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ABSTRACT  

 

Intelligent Transportation Systems (ITS) depend on Global Navigation Satellite systems (GNSS) as a major 

positioning sensor, where the sensor should be able to detect and exclude faulty observations to support its reliability. 

In this article two fault detection and Exclusion (FDE) approaches are discussed. The first is its application in the 

observation domain using Chi-square test in Kalman filter processing. The second approach discusses FDE testing 

in the positioning domain using the solution separation (SS) method, where new FDE forms are presented that are 

tailored for ITS. In the first form the test is parameterized along the direction of motion of the vehicle and in the 

cross direction, which are relevant to applications that require lane identification and collision alert. A combined 

test is next established. Another form of the test is presented considering the maximum possible positioning error, 

and finally a direction-independent test. A new test that can be implemented in the urban environment is presented, 

which takes into account multipath effects that could disrupt the zero-mean normal-distribution assumption of the 

positioning errors. Additionally, a test is presented to check that the position error resulting from the remaining 

measurements lies within acceptable limits. The proposed methods are demonstrated through a kinematic test run 

in various environments that may be experienced in ITS. 
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INTRODUCTION 
 

Intelligent Transport systems (ITS) require reliable vehicle positioning in real time. The Global Navigation Satellite 

Systems (GNSS) are widely used for this purpose and to achieve reliable vehicle localization, its positioning 

integrity should be monitored. Such integrity monitoring for transport applications has been addressed, for instance 

in Margaria and Falletti (2014), Sanat et al., (2006), and Zhu et al. (2018), where the focus was primarily on the use 

of single-frequency receivers. However, ITS applications require precise positioning at the sub-m accuracy, e.g. for 

lane identification in tolling, pay-as-you-drive insurance and priority traffic signal control systems, and dm accuracy 

for collision alert. Therefore, the use of dual-frequency and multi-constellation observations is needed.  

 

In the harsh urban conditions, GNSS outage frequently appears due to insufficient number of observations. To 

deliver continuous positioning solutions, GNSS is typically supported by other navigation positioning sensors such 

as the Inertial Measurement Unit (IMU). In vehicular navigation, and due to cost limitations, the low-cost Micro-

Electro-Mechanical System (MEMS) sensors are often used (Aggarwal et al. 2010). In addition, the odometer and 

LiDAR sensors can be integrated with GNSS and IMU to improve the positioning performance. However, in this 

article we will restrict our focus to GNSS only. 

 

In integrity monitoring (IM), two tasks are performed. In the first task, the system is monitored to detect and exclude 

faults in the observations or the system; this process is known as fault detection and exclusion (FDE). The second 

task is to inform the user (or more precisely the computer of the vehicle) if the system cannot meet pre-set 
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requirements (El-Mowafy and Kubo 2017). FDE usually relies on statistical hypothesis testing by applying a 

consistency check among all possible sets of observations that can provide a solution. Hence, we can only detect 

faults when positioning can be available from at least one set of error-free observations, and thus redundant 

observations are needed. FDE has been proposed in several forms, some examples are the single-observation data 

snooping (Baarda 1968), the multi-observation detection-identification-adaptation (DIA) method (Teunissen 2006), 

Receiver Autonomous Integrity Monitoring (RAIM) (Parkinson and Axelrad 1987; Brown 1992), RAIM for 

multiple outliers (Knight et al., 2010), and Advanced RAIM (ARAIM) (Blanch et al. 2015). 

 

Two approaches are usually used in FDE, the first is applied in the observation domain and the second is performed 

in the position domain. Assuming a normal distribution of the observation errors in the fault-free mode, one may 

test the validity of this hypothesis in the observation domain by checking that the sum-of-squared-residuals of the 

observations have a central Chi-square distribution (Sturza 1988; Walter and Enge 1995). The test checks the 

working hypothesis against specified alternative hypotheses, e.g. the presence of single or multiple satellite faults 

(Powe and Owen 1997). Depending on the parameterization of the underlying model, many implementations of the 

test-statistics exist (Teunissen 2000; Blanch et al. 2015; Imparato et al. 2018; Jöerger and Pervan 2016). Since in 

the least squares process or Kalman filtering a specific large error might be smoothed out through its neighbouring 

observations; methods such as ‘Observation Subset Testing’ were developed (Kuang, 1996; Kuusniemi, 2005), 

where consistency tests are computed for all the possible subsets by excluding suspected observations. When 

multiple observations are excluded the position model becomes weak; therefore, the Forward-Backward FDE 

method was introduced such that the iterated reliability checking includes a reconsideration of earlier rejected 

observations to ensure that the order of the excluded measurements does not cause an unnecessary exclusion 

(Wieser, 2001). Another method, known as the Danish method, iteratively reweights the observations if the 

magnitude of a residual is outside a defined range, in consequence excluding bad observations by reducing their 

weights, until the solution converges (Krarup, 1980; Leick, 2004). Although this method may computationally be 

efficient when dealing with multiple faults compared with other exclusion methods, the drawback of the Danish 

method is that it is purely heuristic with no rigorous statistical theory (Leick, 2004). 

 

In the position domain, fault detection can be performed using the solution separation method. In this method, a 

position error bound is created for each possible fault mode by computing a position solution unaffected by the fault, 

computing an error bound around this solution and accounting for the difference between the all-observations 

position solution and the fault tolerant position (Blanch et al. 2015). The method has been applied within the 

framework of ARAIM, which is an evolution of classical RAIM, in which multi-frequency multi-constellation 

observations are considered, with the possibility of detection multiple faults (Walter et al. 2013; El-Mowafy and 

Yang 2016; El-Mowafy 2017). Sine in ITS multi-frequency multi-constellation observations are employed to 

achieve precise positioning, the use of ARAIM is considered, which is typically performed in the position domain. 

Therefore, the two approaches applying the FDE in the observation and position domains will be addressed, but 

more focus will be given to the latter. 

 

The applications of ITS vary widely, and positioning can be presented in different ways according to the application 

at hand. For instance, the position of a vehicle is presented on the navigation maps using the Easting and Northing 

coordinates. On the other hand, in the liability-critical applications, such as tolling, the cross-track position is 

important for lane identification. In safety-critical applications, such as collision avoidance, the position is better 

expressed in terms of the vehicle direction of motion, i.e. in the along-track and cross-track directions. Another case 

when the direction of the vehicle is changing rapidly, e.g. during turns. The use of one FDE model for the different 

positioning presentations in all these scenarios is not optimal, therefore, the FDE in this contribution presents new 

testing models for these possible scenarios. Moreover, the vehicle can operate in open sky or in urban areas. FDE 

tests typically assume zero-mean Gaussian distribution of the observation and position errors, which is acceptable 

in open sky environments. However, this assumption may be invalid in the urban environment due to the presence 

of significant multipath, therefore, a new test is presented specifically for this environment, taking into consideration 

multipath effects. The switch between these testing models can be easily performed by the computer of the ITS 

vehicle according to the vehicle status and application. In addition, a test defined as the Final Integrity Test (FIT) is 

presented that quantifies the impact of the remaining measurement and system errors after the FDE process on the 

final position (El-Mowafy and Imparato 2018), and whether the resulting position error lies within an acceptable 

range, which is set according to the ITS application considered.  

 

The next sections present the FDE parameterization and tests when being applied firstly in the observation domain 

and secondly in the position domain with a focus on ITS applications. The presented methods can be applied in real 

time. Next, these methods are applied in a kinematic test that was conducted under varying work environments 

including suburban, urban and near to tree canopies. Their results are then analysed and compared.  
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THE NULL AND ALTERNATIVE HYPOTHESES 

 

Restricting our interest to positioning using GNSS only, the fault-free observation equation in a Kalman filtering 

(KF) setting at time 𝑡 in a linearized model can be expressed as: 

 𝑦𝑡 = 𝐺𝑡𝑥𝑡/𝑡−1 + 𝑣𝑡   (1) 

where 𝑦𝑡 is the measurement vector, computed as the difference between the observations and their estimated values. 

The latter is computed from the approximate position of the user along the route and satellite positions. 𝑥 is the 

unknown vector of states, which mainly includes the difference between the final and approximate vehicle positions 

(in addition to other unknowns such as the receiver clock offset, etc.), and 𝑥𝑡/𝑡−1 is its time update. 𝐺𝑡is the geometry 

(design) matrix. 𝑣𝑡  is the time-updated (predicted) observation residuals, also known as the vector of innovations, 

which are uncorrelated in time. The fault-free (null) hypothesis is expressed as H0: 𝐸{𝑦𝑡} = 𝐺𝑡�̂�𝑡 with D{𝑦𝑡} = Qy, 

representing the variance-covariance (VC) matrix of the observations, where E{} and D{} denote the expectation 

and dispersion operators.  

 

In the presence of suspected faults, or large errors, denoted here as 𝛻𝑡, the observation model can be expressed as 

(Teunissen and Kleusberg 1998): 𝑦𝑡 = 𝐺𝑡𝑥𝑡/𝑡−1 + 𝐶𝑡  𝛻𝑡 + 𝑣𝑡   (2) 

 

which gives the alternative hypothesis Ha: E{𝑦𝑡} = 𝐺𝑡  �̂�𝑡 + 𝐶𝑡  𝛻𝑡, where 𝐶𝑡  is a matrix that describes all possibilities 

of observations suspected to be faulty. This may include a blunder in a code observation or a slip in a phase 

observation. For m observations, we can detect up to qm number of faults such that 1≤ 𝑞𝑚 ≤ 𝑑𝑓, where df is the 

degrees of freedom. 𝐶𝑡 will then be m×qm matrix, where each of its columns has a one corresponding to the 

observation assumed to be affected by a fault and zeros elsewhere. For Example, when examining the possibility of 

a fault in the first observation, 𝐶𝑡 = [1 0 0 … ]𝑇, and when examining possible faults in the first and second 

observations 𝐶𝑡 = [1 0 0 … .0 1 0 … .]𝑇.  

 

In ITS, Satellite Based Augmentation Systems (SBAS) can be used for low accuracy applications (e.g. tolling) 

whereas real-time kinematic (RTK) or Network RTK would be needed for applications that require sub-m accuracy. 

With such accuracy, the use of float carrier-phase ambiguities will then be acceptable, thus, alleviating the need and 

risk of fixing the ambiguities. In the former method, the FDE will be concerned with code outliers whereas in RTK, 

and due to the correlation between phase and code errors, cycle slips of phase observations are first detected and 

repaired and next code outliers are excluded (El-Mowafy 2014). Several methods are presented for cycle slip 

detection, for instance by using the time difference of the between-phase observations from two frequencies or by 

monitoring the rate of change of the ionosphere delay. 

 

FDE IN THE OBSERVATIONS DOMAIN 

 

In the above model, one would be interested to know the value of the error vector 𝛻𝑡. Its best estimator (�̂�𝑡) can be 

determined from (Teunissen 2006): ∇̂𝑡= (𝐶𝑣𝑡𝑇 𝑄𝑣𝑡−1𝐶𝑣𝑡)−1𝐶𝑣𝑡𝑇 𝑄𝑣𝑡−1�̂�𝑡  (3) 

 

and its VC matrix 𝑄∇̂𝑡  is expressed as 𝑄∇̂𝑡 = (𝐶𝑣𝑡𝑇 𝑄𝑣𝑡−1𝐶𝑣𝑡)−1 where the hat refers to estimated variables, and 𝑄�̂�  is 

the VC matrix of �̂� determined as  𝑄�̂�   = 𝑄y + [𝐺𝑡  𝑃𝑡,𝑡−1 𝐺𝑡𝑇], where 𝑃𝑡,𝑡−1 is the VC matrix of the predicted states.  

In this modelling scheme, the detection test statistic in FDE can be expressed as 𝑇𝑞 = (�̂�𝑇𝑄�̂�−1 �̂�). Under the 

assumption that the observation errors are zero-mean with a Gaussian distribution in the fault-free mode, ∇̂𝑡 can 

also be assumed normally distributed and hence the statistic will have a Chi-square χ2(𝑑𝑓, 0) distribution (the test 

will thus be defined as the Chi-square test). For detection of faults, one may suspect any observation, i.e. by setting 𝐶𝑣𝑡  to a unit matrix. Thus, the test statistic 𝑇𝑞 = (�̂�𝑇𝑄�̂�−1 �̂�) will reduce to 𝑇𝑞 = (�̂�𝑇𝑄�̂�−1 �̂�) , such that (Teunissen 

and Kleusberg 1998):  

 𝐻𝑜:  𝑇𝑞 = (�̂�𝑇𝑄�̂�−1 �̂�) ~ χα2(𝑑𝑓, 0);    𝐻𝑎:  𝑇𝑞 = (�̂�𝑇𝑄�̂�−1 �̂�) ~ χα2(𝑑𝑓, λ)  

 

and we suspect the presence of a fault when  
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 𝐻𝑜:  𝑇𝑞 = (�̂�𝑇𝑄�̂�−1 �̂�) ≥  χα2(𝑑𝑓, 0)      or equivalently if      𝑇𝑞 = (�̂�𝑇𝑄�̂�−1 �̂�)𝑑𝑓 ≥ Fα(𝑑𝑓,∞, 0)  (4) 

 

where λ is the non-centrality parameter, and  Fα is F-distribution threshold. In the 2D space, the allowable region in 

(4) represents an ellipse. The significance level (𝛼) is set as the allowable false alarm rate and hence is aligned to 

the continuity requirement, which can be selected as 99% in ITS applications, giving a probability of false alarm α = 1%. This can be explained as follows. For n number of satellites, there would be a total of  𝑁 = 2𝑛 − 1 

possibilities of faults in single or combined observations. The probability of discontinuity (Pdiscont) will be: 

 Pdiscont =  α + ∑ PD(Hi Ni=1 )  PHi   (5) 

  

where α is the probability of false alarm, PD(Hi ) is the probability of detection of faults in mode i, which is less than 

1, and PHi  is the prior probability of occurrence of this fault (e.g. 10−5/h for a single GPS satellite fault according 

to ICD-GPS-200J). The second term on the right hand side of Eq.(5) is thus too small, such that one can take Pdiscont ≈  α. 

 

When faults are detected, one needs to identify and exclude the observation(s) corresponding to the suspected faults, 

trying to identify among the multiple alternative hypotheses the most likely ones. The case of identifying a 

combination of possible faulty observations can also be performed through setting the suspected combinations in 𝐶𝑣𝑡  as explained in the previous section. Thus, the examined combination is suspected when the test statistic exceeds 

the threshold value, i.e. when: 

 𝑇𝑞 = (�̂�𝑇𝑄�̂�−1 �̂�)  ≥ χα′2 (𝑑𝑓, 0)    or equivalently     𝑇𝑞 = (�̂�𝑇𝑄�̂�−1 �̂�)𝑑𝑓 ≥ Fα′(𝑑𝑓,∞, 0) (6) 

 

where α′ is the significance level in the identification test. For the case of identifying a single faulty observation 

e.g. for observation j, the test statistic reduces to 𝑇𝑞=1 = �̂�𝑗2𝜎�̂�𝑗2, giving the normalised error 𝑤𝑗 = �̂�𝑗𝜎�̂�𝑗, known as the 

w statistic, where 𝜎�̂�𝑗   is the standard deviation of �̂�𝑗 computed from the VC matrix 𝑄�̂�. We suspect a fault in 

observation j in the fault mode i when: 

 𝑤𝑗 > 𝑁𝛼′2𝑚(0,1)     and   𝑤𝑗 ≥ 𝑤𝑘       for k= 1 to m    (7) 

The threshold 𝑁 𝛼′2𝑚(0,1)  is the inverse of the complement of the standard normal distribution for 
𝛼′2𝑚, where we 

assume 
𝛼′2  is equally distributed among the m observations. The w values are ordered, and the observation with the 

largest 𝑤𝑗  value is excluded first. 

 

However, the distribution of this significance level among different possible hypotheses is a complex issue, in 

particular for the cases of testing the possibility of the presence of more than one fault simultaneously. The simplest 

approach one can follow is to assume equal distribution of the total significance level among the alternative 

hypothesis as for the case of considering one single fault at a time. Let us restrict our focus to this case, and to 

determine 𝛼′ we use Baarda’s B method (Baarda 1968), which assumes same probability for a type II error (i.e. 

failure to reject a false null hypothesis) in both the detection (using 𝛼) and identification (using 𝛼′)  tests. The method 

can be summarized as follows. We set the non-centrality parameters to be equal for the two cases such that: 

 𝜆1(𝛼, 𝑞 = 𝑑𝑓, 𝛽)  =   𝜆2(𝛼′, 𝑞 = 1, 𝛽)  (8) 

 

where 𝜆1 and 𝜆2 refer to the non-centrality parameter for the detection and identification tests, respectively. In ITS, 

and depending on the application at hand, we can select for example 𝛼 = 1% as mentioned earlier and a probability 

of miss-detection 𝛽 = 10−5. Since in the B method 𝛼 increases with the increase of redundancy, we start by 

considering 𝑞 = 𝑑𝑓 to limit our maximum 𝛼 to the significance level 1%.  We first compute the left-hand side 𝜆1 

from 𝛼,  𝛽 and df. One way to compute the non-centrality parameter is to consider the threshold value, denoted as 𝐾, by first computing 𝐾 ≈  χα2(𝑑𝑓, 0). Next, compute λ1 by taking 𝜓−1(1 − 𝛽 ) = 𝑘 where 𝜓−1() is the inverse of 

the complement of  χα2(𝑑𝑓, 𝜆1). Let us set equal values for the non-centrality parameters i.e. 𝜆2 = 𝜆1, and the same 

for 𝛽. Then, in a backward way, take 𝑞 = 1, and iteratively solve for α′ from χα′2 (1, λ2) =  𝜓−1(1 − 𝛽 ).  This 
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approach indicates that both the detection and identification tests will have the same minimum bias that can be 

detected with the chosen significance level, known as the minimal detectable bias (MDB) (De Bakker et al., 2009), 

i.e. the same reliability. Thus if the null hypothesis is accepted in the detection step, no further testing is needed 

(Teunissen 2006). 

 

Before exclusion of any observation, a separability check can be applied by computing the correlation between faults 

to avoid masking of one fault by another. For example, for the observations k and j, the correlation coefficient 

between their corresponding errors denoted as 𝜉∇̂𝑘,∇̂𝑗  reads (El-Mowafy 2015):  

 𝜉�̂�𝑘,�̂�𝑗 = 𝑐𝑣𝑘𝑇 𝑄𝑣−1𝑐𝑣𝑗√𝑐𝑣𝑘𝑇 𝑄𝑣−1𝑐𝑣𝑘   √𝑐𝑣𝑗𝑇 𝑄𝑣−1𝑐𝑣𝑗   (9) 

 

where 𝑐𝑣𝑘 and 𝑐𝑣𝑗  are zero column vectors except for the elements corresponding to the observations 𝑘 and 𝑗, 
respectively, which equals 1. If a high correlation coefficient is present for a suspected observation error with other 

observation errors, one will need to carefully inspect and consider exclusion of these correlated observations one at 

a time. The Chi-square test (Eq. 4) has to be re-applied after excluding any observation, as well as after removing 

any of their possible combinations to ensure that the system has no more alternative hypotheses. Usually, code 

outliers are uncorrelated (El-Mowafy and Kubo 2018); thus, in RTK if cycle slips are successfully detected and 

repaired, the likelihood of a faulty measurement to mask another would be low. 

 

 

FDE IN THE POSITION DOMAIN 

 

The above tests are performed in the observation domain. The FDE can similarly be performed in the position 

domain using the solution separation method as applied in the ARAIM approach (see for instance Blanch et al. 2014, 

Jöerger and Pervan 2016; El-Mowafy and Yang 2016). In this method, a position error bound is created for each 

possible fault mode by computing a position solution unaffected by the fault, computing an error bound around this 

solution and accounting for the difference between the all-observations position solution and the fault tolerant 

position. For example, suspecting a fault mode i, we compute the position from all observations (denoted as �̂�𝑜) and 

the position after exclusion of suspected observations, i.e. �̂�𝑖 .  In principle, the difference between the two solutions, 

i.e. the residual positional vector ∆x̂𝑖 = (�̂�𝑜 − �̂�𝑖) will be large in the presence of a fault where  �̂�𝑜  will be 

significantly biased. Normalizing each positional component of this position residual vector ∆x̂𝑖 by its standard 

deviation gives a test static that can be assumed in the fault-free unbiased mode has a zero-mean Gaussian 

distribution. For 2D positioning, the current practice is to test the position components in the East (E) and North (N) 

directions, and Ho can be rejected in favour of the alternative hypothesis, i.e. suspecting a fault in the satellite(s) i, 
when (Blanch et al. 2014):  
 𝐻𝑎𝑖𝐸 :  |∆x̂𝑖𝐸|𝜎∆�̂�𝑖𝐸 ≥ 𝑁 𝛼 4𝑚 (0,1)    and    𝐻𝑎𝑖𝑁:   |∆x̂𝑖𝑁|𝜎∆�̂�𝑖𝑁 ≥ 𝑁 𝛼 4𝑚 (0,1)   (10) 

 

where ∆x̂𝑖𝐸 and ∆x̂𝑖𝑁 are the vector ∆x̂𝑖 components in E and N. For one satellite fault, the errors in E and N will 

be correlated and hence one may choose for the two tailed normal distribution the same significance level 
𝛼 2   for the 

two components (E, N). However, this will not be the case when more than one satellite fault is considered. 

Therefore, a conservative general approach is followed here, where the threshold is computed by equally allocating 

the significance level 
𝛼 2  to E and N. The standard deviations (stds) 𝜎∆𝑥𝑖𝐸  and 𝜎∆𝑥𝑖𝑁 are computed from the position 

VC matrix  𝑄∆χ̂𝑡, which is expressed by applying the error propagation law to KF observation update equation as: 

 𝑄∆χ̂𝑡  = (𝐾𝑖  𝐺𝑖 − 𝐾𝑜 𝐺𝑜) 𝑄𝑥𝑡,𝑡−1(𝐾𝑖  𝐺𝑖 − 𝐾𝑜  𝐺𝑜)𝑇  + ( 𝐾𝑖  𝐴𝑖− 𝐾𝑜) 𝑄y(𝐾𝑖  𝐴𝑖− 𝐾𝑜)𝑇       (11) 

 

assuming that the two solutions at t have the same predicted (time updated) vector of unknowns χ̂𝑡,𝑡−1, where 𝐾𝑜 

and 𝐾𝑖 are Kalman gain matrices for the full set of observations and the subset considered in mode i, 𝐺𝑜 and 𝐺𝑖 are 

the corresponding geometry matrices. 𝑄χ̂𝑡,𝑡−1 denotes the VC matrix of the time update of the unknowns, and 𝑄y is 

the VC matrix of the observations, with m is the number of observations. When suspecting b faulty observations, 

the 𝐴𝑖 matrix comprises an identity matrix of size (m-b) and b zero column vectors at place of the excluded 

observations. For instance, if the last observation is excluded, 𝐴𝑖 = [ 𝐼 | 0], where I has a size of (m-1) and 0 is a 

zero vector.  
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The vehicle location is typically expressed in E, N coordinates for navigation purpose. In ITS liability- and safety-

critical applications, the vehicle position is better expressed along its direction of motion, i.e. by the along-track 

(AT) and cross-track (CT) horizontal position components (Margaria and Falletti 2014; Imparato et al. 2018). In this 

case, the position vector and its VC matrix in the (AT, CT, Up) Cartesian frame, define here as 𝑟𝐴𝑡−𝐶𝑇−𝑈 and 𝑄𝐴𝑡−𝐶𝑇−𝑈 respectively, are computed from the position vector and its VC matrix in the (E, N, U) Cartesian frame, 

i.e. 𝑟𝐸−𝑁−𝑈 and 𝑄𝐸−𝑁−𝑈. Assuming the two coordinate frames have the same scale, the transformation of point 

coordinates is performed by means of multiplication of clockwise Euler rotation matrices, i.e. through 𝑅𝜍,𝜚,𝜃 = 𝑅𝜍 𝑅𝜚 𝑅𝜃 ,  with (𝑅𝜍, 𝑅𝜚, 𝑅𝜃) are the rotation matrices for the three rotations performed about the axes (E, N, U), 

respectively, defined by the three attitude angles, the pitch (ς), roll (ϱ) and azimuth () of the vehicle, such that: 

  𝑟𝐴𝑡−𝐶𝑇−𝑈 = 𝑅𝜍,𝜚,𝜃 𝑟𝐸−𝑁−𝑈  
and 

    𝑄𝐴𝑡−𝐶𝑇−𝑈 = 𝑅𝜍,𝜚,𝜃 𝑄𝐸−𝑁−𝑈  𝑅𝜍,𝜚,𝜃𝑇    (12) 

 

This however requires knowledge of the complete attitude of the vehicle, which can be obtained for example from 

an Inertial Measurement Unit (or Gyros). If not available, and since the pitch and roll are typically small angles, in 

particular the roll, an approximation would be to ignore the pitch and roll rotations and use only the azimuth, such 

as for long straight roads, where the azimuth can be roughly estimated as the direction of the road. 

 

In general, we are not interested in the vertical position in ITS. Hence, limiting our focus to positioning performance 

in the AT and CT directions; one can reject Ho in favour of the alternative hypothesis when:  
 𝐻𝑎𝑖𝐴𝑇 :  |∆x̂𝑖𝐴𝑇|𝜎∆�̂�𝑖𝐴𝑇 ≥ 𝑁𝛼𝐴𝑇′′2 (0,1)    or    𝐻𝑎𝑖𝐶𝑇:   |∆x̂𝑖𝐶𝑇|𝜎∆�̂�𝑖𝐶𝑇 ≥ 𝑁𝛼𝐶𝑇′′2 (0,1)    (13) 

 

where the ∆x̂𝑖𝐴𝑇  and ∆x̂𝑖𝐶𝑇 refer to the vector of ∆x̂𝑖 projected into the AT-CT-Up frame. The standard deviations 

(stds) 𝜎∆𝑥𝑖𝐴𝑇and 𝜎∆𝑥𝑖𝐶𝑇  are computed from the corresponding position VC matrix by error propagation applying the 

covariance law. Assuming the same total probability of false alarm (𝛼), the significance levels 𝛼𝐴𝑇′′  and  𝛼𝐶𝑇′′  are 

expressed as:  𝛼′′ =  𝛼 2𝑚 ;       𝛼𝐴𝑇′′ =  𝜂 𝛼 2𝑚     and    𝛼𝐶𝑇′′ = (1 − 𝜂) 𝛼 2𝑚   (14) 

 

where 𝜂 is a selected weight for AT. For instance, assuming equally distributed 𝛼′′for the AT and CT components, 

we have 𝛼𝐴𝑇′′ = 𝛼𝐶𝑇′′ = 12 𝛼′′. For testing one alternative hypothesis, the allowable region of the above tests in 2D is 

rectangular, different from the Chi-square statistic which has an elliptical allowable region. 

 

In some ITS applications the focus might be in one direction more than the other, for instance, in forward collision 

warning we have more focus on AT positioning while in signal priority, more focus is given to the CT position 

component. Hence, in the former example identifying 𝐻𝑎𝑖𝐴𝑇is more important than identifying 𝐻𝑎𝑖𝐶𝑇, whereas in 

the latter example identifying 𝐻𝑎𝑖𝐶𝑇 is of more interest. One here has also to acknowledge that the distribution of 

visible satellites may lead to the position in one direction be more precise than in the other direction. For example, 

due to signal obstruction because of the presence of structures and trees on the side of the road, the position 

component along the AT direction can be more precise than the positioning component in the CT direction. Hence, 

the presentation of the two binary tests in Eq. (13) might be useful in accepting the solution when one component 

passes the FDE test while the other does not pass under limited conditions, such as: 

- The failed test for one position component is close to the borderline; and a small decrease in 𝛼′′ may lead to passing 

the test. 

- The number of satellites is critically low for positioning, i.e. if a satellite in mode i is excluded, the solution may 

not be available. 

This relaxing scenario of partial identification of faults needs further investigation that addresses particular 

applications and will be addressed in our future research. 

 

FDE in the Urban Environment 

  

In the urban environment multipath-contaminated signal will distort the correlation function which helps receivers 

to estimate Time of Arrival of the GNSS signals (Braasch, 1996), where constructive multipath interference leads 

to an increase in the C/N0, while destructive multipath interference leads to a decrease in C/N0. NLOS reception 

occurs where the direct LOS signal is blocked and the signal is received only via reflection. The measurement error 
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is therefore the difference between length of the path taken by the reflected signal and the ‘blocked’ direct path 
between the satellite and the receiver. Some techniques were developed to mitigate the effects of multipath, as 

shown for example in Groves et al., (2013); Mubarak and Dempster (2010);  Pirsiavash et al. (2019) and for NLOS 

(Groves et al., 2012; Hsu et al., 2015).  

 

The above cited models for multipath were mostly developed for static reference station sites, and thus are not 

suitable for the dynamic environment of transportation applications. In such environment, multipath effects tend to 

randomize due to the dynamic change in the geometry between reflecting surfaces and the moving receiver, 

including their distance from the vehicle, and the type and size of reflecting sources. This will cause a stochastic 

behaviour in addition to a bias. The stochastic part can be included in the observation standard deviations used in 

their weighting. Typically, in the open environment the observation standard deviation are modelled as a function 

of the satellite elevation angle. In this study, a model similar to that presented in Tay and Marais (2013) is exploited 

with the objective of de-weighting the observations that experience large multipath and accordingly reduce their 

contribution in the solution. The model can be expressed as: 

 𝜎2 = 𝜎𝑜2 × m ×  10−0.1×𝐶/𝑁𝑜sin2(𝜃)   (15) 

 

where 𝜎2 is the observation variance, 𝜎𝑜2 is the variance along the zenith direction in the open sky computed using 

the method described in (El-Mowafy 2014),  𝑚 is a multiplier for model calibration, which depends on the receiver 

type and environment. This coefficient is best estimated based on the use of 3D city models (Wang et al. 2012; Hsu 

et al. 2015), employed to detect which surface of the surrounding buildings could make a specular reflection within 

a catch circle (taken empirically of 100m radius in our study). In our approach, the 𝑚 values are approximately 

taken from a lookup table, were the values in the table are computed for a range of three parameters; the satellite 

elevation and azimuth, and the distance between the receiver and the reflecting surface. One approach for a less-

complex estimation of 𝜎2, which would be less optimal, is the use of adaptive Kalman filtering (El-Mowafy and 

Mohamed 2005). 

 

Since the observation errors in the urban environment do not exactly follow a normal distribution, a paired CDF 

overbounding technique is applied, see Rife et al. (2006). Its estimation is performed in two steps. Firstly, by 

determining a unimodal and symmetric distribution 𝐹𝑆 about its mean, that forms CDF overbounding of the 

empirical distribution of the data. Next, we determine a Gaussian distribution 𝑁(𝑀, 𝜎2) of 𝐹𝑆, using paired 

overbounding where a mean M is placed in order to center the CDF. This Gaussian distribution 𝑁(𝑀, 𝜎2) is 

empirically computed based on positioning errors from ~60000 epochs collected in ten kinematic tests conducted 

in Australia in different environments, including open sky, semi-urban and urban environments. The thresholds can 

then be written for AT and CT as:  

 𝐻𝑎𝑖𝐴𝑇 :  |∆x̂𝑖𝐴𝑇| 𝜎∆�̂�𝑖𝐴𝑇 ≥ 𝑁 𝛼 4𝑚 (𝑀𝐴𝑇 , 𝜎𝐴𝑇2 )    (16) 

𝐻𝑎𝑖𝐶𝑇 :  |∆x̂𝑖𝐶𝑇| 𝜎∆�̂�𝑖𝐶𝑇 ≥ 𝑁 𝛼 4𝑚 (𝑀𝐶𝑇 , 𝜎𝐶𝑇2 )       (17) 

 

where (𝑀𝐴𝑇 , 𝜎𝐴𝑇) and (𝑀𝐶𝑇 , 𝜎𝐶𝑇) are the mean (mainly due to multipath) and std for the overbounding distribution 

in AT and CT. 

 

OTHER USEFUL FDE TESTS 

 

One can argue that the two tests in Eq. (13) may indicate to two alternative scenarios (e.g. a fault in one satellite 

observation could lead to erroneous E but not N, and vice versa). Thus, a practical approach is to combine the two 

tests into one test and examine one alternative hypothesis, i.e. one faulty satellite observation leads to unacceptable 

horizontal positioning. Under the assumption that the measurement noise is zero-mean Gaussian, the 2D joint 

normal distribution function has a 2D sectional view that describes an ellipse as shown in Fig 1. The confidence 

ellipse thus would represent the sum of squares of two independent normally distributed data. This sum has a Chi-

square distribution. Thus, the test can be expressed as:  

 ∆x̂𝑖𝐴𝑇2𝜎∆𝑥𝑖𝐴𝑇2 + ∆x̂𝑖𝐶𝑇2𝜎∆𝑥𝑖𝐶𝑇2 ≥ 𝜒𝛼𝑚2 (𝑑𝑓, 0)    (18) 

https://en.wikipedia.org/wiki/Chi-squared_distribution
https://en.wikipedia.org/wiki/Chi-squared_distribution
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and assuming equally distributed 𝛼 to all m possible fault events (alternative hypotheses). 

 

Fig 1. 2D multivariate distribution  

In general, neither the AT nor CT errors are the maximum position error that may be experienced along all possible 

directions. The maximum error is typically aligned with the semi-major axis of a horizontal error ellipse. The 

maximum error direction can be determined in the Eigen space by the direction of the first Eigen vector. Hence, for 

the 2D VC matrix of ∆x̂𝑖, denoted as Q∆x̂𝑖, let 𝜉1𝑖 be the first Eigenvalue and �⃗� 1𝑖 is the first Eigenvector for this 

matrix. The semi-major axis of the error ellipse, which represents the max std is 𝜎∆𝑥𝑖𝑚𝑎𝑥 = √𝜉1𝑖 . Hence, we can 

formulate the test statistic and check along the direction of the maximum error, where the null hypothesis is rejected 

when:  ∆x̂𝑖𝑇.�⃗� 1𝑖𝜎∆𝑥𝑖𝑚𝑎𝑥 ≥ 𝑁 𝛼 2𝑚     (19) 

 

assuming equal distribution of 𝛼 for the maximum and minimum directions. In the 2D space, one would like to 

consider the joint maximum-minimum case along the semi-major and semi-minor axes of a confidence error ellipse 

of the 2D matrix Q∆x̂𝑖; where 𝜉1𝑖 and 𝜉2𝑖 denote the the first and second Eigenvalues of Q∆x̂𝑖, and �⃗� 1𝑖 , �⃗� 2𝑖  are their 

corresponding Eigenvectors. By computing 𝜎∆𝑥𝑖𝑚𝑎𝑥  and 𝜎∆𝑥𝑖𝑚𝑖𝑛, which represent the semi-major (max) and semi-

minor (min) std, where 𝜎∆𝑥𝑖𝑚𝑎𝑥 =  √𝜉1𝑖 as mentioned above and 𝜎∆𝑥𝑖𝑚𝑖𝑛 = √𝜉2𝑖 , a fault is suspected when: 

(∆x̂𝑖𝑇 .�⃗� 1𝑖)2𝜎∆𝑥𝑖𝑚𝑎𝑥2 + (∆x̂𝑖𝑇 .�⃗� 2𝑖)2𝜎∆𝑥𝑖𝑚𝑖𝑛2 ≥ 𝜒𝛼𝑚2 (𝑑𝑓, 0)    (20) 

 

The elliptical ‘allowable’ region conforms to the distribution of the position errors. The tests in Eq. 19 and 20 are 

also useful when the azimuth of the vehicle is not well determined, e.g. during rapid turns, to apply testing in the 

AT and CT directions. 

 

Figure 2 illustrates the relationships between the error ∆𝑥𝑖 and its projections in the AT and CT directions and along 

the maximum and minimum directions (defined by the error ellipse), in addition to the test thresholds for the two 

cases. As the figure shows, in the 2D space, the allowable region for the maximum-minimum (max-min) case for a 

single mode i is elliptical whereas the allowable region for the AT-CT case, when the test is performed for each 

component, is rectangular.  Hence, for a given significance level, some small threats detected by one model will be 

acceptable by another. For instance, the point marked by (∎) will be detected by the AT-CT mode whereas the point 

marked by (×) will be accepted. The opposite result will happen when applying the max-min model.  

 

A more relaxed direction independent bound for the 2D space can also be established by a circle as shown in Fig 2 

for which ∆𝑥𝑖𝑟 = √∆x̂𝑖𝐴𝑇2 + ∆x̂𝑖𝐶𝑇2
 and 𝜎∆𝑥𝑖𝑟 = √𝜎Δ𝑥𝑖𝐴𝑇2 + 𝜎Δ𝑥𝑖𝐶𝑇2 + 2 𝜎Δ𝑥𝑖𝐴𝑇,Δ𝑥𝑖𝐶𝑇   . The 2D position error (∆𝑥𝑖𝑟) 

can be assumed a random variable, such that an error is suspected when: 

 

       
∆𝑥𝑖𝑟𝜎∆𝑥𝑖𝑟  ≥  𝑅 𝛼 𝑚   (21) 

 

with a threshold 𝑅 𝛼 𝑚   which refers to the inverse of the complement of a Rayleigh distribution at a significance level 𝛼 𝑚 .  
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Fig 2. Test Thresholds of the 2D projections (AT & CT) and (max &min) of the error ellipse 

 

In summary, as mentioned earlier, positioning can be expressed in ITS according to the application at hand. Table 

1 recaps the different FDE parametrization models discussed in this paper and their usage. For instance, the position 

of a vehicle can be expressed on navigation maps using the Easting and Northing coordinates. In the liability-critical 

applications, such as tolling and signal priority, the cross-track position is needed for lane identification. In safety-

critical applications, such as collision avoidance, the position is expressed in the along-track and cross-track 

directions. The joint statistic has an advantage in applying only one test, and the joint max/min FDE is designed 

when the direction of the vehicle is changing rapidly during sharp turns. Finally, in urban environments, FDE is 

formulated taken into consideration multipath effects. The switch between these testing models, can be easily 

performed by the computer of the vehicle according to the vehicle status and application.  

 

Table 1. Summary of detection tests in the position domain  

Type ITS Usage Statistic Threshold  Detection 

region 

E, N Mapping  
|∆x̂𝑖𝐸|𝜎∆�̂�𝑖𝐸   ;  

|∆x̂𝑖𝑁|𝜎∆�̂�𝑖𝑁  𝑁 𝛼 4𝑚 (0,1) Rectangular 

AT, CT 
liability and safety 

applications 
  
|∆x̂𝑖𝐴𝑇|𝜎∆�̂�𝑖𝐴𝑇   ;  

|∆x̂𝑖𝐶𝑇|𝜎∆�̂�𝑖𝐶𝑇  𝑁 𝛼 4𝑚 (0,1) Rectangular 

Joint AT, 
CT 

One test for liability and 

safety 

∆x̂𝑖𝐴𝑇2𝜎∆𝑥𝑖𝐴𝑇2 + ∆x̂𝑖𝐶𝑇2𝜎∆𝑥𝑖𝐶𝑇2  𝜒𝛼𝑚2 (𝑑𝑓, 0) elliptical 

Joint 
max, min 

Direction is changing 

rapidly 

(∆x̂𝑖𝑇 .�⃗� 1𝑖)2𝜎∆𝑥𝑖𝑚𝑎𝑥2 + (∆x̂𝑖𝑇 .�⃗� 2𝑖)2𝜎∆𝑥𝑖𝑚𝑖𝑛2  𝜒𝛼𝑚2 (𝑑𝑓, 0) Elliptical 

AT, CT in urban environment   
|∆x̂𝑖𝐴𝑇|𝜎∆�̂�𝑖𝐴𝑇   ;  

|∆x̂𝑖𝐶𝑇|𝜎∆�̂�𝑖𝐶𝑇  𝑁 𝛼 4𝑚 (𝑀𝐴𝑇 , 𝜎𝐴𝑇 2 );𝑁 𝛼 4𝑚 (𝑀𝐶𝑇 , 𝜎𝐶𝑇 2 ) Rectangular 

 

 

If a fault is detected, we consider exclusion of the observations in the fault mode i. To verify this exclusion and to 

avoid wrong exclusion an additional test is performed. A test statistic is formed as the difference between the 

solution using the observation subset excluding the suspected faulty observations, i.e. x̂𝑖 , and the solution using 

other subsets that exclude one of the remaining observations, denoted as x̂𝑗. For example, in the AT-CT case: |(x̂𝑖− 𝑥𝑗)𝐴𝑇|𝜎∆𝑥𝑖−𝑗𝐴𝑇 > 𝑁𝛼𝐴𝑇′′2 (0,1)    and    𝐻𝑎𝑖𝐶𝑇:  |(𝑥𝑖− 𝑥𝑗)𝐶𝑇|𝜎∆𝑥𝑖−𝑗𝐶𝑇 > 𝑁𝛼𝐶𝑇′′2 (0,1)      (22) 

The stds 𝜎∆𝑥𝑖−𝑗𝐴𝑇  and 𝜎∆𝑥𝑖−𝑗𝐶𝑇 are computed from the covariance matrix, such that: 

𝑄∆χ̂𝑖−𝑗  = (𝐾𝑖  𝐺𝑖 − 𝐾𝑗  𝐺𝑗) 𝑄χ̂𝑡,𝑡−1(𝐾𝑖  𝐺𝑖 − 𝐾𝑗  𝐺𝑗)𝑇  + (𝐾𝑖  −  𝐾𝑗  ) 𝑄y(𝐾𝑖  −  𝐾𝑗  )𝑇
    (23) 

  

N 
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where 𝐾𝑗 and 𝐺𝑗 are the Kalman gain and geometry matrices for the subset excluding measurement j. If the test 

passes, one can conclude that the two solutions are inconsistent, which supports exclusion of the observations in 

fault mode i. However, if the test fails, one has to consider two options; either there are still wrong observations 

remaining, or the excluded observations might not be actually the faulty ones. A study of the correlation between 

the observation errors and the possibility of excluding them all together may then be considered if a solution is still 

possible; if not, a solution is declared invalid.  

 

RELATIONSHIP BETWEEN THE SOLUTION SEPARATION AND CHI-SQUARE TESTS 

As shown from Figure 2, for each fault mode, the Solution Separation (SS) allowable region for FD in the position 

domain when considering the 2D components (E, N) or (AT, CT) is rectangular and elliptical for the Chi-square test. 

For the multi-dimension case, the SS no-detection and exclusion regions are polytopic and prismatic when 

considering the position components (E, N, U), whereas for Chi-square they are hyperspherical and cylindrical, 

respectively (Jöerger et al. 2014). As such, some errors detected by one method could be missed by the other and 

vice versa. (Imparato 2014) agreed, and showed that the two methods differ in case of multi-satellite faults occurring 

at the same time. The two statistics; the Chi-square and the SS, are projected onto two orthogonal spaces. Thus, this 

would create special cases. For instance, in the rare event that the error is completely mapped onto the space of Chi-

square, it will not be mapped onto the space of the SS test statistic, which means that the error does not have an 

effect on the solution in the position domain at the user location, and as such it will not be detected by the SS test. 

In this case, the Chi-square will rightfully reject the null hypothesis, whereas the SS will accept it.  

 

Some differences may also be experienced because the SS test statistic detects only the outliers that eventually affect 

the position solution. This means that there could be outliers present that have a counter effect of each other on the 

final position, leading to a position error at specific user locations, which will not be detected by the SS method but 

would be detected by the Chi-square test. In integrity monitoring, Blanch et al. (2015) recommended that if the Chi-

square detection test fails but the SS detection test passes for all position components; the fault is considered outside 

the assumed threat model in the SS test, and integrity of the system at this epoch can be assumed unavailable.  

 

THE FINAL INTEGRITY TEST ‘FIT’  

A new test called the Final Integrity Test (FIT) is presented. The test quantifies the impact of the error vector ∇̂𝑡, 
computed from the observations passing the FDE, on the position solution and checks whether this positioning error 

is less than an allowable error by the ITS application considered. This positioning error vector, denoted as 𝛿�̂�𝑡 (also 

known in the reliability theory as the external reliability), can be expressed in the recursive Kalman filter process 

as (Teunissen 2006): 𝛿�̂�𝑡 = 𝐾𝑡  𝐶𝑡  ∇̂𝑡  (24) 

where 𝐾𝑡   is the gain matrix at time t, and ∇̂𝑡= (𝐶𝑡𝑇𝑄𝑣𝑡−1𝐶𝑡)−1𝐶𝑡𝑇𝑄𝑣𝑡−1�̂�𝑡. 𝐶𝑡 is a square matrix of the size of the number 

of accepted observations (hence becomes an identity matrix); and thus ∇̂𝑡 includes the effect of the predicted 

residuals of all accepted observations.  

The FIT test introduced here checks that the AT and CT components of 𝛿�̂�𝑡, i.e. 𝛿�̂�𝑡𝐴𝑇  and 𝛿�̂�𝑡𝐶𝑇  satisfy the 

conditions: |𝛿�̂�𝑡𝐴𝑇| <  𝜇𝐴𝑇    and   |𝛿�̂�𝑡𝐶𝑇| <  𝜇𝐶𝑇  (25) 

to accept the position, where 𝜇𝐴𝑇  and 𝜇𝐶𝑇 are the maximum allowable errors for AT and CT, respectively, selected 

based on the application at hand. An overall horizontal check can also be expressed as: 

 𝛿�̂�𝑡𝐻 < 𝜇𝐻   (26) 

where 

 𝛿�̂�𝑡𝐻 = √(𝛿�̂�𝑡𝐴𝑇)2+(𝛿�̂�𝑡𝐶𝑇)2    and    𝜇𝐻 = √𝜇𝐴𝑇2 + 𝜇𝐶𝑇2  (27) 

 

For example, in ITS applications that require lane identification, the allowable CT error (𝜇𝐶𝑇) can be selected as 1m, 

whereas for more precise applications, such as forward collision alerts, the allowable AT error (𝜇𝐴𝑇) can be set as 

0.2-0.5 m. If the test passes and the precision results are satisfactory, the positioning solution is accepted. If the test 

fails, this position cannot be validated and an alternative positioning system should be tried. 
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TESTING 

To demonstrate the performance of the various FDE models presented in a practical environment of ITS 

applications, a kinematic test was conducted in Australia using a vehicle fitted with a multi-frequency GNSS 

receiver. The test was conducted for approximately 3.5 hrs with 1 Hz data sampling rate and the trajectory comprised 

various possible environments that may be experienced in ITS, including suburban with good satellite visibility, and 

for some periods near to tree canopies and an urban environment where signals were subject to obstructions (but 

still mostly have enough number of satellites for positioning in this test). Only GPS data was used where 2D 

positioning was considered, which is of primary interest in ITS. Positioning was performed in a network real-time 

kinematic (NRTK) method, where the collected satellite observations were post-processed with the network data 

for testing various FDE methods. The test trajectory and sky plot of the observed satellites during testing are 

illustrated in the Figures 3 and 4, respectively. The gaps seen at the bottom of figure 3 refer to regions with 

unavailable positioning due to observing a limited number of satellites. 

 

To indicate which areas that may have faults in the NRTK observations, Figure 5 shows the time series of the 

position errors in E and N, computed as the difference between the NRTK solution, without FDE, and an integrated 

GPS/Inertial Measurement unit (GPS/IMU) loosely coupled post-processing solution. The GPS positioning in this 

GPS/IMU solution was obtained from post processing the vehicle stored GPS observations with FDE in a relative 

mode with data from a base station that was located a few kilometres away, and only ambiguity-fixed solutions were 

used that delivers a few cm accuracy. The GPS/IMU provides a good solution, particularly in the urban environment 

when satellite visibility is low. The shaded areas in the figure indicate the urban environment which is characterized 

by the presence of buildings of two stories or above on both sides of the road, leading to a low sky visibility, presence 

of multipath and NLOS, which all led to a significant degradation of positioning availability and accuracy. The 

remaining parts in the plot indicate suburban areas that have good satellite visibility and geometry. 

 

 
 

Fig 3.  Test trajectory            Fig 4.  Sky plot of the test GPS satellites                      

 

 

 

 
Fig 5. Position errors in E & N, The shaded areas indicate urban environment  

with low sky visibility, and presence of multipath and NLOS 
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Identification was performed for the case of single and multiple faults (up to the degrees of freedom as discussed 

earlier). To save the computational time, once a fault is identified and verified (using Eq. 9 or 22), the Chi-square 

detection test is applied for the remaining observations, and if passes, the identification search stops. The 

performance of various FDE test parametrizations in the different ITS environments, which vary from working 

under good satellite visibility and geometry conditions to poor conditions, is demonstrated through the Figures 6 to 

10. The urban areas are marked above the figures. Firstly, Figure 6 shows the time series of the Chi-square test 

results, illustrating the statistic and the test threshold, which vary according to the number of the observed satellites 

and accordingly the degrees of freedom. One can see that due to low number of observations in the urban part of 

the trajectory, and with multipath and NLOS, the test did not pass for the majority of instances in this environment 

indicating the presence of faults, whereas there were no faults detected in the suburban environment where good 

satellite geometry and number was available. For the solution separation (SS) method, and for demonstration 

purpose, only one representative example is shown where one satellite (PRN10), was excluded when computing �̂�𝑖. 
Figures 7 to 10 illustrate the time series of the corresponding statistics and thresholds for FDE in the position domain 

when parameterizing the test for (E, N), (AT, CT), (maximum, minimum) and finally the circular FDE, respectively 

(note the open sky and urban areas), where the K symbol in the figures refers to the threshold. As shown in the 

figures, and similar to the Chi-square test, multiple faults were detected in the urban environment. One can also note 

that the detection performance of various FDE tests is very close. The subtle differences among them are attributed 

to the small difference in the shape of their detection regions as discussed earlier when the statistic values were close 

to the threshold values.  

 

 

 
Fig 6. Chi-square test results, 𝑇𝑞 = (�̂�𝑇𝑄�̂�−1 �̂�)  (excluding PRN 10) 

 

Table 2 summarises the detection percentage, i.e. the percentage of the number of epochs when faults were detected 

with respect to the total number of epochs in the test. Among the detected faults, the percentage of epochs where 

multiple and single detected faulty observations are given in the second and third rows of the table, respectively. 

For example, in the Chi-square test, among the detections, one can see that 79% were with multiple faults and 29% 

were with a single fault. The number of multiple identified faults, which were primarily code outliers, was larger 

than the number of single faults, mainly because these faults took place in the urban environment, where multiple 

signals experience large multipath effects. The table shows that Chi-square results were the closest to the 

maxim/minimum model results, and the direction-independent circular test gave less detection due to having a larger 

allowable region. These results agree with the results of the proposed FIT test applied after removal of satellite 10, 

shown in Figure 11. The figure depicts the time series of the impact of the measurement residuals on the position 

(i.e. 𝛿�̂�𝑡𝐻) versus a threshold value μH, selected as 1 m in this demonstration using NRTK, which is suitable for 

lane identification applications. The small values of 𝛿�̂�𝑡𝐻 refer to the periods when the vehicle was in an open sky 

environment, whereas the large values when 𝛿�̂�𝑡𝐻 exceeded μH refer to most of the periods when the vehicle was 

in an urban environment or near to tree canopies. 
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Table 2. Detection percentages (%) (i.e. percentage of the number of epochs where faults were detected with respect 

to the total number of epochs) in various methods, and percentage of epochs with single & multiple faults 

with respect to the total number of epochs of detected faults 
 

 Chi-square SS(E,N) SS(AT,CT) SS(max, min) SS (R) 

Detection % 14.83 14.32 15.67 15.64 13.47 

% of epochs of multiple faults to the 

total of epochs with detected faults 
71 70 73 72 71 

% of remaining epochs, that of single 

faults to the total of epochs with 

detected faults 

29 30 27 28 29 

 

 

            
Fig 7. E, N test results (excluding PRN 10)   Fig 8. AT, CT test results (excluding PRN 10) 

      statistic: H_dE= 
∆x̂𝑖𝐸𝜎∆�̂�𝑖𝐸and H_dN= 

∆x̂𝑖𝑁𝜎∆�̂�𝑖𝑁                                   statistic: H_dAT= 
∆x̂𝑖𝐴𝑇𝜎∆�̂�𝑖𝐴𝑇 and H_dCT= 

∆x̂𝑖𝐶𝑇𝜎∆�̂�𝑖𝐶𝑇    

  

 

 
Fig 9.  Max, min test results (excluding PRN 10)    Fig 10. Circular results (excluding PRN 10) 

                statistic: H_max_min= 
(∆x̂𝑖𝑇 .�⃗� 1𝑖)2𝜎∆𝑥𝑖𝑚𝑎𝑥2 + (∆x̂𝑖𝑇 .�⃗� 2𝑖)2𝜎∆𝑥𝑖𝑚𝑖𝑛2                                statistic: H_R = 

∆𝑥𝑖𝑟𝜎∆𝑥𝑖𝑟 

 

 

  

 

 

 

 

 

 

Fig 11. Results of the 2D FIT test (excluding PRN 10) 
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We firstly experimentally verified that all methods can detect large errors by inserting 420 artificial errors of 100 

m, scattered over 30 minutes, in the code observations in the data of the open sky environment section (not shown 

in the figures). All these large synthetic errors were detected by all methods. In addition, and without using synthetic 

errors, detection of faults in the actual observations is verified by comparing the positions computed at the epochs 

where faults were detected (without excluding the detected faults) with positions obtained from the independent 

GPS/IMU integration as mentioned above, where these positions came mainly from IMU. A large discrepancy 

between the two solutions, would show that the GNSS solution is indeed contaminated by faults. Moreover, in the 

urban environment, we found that the epochs of detected faults agree with epochs where large multipath was 

detected by the 3D city models. 

 

For smaller errors, the differences between these fault detection tests are subtle and are due to the changes in their 

detection region. These differences for small errors do not really depend on having a single or multiple faults but 

rather on the ‘combined’ effect of the fault(s) as projected in the position domain, where the test statistics are 

presented.  The proposed FDE for urban environment (Eq. 15-17) was next experimented by re-processing the data 

and applying the urban test only in the urban areas. The method can be activated in practice by dividing the road 

into segments and identifying the urban areas based on features from the 3D maps. From results depicted in Figure 

12, when applying the tests for the urban marked areas, one can see the test statistics reduced in size compared with 

those shown in figure 8 when the observations that experience multipath are deweighted. This also resulted in a less 

number of observations being rejected as their manifestation did not, for many epochs, present a threat that can 

significantly bias the solution and as the test threshold adapts to the position error distribution under multipath 

conditions (see the change in the threshold in Figure 12). However, due to a limited number of observations in the 

urban environment, which leads to weak modelling that can produce incorrect ambiguity fixing, several epochs 

did not pass the test. Overall, the number of rejected epochs using this method was 27% less than when 

using Eq 13. In the urban areas, the epochs of detected faults agree with epochs that have large multipath 

as detected by the 3D city models.  

 

 

 
Fig 12.  FDE results using the urban model (applied only in the marked urban areas)  

statistic H_dAT= 
∆x̂𝑖𝐴𝑇𝜎∆�̂�𝑖𝐴𝑇 and H_dCT= 

∆x̂𝑖𝐶𝑇𝜎∆�̂�𝑖𝐶𝑇    

 

One should note that the coefficients used in the FDE test in the urban environment are empirically estimated and 

may need modifications in other areas/environments. Due to the locality of the multipath phenomenon, this issue 

will always be challenging. In addition, identifying the multipath-contaminated signal from the 3D city models by 

studying different possible surfaces is still a time consuming process that could hinder its application in real time. 

Therefore our future research will focus on FDE in the urban environment. In particular, research the reduction of 

the processing time; better identification of the observations that may experience multipath with the help of 3D city 

models, eye-fish cameras, or with the help of LiDAR when being integrated with GNSS; possible improvement in 

deweighting models of multipath effects, and improvements in the paired CDF overbounding technique that is 

applied to estimate the test threshold.  

 

CONCLUSION 

Positioning is a critical component of ITS, where fault detection is a main task needed to ensure positioning 

reliability. In this work, two approaches in fault detection with different possible models are discussed. In the 

observation domain the Chi-square test is modelled in terms of the predicted observation residuals and the 

corresponding observation errors. In the position domain, different FDE parameterizations are presented based on 

the solution separation concept. FDE is applied for the Easting and Northing horizontal components for navigation. 
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Since ITS liability and safety critical applications are more interested  in the direction of motion of the vehicle, FDE 

models for both the along-track (AT) and cross-track (CT) horizontal position components are presented and to their 

combined form introducing a single test. Additional forms are presented for the maximum position error, and for 

the joint maximum-minimum case, needed when the attitude of the vehicle changes rapidly. Finally, a relaxed 

direction-independent circular bound model is presented. 

 

The performance of the proposed models was demonstrated in a kinematic test that undergoes variable environments 

that can be experienced in practice in ITS, including open sky, urban and near to tree canopies. All methods detect 

large errors, but for smaller errors close to their thresholds the differences in results between these tests were subtle, 

which were due to the change of the shapes of their detection regions. The method can be selected by the on-board 

computer based on the vehicle status and application as described in Table 1. In general, the results deteriorated 

with the reduction of the number of the used satellites in positioning. These results agree with the proposed FIT test. 

In the urban environment and due to multipath and having a low number of observations, even without the presence 

of faults in the observations the large observation residuals (in Chi-square) and the corresponding large positioning 

errors in the solution separation method may lead to failing the detection tests. Therefore, a new FDE in the urban 

environment is presented, where first the observations that may experience multipath are identified with the help of 

3D city models and are deweighted. Next a paired CDF overbounding technique was applied to estimate the fault 

detection test threshold. This method showed improvement compared with the other methods but its coefficients are 

empirical and it still suffers from the long time needed to quantify the impact of multipath from different surfaces. 

Therefore, our future research will focus on FDE in the urban environment. 
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