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Abstract. This paper describes a Bayesian approach to determining the order of a finite state Markov chain whose transition

probabilities are themselves governed by a homogeneous finite state Markov chain. It extends previous work on homogeneous

Markov chains to more general and applicable hidden Markov models. The method we describe uses a Markov chain Monte

Carlo algorithm to obtain samples from the (posterior) distribution for both the order of Markov dependence in the observed

sequence and the other governing model parameters. These samples allow coherent inferences to be made straightforwardly in

contrast to those which use information criteria. The methods are illustrated by their application to both simulated and real data

sets.

1. Introduction

Markov chains are commonly used as models for

data which are observed in discrete time and have a

discrete and finite state space. Their application to time

series data is widespread, ranging from the analysis of

sequences of daily rainfall at a particular location to

studying patterns of bases in a deoxyribonucleic acid

(DNA) sequence. These data can be described using

either a qth order Markov chain with state space Y or

(equivalently) when q > 1, a first order Markov chain

with a larger state spaceYq and a constrained transition

structure. However, in most practical situations the

parameter q is not known, and this leads to fundamental

difficulties in making inferences from the data under

either model description.

The problem of estimating the order of dependence

of a homogeneous Markov chain has a long history

dating back to methods based on likelihood ratio tests
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described by [3,19]. This work was followed by con-

tributions describing procedures based on information

(penalized likelihood) criteria such as the AIC [30]

and the BIC [21]. Much more recently, a proce-

dure which uses a Bayesian approach to determine the

posterior distribution for the order of dependence has

been described in [14]. They also show that their

method performs favourably when compared to those

which use information criteria. In this paper we gen-

eralise their method to one which determines the or-

der of dependence in a heterogeneous Markov chain

Y = (Y1, Y2, . . . , Yn) which follows a hidden Markov

model (HMM). These models are characterised by r
homogeneous Markov chains together with an addi-

tional first order homogeneous r-state hidden Markov

chain S = (S1, S2, . . . , Sn). The hidden chain de-

scribes which of the r chains governs the evolution of

the observed process at any particular time. HMMs

have proved to be very flexible models for describing

heterogeneity in time series data and have been applied

to a wide variety of problems; [9] provides a compre-

hensive list of references. For more background on

ISSN 1058-9244/02/$8.00  2002 – IOS Press. All rights reserved



242 R.J. Boys and D.A. Henderson / On determining the order of Markov dependence of an observed process

HMMs see, for example, [26] and [22]. Note that some
authors, for example, [6], refer to these models as dou-
ble chain Markov models (DCMMs).

We shall assume that each of the r homogeneous
Markov chains has order q (� 0), that is, the probability
of the current observationYt depends only on the previ-
ous q observations Yt−q, . . . , Yt−1. Also, we shall as-
sume that each chain has state spaceY = {1, 2, . . . , b}.
Thus the inferential problem is to determine values for
q and the other model parameters which are consis-
tent with the data. The key quantities we require for
a Bayesian analysis of this problem are the posterior
(model) probabilities of q. These describe in simple
terms how likely are different values of q in light of
the data. Alternatively (and equivalently) we could cal-
culate Bayes factors as is commonplace in Bayesian
model choice problems; see [20].

A method for determining the order of dependence
in homogeneous sequences (r = 1) has been provided
by [14]. Their approach is particularly appealing as it
is fairly straightforward to use. Moreover, the ease of
their approach is a direct consequence of their choice
of prior distribution for the transition probabilities gov-
erning the evolution of the underlying process; we will
return to this point later. Their method can be easily
extended to the more general HMM context (r > 1) if
the configuration of hidden states s is known. In par-
ticular, formulae for posterior model probabilities (and
thus Bayes factors) are available analytically. How-
ever, a fundamental drawback of using HMMs is that
the configuration s is unknown and has to be deter-
mined from the observed data y. This complication
precludes a fully analytic treatment of the model and so
we resort to computer intensive Markov chain Monte
Carlo (MCMC) methods. These methods involve gen-
erating samples from a Markov chain which has been
constructed so that its stationary distribution is the (pos-
terior) distribution of interest. The resultant dependent
samples can be used to approximate posterior quantities
of model parameters such as the configurations and the
order of dependence q; see [8] for an overview. These
methods also ensure that inferences take due account
of uncertainty surrounding the correct configuration, in
contrast to many plug-in methods [13].

In many scenarios the number of different hidden
states r in the HMM will be unknown a priori. How-
ever, for ease of explanation, we restrict our attention to
the case where r is known. It is possible to extend the
methods described in this paper to also include estima-
tion of r but this would require the use of methods such
as those described in [28] which are based on reversible
jump MCMC.

The remainder of the paper is organised as follows.

The HMM is described in Section 2, followed by details

of our Bayesian approach to inference in Section 3.

Section 4 outlines an implementation of our MCMC

algorithm on both a simulated and a real data set. The

paper concludes in Section 5 with a discussion.

2. Model description

We shall assume that the observed data y =
(y1, y2, . . . , yn) are a realisation of a hidden Markov

model with observation equations

r(Yt|Y1:t−1, S1:t)

= r(Yt = j|Yt−q = yt−q, . . . , Yt−1

= yt−1, St = k)

= ρ
(k)
yt−q:t−1,j , yt−q, . . . , yt−1, j ∈ Y, k ∈ S,

and state equations

r(St|S1:t−1) = r(St = j|St−1 = i) = λij ,

i, j ∈ S

for t = q + 1, q + 2, . . . , n, where the notation xi:j

denotes the sequence xi, xi+1, . . . , xj . Note that we

have assumed, as is common practice, that the hid-

den process S follows a first order homogeneous

Markov chain. We shall denote its state space by S =
{1, 2, . . . , r} and its transition matrix by Λ = (λij),
where each row λi ∈ Sr = {(x1, x2, . . . , xr);xj >
0 ∀ j,

∑r

j=1 xj = 1}, the r-dimensional simplex. Al-

though the order of dependence q is unknown, we shall

assume that it can take values in Q = {0, 1, . . . , qmax},

where qmax � 1.

The layout of the qth order transition matrices with

elements ρ
(k)
yt−q:t−1,j is problematic to work with com-

putationally since each increase in order requires an

extra dimension in an array. However, we can over-

come this problem by reshaping each matrix into its

reduced form [25]. Here, for each k, the reduced form

bq × b matrix P (k) consists of elements p
(k)
ij where

i ∈ Yq = {1, 2, . . . , bq} indexes the rows of the matrix

and j ∈ Y indexes the columns. The elements of the re-

shaped matrix corresponding to transition probabilities

ρ
(k)
yt−q:t−1,j can be found on row

i = I(y, t, q, b)

≡ 1 +

q∑

ℓ=1

(yt−ℓ − 1)bℓ−1.
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In computational terms, this solution results in the

algorithm working with fixed (two) dimensional arrays.

Thus, each reshaped matrix P (k) has rows p
(k)
i ∈ Sb

and we denote the collection of these transition matrices

by P = {P (1), . . . , P (r)}.

For convenience in the following derivation, we de-

note the set of unknown hidden and observed state tran-

sition matrices by θ = {Λ,P} ∈ Sr
r ×Srbq

b , where the

space Sx
r denotes the product of x simplices, each one

r-dimensional.

3. Bayesian inference

The aim of the analysis is to make inferences about

the unknown quantities in the model: the order of de-

pendence q, the model transition parameters θ and the

hidden states s. We shall adopt a Bayesian approach

to inference [24], and begin by quantifying our un-

certainty about these unknowns (before observing the

data) through a prior distribution.

3.1. Prior specification

We shall assume that our prior distribution takes the

form

π(q,θ) = π(q)π(θ|q) = π(q)π(Λ)π(P|q).

The discrete probability distribution π(q) defined on

Q describes our prior uncertainty surrounding the value

of q. For example, without strong prior beliefs as to

likely values, we might take π(q) to be a discrete uni-

form distribution. Alternatively, if this uniform struc-

ture were thought inappropriate, for example, because

larger values of q were believed to be relatively un-

likely, then a truncated Poisson or geometric distribu-

tion might be appropriate choices.

The components of θ are all defined on simplices

and therefore there are many choices of priors which

could be made. One rich family of distributions is pro-

vided by Aitchison’s A–distribution [2] which has the

logistic normal and the Dirichlet distributions as special

(limiting) cases. In this paper we shall adopt the same

choice as [14] which was fundamental to the simplic-

ity of their method, namely, the Dirichlet distribution:

X = (X1, X2, . . . , Xr) ∼ D (α) if it has density

π(x) = Γ

(
r∑

i=1

αi

)
r∏

i=1

xαi−1
i

Γ (αi)
,

x ∈ Sr,

where Γ(·) is the gamma function [1]. Specifically, we

take independent Dirichlet distributions for the rows of

each P (k) and Λ, that is

p
(k)
i =

(
p
(k)
ij

)
∼ D

(
c
(k)
i

)
, i ∈ Yq , j ∈ Y,

k ∈ S,

λi = (λij) ∼ D(di), i, j ∈ S.

The Dirichlet parameters c and d should be chosen

to reflect the goal of the analysis. In this case, we

have little knowledge about the transition structures in

the data and so the exchangeable weak specification

c
(k)
i = (1, 1, . . . , 1) may be appropriate. The choice

of parameters for the transition structure of the hid-

den chain is more complex. Usually, this is taken to

be an off-diagonal exchangeable pattern of the form

(di)j = αδij + β(1 − δij) for some choice of α and

β, where δij is Kronecker’s delta. These parameters

are usually chosen to ensure a given prior mean and

standard deviation for the length of runs of each state

in the hidden chain, that is, for (1 − λkk)−1; for more

details, see [7].

3.2. Likelihood

For this model, the complete-data likelihood is de-

termined as the probability of both the observed and the

unobserved data (hidden states) given the parameters,

and is given by

π(y, s|q,θ) ∝
∏

t

ρ(st)
yt−q:t

λst−1st

(1)

=
∏

i∈Yq

∏

j∈Y

∏

k∈S

(
p
(k)
ij

)n
(k)
ij

∏

i∈S

∏

j∈S

λ
mij

ij ,

where

n
(k)
ij =

∑

t

I (I(y, t, q, b) = i, yt = j, st = k)

and mij =
∑

t

I(st−1 = i, st = j)

denote the observed transition counts and I(x) is the

usual indicator function which equals 1 ifx is true and 0

otherwise. Throughout this paper we perform inference

conditional on the first qmax observations. This sim-

plifies the solution by removing the need for marginal

models to describe the evolution at the beginning of the

sequence. Consequently, the range of values for t in

the above expressions is t = qmax + 1, . . . , n.
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3.3. Posterior inference

In the Bayesian paradigm, inferences are based on

the posterior distribution

π(q,θ, s|y) =
π(q,θ, s,y)

π(y)

∝ π(q,θ)π(y, s|q,θ),

and this distribution calibrates our uncertainties about

the unknown parameters after observing the data. Al-

though this distribution is highly structured, it does

not permit a straightforward analysis. However, the

posterior distribution conditional on the hidden states

s is much more amenable to analysis. It can be fac-

torised into two component distributions π(θ|q, s,y)
and π(q|s,y), and these distributions can be obtained

as follows.

The posterior distribution for θ given s and q is

easily obtained as the Dirichlet structure of the prior

distribution is conjugate to the multinomial form of the

likelihood (Eq. (1)). Using Bayes’ Theorem, it can be

shown that this posterior distribution has independent

components

p
(k)
i |q, s,y ∼ D

(
c
(k)
i + n

(k)
i

)
,

i ∈ Yq; k ∈ S (2)

λi|q, s,y ∼ D(di + mi), i ∈ S, (3)

where n
(k)
i =

(
n

(k)
ij

)
and mi = (mij).

Inferences about the order of Markov dependence q
are based on the posterior distribution of q given s

π(q|s,y) =
π(q)π(y|q, s)

π(y|s)
(4)

=
π(q)π(y|q, s)∑

q∈Q

π(q)π(y|q, s)
.

In general, computation of the marginal likelihood

π(y|q, s) can be problematic and often is intractable in

Bayesian model choice problems such as this. How-

ever, the conjugate choice of prior distribution for P
allows us to determine the marginal likelihood using a

simple rearrangement of Bayes’ Theorem:

π(y|q, s) =
π(P|q, s)π(y|P , q, s)

π(P|q, s,y)
.

Substituting the constituent parts produces an exact

expression for the marginal likelihood, namely

π(y|q, s) =
r∏

k=1

bq∏

i=1




Γ

( b∑

j=1

c
(k)
ij

) b∏

j=1

Γ
(
c
(k)
ij + n

(k)
ij

)

b∏

j=1

Γ
(
c
(k)
ij

)
Γ

{ b∑

j=1

(
c
(k)
ij + n

(k)
ij

) }



.

This expression is easy to compute and therefore ex-

act calculation of posterior model probabilities/Bayes

factors is straightforward. We note that when r = 1,

this marginal likelihood calculation correctly repro-

duces the result in [14].

The simplicity of the marginal likelihood calculation

is due to the choice of Dirichlet distribution for the prior

distribution of the transition probabilities P . There

are many other possible choices of prior distribution

which allow a more flexible covariance structure than

the Dirichlet but, in general, these choices introduce

additional complexity into the analysis. Even when

using a different conjugate distribution, the Aitchison

A – distribution, no exact expression for the marginal

likelihood can be found as the normalising constant for

this distribution is algebraically intractable. However,

hierarchical generalisations of the Dirichlet distribu-

tion, such as a finite mixture or placing a hyper-prior

distribution on the Dirichlet parameters, also inherit the

simplicity of the marginal likelihood calculation. Both

generalisations allow a more general covariance spec-

ification for the transition probabilities but would re-

quire additional updates on the mixture or hyper-prior

parameters.

3.3.1. Posterior inference via MCMC

We have seen that determining posterior distributions

is straightforward and exact when the hidden states are

assumed known. However, in our model the hidden

states are unknown quantities and so we use Markov

chain Monte Carlo (MCMC) methods to allow for this

uncertainty. Specifically we employ standard Gibbs

sampling (data augmentation) procedures for hidden

Markov models [11,27]. For our analysis, the MCMC

algorithm has two parameter blocks (q,θ) and s in

which we simulate from the conditional distributions

π(q,θ|s,y) and π(s|q,θ,y).
In the second block, a sequence of hidden states s is

generated from the conditional distributionπ(s|q,θ,y)
using a standard forward-backward simulation algo-

rithm. Algorithms of this type originated with the

work of [4] and many variants are possible; the algo-
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Fig. 1. Forward-backward algorithm.

Fig. 2. MCMC algorithm.

rithm we use is outlined in Fig. 1. We note that the
forward sweep is initialised at t∗ = qmax + 1 with

αt∗(k) = πkρ
(k)
y1:t∗

/ξt∗ where πk is the stationary prob-
ability that St∗ = k. In Eq. (5), the scale factor ηt

ensures βt(·) is a valid probability distribution; also we
use the convention λjsn+1 ≡ 1.

The overall structure of our MCMC algorithm is out-
lined in Fig. 2. The joint (q,θ) move is undertaken in
steps 1 and 2 using Eqs (2), (3) and (4) and the s move,
in step 3, using the algorithm in Fig. 1. We note that
this two block scheme should have better convergence
properties than a standard three block scheme.

In general, particular care must be taken in the con-
struction of MCMC schemes which incorporate a di-
mensional parameter, such as the order of Markov de-
pendence q, to ensure that they converge to the correct
distribution. The scheme described above does satisfy
the necessary convergence conditions since q is sim-
ulated from a distribution which is marginalised over
the θ parameters. An alternative verification can be
obtained using the pseudo-priors approach suggested
by [10] and subsequently modified by [18]. Briefly, this
technique provides a convergent scheme in which the
dimension parameter is simulated conditionally on the
other model parameters, that is, fromπ(q|θ, s,y). This
distribution reduces to that in Eq. (4) when the pseudo-

priors are chosen appropriately (see [16]). If a more

complex prior distribution were thought to be appro-

priate, updates for the dimension parameter q could be

obtained using a different choice of the pseudo-priors

or by using reversible jump MCMC techniques [17].

Investigation of this strategy is the subject of on-going

work.

3.4. Posterior summaries

Suppose the MCMC algorithm is run until it is

thought that convergence has been achieved (the burn-

in period) and then for a further N iterations, giving

sampled values (q(i),θ(i), s(i)), i = 1, 2, . . . , N on

which to base our posterior summaries. We can esti-

mate the (marginal) posterior distribution for the order

of dependence parameter q using the sampled values

q(i) by

π̂(q = j|y) =
1

N

N∑

i=1

I(q(i) = j),

(6)
j ∈ Q.

Alternatively, the Rao–Blackwellized estimate [15]
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π̂RB(q = j|y) =
1

N

N∑

i=1

π(q = j|s(i),y), (7)

j ∈ Q

will give a more precise estimate at the expense of

additional computing effort.

The posterior distributions of the hidden states s

and the model parameters θ conditional on q are also

of interest. However, summarising these distributions

is complicated as the parameters are not identifiable.

This non-identifiability is caused by the fact that the

likelihood is invariant to permutations of the hidden

state labels, that is
∏

t

ρ(st)
yt−q:t

λst−1st
=

∏

t

ρ(ν(st))
yt−q:t

λν(st−1)ν(st)

for any permutation ν(·) of the integers {1, 2, . . . , r}.

Consequently, the likelihood has r! symmetric modes

corresponding to the permutations of the labels. Com-

bining this likelihood with a symmetric prior distribu-

tion (as suggested in Section 3.1) will produce a pos-

terior distribution which also possesses this symmetry

and thus the parameters will not be identifiable.

A natural consequence of the symmetry in the poste-

rior distribution is that our posterior sample is subject

to label switching in which the hidden state labels ran-

domly permute during the course of the MCMC run;

see [29] for a detailed description. As each of the r!
label permutations will appear (theoretically) equally

often in the posterior sample, naı̈ve summaries which

ignore label switching (such as posterior means) will

lead to similar values for each of the k = 1, 2, . . . , r
hidden states. One solution to this problem is to im-

pose some ordering constraint on the transition param-

eters for the observed sequence P (k) (for example, us-

ing the Fröbenius norm) in order to encourage the al-

gorithm to focus on one of the r! symmetric modes

in the posterior distribution. An alternative solution

which focuses on the hidden states is to post-process

the MCMC output using a relabelling algorithm formu-

lated in the decision-theoretic framework of [29]. The

aim of such algorithms is to determine the permutation

of (1, 2, . . . , r) (and a relabelling of the sampled val-

ues) which minimises posterior expected loss (Monte

Carlo risk) for some chosen loss function.

We shall adopt this second alternative and post-

process the output using an algorithm whose goal is

to obtain the most likely hidden state at each position

in the sequence, that is, the marginal posterior mode

(MPM) estimate ŝ. Because of computing storage lim-

itations, we advocate the use of an on-line algorithm as

outlined in Fig. 3; the corresponding batch algorithm

can be derived easily from this on-line version.

Two ways have been suggested by [29] to obtain a

suitable initial best estimate ŝ
⋆(0) which rely on running

an initial sample (after a burn-in period). However, in

extensive testing we have found that taking ŝ
⋆(1) = s(1)

and starting the algorithm at iteration i = 2 works well

as the algorithm is fairly robust to the choice of starting

point. Another advantage of using an algorithm which

relabels according to the hidden states rather than the

parameters is that its run time does not depend on q.

In the next section we apply our methods to the anal-

ysis of both simulated and real data sets. We show how

inferences can be made for the order of dependence and

use relabelled MCMC output to make inferences about

the parameters and the hidden states.

4. Implementation of the algorithm

4.1. Simulated data

We begin by analysing a simulated sequence of

length n = 1000. The sequence was generated from a

hidden Markov model with r = 2 hidden states and a

q = 1 order Markov dependence for a b = 4 state ob-

served sequence. The transition matricesP (1) andP (2)

were chosen to have roughly similar columns (within

each matrix). This ensures that the q = 0 and q = 1
models are fairly close and so gives the algorithm a

reasonable challenge in deciding between them. We

give below the transition matrices used for simulating

the sequence in order to judge the performance of the

estimation procedure:

Λ =

(
0.995 0.005
0.010 0.990

)
,

P (1) =




0.20 0.30 0.30 0.20
0.22 0.38 0.07 0.33
0.23 0.27 0.32 0.18
0.19 0.31 0.29 0.21


 , (8)

P (2) =




0.35 0.15 0.15 0.35
0.37 0.13 0.13 0.37
0.32 0.18 0.10 0.40
0.35 0.20 0.20 0.25


 .

4.1.1. Choice of prior distributions

We restrict our attention to considering dependence

structures of order no more than qmax = 3. Also we

adopt a truncated Poisson distribution to describe our



R.J. Boys and D.A. Henderson / On determining the order of Markov dependence of an observed process 247

Fig. 3. Relabelling algorithm.

prior uncertainty about q with

π(q) = Pr(q = i) ∝ ai/i!,

i = 0, 1, 2, 3.

As we are particularly interested in whether the al-

gorithm can choose between q = 0 or q = 1, we

take a = 1 as the hyperparameter of this distribu-

tion. We will see later that the results are fairly ro-

bust to changes in this choice of prior. We also take

the weak specification for the transition probabilities

in P (1) and P (2), that is c
(k)
i = (1, 1, 1, 1) for i ∈ Yq

and k = 1, 2. For the hidden state transition matrix

we take d11 = d22 = 19 and d12 = d21 = 1; this is

equivalent to the information content of a sequence of

length 40 with an expected run length of 20 for both

hidden states.

4.1.2. Results

The MCMC algorithm was run for 110000 iterations

with the first 10000 being discarded as burn-in. Our

results are based on a sample of size N = 10000 since

we only recorded every 10th iterate to reduce comput-

ing overheads. The usual diagnostic checks were made

to ensure there was no evidence of lack of convergence.

We also confirmed our results using several MCMC

runs from different starting points.

Table 1 contains estimates of the marginal posterior

distribution for q based on the sampled values of q over

the iterations of the sampler (Eq. (6)) together with the

alternative Rao–Blackwellized estimate (Eq. (7)). It

shows a very high probability for the correct choice

q = 1. The probability of higher values of q is very

low. Repeating the analysis using a uniform prior dis-

tribution for q gives similar results. The effect of us-

Table 1

Estimates of the marginal posterior distribution for q: simulated

sequence n = 1000

Order q

Prior Estimate 0 1 2 3

Poisson π̂(q|y) 0.0005 0.9995 0.0000 0.0000

Poisson π̂RB(q|y) 0.0006 0.9994 0.0000 0.0000

Uniform π̂RB(q|y) 0.0006 0.9994 0.0000 0.0000

ing other prior distributions can be seen by reweighting

these posterior probabilities according to the ratio of

the proposed and actual prior probabilities. Such con-

siderations show that the prior odds in favour of q = 0
(against q = 1) would have to be at least 1500 : 1 before

the analysis favoured the incorrect choice of q = 0.

We now present results for the hidden states s and

for the transition parameters θ conditional on the (pos-

terior) modal value q = 1. In general we can estimate

the posterior probabilities of the hidden states St along

the sequence (conditional on a particular q = q ∗) by

P̂r(St = j|q = q∗,y)

=
1

N

N∑

i=1

I(s
(i)
t = j, q = q∗),

or by its Rao-Blackwellized equivalent. Figure 4 shows

the estimate of the probability of hidden state 1 along

the sequence. It also indicates the positions of the ac-

tual hidden states from which the sequence was simu-

lated. Clearly, the algorithm has uncovered this latent

structure very well.

Table 2 contains the posterior means and standard

deviations for the model transition probabilities θ. We

note that the values shown are not too dissimilar to the

values from which the data were simulated and well

within sampling error.
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Fig. 4. Estimated posterior probabilities P̂r(St = 1|q = 1, y) (solid line) together with the true positions I(St = 1) (dashed line): simulated
sequence n = 1000.

Table 2

Posterior summaries for transition matrices conditional on q = 1: simulated

sequence n = 1000

means standard deviations

Λ:

(
0.978 0.022
0.035 0.965

) (
0.008 0.008
0.012 0.012

)

P (1):




0.217 0.328 0.311 0.144
0.215 0.362 0.095 0.328
0.220 0.316 0.309 0.155
0.160 0.330 0.293 0.217








0.038 0.043 0.044 0.033
0.030 0.036 0.021 0.035
0.036 0.041 0.040 0.038
0.032 0.042 0.043 0.038





P (2):




0.347 0.091 0.244 0.318
0.400 0.085 0.166 0.349
0.225 0.122 0.093 0.561
0.250 0.274 0.171 0.304








0.050 0.038 0.046 0.050
0.073 0.045 0.056 0.076
0.064 0.052 0.043 0.075
0.043 0.045 0.042 0.044





4.1.3. The effect of sequence length

We now illustrate the effect of sequence length n on
the ability to detect the correct order of dependence q
in the sequence. Clearly, longer sequences will reduce
uncertainty about q, but to what extent? We now inves-
tigate what conclusions can be drawn about the model
parameters using only the first half of the earlier se-
quence (n = 500). We have retained the same prior
distributions and proceeded with a MCMC algorithm
as before. The MCMC algorithm produced a well-
mixing chain which traversed the different models (cor-
responding to the different values of q) regularly, with
the value of q changing on approximately 38% of the
iterations.

The impact of using a much shorter sequence on the
marginal posterior of q is clearly seen in Table 3. Again
the various choices of estimate and prior distribution
produce very similar results. However, for this shorter
sequence, there is considerably more uncertainty sur-
rounding the value of q. As before, q = 0 and q = 1
receive nearly all of the posterior support with values
of q = 2 or q = 3 highly unlikely. However, there is
a high degree of uncertainty about the order of depen-
dence in the data. There needs only to be a shift in
prior odds of around 3 : 2 before the incorrect choice
of q = 0 is favoured.

This shorter sequence also makes it much more dif-
ficult to identify the hidden states. Figure 5 shows the
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Fig. 5. Estimated posterior probabilities P̂r(St = 1|q = 1, y) (solid line), P̂r(St = 1|q = 0, y) (dotted line) together with the true positions

I(St = 1) (dashed line): simulated sequence n = 500.

Table 3
Estimates of the marginal posterior distribution for q: simulated

sequence n = 500

Order q

Prior Estimate 0 1 2 3

Poisson π̂(q|y) 0.4007 0.5880 0.0052 0.0061

Poisson π̂RB(q|y) 0.4011 0.5879 0.0057 0.0053

Uniform π̂RB(q|y) 0.4005 0.5855 0.0071 0.0069

plot of estimated (posterior) probabilities for both q = 0
and q = 1 together with the true sequence. Clearly, the

q = 1 plot better describes the actual sequence but nev-

ertheless its predictive capacity is much reduced when

compared to that obtained using the full sequence. The

posterior means and standard deviations for the model

transition probabilities θ (assuming q = 1) are given

in Table 4. Again these values are consistent with the

model parameters in Eq. (8). However, the standard

deviations are significantly increased and much more

than would be expected due to halving the sequence

length. This is due to uncertainty about the hidden

states.

4.2. DNA sequence data

For our final example we apply the methods to the

analysis of a DNA sequence. These sequences com-

prise a string of b = 4 states (bases) from the alpha-

bet Y = {A, C, G, T}. HMMs have been used for some

time to model heterogeneity in the composition of DNA

sequences with most analyses assuming that q = 0,

that is, the observed sequence is independent condi-

tional on the hidden states. However, empirical evi-

dence would suggest that this independence model is

not sufficiently complex to capture the rich dependence

structure in these sequences. In such circumstances,

the methods described in this paper can permit infer-

ences to be made about the order of Markov depen-

dence of the bases, thereby ensuring appropriate con-

clusions are drawn. Some authors have analysed DNA

sequences using larger values of q but these analyses

have assumed a known fixed value of q (for example [7,

23]) or attempted to choose between various q using

information criteria (for example [12]).

We will study the 7th intron of the human α-

fetoprotein (AFP) gene which was analysed in [7] us-

ing a hidden Markov model. The AFP gene is known

be an important factor in embryonic development in

mammals and is also thought to play a role in the de-

velopment of tumors; for further details, see [7]. The

intron is n = 2275 base pairs in length and is stored in

the GenBank sequence database [5] under Accession

No. M16110. It can be obtained from the National Cen-

ter for Biotechnology Information (NCBI) web pages

at http://www.ncbi.nlm.nih.gov/.
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Table 4

Posterior summaries for transition matrices conditional on q = 1: simulated

sequence n = 500

means standard deviations

Λ:

(
0.952 0.048
0.056 0.944

) (
0.018 0.018
0.019 0.019

)

P (1):




0.281 0.258 0.308 0.153
0.255 0.402 0.084 0.259
0.304 0.371 0.246 0.079
0.197 0.318 0.321 0.164








0.081 0.078 0.078 0.055
0.073 0.087 0.037 0.098
0.095 0.103 0.079 0.067
0.081 0.102 0.102 0.076





P (2):




0.194 0.317 0.292 0.197
0.251 0.191 0.140 0.418
0.175 0.202 0.170 0.453
0.173 0.361 0.178 0.288








0.101 0.105 0.110 0.080
0.088 0.099 0.066 0.118
0.118 0.102 0.092 0.167
0.059 0.077 0.065 0.068





Table 5

Estimates of the marginal posterior distribution for q: intron 7 of the
human AFP gene conditional on r = 3

Order q

Estimate 0 1 2 3

π̂(q|y) 0 1 0 0

π̂RB(q|y) ≃ 10−14 ≃ 1 ≃ 10−18 ≃ 10−51

4.2.1. Results

For comparison with the results in [7] we have run

the algorithm assuming r = 3 hidden states. We chose

the maximum complexity of base updates to be order

qmax = 3 and used the same truncated Poisson prior

distribution as in the analysis of the simulated data. We

also chose the same prior distribution for the observed

state transition matrices but for the hidden state transi-

tion matrix we chose dij = 99 for i = j and dij = 0.5
otherwise; this is equivalent to the information content

of a sequence of length 300 with an expected run length

of 100 for each hidden state.

The MCMC algorithm was again run for 110000 it-

erations with the first 10000 being discarded as burn-

in. The usual checks for evidence on lack of conver-

gence were made using multiple runs from different

starting points, and our results are based on a sam-

ple of size N = 10000 from one such run, recording

every 10th iterate. Table 5 contains the sample and

Rao-Blackwellized estimates of the marginal posterior

distribution for q. It shows that, after convergence,

the sampler never moved from the model with q = 1
during the course of the simulation. Ordinarily, this

may point to the MCMC scheme suffering from poor

mixing over q, possibly due to the update conditioning

on the hidden states s. However, our experience with

simulated sequences suggests that this is in fact due to

the DNA sequence being sufficiently long to provide

overwhelming evidence that q = 1.

These results show that the choice of q = 1 employed

by [7] is well justified.

5. Conclusions

We have seen how inferences can be made about the

order of Markov dependence of an observed process

governed by a HMM. In many practical examples, the

sequence will be sufficiently long that by using these

methods it will be straightforward to determine this

order, particularly if the transition structures in each

hidden state are reasonably different. When sequences

are short or the transition structures fairly similar, it

can be difficult to determine an appropriate order of

dependence. In such circumstances it is important to

be able to correctly assess uncertainty about the order q
and also the associated transition structures and the

pattern of hidden states. The methods presented in

this paper do provide this information by adopting a

fully Bayesian approach through the use of MCMC

techniques.
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