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Abstract: In a multi-service network such as ATM, adaptive data services (such as ABR) share the band-

width left unused by higher priority services. The network indicates to the ABR sources the fair and efficient

rates at which they should transmit to minimize their cell loss. Switches must constantly measure the de-

mand and available capacity, and divide the capacity fairly among the contending connections. In this paper,

we propose a new method for determining the “effective” number of active connections, and the fair band-

width share for each connection. We prove the efficiency and fairness of the proposed method analytically,

and use several simulations to illustrate its fairness dynamics and transient response properties.

Keywords: congestion control, fair bandwidth allocation, traffic management, ATM networks, ABR ser-

vice, ERICA

1 Introduction

ATM networks offer five service categories: constant bit rate (CBR), real-time variable bit rate (rt-VBR),

non-real time variable bit rate (nrt-VBR), available bit rate (ABR), and unspecified bit rate (UBR). The

ABR and UBR service categories are specifically designed for data traffic. The ABR service provides better

service for data traffic than UBR by frequently indicating to the sources the rate at which they should be

transmitting to minimize loss. For this reason, an ATM switch must continuously compute a fair and efficient

bandwidth share for each of the currently active ABR connections.✁
This paper is an extended version of paper [7] presented at the IEEE International Conference on Communications (ICC) 1998.
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Determining the fair bandwidth share for the active ABR connections is a complex problem. A number of

fairness objectives, including max-min fairness and proportional fairness have been proposed. Intuitively,

max-min fairness means that if a connection is bottlenecked elsewhere, it should be allocated the maximum

it can use at this switch, and the left over capacity should be fairly divided among the connections that can

use it. The switch should indicate this fair bandwidth share to the sources, while also accounting for the

load and queuing delays at the switch.

This paper proposes a novel method to determine the fair bandwidth share for the active ABR connections,

and analyzes the performance of this method using both simple mathematical proofs and simulations. The

remainder of the paper is organized as follows. In the next section, we review the ABR flow control mech-

anisms in ATM networks. Then, we describe the original ERICA switch algorithm [14] which is employed

in this study as a framework on which to develop the new method. Sections 4 and 5 point out some prob-

lems with the original ERICA algorithm, and describe how ERICA has solved these problems. We then

describe our proposed method (which also overcomes those problems), and give a proof of its correctness,

and a number of examples of its operation. Finally, we analyze the performance of the proposed method and

compare it to ERICA.

2 The ABR Flow Control Mechanism

As previously mentioned, the ABR service frequently indicates to the sources the rate at which they should

be transmitting. The switches monitor their load, compute the available bandwidth and divide it fairly

among the active flows. The feedback from the switches to the sources is indicated in Resource Management

(RM) cells which are generated periodically by the sources and turned around by the destinations. Figure 1

illustrates this operation.

Figure 1: Resource management cells in an ATM network

The RM cells contain the source current cell rate (CCR), in addition to several fields that can be used by

the switches to provide feedback to the sources. These fields are: the explicit rate (ER), the congestion

indication (CI) flag, and the no increase (NI) flag. The ER field indicates the rate that the network can

support for this connection at that particular instant. At the source, the ER field is initialized to a rate no

greater than the PCR (peak cell rate), and the CI and NI flags are usually reset. On the path, each switch

reduces the ER field to the maximum rate it can support, and sets CI or NI if necessary [9].

The RM cells flowing from the source to the destination are called forward RM cells (FRMs) while those

returning from the destination to the source are called backward RM cells (BRMs) (see figure 1). When a

source receives a BRM cell, it computes its allowed cell rate (ACR) using its current ACR value, the CI and

NI flags, and the ER field of the RM cell [11].
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2.1 Fairness Criterion

The optimal operation of a distributed shared resource, bandwidth in our case, is given by a criterion called

the max-min allocation [8, 2, 15]. This fairness definition is the most intuitive, though proportional sharing

has recently gained significant attention. Max-min allocation gives equal shares to sources bottlenecked at

the same link, utilizing all capacity left over by non-bottlenecked sources. Given a configuration with ✂ con-

tending sources, suppose the
✄✆☎✞✝

source is allocated a bandwidth ✟✡✠ . The allocation vector ☛☞✟✍✌☞✎✏✟✒✑✓✎✕✔✕✔✕✔✖✎✏✟✡✗✡✘
is feasible if all link load levels are less than or equal to 100%. Given an allocation vector, the source with

the least allocation is, in some sense, the “unhappiest source.” We find the feasible vectors that give the

maximum allocation to this unhappiest source (thus maximizing the minimum source, or max-min). Then,

we remove this “unhappiest source” and reduce the problem to that of the remaining ✂✚✙✜✛ sources operating

on a network with reduced link capacities. We repeat this process until all sources have been allocated the

maximum that they can obtain.

3 The Original ERICA Switch Algorithm

Several switch algorithms have been developed to compute the feedback to be indicated to ABR sources in

RM cells [1, 13, 16, 17, 12]. The ERICA algorithm [10, 12] is one of the earliest and most studied explicit

rate algorithms. The main advantages of ERICA are its low complexity, fast transient response, efficient

allocations, and controlled queuing delay.

In this section, we present the basic features of the original algorithm and explain their operation. The next

sections describe an addition to the basic algorithm, and a new alternative method to determine the number

of active connections. For a more complete description of the algorithm and its performance, refer to [12].

The ERICA switch periodically monitors the load on each link and determines a load factor, ✢ , the available

capacity, and the number of currently active virtual connections (VCs). The load factor is calculated as

follows:

✢✤✣ ABR Input Rate

ABR Capacity

where:

ABR Capacity ✣ Target Utilization ✥ Link Bandwidth ✙ VBR Usage ✙ CBR Usage.

The input rate and output link ABR capacity are measured over an interval called the switch measurement

interval. The above steps are executed at the end of the switch measurement interval. Target utilization is a

parameter which is set to a fraction based on current queuing delay. The load factor, ✢ , is an indicator of the

congestion level of the link. The optimal operating point is at ✢ close to one.

The fair share of each VC, ✦✚✧ ✄✆★✪✩✬✫ ✧ ★✮✭ , is also computed as follows:

FairShare ✣ ABR Capacity

Number of Active Connections

The switch allows each connection sending at a rate below the ✦✚✧ ✄✆★✪✩✬✫ ✧ ★✮✭ to rise to ✦✚✧ ✄✆★✪✩✬✫ ✧ ★✮✭ . If the

connection does not use all of its ✦✯✧ ✄✆★✪✩✬✫ ✧ ★✮✭ , then the switch fairly allocates the remaining capacity to the

connections which can use it. For this purpose, the switch calculates the quantity:

VCShare ✣ ✰✯✰✚✱
✢
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If all VCs changed their rate to their ✲ ✰ ✩✬✫ ✧ ★✮✭ values, then, in the next cycle, the switch would experience

unit load ( ✢✴✳✵✛ ). ✲ ✰ ✩✬✫ ✧ ★✮✭ aims at bringing the system to an efficient operating point, which may not

necessarily be fair. A combination of the ✲ ✰ ✩✬✫ ✧ ★✮✭ and ✦✚✧ ✄✆★✪✩✬✫ ✧ ★✮✭ quantities is used to rapidly reach

optimal operation as follows:

ER Calculated ✣ Max (FairShare, VCShare)

The calculated ER value cannot be greater than the ABR Capacity which has been measured earlier. Hence,

we have:

ER Calculated ✣ Min (ER Calculated, ABR Capacity)

To ensure that the bottleneck ER reaches the source, each switch computes the minimum of the ER it has

calculated as above and the ER value in the RM cell, and indicates this value in the ER field of the RM cell.

The algorithm described above is the basic algorithm, but several other steps are carried out to avoid tran-

sient overloads and variations in measurement, and drain the transient queues. Moreover, the algorithm is

modified to achieve max-min fairness as described in sections 5 and 6.

4 The Measurement Interval

ERICA measures the required quantities over consecutive intervals and uses measured quantities in each

interval to calculate the feedback in the next interval. The length of the measurement interval limits the

amount of variation which can be eliminated. It also determines how quickly the feedback can be given

to the sources, because ERICA gives the same feedback value per source during each measurement inter-

val. Longer intervals produce better averages, but slow down the rate of feedback. Shorter intervals may

result in more variation in measurements, and may consistently underestimate or overestimate the measured

quantities.

The ERICA algorithm estimates the number of active VCs to use in the computation of the fair share by

considering a connection active if the source sends at least one cell during the measurement interval. This

can be inaccurate if the source is sending at a low rate and the measurement interval is short. Exponentially

averaging the number of active connections over successive intervals produces more accurate estimates, but

may still underestimate the number of connections if the measurement interval is short. In this paper, we

propose a more accurate method for estimating connection activity. The new method is insensitive to the

length of the measurement interval. It also eliminates the need to perform some of the steps of the ERICA

algorithm, as described in the next section.

5 The Fairness Problem and ERICA Solution

Assuming that measurements do not exhibit extremely high variation, the original ERICA algorithm con-

verges to efficient operation in all cases. The convergence from transient conditions to the desired operating

point is rapid, often taking less than a round trip time. We have, however, discovered cases in which the

original algorithm does not converge to max-min fair allocations. This happens if all of the following three

conditions are met: (1) the load factor ✢ becomes one, (2) there are some connections which are bottlenecked

upstream of the switch under consideration, (3) the source rate for all remaining connections is greater than
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the ✦✚✧ ✄✶★✮✩✷✫ ✧ ★✸✭ . In this case, the system remains in its current state, because the term
✰✯✰✚✱✯✹ ✢ is greater

than ✦✚✧ ✄✶★✮✩✷✫ ✧ ★✸✭ for the non-bottlenecked connections.

This problem was overcome in ERICA as follows. The algorithm is extended to remember the highest

allocation made during each measurement interval, and ensure that all eligible connections can also get

this same high allocation. To do this, ✺✻✧✪✟✽✼✿✾❀✾❀❁✓❂❄❃ ★✮✭✕❅✪✄ ❁✖❆❈❇ stores the maximum allocation given in the

previous interval. For ✢❊❉❋✛✚●✻❍ , where ❍ is a small fraction, we use the basic ERICA algorithm and

allocate Max (FairShare, VCShare). But, for ✢❏■❑✛✒●▲❍ , we attempt to make all the rate allocations equal, by

assigning ER to Max (FairShare, VCShare, MaxAllocPrevious). The aim of introducing the quantity ❍ is to

force the allocation of equal rates when the overload is fluctuating around unity, thus avoiding unnecessary

rate oscillations. The remainder of this paper proposes a more accurate method to compute the max-min fair

shares for all the contending connections.

6 An Accurate Method to Determine the Fair Bandwidth Share

As previously discussed, ERICA determines the number of active connections by considering a source as

active if at least one cell from this source is sent during the measurement interval. A more accurate method

to compute activity and eliminate the need for the proposed solution to the fairness problem is to compute a

quantity that we call the “effective number of active VCs” and use this quantity to compute the ✦✚✧ ✄✆★✪✩✬✫ ✧ ★✮✭ ,
as described next.

6.1 Basic Idea

We redefine the ✦✚✧ ✄✆★✪✩✬✫ ✧ ★✮✭ quantity to be the maximum share a VC could get at this switch under max-
min fairness criteria. Hence, the ✦✚✧ ✄✶★✮✩✷✫ ✧ ★✸✭ is calculated as follows:

FairShare ✳ ABR capacity

Effective number of active VCs

The main innovation is the computation of the effective number of active VCs. The value of the effective

number of active VCs depends on the activity level of each of the VCs. The activity level of a VC is defined

as follows:

Activity level ✳ Min ▼◆✛✓✎ Source Rate✦✯✧ ✄✆★✪✩✬✫ ✧ ★✮✭❈❖
Thus, VCs that are operating at or above the ✦✯✧ ✄✆★✪✩✬✫ ✧ ★✮✭ are each counted as one. The VCs that are operating

below the ✦✯✧ ✄✆★✪✩✬✫ ✧ ★✮✭ (because they are not bottlenecked at this switch, or because they are variable demand

applications) only contribute a fraction. The VCs that are bottlenecked at this switch are considered fully

active while other VCs are considered partially active.

The effective number of active VCs is the sum of the activity levels for all VCs:

Effective number of active VCs ✳❑P ✠ Activity level of VC ✠
Note that the definition of activity level depends upon the ✦✚✧ ✄✆★✪✩✬✫ ✧ ★✮✭ , and the definition of the ✦✯✧ ✄✆★✪✩✬✫ ✧ ★✮✭
depends upon the activity levels. Thus, the definitions are recursive. Ideally, we would need to iterate several

times given the rates of various VCs.
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6.2 Examples of Operation

Example 1 (stability):

Figure 2: Upstream Configuration

Consider the upstream bottleneck case with 17 VCs shown in figure 2. We have shown that this configuration

demonstrates the unfairness of the original ERICA algorithm as described in section 3, which necessitates

the addition described in section 5.

Assume that the target capacity is 150 Mbps. For the second switch, when the rates for (
✩ ✛ , ✩ ✛☞◗ ,

✩ ✛❙❘ ) are

(10, 70, 70):

Iteration 1: FairShare = 70 Mbps

Activity = (10/70, 70/70, 70/70) = (1/7, 1, 1)

Effective number of active VCs = 1 + 1 + 1/7 = 15/7

Iteration 2: FairShare = Target capacity/Effective number of active VCs = 150/2.14 = approximately

70 Mbps

Hence, this example shows that the system is stable at the allocation of (10, 70, 70). At any other allocation,

the scheme will calculate the appropriate ✦✚✧ ✄✆★✪✩✬✫ ✧ ★✮✭ that makes the allocation eventually reach this point,

as seen in the next two examples.

Example 2 (rising from a low FairShare):

For the same configuration, when the rates are (10, 50, 90):

Assume that the Effective number of active VCs = 3

Iteration 1: FairShare = 150/3 = 50 Mbps

Activity = (10/50, 50/50, 1) = (0.2, 1, 1)

Effective number of active VCs = 0.2 + 1 + 1 = 2.2

Iteration 2: FairShare = 150/2.2 = approximately 70 Mbps

Again, the scheme reaches the optimal allocation within a few round trip times.

Example 3 (dropping from a high FairShare):

For the same configuration, when the rates are (10, 50, 90), suppose that the effective number of active VCs

is initially 2:

Iteration 1: FairShare = 150/2 = 75 Mbps

Activity = (10/75, 50/75, 1) = (0.13, 0.67, 1)

Effective number of active VCs = 0.13 + 0.67 + 1 = 1.8
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Iteration 2: FairShare = 150/1.8 = 83.33 Mbps

Suppose the sources start sending at the new rates, except for the first one which is bottlenecked at 10 Mbps.

Also assume that FairShare is still at 83.33 Mbps.

Activity = (10/83.33, 83.33/83.33, 83.33/83.33) = (0.12, 1, 1)

Effective number of active VCs = 0.12 + 1 + 1 = 2.12

FairShare = 150/2.12 = approximately 70 Mbps

Again, the scheme reaches the optimal allocation after the sources start sending at the specified allocations,

which is within a few round trip times.

6.3 Derivation

The following derivation shows how we have verified the correctness of our method of calculation of the

number of active connections. The new algorithm is based upon some of the ideas presented in the MIT

scheme [3, 4, 5]. However, this algorithm does not suffer from the known drawbacks of the MIT scheme:

its high complexity, possible underutilization, and insensitivity to queuing delay.

The derivation depends on classifying active VCs as either underloading VCs or overloading VCs. A VC

is overloading if it is bottlenecked at this switch; otherwise the VC is said to be underloading. In the MIT

scheme, a VC is determined to be overloading by comparing the computed ✦✚✧ ✄✆★✪✩✬✫ ✧ ★✮✭ value to the desired

rate indicated by the VC source. In our scheme, we classify a VC as overloading if its source rate is greater

than the ✦✚✧ ✄✆★✪✩✬✫ ✧ ★✮✭ value. Our algorithm only performs one iteration every measurement interval ( ❚❯▼◆✛ ❖ ),
and is not of the complexity of the order of the number of VCs ( ❚❱▼❀❲ ❖ ), as with the MIT scheme.

The MIT scheme has been proven to compute max-min fair allocations for connections within a certain

number of round trips (see the proof in [4]). According to the MIT scheme:

✦✚✧ ✄✆★✪✩✬✫ ✧ ★✮✭ ✳ ABR Capacity ✙❨❳▲❩❭❬✠✞❪❫✌❵❴ ❆✡✠❛ ✙ ❛❝❜
where:❴ ❆✡✠ = Rate of

✄✆☎✞✝
underloading source ( ✛✚■ ✄ ■ ❛ ❜ )❛

= Total number of VCs❛ ❜
= Number of underloading VCs

Substituting
❛❡❞

for the denominator term, this becomes:

FairShare ✳ ABR Capacity ✙❢❳❡❩❭❬✠✞❪❫✌❣❴ ❆ ✠❛ ❞
where:❛ ❞

= Number of overloading VCs (
❛ ❜ ● ❛ ❞ ✳ ❛ )

Multiplying both sides by
❛ ❞

, we get:

✦✯✧ ✄✆★✪✩✬✫ ✧ ★✮✭ ✥ ❛ ❞ ✳ ABR Capacity ✙ ❩❤❬P✠✞❪❫✌ ❴ ❆✡✠
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Adding ❳❡❩❭❬✠✞❪❫✌❣❴ ❆ ✠ to both sides produces:

✦✯✧ ✄✆★✪✩✬✫ ✧ ★✮✭ ✥ ❛ ❞ ● ❩ ❬P✠✞❪❫✌ ❴ ❆✡✠✐✳ ABR Capacity

Factoring ✦✚✧ ✄✶★✮✩✷✫ ✧ ★✸✭ out in the left hand side:

✦✚✧ ✄✆★✪✩✬✫ ✧ ★✮✭ ✥✴▼ ❛ ❞ ● ❩❭❬P✠✞❪❫✌
❴ ❆✡✠✦✚✧ ✄✆★✪✩✬✫ ✧ ★✮✭❈❖ ✳ ABR Capacity

Or:

✦✚✧ ✄✆★✪✩✬✫ ✧ ★✮✭ ✳ ABR Capacity❛ ❞ ●❥❳▲❩❤❬✠❦❪❫✌ ❧
❜❙♠♥♣♦ ✠rq✏s ✝ ♦ q✏t

Substituting
❛ t◆✉☞✉ , we get:

✦✚✧ ✄✆★✪✩✬✫ ✧ ★✮✭ ✳ ABR Capacity❛ t✈✉☞✉
where: ❛ t◆✉☞✉ ✳ ❛❡❞ ● ❩ ❬P ✠❦❪❫✌

❴ ❆✡✠✦✚✧ ✄✆★✪✩✬✫ ✧ ★✮✭
This means that the effective number of active VCs is equal to the number of overloading sources, plus

the fractional activity of underloading sources. This is the key equation we have proposed above, and

implemented as discussed in the next subsection.

6.4 Algorithm Pseudo-code

This section explains how the new algorithm was implemented and incorporated into the ERICA switch

algorithm. The following variables are introduced:

✇ ❲②① ♦④③ ☎ : Effective number of active VCs in the last measurement interval.

✇ ❲②⑤ ❜ q◆q✏t✶✗ ☎ : Effective number of active VCs being accumulated for the current measurement interval.

✇ Activity: This array is maintained for each VC. It is set to one for overloading sources (an overloading

source is a source whose CCR exceeds its ✦✚✧ ✄✶★✮✩✷✫ ✧ ★✸✭ value). The activity of a VC is set to the fraction

obtained from dividing the CCR of the VC by the ✦✚✧ ✄✆★✪✩✬✫ ✧ ★✮✭ value in the case of underloading

sources.

✇ FirstCellSeen: This is also maintained for each VC, and is only used to avoid the initialization effects

of the VC. It is one bit that is set to one if the VC has shown any sign of activity; otherwise, it is set

to zero.

✇ VCsSeen: The sum of the VCs whose FirstCellSeen flag is set. Also used to avoid initialization

effects.

INITIALIZATION:
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1. ❲②① ♦④③ ☎ = number of VCs set up

2. ✦✚✧ ✄✆★✪✩✬✫ ✧ ★✮✭ ✳ ABR Capacity
✹ ❲②① ♦④③ ☎

3. ❲ ⑤ ❜ q◆q✏t✶✗ ☎ = 0

4. VCsSeen = 0

5. FOR ALL VCs DO

Activity [VC] = 0

FirstCellSeen [VC] = 0

END (* FOR *)

6. Initialize other ERICA variables

END OF MEASUREMENT INTERVAL:

1. IF (VCsSeen ❉⑥✳⑦❲②① ♦⑧③ ☎ )❲⑨① ♦⑧③ ☎ = max (1, ❲②⑤ ❜ q◆q✏t✶✗ ☎ )
END (* IF *)

2. ❲②⑤ ❜ q◆q✏t✶✗ ☎ = 0

3. ✦✚✧ ✄✆★✪✩✬✫ ✧ ★✮✭ ✳ ABR Capacity
✹ ❲②① ♦④③ ☎

4. FOR ALL VCs DO

Activity [VC] = min (1, CCR [VC]/ ✦✯✧ ✄✆★✪✩✬✫ ✧ ★✮✭ )❲⑨⑤ ❜ q✈q✏t⑩✗ ☎ = ❲②⑤ ❜ q◆q✏t⑩✗ ☎ + Activity [VC]

END (* FOR *)

5. Update Overload Factor, and update or reset other ERICA variables

CELL IS RECEIVED IN FORWARD DIRECTION:

1. Do NOT update ❲ ⑤ ❜ q◆q✏t✶✗ ☎ as used to be done with ERICA

2. IF (NOT FirstCellSeen [VC]) THEN

FirstCellSeen [VC] = 1

VCsSeen = VCsSeen + 1

END (* IF *)

3. Update CCR [VC]

BRM CELL TO BE SENT IN REVERSE DIRECTION:
ER Computed = Max (FairShare, CCR [VC]/Overload Factor)

Observe that the FirstCellSeen array and the VCsSeen counter are only used for the purpose of removing

initialization effects from the simulation, and will not exist in a real implementation. Thus, in a real imple-

mentation, no steps (other than source rate estimation) will be carried out when a cell is seen, which means

that the algorithm will have a low complexity.
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7 Performance Analysis

The new algorithm has been tested for a variety of networking configurations using several performance

metrics. The results were similar to the results obtained with the ERICA algorithm [10], except that the

new algorithm is max-min fair (without executing the max-min fairness step described in section 5 above),

and also the algorithm is less sensitive to the length of the measurement interval. A sample of the results is

discussed in this section.

7.1 Parameter Settings

Throughout our experiments, the following parameter values are used:

1. All links have a bandwidth of 155.52 Mbps.

2. All links are 1000 km long.

3. All VCs are bidirectional.

4. The source parameter Rate Increase Factor (RIF) is set to one, to allow immediate use of the full

explicit rate indicated in the returning RM cells at the source.

5. The source parameter Transient Buffer Exposure (TBE) is set to large values to prevent rate decreases

due to the triggering of the source open-loop congestion control mechanism. This was done to isolate

the rate reductions due to the switch congestion control from the rate reductions due to TBE.

6. The switch target utilization parameter was set to 90%. This factor is used to scale down the ABR

capacity term used in the ERICA algorithm. Alternatively, it can be dynamically computed based

upon the current queuing delay at the switch.

7. The switch measurement interval was set to the minimum of the time to receive 100 cells and 1 ms.

8. All sources are deterministic, i.e., their start/stop times and their transmission rates are known. Hence,

we did not need to conduct several simulation runs (with different random number generator seeds)

and average the results.

7.2 Simulation Results

The simulations performed focus on two main aspects of the new scheme: its fairness, and its transient

response.

7.2.1 Fairness

In order to test the fairness of the new algorithm, we simulated a three source configuration where one of

the sources is bottlenecked at a low rate (10 Mbps). Hence, even though the network gives that source

feedback to increase its rate, it never sends at a rate faster than 10 Mbps. The other two sources start

transmission at different initial rate (ICR) values. The aim of this configuration is to examine whether the

10



two non-bottlenecked sources will reach the same ACR values, utilizing the bandwidth left over by the first

source.

Figure 3 illustrates the topology of the configuration simulated. Note that the round trip time for the
✩✬❶

and✩✬❷
connections is 30 ms, while that for the

✩ ✛ connection is 40 ms. This configuration is almost identical

to the one used in the examples in section 6 (figure 2), except that connection
✩ ✛ to ❸✜✛ is bottlenecked at

the source
✩ ✛ itself, and not at “Link 1.” The reason we chose to demonstrate a source bottleneck situation

here (and not a link bottleneck situation like figure 2) is to demonstrate the effect of using the CCR field in

the RM cells versus measuring the source rate.

Figure 3: Three source configuration

The results are presented in the form of three graphs for each configuration:

1. Graph of allowed cell rate (ACR) in Mbps over time for each source.

2. Graph of ABR queue lengths in cells over time at the bottleneck port.

3. Graph of the effective number of active VCs ❲ t◆✉☞✉ at the bottleneck port.

Figure 4 illustrates the performance of the original ERICA algorithm without the fairness step discussed in

section 5. Source
✩ ✛ is the bottlenecked source. Sources

✩✷❶
and

✩✬❷
start sending at different ICR (and

hence ACR) values. Their ICR values and that of
✩ ✛ add up to little more than the the link rate, so the

initial ✢ value at the switch is almost one. Observe that the rates of
✩✬❶

and
✩✷❷

remain different, leading to

unfairness. The number of active VCs is determined using the original ERICA method, so the switch sees 3

sources (see figure 4(c)), and the ✦✚✧ ✄✆★✪✩✬✫ ✧ ★✮✭ value remains at around 50 Mbps. Hence, the source
✩✬❶

never

increases its rate to make use of the bandwidth left over by
✩ ✛ and only

✩✬❷
utilizes this bandwidth.

Figure 5 illustrates how the fairness problem was overcome in ERICA by the change described in section 5.

In this case, the sources are given the maximum allocation in case of underload or unit load, and hence all

sources get an equal allocation. The modified algorithm is max-min fair.

Figure 6 illustrates the results with the new method to calculate the fair share of the bandwidth. Observe that

the allocations are max-min fair in this case, without needing to apply the maximum allocation algorithm

as in the previous case. This is because the new method used to compute the “effective” number of active

connections is used. Figure 6 shows that after the initialization period, the effective number of active VCs

stabilizes at 1 (for
✩✬❶

), plus 1 (for
✩✬❷

), plus 10/50 (for
✩ ✛ ), which gives ✛❹●❺✛❻●❽❼✤✔ ❶ ✳ ❶ ✔ ❶ sources. The

method also stabilizes to the correct value even if the length of the measurement interval is short, unlike the

original method where the length of the measurement interval must be long enough to detect cells from all

sources, even low-rate sources.
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Figure 4: Results for a WAN three source bottleneck configuration with the original ERICA

The proposed method works correctly for all cases when there are link bottlenecks at various locations (e.g.,

the configuration in figure 2), since it correctly computes the activity level of each connection based on its

CCR value. However, observe that in source bottleneck cases, the CCR value cannot be simply obtained

from the forward RM cells, but must be measured by the switches. This is because, in source bottleneck

situations, the source indicates its ACR value in the CCR field of the RM cell, but the source may actually

be sending at a much lower rate than its ACR.

For example, for the configuration discussed above (figure 3), assume that we were relying on the CCR

values in the RM cells. Figure 7 shows that the new method is not fair in this case, since source
✩ ✛ indicates

an ACR of 50 Mbps so the effective number of active connections stabilizes at 3 (see figure 7(c)), and the✦✚✧ ✄✶★✮✩✷✫ ✧ ★✸✭ remains at 50 Mbps. But source
✩ ✛ is only sending at 10 Mbps. CCR measurement at the

switch detects this, and hence arrives at the correct allocation as seen in figure 6.
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Figure 5: Results for a WAN three source bottleneck configuration with ERICA
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Figure 6: Results for a WAN three source bottleneck configuration with the proposed ERICA and source

rate measurement at the switch
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Figure 7: Results for a WAN three source bottleneck configuration with the proposed ERICA
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7.2.2 Transient Response

One of the main properties of the new algorithm is that, unlike the MIT scheme, it is ❚❱▼◆✛ ❖ . Due to this,

more than one round trip time may be required to arrive at the optimal allocations. In order to determine

if the proposed method has a significantly slower transient response due to its recursive operation, we run

another set of simulations.

Figure 8 illustrates the two-source configuration we used in this set of simulations. The round trip time for

each connection is 30 ms. The new algorithm was simulated for this configuration, where the first source

is active throughout the simulation period, while the second source starts sending after 60 ms and stops

sending data at 120 ms. Both sources are persistent sources while they are active.

Figure 8: Two source configuration

The results are presented in the form of two graphs for each configuration:

1. Graph of allowed cell rate (ACR) in Mbps over time for each source.

2. Graph of link utilization (as a percentage) over time for the bottleneck link.

Figures 9 and 10 show the performance of the ERICA algorithm (with the fairness modification) versus the

performance of the proposed algorithm. It is clear that the transient response of both methods is comparable.

The new method is slightly slower in reducing the rates in the start-up period of the second source, due to the

recursive nature of the algorithm. However, the difference is small, and the benefits of the method outweigh

the slower response.

7.3 Observations on the Results

From the simulation results, we can make the following observations about the performance of the proposed

algorithm:

✇ During transient phases, if the ✦✚✧ ✄✆★✪✩✬✫ ✧ ★✮✭ value increases, the ❲ t◆✉☞✉ value decreases (since it uses

the ✦✚✧ ✄✆★✪✩✬✫ ✧ ★✮✭ value in the denominator), and ✦✚✧ ✄✆★✪✩✬✫ ✧ ★✮✭ further increases (since it uses ❲ t◆✉☞✉ in

the denominator), so ❲ t◆✉☞✉ further decreases, and so on, until the correct values of source rate, ❲ t✈✉❙✉
and ✦✚✧ ✄✆★✪✩✬✫ ✧ ★✮✭ are reached. Then the proposed scheme is provably fair and efficient in steady state

(see figure 6(a) and (c)).

✇ Using very small measurement interval values results in more problems for the original ERICA

scheme than with the proposed scheme, because the proposed scheme does not measure the effec-

tive number of active connections by observing if cells are received from that connection during the

measurement interval. Hence, even if the measurement interval is so short such that no cells are seen
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Figure 9: Results for a WAN transient configuration with ERICA
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Figure 10: Results for a WAN transient configuration with the proposed ERICA and source rate measure-

ment at the switch
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from many low-rate sources, the proposed method can compute the ✦✚✧ ✄✆★✪✩✬✫ ✧ ★✮✭ of the bandwidth

correctly.

✇ Without source rate measurement at the switch for each VC, the value of ❲ t✈✉❙✉ depends on the source

ACR, which is not the same as the source rate for source bottleneck cases. Thus, ❲ t✈✉☞✉ is too large in

those cases, and the ✦✚✧ ✄✆★✪✩✬✫ ✧ ★✮✭ term is less than the CCR by Overload term, leading to unfairness.

With per-VC source rate measurement, the value of ❲ t◆✉☞✉ is correct.

8 Summary

This paper has proposed and demonstrated a new method to compute the fair bandwidth share for ABR

connections in ATM networks. The method relies on distinguishing between underloading connections and

overloading connections, and computing the value of the “effective” number of active connections, based

on their activity levels. The available bandwidth is divided by this effective number of active connections to

obtain the fair bandwidth share of each connection.

The method is provably max-min fair, and can be used to ensure the efficiency and fairness of bandwidth

allocations. Integrating this method into ERICA tackles the fairness and measurement interval problems of

ERICA, while maintaining the fast transient response, queuing delay control, and simplicity of the ERICA

scheme. Analysis and simulation results were used to investigate the performance of the method. From

the results, it is clear the method overcomes the fairness problem with the original ERICA, as well as its

excessive sensitivity to the length of the measurement interval.

We have extended this method to include minimum rate bounds in [18]. We have also used it for point-

to-multipoint connections, and noted extensions required for multipoint-to-point connections [6]. We are

currently investigating using a similar load-based technique for Random Early Detection (RED) and Explicit

Congestion Notification (ECN) marking in the Internet.
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