t)− r̄i)2
√∑

t(rj(t)− r̄j)2
, ∀i 6= j, (3)

where ri(t) is percentage of time interval t during which the i-th instance trans-
mits some data and r̄i is the average value of ri(t) over all time intervals by
the moment the detection starts. Attacker’s activity can be detected by search-
ing for anomalously high values of ρij , which correspond to the synchronized
transmission of instances i and j.

4 Performance Evaluation

In order to evaluate the detection approach proposed, first, we briefly overview
our virtual network environment used to generate network traffic. Then, we de-
scribe the attack implementation and analyze the attacker’s strategy. Finally, we
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present results of the detection of the attack with different approaches overviewed
in this study and discuss the results obtained.

4.1 Test Environment

We test the attack detection algorithm proposed in this study in open-source
software platform for cloud computing Openstack , networks in which are carried
out with the help of integrated SDN controller Opendaylight and several Open
vSwitches. The cloud consists of four nodes: three compute nodes and one control
node that also has compute functionality. Open vSwitch is installed on each
cloud’s node whereas the SDN controller is located on the cloud’s control node
(see Figure 1).

Fig. 1. Simulation environment for testing the detection algorithm.

In order to generate legitimate traffic, we spawn eight virtual web servers
in the cloud and five instances that belong to different web clients. In addition,
there are eight clients located outside of the cloud. Every arbitrary amount of
time both internal and external clients connect to randomly selected servers and
request several files from them. There are also keep-alive messages transferred
time-to-time between servers and clients, and open SSH tunnels deployed in
order to control VMs remotely. Statistics of all the resulting flows is recorded on
switches and sent to the controller with the help of NetFlow and sFlow agents.

In addition to the normal traffic, we perform the co-residence verification
attack against one of the web servers. For this reason, we spawn four virtual
instances that belong to the attacker. These instances are supposed to be located
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on different compute nodes. In practice, this can be achieved by spawning big
amount of instances and removing those that are located on the same compute
node. The fact that some of the attacker’s instances are co-located can be checked
by measuring packet RTT as these machines operate in the same virtual network.
One of the resulting instances plays role of the master host, another one is the
sink, whereas the rest are flooders.

4.2 Attack Analysis

During the attack, the master host first requests a file from the target server and
measures packet arrivals per time interval. Next, the master commands one of
the flooders to send portions of traffic to the sink, and at the same time requests
one more file from the target server. After that, the procedure is repeated using
another flooder. In order flooder’s activity does not arouse suspicion from the
cloud service provider, the traffic generated by the flooder is shaped in such
a way that it mimics the traffic sent by legitimate web servers resided in the
cloud. We test two co-resident attacks: low-rate and high-rate. In the low-rate
attack scenario, each flooder generates the same amount of traffic flows as any
of the legitimate servers, whereas during the high-rate verification the attacker
increases the number of the flows generated by the flooders up to ten times.

The lowest value of minimal level αmin does not necessarily mean that the
corresponding flooder resides on the same compute node as the target server.
The reason behind this is that there is constant outbound network activity on the
external network interface of every cloud’s compute node which causes various
delays in packet arrival times. These delays sometimes can be even bigger than
delays caused by the attacker’s flooders. For this reason, the attacker is supposed
to run several tests for each flooder that is under his control.
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Fig. 2. Dependence of minimal level of confidence αmin on the number of co-residence
verification tests.
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We assume that the attacker decides whether one of his flooder is co-resided
with the target server based on the average value of minimal level of confidence
αmin calculated during several co-residence verification tests. Figure 2 shows
dependence of this average value on the number of the tests in case of the low-
rate and the high-rate attack scenario. As one can see, the more tests the attacker
conducts, the less the average value of αmin for the flooder resided on the same
compute node as the target server and, therefore, the more confident the attacker
is that the verification has been done properly. It is worth noting that, in the case
of the high-rate co-residence verification, the difference between average values
of αmin for the flooder that is co-resided with the target server and the flooder
that is located on another cloud node can be clearly seen after few verification
tests. Thus, an attacker that employs the high-rate attack requires less tests to
guarantee that the verification is correct. However, the immediate drawback of
the high-rate approach is the attack can be easily detected by analyzing the
network traffic as shown in the next subsection.

4.3 Attack Detection

First, we try to detect both versions of the attack in the flow domain. Figure 3
shows how TPR depends on FPR when detecting the attack for three different
clustering approaches. We used k-means, single-linkage and dbscan as the most
popular representatives of centroid-based, hierarchical and density-based clus-
tering approaches respectively. As one can notice, all the methods fail to properly
detect both the low-rate and the high-rate co-residence verification attack. In
the case of low-rate verification tests, the percentage of false alarms is almost
the same as the percentage of successfully detected malicious flows which results
in very low accuracy values as can be seen from Table 1. The only approach that
potentially can be used for the high-rate attack detection in the flow domain is
density-based clustering. However, the number of false alarms when employing
this approach is still high (up to 20 %) making it impractical in most of the use
cases.

Table 1. Detection accuracy in the flow domain

Clustering approach
Attack type

Low-rate High-rate

Centroid-based 47.21 – 73.74 % 24.56 – 78.72 %

Hierarchical 58.79 – 74.30 % 44.89 – 50.20 %

Density-based 44.69 – 74.31 % 45.30 – 86.11 %

Next, we try to detect the attack in the session domain. Figure 4 shows how
TPR depends on FPR when detecting the attack for two different approaches. As
it can be noticed, the approach based on the analysis of flow distributions inside
each session does not generate many false alarms, but at the same time it allows
one to detect only 30% of attacker’s sessions. On contrary, the approach based
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Fig. 3. Dependence of true positive rate on false positive rate of the attack detection
in the flow domain.

on calculating conditional probabilities generates lots of false alarms, however,
most of the attacker’s sessions can be detected in case of the high-rate attack.
Detection accuracy in the both cases is still low as can be seen from Table 2.
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Fig. 4. Dependence of true positive rate on false positive rate of the attack detection
in the session domain.

Table 2. Detection accuracy in the session domain

Detection approach
Attack type

Low-rate High-rate

Flow distributions 82.44 – 86.04 % 84.44 – 89.09 %

Conditional probabilities 48.10 – 79.75 % 37.18 – 93.66 %
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Finally, we detect both versions of the attack in the time domain by cal-
culating Pearson correlation coefficients. Virtual instances with extremely high
coefficient values are labeled as anomalous. Dependence of true positive rate on
false positive rate of the detection is shown in Figure 5. Numbers near each point
correspond to amounts of verification tests performed by the moment when the
detection starts. As the number of tests increases, the detection accuracy for
both versions of the attack approaches 100 % (TPR = 100 %, FPR = 0 %).
Each iteration of the high-rate attack lasts longer, as a result, more legitimate
VMs transmit at the same time as flooders, which may lead to few false alarms.
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Fig. 5. Dependence of true positive rate on false positive rate of the attack detection
in the time domain.

To summarize the results obtained, the high-rate version of co-residence ver-
ification attack can be detected on both flow and session level. This can be
explained by the fact that in this case the attacker initiates many look-alike
flows which results in density outliers in the space of feature vectors extracted
from flows and anomalously high concentration of flows of the attacker’s sessions
in one cluster. However, the low-rate attack can only be detected by counting for
synchronized data transmissions by virtual instances from different customers’
projects.

5 Conclusion

In this study, we focused on timely detection of intentional co-residence attempts
in cloud environments that utilize software-defined networking. For this purpose,
we analyzed statistical features extracted from network traffic flows on three dif-
ferent levels, and, as a result, we were able to detect both low-rate and high-rate
versions of the co-residence verification attack. In the future, we are planning to
build a theoretical model to estimate the time required for a malicious customer
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to successfully verify the co-residence with the target server, and the time for the
cloud provider to detect the attack by analyzing anomalous network activity.
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