
Research Article

On Determinantal Varieties of Hankel Matrices

Edoardo Ballico
1

and Michele Elia
2

1 University of Trento, 38123 Povo, Trento, Italy
2Polytechnic of Turin, 10129 Torino, Italy

Correspondence should be addressed to Michele Elia; michele.elia7@gmail.com

Received 23 January 2014; Accepted 9 April 2014; Published 28 April 2014

Academic Editor: Sorin Dascalescu

Copyright © 2014 E. Ballico and M. Elia. 
is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Let H be a class of � × � Hankel matrices H� whose entries, depending on a given matrix A, are linear forms in � variables with
coe�cients in a �nite �eld F�. For every matrix inH, it is shown that the varieties speci�ed by the leading minors of orders from 1

to � − 1 have the same number ��−1 of points in F
�
� . Further properties are derived, which show that sets of varieties, tied to a given

Hankel matrix, resemble a set of hyperplanes as regards the number of points of their intersections.

1. Introduction


e representation of hypersurfaces of small degree as deter-
minants is a classical subject. For instance,Hesse [1] discussed
the representation of the plane quartic by symmetric determi-
nants, and many dierent problems have been tackled over
the years; see, for example, [2, 3]. An important question,
when hypersurfaces are de�ned over �nite �elds, is the
computation of the number of points. In general this is very
di�cult, for example, [4], and most frequently only bounds
are given. 
is paper considers hypersurfaces over �nite
�elds, which are de�ned by determinants of Hankel matrices
whose entries are linear forms in the variables. 
ese Hankel
matrices are encountered in the proof of certain properties
of �nite state automata whose state change is governed by
tridiagonal matrices [5, 6]. 
ey also occur in the study of
some decoding algorithms for error-correcting codes [7, 8].

It is remarkable that, for these determinantal varieties, the
exact number of points can in many instances be explicitly
found, in terms of the size of the �eld and the number of
variables.

Let �(�) = �� + �1��−1 + �2��−2 + ⋅ ⋅ ⋅ + ��−1� + �� be an
irreducible polynomial of degree � over F� with root � ∈ F�� ,
which is thus an eigenvalue of the companionmatrixAwhich
is assumed to have the coe�cients of �(�) in the last column,
all 1s in the �rst subdiagonal, and the remaining entries are0s [9].


e de�nition ofHankelmatrices that we are dealingwith
uses the Krylov matrices

K (A, x) = (x,Ax,A2x, . . . ,A�−1x) ,
K (A�, y�) = (y�,A�y�, (A�)2y�, . . . , (A�)�−1y�) ,

(1)

where y = (�1, . . . , ��) is a row vector of � independent

variables and x� = (�1, . . . , ��) is a column vector of �
independent variables. Every Krylov matrix is nonsingular
unless x and y are all-zero vectors, as will be proved later.

De�nition 1. 
e classH consists of � × �matrices de�ned as

H� = K(A�, y�)�K (A, x) . (2)


ese are Hankel matrices, because the entries

(H�)�� = yA
�
A
�
x = yA

�+�
x (3)

are clearly the same whenever the index sum � + � = ℎ is
constant. When the vector y is a �xed element y� of F

�
� , the

corresponding subclass ofH is denoted byH(y�).
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2 Algebra

Given a polynomial � in the ring F�[�1, . . . , ��], the
varietyV(�) is de�ned as the set of points in the a�ne space
F
�
� that annihilate �; that is,
V (�) = {(�1, �2, . . . , ��) ∈ F

�
	 | � (�1, . . . , ��) = 0} ⊆ F

�
	 .
(4)

More generally, given � polynomials �1, . . . , �
 ∈
F	[�1, . . . , ��] the varietyV(�1, . . . , �
) is the set of solutions
of the system

�1 = 0, . . . , �
 = 0. (5)

Note that V(�1, . . . , �
) = ⋂
�=1V(��) is the intersection
andV(�1�2, . . . , �
) = ⋃
�=1V(��) is the union of the varieties
V(�1), . . . ,V(�
).


e entries in H� are bilinear forms of the entries in
y and x. Let ��(�1, . . . , ��) denote the leading minor of
order � of a given Hankel matrix H� obtained �xing y =(�1, . . . , ��) ∈ F

�
� , and de�ne the determinantal varieties as

V(��(�1, . . . , ��)) := {(�1, . . . , ��) ∈ F
�
� : ��(�1, . . . , ��) =0}. 
en, we prove that every polynomial ��(�1, . . . , ��) is

irreducible over F� (Proposition 10), and obtain the following
general result.

�eorem 2. We have |V(��(�1, . . . , ��))| = ��−1 if � =1, . . . , � − 1 and |V(��(�1, . . . ��))| = 1.
While proving this theorem, the cardinality of certain

subsets �(�, �, �) ⊂ F
�
� is also computed. 
e sets �(�, �, �)

are the zero-loci of all �ℎ(�1, . . . , ��)’s with � ≤ ℎ ≤ �
(
eorem 18). 
at is, every �(�, �, �) is speci�ed by � + 1 − �
equations of degree higher than 1; nevertheless its cardinality
��+�−1−� is the same as in the case of the intersections in F

�
� of�+1− � distinct hyperplanes. In the next section, preliminary

notions, properties, and useful lemmas are collected, while
the main results are proved in Section 3.

2. Preliminaries

It is direct to check that k� = (1, �, . . . , ��−1) is a row
eigenvector of A, associated with the eigenvalue �; that is,
k�A = �k�.

Let ! : F� → F� denote the �-Frobenius; that is, set
!(�) := �� for all �. 
e action of ! is extended to vectors
and matrices component-wise. Since !(A) = A, because the
entries of this matrix are in F�, we have

! (k�A) = ! (�k�) #⇒ ! (k�)A = ! (�) ! (k�) ; (6)

that is, all eigenvectors of A are conjugate vectors under !.
Hence the matrix

B =
[[[[[[
[

k�! (k�)!2 (k�)
...

!�−1 (k�)

]]]]]]
]

(7)

reduces A to diagonal form over F�� ; that is,

D = BAB
−1 = diag (�, . . . , !�−1 (�)) , (8)

D being the diagonal matrix of the eigenvalues of A.

Observe that, writing (8) as AB−1 = B−1D, the columns

of B−1 are column eigenvectors of A. 
us there is a column

vector u that allows us to write B−1 in the form

B
−1 = (u�, ! (u�) , . . . , !�−1 (u�)) . (9)


e following lemma is useful to show that every matrix
similar to A gives the same classH. Let GL(�, F�) denote the
general linear group of �×�nonsingularmatrices with entries
in F�.

Lemma 3. Matrices of23(�, F�) that have the same character-
istic irreducible polynomial �(�) are F�-similar.

Proof. Let � be a root of �(�). To prove the lemma it is
su�cient to show that any twomatricesA and E of GL(�, F�),
having the same characteristic polynomial �(�), are similar.

e previous arguments indicate that there are two F��-
matrices B and S of form (7) such that

BAB
−1 = D, SES

−1 = D. (10)

Multiplying the �rst equation by S−1 on the le�, and by S

on the right, we have (S−1B)A(S−1B)−1 = E. 
us, the lemma

is proved by showing that S−1B is a F�-matrix. Since we may
always assume that

S
−1 = (s�, ! (s�) , . . . , !�−1 (s�)) , (11)

where s� is a convenient column eigenvector of E and B is of
form (7), we have

S
−1
B = s�k� + ! (s�) ! (k�) + ⋅ ⋅ ⋅ + !�−1 (s�) !�−1 (k�)
= s�k� + ! (s�k�) + ⋅ ⋅ ⋅ + !�−1 (s�k�) ,

(12)

which is patently invariant under the action of the automor-

phism !; thus S−1B is a F�-matrix.

Corollary 4. A and A� are F�-similar.

2.1. 4 and �. 
e equation w = yB−1 de�nes an F�-linear
mapping 5 from F

�
� into F

�
�� . Taking the vector y to be the

element of F��

y� = (Tr (1) ,Tr (�) ,Tr (�2) , . . . ,Tr (��−1)) ∈ F
�
� , (13)

we have w� = (1, 1, . . . , 1) = 5(y�). 
e image Im(5) is the
F��-linear span of (1, 1 . . . , 1); hence it is a one-dimensional

F��-linear subspace of F
�
�� .

Equation (8) implies thatBA = DB; then, introducing the
vector

z
� = B(�1, �2, . . . , ��)� = (�1, �2, . . . , ��) , (14)
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it is immediate to see that �� = !�−1(�1) for every �, whenever
x� ∈ F

�
� . 
e linear forms y�A

�x� are transformed into linear

forms w�D
�z�, and matrixH� can be written as

H� =
[[[[[[[[[
[

w�� z w��Dz w��D
2z ⋅ ⋅ ⋅ w��D

�−1z

w��Dz w��D
2z w��D

3z ⋅ ⋅ ⋅ w��D
�z

w��D
2z w��D

3z w��D
4z ⋅ ⋅ ⋅ w��D

�+1z
...

...
... ⋅ ⋅ ⋅ ...

w��D
�−1z w��D

�z ⋅ ⋅ ⋅ w��D
2�−2z

]]]]]]]]]
]

. (15)

De�nition 5. Let ��(�1, . . . , ��) denote the leading minor of
order � of a given Hankel matrix H� inH. When there is no
ambiguity surrounding the variables, this minor is in brief
denoted by ��(1). 
e determinant of H� is ��(�1, . . . , ��),
or��(1).
Lemma 6. Let x be a vector of � variables, and let y be a
constant vector in F

�
� ; then we have the following.

(1) 
e determinant ��(�1, . . . , ��) of H� is zero if and
only if all variables are set equal to zero.

(2) 
ematrixH� is a linear combination of � nonsingular
matrices, the coe�cients of the linear combination
being the entries of x.

(3) Any linear combination of the rows of H� is a set of �
linearly independent linear forms.

Proof. ��(�1, . . . , ��) is not zero, because it is the product of
two determinants that are dierent from zero

�� (�1, . . . , ��) = det (K(A�, y�)�K (A, x))
= det (K(A�, y�)�) det (K (A, x)) .

(16)

In particular, det(K(A, x)) = 0 if and only if x is the all-zero
vector; the same observation holds for y. 
is proves point
(1).

Point (2) is proved by writing

K(A�, y�)�K (A, x) =
�∑
�=1
��M�, (17)

where the matrices M� have constant entries that depend on
y, and taking �� = 1 and �� = 0 for every � ̸= �, that is, x = e�.
When x = e�, we have

�� (0, . . . , 1, . . . , 0) = det (K(A�, y�)�) det (K (A, e�))
= det (M�) .

(18)


is implies that det(M�) ̸= 0.
Point (3) is proved by noting that ��(�1, . . . , ��) = 0

has only one solution, namely, �1 = ⋅ ⋅ ⋅ = �� = 0, and��(�1, . . . , ��) = 0 identi�es linear combinations of the rows

of H�. It follows that every linear combination of the rows
should have only the all-zero solution; therefore the � entries
in every row must be linearly independent, by a theorem of
Rouché-Capelli.

By correspondence (14), every��(�1, �2, . . . , ��) is trans-
formed into a polynomial 8�(�1, . . . , ��) in the variables ��s
with the coe�cients in F�� .

2.2. Auxiliary Results. Let 9(�1, �2, . . . , ��) be a Vander-
monde determinant of order � identi�ed by the �-tuple(�1, �2, . . . , ��).
De�nition 7. For every triple of integers �, �, and < such that< ≥ 2� − 1 ≥ 2� − 1 > 0, the subset �(�, �, <) of F � is de�ned as

� (�, �, <) := {(�1, . . . , �) ∈ F

� : �ℎ (�1, . . . , �) = 0}

∀ℎ ∈ {�, . . . , �} . (19)

De�nition 8. 
e set C�� is de�ned to be the collection of

( �� ) subsets, where each subset consists of the unordered
collection of � distinct integers from the set {1, 2, . . . , �}.

Every subset h� = {ℎ1, . . . , ℎ�} de�nes a mapping D�(ℓ) =ℎℓ from the set {1, 2, . . . , �} into {1, 2, . . . , �}.
Lemma 9. Consider a Hankel matrix H�, as de�ned in (2)
with y = y� ∈ F

�
� ; the leading minors ��(�1, . . . , ��), � =

1, . . . , � are multivariate homogeneous polynomials of degree�, which may be written over F�� , in the form

�� (�1, . . . , ��)
= 8� (�1, . . . , ��)
= ∑
{ℎ1 ,ℎ2 ,...,ℎ�}∈���

9(!ℎ1−1(�), . . . , !ℎ�−1(�))2�ℎ2 ⋅ ⋅ ⋅ �ℎ� ,
(20)

where the summation is extended to all combinations of the� integers {1, 2, . . . , �}, taking � at a time, and the coe�cients
of the monomials �ℎ1 ⋅ ⋅ ⋅ �ℎ� are squares of Vandermonde

determinants.

Proof. In matrix (15), the bilinear forms wD�+�−2z have the
explicit expression

�∑
ℎ=1
�ℎ!ℎ−1 (��+�−2) =

�∑
ℎ=1
�ℎ!ℎ−1 (��−1) !ℎ−1 (��−1) , (21)

where � is the row index and � is the column index. Each
column is a linear combination of columns with coe�cients�ℎ such that all columns with the same coe�cient �ℎ are
proportional. Matrix (15) can be written as a sum of the form

H� =
�∑
ℎ=1
�ℎ!ℎ−1 (Γ) , (22)
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where Γ is the � × �matrix

[[[[
[

1 � ⋅ ⋅ ⋅ ��−1
� �2 ⋅ ⋅ ⋅ ��
...

...
...

...

��−1 �� ⋅ ⋅ ⋅ �2�−1
]]]]
]
, (23)

which has rank 1, since every row is proportional to the �rst
row, and the same holds for the columns. 
e leading minor��(�1, . . . , ��) is computed by writing the determinant as a

sum of �� determinants, which contain a single variable ��
in every column, determinants with repeated variables are 0,
because of the previous observation that their corresponding
columns are proportional, and in the remaining determinants
the corresponding variable is collected from each column.


e coe�cient of the monomial �ℎ1�ℎ2 ⋅ ⋅ ⋅ �ℎ� is obtained
as follows. Let G� = !ℎ�−1(�). 
en the coe�cient of�ℎ1 , . . . , �ℎ� is equal to

∑
�∈��

HHHHHHHHHHHHHHHHHHHHH

1 G�(2) ⋅ ⋅ ⋅ G�(�)
G�(1) G2�(2) ⋅ ⋅ ⋅ G��(�)
...

...
...

...

G�−1�(1) G��(2) ⋅ ⋅ ⋅ G2�−1�(�)

HHHHHHHHHHHHHHHHHHHHH

= ∑
�∈��

sgn (D)
�
∏
ℓ=1
Gℓ−1�(ℓ)

HHHHHHHHHHHHHHHHHHHH

1 1 ⋅ ⋅ ⋅ 1
G1 G22 ⋅ ⋅ ⋅ G��
...

...
...

...

G�−11 G�2 ⋅ ⋅ ⋅ G2�−1�

HHHHHHHHHHHHHHHHHHHH
.

(24)

Collecting the common factor, the remaining summation is
exactly the same determinant; thus we have

HHHHHHHHHHHHHHHHHHHH

1 1 ⋅ ⋅ ⋅ 1
G1 G22 ⋅ ⋅ ⋅ G��
...

...
...

...

G�−11 G�2 ⋅ ⋅ ⋅ G2�−1�

HHHHHHHHHHHHHHHHHHHH

2

= 9(!ℎ1−1 (�) , . . . , !ℎ�−1 (�))2, (25)

which gives

8� (�1, . . . , ��)
= ∑

h∈C��
9(!ℎ1−1(�), . . . , !ℎ�−1(�))2�ℎ1�ℎ2 ⋅ ⋅ ⋅ �ℎ� , (26)

with the summation extended to every subset h = {ℎ1, . . . , ℎ�}
of C�� , and this concludes the proof.

Proposition 10. 
e product∏�−1�=18�(�1, . . . , ��) is not identi-
cally zero over F�� .

Furthermore, the leading minors ��(�1, . . . , ��), � =
1, . . . �, are irreducible degree-� polynomials over F�.

Proof. As a consequence of (26), every 8�(�1, . . . , ��) is
irreducible over F�� . Further, observing that each variable

�� occurs at degree 1 in any 8�(�1, . . . , ��), it has max-
imum degree � − 1 in the product polynomial D =
∏�−1�=18�(�1, . . . , ��).
ereforeD is not identically zero in F��� ,

because � − 1 is certainly less than �� for any �.
To prove the second statement, �x � ∈ {1, . . . , �−1}. In this

step it is checked that K := ��(�1, . . . , ��) ∈ F�[�1, . . . , ��] is
irreducible over F�. It is only necessary to use the fact thatK ∈ F�[�1, . . . , ��] is a homogeneous polynomial of degree� < �which is irreducible over F�� . Assume that K is reducible
over F� and call ℎ ∈ F� an irreducible factor of minimal
degree � < �. Let F�� be the minimal extension of F� in
which ℎ is de�ned. Since K is irreducible, the polynomials

!�(ℎ), 1 ≤ � < M, obtained by applying the Frobenius !� to ℎ
are nonproportional irreducible factors of K. Hence deg(K) ≥(M − 1)� ≥ �� ≥ �, which is a contradiction.

Remark 11. 
e determinant��(�1, . . . , ��) is found to be

�� (�1, . . . , ��) = Δ2
�∏
�=1

�� = �(1)2O2
�∏
�=1

[!�−1 (k�) x] ,
(27)

where O is the discriminant of �(�), and the product involv-
ing x can be seen as a norm in the �eld F�� ; therefore��(�1, . . . , ��) is irreducible over F�.
Lemma 12. 
e variety V(�1(1)) ∩ V(�2(1)) ∩ ⋅ ⋅ ⋅ ∩
V(��−1(1)) has cardinality � over F�.
Proof. Equation (17) shows that any ��(1) is a polynomial of
degree � with coe�cients in F�; furthermore, every entry is a
linear form with coe�cients in F�. Hence �1(1) = 0 impliesG1 = 0; in turn �2(1) = 0 implies G2 = 0, given that G1 = 0
and arguing recursively; �nally,��−1(1) = 0 implies G�−1 = 0,
while the variable G� is free and may assume � values. 
e
conclusion follows.

Lemma 13. Let �� ̸= 0, 1 ≤ � ≤ �, and assume � ≥ 2� − 1. 
en

|V(�1(1) − �1) ∩ ⋅ ⋅ ⋅ ∩V(��(1) − ��)| = ��−�.
Proof. We use induction on �, the case � = 1 being obvious.

e inductive assumption in F2�−3� gives |V(�1(1)−�1)∩ ⋅ ⋅ ⋅∩
V(��−1(1) − ��−1)| = ��−2. Fix (�1, . . . , �2�−3) ∈ F

2�−3
� with

��(1) = �� for all 1 ≤ � ≤ �−1. Since��−1(�1, �2, . . . , �2�−3) ̸= 0,
for all �2�−2, S ∈ F� there is a unique �2�−1 ∈ F� such that��(�1, . . . , �2�−1) = S. Take S = ��. 
is completes the proof.

3. Main Results

Proposition 14. 
e equality |9(��(1))| = |9(��−�(1))|
holds for every 1 ≤ � ≤ � − 1.
Proof. In the proof of Lemma 9, it was shown that

�� (1) = �� (�1, . . . , ��) = 8� (�1, . . . , ��) , (28)

with �� = ∑��=1 !�−1(�)��. Further, it was noted in that lemma

that �� = !�−1(�1) for every �, whenever every �� ∈ F�.



Algebra 5


e relation z = B−1x establishes a one-to-one corre-
spondence between F

�
� and a subspace of dimension 1 of

F
�
�� , and further x = Bz. 
ere thus exists a one-to-one

correspondence between the zeros of ��(1) in F
�
� and the

zeros of 8�(�1, . . . , ��) in the one-dimensional subspace of

F
�
�� , which is the image of F�� . Referring to (26), which yields

the representation 8�(�1, . . . , ��) of ��(1), assuming �1 ̸= 0,
considering the change of variables

�� = 1
<�∏�−1ℓ ̸= �−1(!�−1 (�) − !ℓ (�))2

= 1
d� <� , (29)

and recalling that the coe�cients of the monomials
are squares of Vandermonde determinants

9(!ℎ1−1(�), !ℎ2−1(�), . . . , !ℎ�−1(�))2, we obtain

8� (�1, . . . , ��) = 1
O2∏��=1<�8�−� (<1, . . . , <�) , (30)

where O is the discriminant of the polynomial with root�.
e

varietyV(��(1)) is obtained by considering <1 = k(�)x� and
the other variables as <� = !�−1(<1), � = 2, . . . , �; thus∏<� = 0
only when every <� = 0, ∀�; further O ̸= 0. Finally, we have the
chain of bijections

x ←→ z
� = B

−1
x
� ←→ �1 ←→ <1

= {{{

1
d1 �1 if �1 ̸= 0
0 if �1 = 0

←→ y
� ←→ x̃

� = Bt
�.
(31)

In conclusion, this equation shows an explicit one-to-one
mapping between the zeros (�1, . . . , ��) of ��(1) and the
zeros (�̃1, . . . , �̃�) of ��−�(1), which implies |V(��(1))| =|V(��−�(1))|.

In the following example, the procedure for obtaining a
point of V(��−�(1)) from a point of V(��(1)) is explicitly
illustrated.

Example 15. Consider the irreducible polynomial �7(�) =
�7 +�4 +�3 +�2 +1 of degree � = 7 over F3 with the transpose
companion matrix

A7 =
[[[[[[[[[
[

0 1 0 0 0 0 00 0 1 0 0 0 00 0 0 1 0 0 00 0 0 0 1 0 00 0 0 0 0 1 00 0 0 0 0 0 1−1 0 −1 −1 −1 0 0

]]]]]]]]]
]

. (32)

Taking y = [1, 0, 0, 0, 0, 0, 0], and x� = [�1, �2, �3, �4,�5, �6, �7], the Hankel matrix (17) becomes

H�7 =
[[[[[[[[[
[

�1 �2 �3 �4 �5 �6 �7�2 �3 �4 �5 �6 �7 \8�3 �4 �5 �6 �7 \8 \9�4 �5 �6 �7 \8 \9 \10�5 �6 �7 \8 \9 \10 \11�6 �7 \8 \9 \10 \11 \12�7 \8 \9 \10 \11 \12 \13

]]]]]]]]]
]

, (33)

where

\8 = −�1 − �3 − �4 − �5,
\9 = −�2 − �4 − �5 − �6,
\10 = −�3 − �5 − �6 − �7,
\11 = �1 + �3 + �5 − �6 − �7,
\12 = �1 + �2 + �3 − �4 + �5 + �6 − �7,
\13 = �1 + �2 − �3 − �4 + �5 + �6 − �7.

(34)


e forms �3(1) and �4(1) of degrees 3 and 4, respectively,
are

�3 (1) = �1�3�5 − �1�24 − �22�5 − �2�3�4 − �33,
�4 (1) = �1�3�5�7 − �1�3�26 − �1�24�7 − �1�4�5�6 − �1�35

− �22�5�7 + �22�26 − �2�4�3�7 + �2�24�6 + �2�5�3�6
− �2�4�25 − �33�7 − �23�4�6 + �23�25 + �44.

(35)

Given a point x� = [0, 1, −1, −1, 0, 0, 1] ∈ F
7
3 which is a zero

of�3(1), a zero of�4(1) is obtained as follows.

Compute the vector z = B−17 x
� whose �rst component is

�1 = 1 + �2 + �3 + �6 ∈ F
7
37 , and the remaining entries are

obtained as !ℓ(�1) = 1 + �3ℓ−12 + �3ℓ−13 + �3ℓ−16, ℓ = 1, . . . , 6;
then compute

d
2 = 6∏
�=1
(� − �3�)2 = � + �3 + �4 − �5,

<1 = 1
�1d2 = −1 − � + �

2 + �4 − �5,
(36)

and construct the vector t = [<1, !(<1), . . . , !6(<1)] ∈ F
7
37 .

Finally, a zero of�4(1) is obtained as

B7t
� = [1, −1, 0, 1, 1, −1, −1]� ∈ F

7
3 , (37)
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whereB7 is the matrix whose columns are the eigenvectors of
A7 in F

7
37

B7 =

[[[[[[[[[[[
[

1 1 1 1 1 1 1
� �3 �32 �33 �34 �35 �36
�2 �2⋅3 �2⋅32 �2⋅33 �2⋅34 �2⋅35 �2⋅36
�3 �3⋅3 �3⋅32 �3⋅33 �3⋅34 �3⋅35 �3⋅36
�4 �4⋅3 �4⋅32 �4⋅33 �4⋅34 �4⋅35 �4⋅36
�5 �5⋅3 �5⋅32 �5⋅33 �5⋅34 �5⋅35 �5⋅36
�6 �6⋅3 �6⋅32 �6⋅33 �6⋅34 �6⋅35 �6⋅36

]]]]]]]]]]]
]

. (38)

Remark 16. Since the � forms in the �rst row of (17) are
linearly independent, by Lemma 6, a change of variables from�1, . . . , �� to G1, . . . , G� takes a matrixH� to the form

H� =
[[[[[[
[

G1 G2 G3 ⋅ ⋅ ⋅ G�G2 G3 ⋅ ⋅ ⋅ G� ℓ1G3 ⋅ ⋅ ⋅ G� ℓ1 ℓ2
...G� ℓ1 ℓ2 ⋅ ⋅ ⋅ ℓ�−1

]]]]]]
]

, (39)

where the � variables G�s are free, and every ℓℎ is a linear form
in the G�s.

Fix the integers a ≥ 1 and � ≥ 1, and let��(a) denote the�×� determinant of a Hankel matrix with free variable entriesG�, � = a, . . . , 2� − 2 + a
HHHHHHHHHHHHHHHHHHH

G� G�+1 ⋅ ⋅ ⋅ G�+�−2 G�+�−1G�+1 G�+2 ⋅ ⋅ ⋅ G�+�−1 G�+�
...

...
...G�+�−1 G�+� ⋅ ⋅ ⋅ G�+2�−3 G�+2�−2

HHHHHHHHHHHHHHHHHHH
. (40)

And set�0(1) = 1 by de�nition.
Proposition 17. Let b, a be natural integers. Let H(2�+2�−1)

be a (2a + 2b − 1) × (2a + 2b − 1) Hankel matrix with
�rst row (G1, . . . , G2�+2�−1). Let c(a,b) be the set of points

(�1, . . . , �2�+2�−1) ∈ F
2�+2�−1
� with the same �rst 2a − 1

coordinates �� = ��, � = 1, . . . , 2a − 1 such that the minor��(�1, . . . , �2�+2�−1) ̸= 0, and theminors��(�1, . . . , �2�+2�−1) =0 for all � ∈ {a+1, . . . , a+b}. 
en c(a,b) has cardinality ��.
Proof. Observe that the �rst row (G1, . . . , G2�+2�−1) of the

Hankel matrix H(2�+2�−1) completely speci�es the leading

(a+b)×(a+b)Hankel submatrixH(�+�), and consequently
also every minor��(1) for � = 1, . . . , a + b.

Let d�(G1, . . . , G2�+2�−1) denote the �th row of H(�+�).

Let e(a + 1,b) be the subset of F
2�
� consisting of all

(�2�, . . . , �2�+2�−1) ∈ F
2�
� such that d�+1(�1, . . . , �2�−1, �2�,. . . , �2�+2�−1) is linearly dependent on d1(�1, . . . , �2�−1,�2�, . . . , �2�+2�−1), . . ., d�(�1, . . . , �2�−1, �2�, . . . , �2�+2�−1).


e caseb = 1 is easily settled. Consider the identity
��+1 (�1, . . . , �2�−1, G2�, G2�+1, . . . , G2�+2�−1)

= G2�+1�� (�1, . . . , �2�−1, G2�, G2�+1, . . . , G2�+2�−1)
+ 4 (�1, . . . , �2�−1, G2�) ,

(41)

for some 4(G1, . . . , G2�) ∈ F�[G1, . . . , G2�], and take G2� =�2� ∈ F�; it follows that

��+1 (�1, . . . , �2�−1, �2�, �2�+1, G2�+2, . . . , G2�+2�−1) = 0,
(42)

for a unique �2�+1 ∈ F� because��(1) ̸= 0 by hypothesis. SinceG2� is any element �2� ∈ F� (i.e., it may assume � values in F�,
while G2�+1 is uniquely speci�ed), the assertion |c(a, 1)| = �
is proved.

Now, assume b ≥ 2, and note that row a + 1 is uniquely
determined up to position a+1 as a linear combination of the
above rows up to the same position a + 1. Extend this linear
combination to uniquely determine the remaining elements

of theH(�+�) Hankel matrix.

e assertion |c(a,b)| = �� is a consequence of the

following claims.

Claim 1. One has |e(a + 1,b)| = ��.
Consider a vector (�2�, . . . , �2�+2�−1) ∈ F

2�
� , which

belongs toe(a+1,b) if and only if there are S� ∈ F�, 1 ≤ � ≤ a,
such that

d�+1 (�1, . . . , �2�−1, �2�, . . . , �2�+2�−1)

= �∑
�=1
S�d� (�1, . . . , �2�−1, �2�, . . . , �2�+2�−1) ,

(43)

since ��(�1, . . . , �2�−1, �2�, . . . , �2�+2�−1) ̸= 0, and this
same condition implies that the coe�cients S1, . . . , S�
are uniquely determined by the entries of the vector(�1, . . . , �2�−1) and by the entry �2� = �2� in rowd�+1(�1, . . . , �2�−1, �2�, . . . , �2�+2�−1).

We know that for each �2� ∈ F� there is a unique �2�+1
such that��+1(�1, . . . , �2�−1, �2�, �2�+1) = 0.

Fix G2� = �2� and hence �x S1, . . . , S�, and G2�+1 = �2�+1.

e values of G2�+� = �2�+�, � = 2, . . . , b are uniquely speci�ed
by the linear combination condition, jointly with the Hankel
matrix properties. Since the remaining G2�+�+�, � = 1, . . . , b−1 are free, the cardinality of e(a + 1,b) is precisely ��.
Claim 2. Since the �rst a + 1 rows of the Hankel
matrix H(�+�) are linearly dependent, it follows that��(�1, . . . , �2�+�, �2�+�+1, . . . , �2�+2�−1) = 0 for every� ∈ {a + 2, . . . , a + b}.

To conclude the proof, it remains to show that the (a+1)th
row, constructed as above, is the only possible (a + 1)th row
that leads to a Hankel matrix satisfying the hypotheses of the
proposition. 
is property is the third claim.

Claim 3. If �2�+� ̸= �2�+�, for every � = 2, . . . , b, then��+�(�1, . . . , �2�−1, �2�, �2�+1, �2�+2, . . . , �2�+2�−1) ̸= 0 for every� ∈ {2, . . . , b}.
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Let � ≥ 2 be the smallest integer such that the (a + �) ×
(a + �) Hankel matrix H(�+�), with leading minor ��(1) ̸= 0,
has the whole (a + 1)th row that is not a linear combination
of the above rows: this means that the entry ��+� is dierent
from ��+�.

Let S1, . . . , S� be the coe�cients of the linear combination

of the �rst a rows ofH(�+1+�) yielding the row (��, . . . , ��+1+�).
From every ℎth row of the matrixH(�+�), with ℎ ≥ a + 1,

the linear combination of the �rst a rows may be subtracted
to get a row whose entries with index � are zero for every� = 1, . . . , ℎ+a+1.
e counter-diagonal entries between rowa + 1 and the bottom row are �2�+� − �2�+�. 
e determinant

of H(�+�) and that of the modi�ed matrix are the same;
using the generalized Laplace formula for the expansion of
a determinant with respect to the last � + 1 rows, we get��+1+�(1) = ��(1)(�2�+� − �2�+�)� ̸= 0.


e contradiction forces �2�+� = �2�+�, which concludes
the proof.

�eorem 18. For all integers �, �, and � such that � ≥ 2� − 1 ≥2� − 1 > 0 we have
HHHH� (�, �, �)HHHH = ��−1−�+�. (44)

Proof. For all integers � ≥ < ≥ 2� − 1 we have |�(�, �, �)| =|�(�, �, <)| ⋅ ��−, because in each determinant�ℎ(1), ℎ ≤ �, the
variables ��, M ≥ 2�, do not occur; hence Lemma 12 gives the
case � = 1 for all �. We may thus assume � ≥ 2. Induction will
be applied to �, the case � = 2 being obvious. 
e inductive
assumption gives

|� (ℎ, ℎ, 2ℎ − 1) \ � (ℎ, ℎ − 1, 2ℎ − 1)| = (� − 1) �2ℎ−3, (45)

for all ℎ < �. Notice that �(�, �, �) = �(�, 1, �)⊔{⊔�ℎ=2(�(�, ℎ, �)\�(�, ℎ−1, �))}. Lemma 9 gives |�(�, ℎ, �) \ �(�, ℎ−1, �)| = (�−
1)�2ℎ−3��−2�+1+�−ℎ. Hence

HHHH� (�, �, �)HHHH = ��−� + (� − 1)
�∑
ℎ=2
��−�+ℎ−2 = ��−�−1+�. (46)

Remark 19. Take integers �, �, and � such that � ≥ 2� − 1 ≥2� − 1 ≥ 3. Applying
eorem 18, �rst for (�, �, �) and then for

(�, �, � − 1), gives |�(�, �, �) \ �(�, � + 1, �)| = ��−�−2+�(� − 1).
Proof of 
eorem 2. We know by Lemma 6 that |V(��(1))| =|V(��−�(1))|, for every 1 ≤ � ≤ � − 1; the proof is completed

by showing that |V(��(1))| = ��−1 for every 1 ≤ � ≤ ⌊�/2⌋.

is is true by the case � = � of 
eorem 18. V(��(1)) has
only one point, because ��(1) is an irreducible polynomial
over F�.

Corollary 20. Given � < �, if KSk{�, � − 1} = 1, the varieties
V(��(1) − �), ∀� ∈ F� have cardinality ��−1.
Proof. Performing the substitution �� = <��� gives the

equation <���(��1, . . . , ���)−� = 0. By hypothesis gcd{�, �−1} =1, the equation <� = � always has a solution in F�, since we
have < = �� with l� = 1 mod � − 1. 
us all varieties with

� ̸= 0 have the same cardinality, say �� = |V(��(1) − 1)|, and
the equation

��−1 + (� − 1) �� = �� (47)

implies �� = ��−1.
Note that, when � has some factor in common with � − 1,

the cardinalities ofV(��(1) − �) are close to ��−1 but depend
on �. It is an interesting problem to determine how close these

cardinalities are to �(�−1).
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