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Lessons in biostatistics

Introduction

Diagnostic tests are important clinical tools. If that 

is possible, we have to use gold-standard tests for 

the diagnosis of diseases. However, a gold-stand-

ard test either does not exist or is very di�cult or 

expensive to perform for certain disease condi-

tions (1). Therefore, we have to use alternative di-

agnostic tests as surrogates for gold-standard 

tests.

While interpretation of a test with binary results is 

straight forward, interpretation of a test with con-

tinuous results is not that simple. For instance, as-

sume that the test is for discrimination of only two 

states, “diseased” (D+) and “non-diseased” (D–), 

and that the higher test values are more likely 

among D+ persons. For discrimination of D+ and 

D– people, we need to set a cut-o� value; test re-

sults equal to or greater than this value are consid-

ered positive (T+), otherwise they are negative (T–). 

The choice of the cut-o� value determines the 

rates of true positive (TP), true negative (TN), false 

positive (FP), and false negative (FN) test results (2). 

The sensitivity (Se) of a test is de�ned as the prob-

ability of a positive test (T+) in a diseased person 

(D+), that is (3):

Se = 
TP

TP + FN

The test speci�city (Sp) is de�ned as the likelihood 

of a negative test (T–) in a person without the dis-

ease (D–), that is (3):
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Sp = 
TN

TN + FP

Therefore, a sensitive test has a low FN rate – a 

negative result (T–) is very likely TN. Therefore, a 

sensitive test can be used to rule out a disease 

condition. Similarly, having a low FP rate, a speci�c 

test can be used to rule in a disease.

In a test with continuous (or multiple) results, eve-

ry possible test value can be considered a cut-o� 

point. This cut-o� value determines the test Se 

and Sp. However, for a given test, we cannot in-

crease the Se and Sp concomitantly; Se will be en-

hanced at the expense of Sp and vice versa. De-

creasing the cut-o� value to increase the test Se 

causes the Sp to decrease. If you want to have a 

more speci�c test (by increasing the cut-o� value), 

you will have a less sensitive test.

Receiver Operating Characteristic (ROC) 

curve analysis

One of the most commonly used methods to ana-
lyze the e�ectiveness of a diagnostic test is receiv-
er operating characteristic (ROC) curve analysis (4-
6). Use of this method dates back to World War II 
when the ability of radar operators (receivers) was 
tested to determine whether a blip on the radar 
screen represented an object (signal, a TP result) 
or noise (a FP result), hence, the name (7). Several 
years later, the method was found useful in many 
other scienti�c disciplines including diagnostic 
medicine where a physician should discriminate a 
TP from a FP test result. The ROC curve o�ers a 
graphical illustration of the above-mentioned 
trade-o� between a test Se and Sp and depicts TP 
rate (Se) against FP rate (1 - Sp) for each cut-o� val-
ue (7).

The general structure of a ROC curve is simple. The 
curve is con�ned in a unit square (Figure 1). The 
left-lower corner (Se = 0, Sp = 1) corresponds to 
the highest possible test cut-o� value. As the cut-
o� value decreases, the test Se increases and Sp 
decreases, moving on the curve from the left-low-
er corner up and to the right to ultimately reach 
the right-upper corner of the square where Se = 1 
and Sp = 0, corresponding to the lowest possible 

test cut-o� value. In theory, we can think of a con-
tinuous curve with in�nite number of points. How-
ever, in real world, a ROC curve is constructed 
based on a few discrete points. Although we can 
connect these points using various methods (line 
segments, spline, curve �tting, etc.), the curve is 
not di�erentiable and thus, in practice it is not 
possible to determine the exact slope at any point. 

In a perfect test, both Se and Sp are equal to 1. The 
ROC curve corresponding to a perfect (i.e. the 
gold-standard) test is a line segment connecting 
the left-lower corner to the left-upper corner and 
to the right-upper corner (a curve coinciding with 
the left and top sides) of the unit square (8). On the 
other hand, the ROC curve corresponding to a test 
with no diagnostic value is the line segment con-
necting the lower-left corner to the right-upper 
corner – the 45° diagonal line (Figure 1). In prac-
tice, the curve lies somewhere between these two 
extremes. The area under the ROC curve (AUC) 
varies between 0.5 (for the 45° diagonal line repre-
senting an uninformative test) and 1.0 for a perfect 
test. 

The AUC can be considered an index of discrimi-
nating ability of a test (1,8). Mathematically, the 
area is equivalent to the probability that the test 
result measured in a randomly selected D+ person 
is higher than that measured in a D– person (7). A 
test with an AUC of 0.5 is equivalent to tossing a 
coin – an uninformative test. AUC is particularly 
useful when two or more diagnostic tests are com-
pared. Having a higher AUC, a test with a ROC 
curve that lies completely above another curve, is 
clearly a better one (Figure 1). The methods for the 
calculation of the AUC are mainly based on a non-
parametric statistical test, the Wilcoxon rank-sum 
test, proposed by DeLong et al. and Hanley et al. 
(8-10). The proposed methods can be used to test 
if the AUC of a curve is signi�cantly higher than 0.5 
(the AUC of an uninformative test), or to compare 
AUCs of two or more tests.

Criteria for selecting the most 

appropriate cut-o� value

Choosing an appropriate cut-o� value is of para-

mount importance in using a test e�ectively. Sev-
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eral criteria, mostly based on ROC analysis, have so 

far been proposed for choosing the most appro-

priate cut-o� value (2,5,11-13). Each point on a ROC 

curve corresponds to a cut-o� value and is associ-

ated with a test Se and Sp. Locating the cut-o� 

point thus requires a compromise between Se and 

Sp. In some cases, Se is more important than Sp, 

for example when a disease is highly infectious or 

associated with serious complications. On the oth-

er hand, in certain circumstances, Sp may be pre-

ferred over Se, say when the subsequent diagnos-

tic testing is risky or costly (2). If there is no prefer-

ence between Se and Sp, nonetheless, a reasona-

ble approach would be to maximize both indices.

The lowest cut-o� value corresponds to a Se = 1 

and Sp = 0. As the cut-o� value increases, the test 

Se decreases and the test Sp increases until a cut-

o� value corresponding to a test Se = 0 and Sp = 1. 

Over this interval, there is a cut-o� value where 

the test Se is equivalent to the test Sp. One of the 

frequently used criterion for determination of the 

test cut-o� value is the one corresponding to this 

particular point, where Se = Sp. This point is math-

ematically the intersection of the line connecting 

the left-upper corner and the right-lower corner of 

the unit square (the line Se = Sp), and the ROC 

curve (Figure 1). This point of the curve is where 

the product of these two indices (Se x Sp) is maxi-

mum – the area of the shaded rectangle in Figure 

1 is maximum when its sides (Se and Sp) are equal, 

a square.

Another approach to maximize both Se and Sp 

would be to maximize their summation (Se + Sp). 

At this point, the Youden’s index (Se + Sp – 1) is 

also maximum (11,14-16). This is a commonly used 

technique to determine the most appropriate cut-

o� value and corresponds to a point on the ROC 

curve with the highest vertical distance from the 

45° diagonal line (the ROC of an uninformative 

test). At this point, the di�erence between the test 

TP rate (Se) and FP rate (1 – Sp) is maximum too 

(15).

The ROC of a perfect test passes through the left-

upper corner of the unit square, the point where 

both Se and Sp are equal to 1 (a perfect test; the 

gold-standard). The closer a curve to this point, 

the better is a test. No surprise, another common 

criterion for choosing the most appropriate cut-o� 

value is selecting the point on the ROC curve with 

the minimum distance from the left-upper corner 

of the unit square (8,15,16).

Although the aforementioned criteria are based 

on various assumptions and their usefulness is 

merely dependent on the validity of the presump-

tions made in the practical setting, some research-

ers prefer one method to another. For example, 

Perkins and Schisterman recommend the use of 

the Youden’s index and warn about the use of the 

point with the minimum distance from the left-up-

per corner (16). Nonetheless, selection of the crite-

rion to be used should be based on the situation 

the test to be applied and the importance of the 

test Se compared to Sp. For example in designing 

a screening test, we need a high enough Se, say 

0.8 or more, to reduce the FN rate. Otherwise, 

many diseased persons will be missed.

FIGURE 1. The general structure of a ROC curve. The curve 

(dashed line) which lies completely above another curve (solid 

line), is clearly a better test because it has a higher area under 

the curve. Having the left-upper corner moving on ROC curve 

(solid line), the area of the shaded rectangular region is maxi-

mum when its sides (Se and Sp) are equal. Se – sensitivity. Sp 

– speci�city.
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All these methods are simple to use. However, in 

all of the above-mentioned methods, we inclu-

sively assume that there is no di�erence between 

a FN and FP result. Neither do we consider the pri-

or probability of the disease in question. Taking 

into account these variables, expectedly, makes 

the equations more complex (and hopefully more 

precise). This leads us to a related topic – the 

Bayesian decision analysis (17).

Bayesian approach in determining the 

cut-o� value

Using a Bayesian approach, the odds of a disease 

before and after a diagnostic test can generally be 

related as follows:

Post-test odds of D+ = Pre-test 

odds of D+ x Bayes factor,

where “Bayes factor” can be derived based on our 

assumptions. The Bayesian approach provides us 

with the information about how a test result 

would change the odds (and thus probability) of a 

disease (18).

The Bayes factor can be determined in various 

ways. For example, if we maximize the patient’s 

expected utility for determination of the Bayes 

factor in the above equation, we come up to a 

condition suggesting that the most appropriate 

cut-o� value corresponds to a point on the ROC 

curve where the slope of the tangent line to the 

curve satis�es the following equation (2,5):

Slope of ROC curve = 
H

B

1– pr

pr
×

where pr represents the pre-test (prior) probability 

of the disease, H is the net harms of treating peo-

ple who do not have the disease (the harms of a FP 

result), and B the net bene�t of treating those with 

the disease (in other words, the harms of a FN re-

sult).

The costs associated with harms of a FN and FP 

test result (B and H, respectively) and medical mis-

diagnosis have been the subject of growing num-

ber of articles (19). The Institute of Medicine (IOM), 

an American non-pro�t, non-governmental or-

ganization, reports that about 30% of health care 

costs spending in the US, around US$ 750 billion, is 

wasted on unnecessary services (20). In these 

types of analysis, a decision tree is constructed 

based on the available treatment options, and cur-

rent evidence about risks and bene�ts associated 

with each option (2,21). Based on this structure, we 

can then estimate the cost-e�ectiveness and ben-

e�t-risk of making each decision and thus the 

probable outcome and harms associated with FN 

and FP results (21-23). Treatment protocols and 

screening programs are mainly shaped based on 

the results of such studies (24,25).

A limitation of Equation 1 is however that although 

it ascertains the slope at the most appropriate 

point, the point cannot always be easily located. In 

practice, as mentioned above, a ROC curve is con-

structed based only on a few discrete (non-di�er-

entiable) points (it is really not a continuous curve), 

and thereby �nding the point with the given slope 

on the curve is generally di�cult, if not impossible; 

we arrive to an approximation at best. Although 

theoretically correct, the method is not quite 

handy. It would therefore be feasible if we can �g-

ure out the coordination (instead of the slope) of 

the point on a ROC curve corresponding to the 

most appropriate cut-o� value through an analyti-

cal method.

Analytical method for the calculation of 

the test cut-o� value

Previously, we proposed a test index, the so-called 

“Number Needed to Misdiagnose” (NNM) (26), 

which is the number of patients who need to be 

tested in order for one to be misdiagnosed by the 

test, as follows:

NNM = 
1

FN + FP

 = 
1

pr(1 – Se) + (1 – pr)(1– Sp)

where pr represents the pre-test probability of the 

disease. For example, a NNM of 20 for a test means 

that one out of 20 people tested is misdiagnosed 

(either FP or FN). The higher the NNM of a test, the 

(Equation 1)
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closer is the test to the gold-standard, hence, a 

better test.

To determine the most appropriate cut-o� value 

we can try to maximize the NNM. In the calcula-

tion of the NNM, however, the cost of FN and FP 

results are assumed equal. The cost of making a 

wrong diagnosis (either FP or FN) is nonetheless 

di�erent in general. Note that here, the “cost” is re-

ferred to all costs incurred – the �nancial cost, time 

wasted on inappropriate treatments, missing the 

opportunity to cure a diseased person with conse-

quences (complications, morbidities, disabilities, 

mortalities, etc.), and harms of treating people 

without disease with subsequent emotional harms 

to the patient, experiencing drug side e�ects, le-

gal issues, etc (27,28). To consider this issue, we can 

assume that the cost of a FN result (misdiagnosing 

a D+ person as D–) is C times the cost of a FP one 

(diagnosing a D– person as D+) and de�ne “weight-

ed NNM” as follows:

Weighted NNM = 
1

C × FN + FP

 = 
1

C × pr(1 – Se) + (1 – pr)(1– Sp)

For example, if C = 5, then a FN result would cause 

�ve times more costs than a FP one; C = 1 means 

that costs for FN and FP results are equal. Then, to 

�nd the most appropriate cut-o� value, we can 

maximize the weighted NNM – to take into ac-

count both closeness of the test results to the 

gold-standard results, and the costs of a misdiag-

nosis (either FP or FN).

To �nd an analytical solution for the problem, let 

f(x) and g(x) designate the probability density 

function of a hypothetical diagnostic test with 

continuous results for D+ and D– population (Fig-

ure 2), respectively. Let the mean and standard de-

viation (SD) of the distribution be 0, and 1 for D– 

people, and d and s for D+ population, respective-

ly. As it was mentioned earlier, Se and Sp are func-

tions of the cut-o� value. For a cut-o� value of x, 

Se and Sp can be calculated as follows:

Se(x) =  ∫ f(t) dt

+∞

x
 

Sp(x) =  ∫g(t) dt
–∞

x

To maximize the weighted NNM (Equation 2), the 

denominator of the equation, should be mini-

mized. Using basic calculus, to do so, the following 

equation should be solved:

 =  = 
∂Se

∂x

1
∂

∂x

∂Sp

∂x
–C × pr – (1 – pr) 0

Weighted NNM

FIGURE 2. The probability density functions of a continuous di-

agnostic test for diseased (f(x), red dashed line) and non-dis-

eased (g(x), blue solid line) persons. g(x) has a mean of 0 and 

a standard deviation of 1; f(x) has a mean of d and a standard 

deviation of s. The cut-o� value is represented by the vertical 

dotted line. All test values equal or greater than this value are 

considered positive (T+), else they are considered negative (T–). 

Because f(x) and g(x) are probability density functions, the area 

under the curve for each of them is equal to one. The area un-

der f(x) to the right of the cut-o� value (the pink region) is Se, 

and the area under g(x) to the left of the cut-o� value (the light 

blue region) is Sp. This �gure is drawn based on the �rst data 

set (N = 400) presented in the text. There are two x axes: the up-

per axis indicates serum osmolarity of the studied people; the 

lower axis represents the corresponding standardized values.
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(Equation 2)

(Equation 3)

(Equation 4)

(Equation 5)

and
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From Equations 3 and 4, we have: 

 = 
∂Se

∂x

 ∫  f(t) dt –  ∫  f(t) dt

+∞

x

x

+∞

lim
x+∆x

∆x→0 ∆x
= – f(x)

 = 
∂Sp

∂x

 ∫  g(t) dt –  ∫  g(t) dt
lim

x+∆x

–∞ –∞

∆x→0 ∆x
= g(x)

 

The minus sign before f(x) is because Se is a de-

creasing function of x; Sp is increasing. Then, Equa-

tion 5 becomes:

C × pr × f(x) – (1 – pr) g(x) = 0

For simplicity, let g(x) has a normal distribution. 

Considering its mean and SD are 0 and 1, respec-

tively, we have (29):

g(x) =
1

√2π
e

–x2

2

Let f(x) also has a normal distribution and taking 

into account its mean, and SD are d, and s, we have 

(29):

f(x) =
1

s√2π
e

–(x – d)2

2s
2

Solving Equation 7 for x:

C × pr

s√2π
e

–(x – d)2

2s
2

2– = 0
1– pr

√2π
e

–x2

gives:

C × pr
2(s2 – 1) Ln 

s(1 – pr)
+ d2– d

x = 
s2 – 1

s

if s≠1. If s=1, then x becomes: 

C × pr
Ln 

(1 – pr)

x =          + 
d

2 d

This value corresponds to the most appropriate 

test cut-o� value.

Generality of the analytical method

Many of the aforementioned commonly used 

techniques in ROC analysis can be considered spe-

cial cases of the proposed analytical method 

(Equations 8 and 9). As an example, if we assume 

the pre-test probability (pr) is 0.5, if FN and FP 

costs are equal (C = 1), and if the dispersions (SDs) 

of the test values for diseased and non-diseased 

people are equal (s = 1), then the cut-o� value pre-

dicted by the proposed analytical method (Equa-

tion 9 which assumes s = 1), reduces to:

x =    
d

2

the value that is obtained from one of the most 

commonly used approaches to ROC analysis, i.e., a 

point where Se = Sp.

It can also be shown that the optimum cut-o� 

point derived from the proposed analytical meth-

od (Equation 8) has exactly the slope calculated by 

Equation 1. Using Equation 6, and substituting val-

ues for f(x) and g(x), the slope of ROC curve is:

∂Se

∂Sp

f(x)

g(x)

∂Se

∂ (1 – Sp)

1

s

Slope of ROC curve = 

= 

= =

e
[–(x – d)2 – s2 x2] 

2s
2

–

Substituting x from Equation 8 (the coordination 

of the derived cut-o� point) in the above equation 

yields:

1 – pr

pr

1

C
Slope of ROC curve = ×

But, 1/C is the cost of a FP result divided by the 

cost of a FN result, and equals H/B (Equation 1). 

Therefore, these two methods are technically 

equivalent. This means that maximizing either pa-

tient’s expected utility or weighted NNM results in 

the same cut-o� value.

(Equation 6)

(Equation 7)

(Equation 8)

(Equation 9)
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The advantage of the proposed analytical method 

(Equation 8) over Equation 1, is however, its ease of 

use: although �nding the point on a ROC curve is 

generally not possible and accurate solely based 

on the slope of the point (Figure 3), calculation of 

the cut-o� value by the proposed analytical meth-

od (Equations 8 and 9) is straight forward – you 

just need to know the test result means in dis-

eased and non-diseased, SDs, pre-test probability 

of the disease (an estimate of the disease preva-

lence, if no other information is available), and an 

estimate of the costs of FN and FP test results 

(Equation 1 also needs the last two variables).

Example

To compare the results obtained from di�erent 

methods for the derivation of the most appropri-

ate test cut-o� value, we used the data set provid-

ed by Hooper et al., who studied the diagnostic ac-

curacy of calculated serum osmolarity to predict 

dehydration in people aged 65 years or more (30). 

They used the directly measured serum/plasma 

osmolality of 595 participants to determine if they 

had dehydration (serum/plasma osmolality > 300 

mOsm/kg) or not (considered the gold-standard 

test). They then calculated serum osmolarity for 

each participant based on their serum sodium, po-

tassium, glucose, and urea by an equation and 

used the calculated value as the test result. The 

calculated serum osmolarity was rounded o� to 

the nearest integer value (31). Then, for each cut-

o� value, the test was compared against the gold-

standard test result. The prevalence of dehydra-

tion among the studied population was consid-

ered 0.19 (30). Hooper et al. also estimated that the 

cost of a FN result (missing a dehydrated person 

and its health consequences) was �ve times the 

cost of a FP result (labelling a person as dehydrat-

ed, when he or she is actually not, resulting in a 

more blood test to directly measure serum osmo-

lality or encouraging them to drink more) (30).

We randomly divided the data set into a 400-per-

son and 195-person subsets. The groups sizes 

were arbitrary chosen. The �rst data set was used 

to calculate the cut-o� values using the above-

mentioned techniques. The second data set was 

used to test the e�ectiveness of each method to 

classify the participants. SPSS® for Windows®, ver. 

17 (SPSS Inc, Chicago, IL, USA), was used for divid-

ing the data at random into the two subsets, and 

data analyses including ROC analysis.

Table 1 shows cut-o� values derived by each of 

the previously described criteria. Theoretically, the 

intersection of the ROC curve (red solid line) and 

the line Se = Sp (Figure 3) corresponds to the point 

where Se = Sp. However, there is no point in our 

data set satisfying this equation and the closest 

point is where Se and Sp are 0.718 and 0.767, re-

spectively, corresponding to a serum osmolarity 

cut-o� value of 298 mOsm/L. This point also has 

the minimum distance from the left-upper corner 

of the unit square (Figure 3, Table 1). A cut-o� val-

ue of 299 mOsm/L maximizes the Youden’s index 

(Figure 3, Table 1).

FIGURE 3. The ROC curve constructed based on the �rst data set 

(N = 400) presented in the text: the real data set are present-

ed as red solid curve; the values predicted from the proposed 

mathematical model are presented as the blue dashed curve. 

The arrows indicate points corresponding to cut-o� values de-

rived by various methods (Table 1). The green dashed line is the 

tangent line with a slope of 0.853. Note that the tangent line in-

tersects the ROC curve at two points. Se – sensitivity. Sp – speci-

�city.
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Because there was no other information about the 

participants, the best estimate for the pre-test 

probability was the prevalence of dehydration, 

0.19. Based on Equation 1, the slope of the tangent 

line to the ROC curve at the most appropriate cut-

o� point is 0.853 (Figure 3, green dashed line), pre-

suming that H/B equals to 1/5, i.e., the costs of 

harms of a FN result is �ve times the harms of a FP 

result (30). However, because of the discrete (non-

di�erentiable) data set, we could not �nd the cor-

responding point solely based on knowing its 

slope (without curve �tting). To �gure out the 

point of interest according to an instruction de-

scribed previously (4), we passed a line with the 

slope through the left-upper corner of the unit 

square and moved it toward the ROC curve (red 

solid line) until it �rst intersected the curve. How-

ever, the line intersected the curve at two points 

(Figure 3); practically, it was very hard to locate the 

point of interest visually with enough accuracy.

The mean serum osmolarity (the test) in the �rst 

group (N = 400) was 292.3 (SD 8.2) mOsm/L in 322 

participants without dehydration (D–), and 302.2 

(SD 8.0) mOsm/L in 78 patients with dehydration 

(D+). Using the analytical method we proposed 

(Equation 8), we have:

d = 
302.2 – 292.3

8.2
= 1.21 and s = 

8.0

8.2
= 0.98

Assuming that the pre-test probability (an esti-

mate of the prevalence of dehydration) is 0.19, if 

the cost of a FN result is �ve times the cost of a FP 

result (C = 5), Equation 8 yields x = 0.463 corre-

sponding to a cut-o� value of 296.1 (292.3 + 0.463 

x 8.2) mOsm/L for the serum osmolarity that cor-

responds to a Se of 0.777 and a Sp of 0.678 (Figure 

3, dashed blue curve). Based on the calculation, 

the closest available cut-o� value in our data set is 

297 mOsm/L, corresponding to a test Se of 0.795 

and a Sp of 0.693 (Table 1). This is where weighted 

NNM is also maximum (Figure 3, Table 1). 

Let the cost of labelling a person as dehydrated, 

when he or she is actually not, (FP result) be ap-

proximately US$ 100 (more blood test to directly 

measure serum osmolality, encouraging them to 

drink more, waste of time), and the cost of missing 

a dehydrated person and its health consequences 

be about US$ 500. If we use the above-mentioned 

cut-o� values to test the second data set (N = 195) 

and calculate the costs incurred by FN or FP test 

results as cost of FN plus cost of FP, the cut-o� val-

ue obtained by the analytical method and maxi-

mizing the weighted NNM (which in this case are 

the same) is associated with lower costs compared 

to other methods (Table 1).

Conclusions

The proposed analytical method gives a cut-o� 

value that depends on the pre-test probability of 

the disease of interest. In the absence of any previ-

ous information or test results in a person, the pre-

Criterion
Cut-o� value 

(mOsm/L)
Se Sp

Cost of misdiagnosis 

(US$) in the second data 

set (N = 195)

Se = Sp 298 0.718 0.767 10,500

Maximum Youden’s index 299 0.667 0.845 11,300

Minimum distance from the left-upper corner of the 

unit square
298 0.718 0.767 10,500

Slope of the ROC curve (slope = 0.853, C = 5) ?* ?* ?* ?*

Analytical method (C = 5) 297 0.795 0.693 9800

Maximum weighted NNM (C = 5) 297 0.795 0.693 9800

*Cannot be located accurately (see the tangent line in Figure 3).

TABLE 1. Test cut-o� values calculated based on the �rst group data set using di�erent criteria
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test probability can be estimated as the preva-

lence of the disease of interest. According to the 

proposed method, the cut-o� value is higher in 

places where the disease is less prevalent.

Taking the pre-test probability (or prevalence) of 

the disease of interest into account would result in 

major clinical implications. The appropriate cut-o� 

point depends on the place where the test is go-

ing to be used. For example, considering Equation 

8, the cut-o� value for serum osmolarity for the di-

agnosis of dehydration in a tropical region, where 

the prevalence of the disease is high, should be 

lower (a more sensitive test) than that in a cold re-

gion, where the prevalence of dehydration is low-

er – we need a more sensitive test to diagnose de-

hydration in an endemic area. Even in a given 

place, the appropriate cut-o� value depends on 

the group of people who need to be tested. For 

example, the cut-o� value for a group of athletes 

exercising (higher risk/prevalence of dehydration) 

should be lower than that in general population.

The cut-o� value is also di�erent for the diagnosis 

of diseases with di�erent prevalence rates in a re-

gion. As an example, if in a region the prevalence 

of dehydration is di�erent from the prevalence of 

diabetes insipidus, if we want to use serum osmo-

larity as a diagnostic test, we need to set two dif-

ferent cut-o� values for the diagnosis of these two 

conditions. This �nding supports the importance 

of the recommendations of the Clinical and Labo-

ratory Standards Institute (CLSI) and the Interna-

tional Federation of Clinical Chemistry (IFCC) C28-

A3 guideline published in 2008, stating that the 

reference intervals for laboratory analyses should 

be validated locally, using specimens taken from 

healthy local people (32,33). Reference intervals 

are di�erent from clinical decision limits; while the 

former is based on the test results in the normal 

population, the latter is a cut-o� value derived 

from one of the above-mentioned methods and is 

based on test results distribution in both the nor-

mal and diseased population (32). Equations 8 and 

9 clearly describe this association.

Employing a Bayesian approach, the post-test 

(posterior) probability of a disease depends on the 

pre-test probability of the disease and the test re-

sult. The post-test probability of a disease after the 

patient is tested can however be considered the 

pre-test probability of the next test to be done. 

Based on what has been presented, the cut-o� val-

ue of the second test should be di�erent for two 

patients suspicious for the same disease but hav-

ing di�erent results on their �rst test, hence di�er-

ent post-test probabilities.

In our analytical method to derive Equations 8 and 

9, we assumed the test results followed a normal 

distribution for D+ and D– persons. This assump-

tion, though supported by extensive data from 

psychophysical and medical studies (9), may not 

be true in general. Nevertheless, we have shown 

that the analytical method proposed, which is 

based on maximizing the weighted NNM, is math-

ematically equivalent to Equation 1, the derivation 

of which is based on maximizing the patient’s ex-

pected utility (2,5). As maximizing either of pa-

tient’s expected utility or the weighted NNM 

would result in the same result, it seems that maxi-

mizing the weighted NNM (Equation 2) is the best 

available method for determination of the most 

appropriate test cut-o� value. This can easily be 

done by having an estimation of the pre-test prob-

ability of the disease, the relative cost of a FN to FP 

test result (C), and Se and Sp values for each cut-

o� point, which are readily available in most statis-

tical software output. Using the weighted NNM 

mentioned above also abolishes the presumption 

of normal distribution of test values in diseased 

and non-diseased people.

Only by taking the pre-test probability (preva-

lence, in lack of other information) of the disease 

of interest in the study population into account, 

and considering the cost (not just �nancial) of FN 

and FP results, we can �nd the most appropriate 

cut-o� value for a diagnostic test. All these make it 

imperative to study more on the prevalence (as an 

estimate of the pre-test probability in lack of any 

information) and the cost of FN and FP test results 

in various populations. Besides the specimen to be 

analyzed, future autoanalyzers need to be fed 

with an estimate of pre-test probability (based on 

the previous test results), the disease of interest, 

and the associated cost of misdiagnosis. They are 
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also equipped with a global positioning system so 

that they can retrieve important relevant data 

(e.g., prevalence of a disease) to determine if a test 

is positive or not for a certain disease.
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