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1. Introduction. Let f(x) be an integrable function, with period 2ir

and let its Fourier series be

(1) ©[/] = Σ Mx) = a* + Σ («* cos kx + h sin kx)
fc = ϋ Δ fc = l

Let gk{n) (k = 0,1, 2,...), go(n) = 1 be the "summating" function and

consider a family of transforms of (1) by a method of summation G
OO

(2) Pn(x)=Σ9*(n)Mx)
fc = 0

where the parameter n need not be discrete.

If there are a positive non-increasing function φ(n) and a class ^ of

functions in such a way that

(I) \[f{x) - Pn(x)\\ = o(φ(n)) implies f(x) = constant;

(II) ||/Cr) - Pn(x)\\ = O(^(Λ)) implies /(^) €= ϋΓ

(III) /(^) € ^ implies | | /U) - FWU)|| = O(φ(n))

then it is said that the method of summation G is saturated with the order

φ{n) and with the class of saturation K.

Since the above definition was given by J. Favard [3], a number of authors

have published their result: G. Alexits [0], P. L. Butzer, [2], J. Favard himself

[4], M. Zamansky [9] and others.

The purpose of the present paper lies in giving proofs to the theorems

stated in our previous paper [8].

Throughout the paper the norms should be taken with respect to the

variable x, and the subscript p to Z/-norms will generally be omitted.

Another convention is that the space (C) is meant the notation LΓ. (or, the

case p — oo of Lp). Thus the generalized Minkowski inequality reads

/ /Or, t)dt || ^ / ||/Cr, t) || dt, P^l

and the class Lip(at,p) with p = oo reduces to Lip a.

2. The inverse problem. Let us write Δn(χ) = f(x) — Pn(x) and sup-

pose that for some positive function ψ(k) and a positive constant c, we have
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(3) lim = cψ(k) (k = 1,2 ,).

(i) If || Δn(x) || = o(φ(jι)) we have for every fixed k^il,

1 Γ*
tf*(l ~ 9k(n)) = — • Δn(j:) cos &r <£r = o(φ(n))

and comparing this with (3), we see

^ = 0 and similarly bk = 0. (έ = 1, 2, ).

Thus the condition (I) is verified under our assumption,

(ii) Suppose now || Δn(χ) \\ = O(φ(n)) and let N < n.

Taking the ΛΓ-th arithmetic mean <ry[χ; Δ J of the series

we have

It is well known that || Δn || ^
yields

1 fc-1

or, equivalently,

Δ J || and our hypothesis on Δn(χ)

= O(φ(n))

- 9*(n)

which implies (using Fatou's lemma if necessary)

l. e.

If K denotes the class of functions satisfying (4) we have (II) for this
class K.

For most of methods of summation, the function ψ(k) has the form kp,
where p is a positive integer, and the degree of approximation has been
studied for those classes, resulting the relation (III). If we denote by f[p\x)

1) This assumption can be slightly relaxed.



482 G- SUNOUCHI AND C. WATARI

the trigonometric series Σ kpAk(x), the class K will be the set of functions

with || crN[x; f[pr\ || = O(l) and this is equivalent to the assertions

f[p\x) is the Fourier series of a bounded function (p = oo)

fίp\x) is the Fourier series of a function in Z/ (1 < p < oo)

f[p\x) is the Fourier-Stieltjes series of a function of bounded variation

respectively. See for example [10, §§ 4. 31 - 4. 33].

These classes are also characterized by the property that the indefinite

integral of fp\x) belongs to the class Lip(l,^). (See for example [10, § 4. 7;

examples 7 and 8])

3. Determination of the class of Saturation.

3.1. We have, Cesaro-Fejer method of summability,

/ N Λ * \ i ,1 r * i

9k\n) = ( 1 — + ^ 1, lim n{l~gjln)) = ^.

The considerations of the preceding section give

(i) if || An(χ) || = o(l/n) then /(Λ:) = constant;

(ii) if II An(x) II = O{l/n) then || σ ^ ; f™) \\ = O(l)

or, equivalently, /(Λ:) € Lip(l, />).

Since the condition (III) was already proved by A. Zygmund [12], we

have

THEOREM I. The method of Cesaro-Fejer summation is saturated; its
order of saturation is 1/n, its class of saturation is the class of functions f(x)

for which f(x) € Lip(l,/>), where p is the suffix to the norm considered.

More generally,

THEOREM I'. The method of approximation by (C9ά)(a > 0) means is

saturated with the same order and the same class to the case of Cesaro-Fejer

summation.

Indeed, we can easily verify the first two conditions, and the third was

also proved in [12].

3. 2. The Abel-Poisson mean of ©[/"] is

- (0:gr<l)
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gk(r) = r* and lim l^Sέά = ki
r->l-0 1 — Γ

we have
THEOREM 2. The method of Abel-Poisson summability is saturated with

the order (1 — r) and the same class to the Cesaro-Fejer summation.

PROOF. We have only to prove the assertion (III), and for this purpose

it is sufficient to prove \\f(x) — f(r,x) \\ — O{1 — r) under the assumption

\\ψx(t) || = \\f(x + t) —fix — t) || = O(t). But, an elementary computation

shows

7r Jn S ( l -

Thus we have

- r)2( f1 " + f * ) s A(l - r)V.
where

1 Jo {Cl-r)3 + 4rsinV/2}tanί/2

{Λ^rYtdt =Γ^~r

and

/*" t
SA\ -jΓΓ

J\—r t t

- r)2 + 4r sin2 ί/2} tan ί/2

t Γ dt A
d^A]

which was to be proved.3)

3. 3. The Riesz mean (R, np, λ) of ©[/] is

*-(*) =Σ(l ~{~)9U^) and ^ ) =

THEOREM 3. For spaces Lp, 1 < p ^ CXD, ^ ^ method of Riesz sum-
mabity (R, np, λ) is saturated; its order of saturation is l/n?, its class of

2) A denotes a constant which need not the same at different contexts.
3) This is also deduced from the equation of Cauchy-Riemann.
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saturation is the class of functions f(x) for which

fp\x) €B (p = oo)

f[p\x) € Lp (1< p < oo)

where f^?\x) denotes the trigonometric series Σ kpAk(x).

PROOF. Since the assertions (I) and (II) are obviously verified, we

may confine ourselves to the proof of (III). The case p = oo i. e . , the fact

M
() || ^fιp\x) € B implies

L2> we have by Parseval's identity.

is due to S. Nagy [6]. Now, i f / €

Σ

τc=o

The operation T/ t p l0r) =

theorem of M. Riesz gives

being linear, the well-known convexity

11/t p Ί I (2^p^ oo).

The case 1 < p ^ 2 can be treated by the familiar "conjugacy" argument.

Let 1 < p <; 2 and l//> + 1/g = 1, (so that 2 <: q < oo) and let #[plCr) =

Bk(x) be a trigonometric polynomial with ||^pl||g ^ 1. Then we have, by

Holder's inequality and the theorem already proved for the exponent q,

(5) P An(X; fψ\χ) dx
J-it

f f"Xx)T φ"Xx)
•'— it

TfXx)φ>Xx) dx

Since (5) holds for every trigonometric polynomial g[p](x), ||̂ Γp](^)IU ~ 1, this

implies ||Δn(j:;/)||p <Ξ p H/̂ Hp and our assertion is proved,

COROLLARY. If p is a positive integer, the class of saturation of the
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method of Riesz summability (R, np, 1) is the class of those functions f(x)
for which / ( p " υ (x) € Lip(l,/>) if p is even f{?~ι\x) € Lip(l,/>) if p is odd.

The part (III) of this was proved by A. Zygmund [11], but we give
another proof for the case p =14) .

Let Pn(x), <ΓJJE\
 a n d Kn(x) be the (R, np, 1) means of the series (1),

Σ kpAk(x) and ~̂~ -f ΣZ cosnx respectively. Assuming that f[p](x) is of bounded

variation, we have

<Γn(x) = l f ΛKn(x - t)dfP\t)

and

(6) II σn(χ) II ̂  ^ £ II Kn(x - ί)ll I ̂ / p l (0 I = 0(1).

Write
A, s n", \n = An- A,,., > 0, £pA*Cr) = S ^ ) .

w - 1

sn = Σ J5fc(x) and 5* = X] λfc4l5Jfc (λ_! = 0).
fc=0 fc-0

We have

(7) ^ ω =

thus

Summing up this equality for N < n 5j M, we see

^ n A n -i Λ n + 1 Λ n / ΛjfAjf-i ΛivrΛjvr-i,

Consequently, using (6) and (7),

ii D D ii _ v ^ Q ( A W ) ( A W + 1 — A^-Q

4) p need not be an integer in the following proof.
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31-1

( 22 ( ~A ~~~ ~A ) Ί ~ ~Λ "̂  ~A I*

Making Λί—> oo we have

which was to be proved.
3. 4. The Gauss-Weierstrass integral of f(x) is

; f) =
it=o

= ./-J- f * ί)exp(- ί«/f) dt

= exp(— k?ξ/4), the parameter £ tending to 0. We have

THEOREM 4. TAe method of approximation by the Gauss- Weierstrass
integral is saturated; its order of saturation is ζ; its class of saturation is
the class of functions f(x) for which

PROOF. Only the assertion (III) requires the proof. But,
W(x;ξ)-f(x)

(x + t)+f(x -t)- 2/Gr))exp(- f/ξ)dt- R(x,ξ),

say, where R(x,ξ) = (f + J " ) ̂  f(x) exp( - f/ξ) dt

\\R(xJ)\\ =2\\f(x)\\ιJ^ f~exp(-t*/ξ)dt

^ II/WII Γ e- du = \\f{x)\\ ex P (- TΓV?) = o(f).

Consequently

v/ Iΐ /
fix - ί) - 2/0r)||exp(-

= o(f)

Λvhich was to be proved.
The Bernstein-Rogosinski mean of ©(/) is defined by

THEOREM 5. TA^ method of Bernstein-Rogosinski summation is satura-
ted; its order of saturation is 1/n, and its class of saturation is the class
of functions fix) for which
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We omit the proof since the reader will find no difficulty in modifying

the proof of (III) of the case p — oo in Natanson [7, p. 192] and a generaliza-

tion of our theorem was published recently (see F. Harsiladze [5]).

The integral of de la Vallee Poussin is defined by

Vn(x)=-^ Γf(x + t)cos2n^-dt
2,7Γ J-Tc 2

2n(2n - 2)...4. 2Σ A ( s h

( + k)\ AX)' n( h

k)\ AX)' n (2« - 1 ) ( 2 Λ - 3)...3.

THEOREM 6. TA^ method of approximation by the integral of de la

Vallee Poussin is saturated; its order of saturation is 1/n, its class of satura-

tion is the class of functions f(x) for which

PROOF. The assertion (III) is due to P. L. Butzer [1], and the other

two are evidently verified by the consideration of §2.

The integral of Jackson-de la Vallee Poussin is defined by

τΐ \ 1 Γ J , 2ί\/sinΛ4^ / 1 Γ (sin tY Λ
In(x) =- f\x + -- — ) ( - j dt ( τ 4 = - - - I — - ) dt\

27rr4 J_oo \ n /\ t / \ 27rJ_o β\ t / /

where

Λ — —x* 4- ^ \x\i
 IΛ I

2 + 4 ' ' ' '

4 V ' ' ' — i i —

THEOREM 7. The method of approximation by the Jackson-de la Vallee-

Poussin integral is saturated; its order of saturation is 1/n2, its class of

saturation is the class of functions f(x) for which

f\x)e Lip(l,/>) l^p^oo.

To verify the condition (III), wτe have only to calculate directly, starting

from the assumption that
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+ u) +f(x - u)
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