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KOK-KEONG TAN AND XIAN-ZHI YUAN

(Communicated by Palle E. T. Jorgensen)

Abstract. Based on an extension of Aumann's measurable selection theorem

due to Leese, it is shown that each fixed point theorem for F{w, •) produces

a random fixed point theorem for F provided the rj-algebra X for Sl is a

Suslin family and F has a measurable graph (in particular, when F is ran-

dom continuous with closed values and A' is a separable metric space). As

applications and illustrations, some random fixed points in the literature are

obtained or extended.

1. Introduction and preliminaries

Random fixed point theory has received much attention in recent years (see,

e.g., Bharucha-Reid [2], Bocsan [3], Chang [5], Engl [8, 9], Itoh [13, 14], Kucia
and Nowak [15], Lin [17], Liu and Chen [19], Nowak [20], Papageorgiou [21],
Rybinski [23], Sehgal and Singh [26], Seghal and Waters [27, 28], Tan and Yuan
[29], Xu [32], etc.). In this paper, we shall deal with random non-self-maps.
First, by employing a result of Chow and Teicher [6], sufficient conditions are

obtained for a random non-self-map, so that the existence of a deterministic

fixed point is equivalent to the existence of a random fixed point. Thus every

fixed point theorem produces a random fixed point theorem. As applications

and illustrations, some random fixed point theorems in the literature are ob-

tained or extended.
A measurable space (Q, Z) is a pair where Q is a set and X is a a-algebra

of subsets of Q. If A is a set, A c A, and 3 is a nonempty family of subsets

of A, we shall denote by 3 n A the family {DnA:D£ 3} and by ox(3)
the smallest rr-algebra on A generated by 31. If A is a topological space with

topology xx , we shall use 38(X) to denote ax(tx), the Borel er-algebra on A

if there is no ambiguity on the topology Tx ■ If (Q, I) and (<X>, T) are two

measurable spaces, then S <g> T denotes the smallest cr-algebra on £2 x cp which

contains all the sets A x B, where A £2Z, B £ T, i.e., L ® T = crrjx*(^ x T).

We note that the Borel tr-algebra 38 (Xx x X2) contains 38(Xx) ®38(X2) in
general.
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A function / : fi —> <I> is said to be (Z, T) measurable if, for any B £ T,

f-x(B) = jx € fi, f(x) £B}£l. If A is a set, 2X denotes the family of all
nonempty subsets of A. Let A be a topological space and F : (fi, Z) —► 2X

be a map. F is said to be measurable (respectively, weakly measurable) if

F~X(B) = {co £ fi, F(co) nB/0}eI for each closed (respectively, open)
subset B of X . The map F is said to have a measurable graph if Graph F :=

{(co, y) £ fi x A : y £ F(co)} £ Z ® 38(X). A function / : fi -> A is a
measurable selection of F if / is a measurable function such that f(co) £ F(co)

for all co £ fi.
If (fi, Z), (O, T) are measurable spaces and Y is a topological space, then

a map F:tix<p-> 2y is called jointly measurable (respectively, jointly weakly

measurable) if, for every closed (respectively, open) subset B of Y , f~x(B) £

Z <g> T. In the case 0 = A, a topological space, then it is understood that T

is the Borel a -algebra 38 (X). Let p be a positive measure on a measurable

space (fi, Z). A subset A of fi is called a p-negligible subset of fi if there

exists a measurable subset A £ Z such that N c A and p(vl) = 0. The p-

completion of Z, denoted by Z^ , is the rj-algebra on fi generated by Z and

the p-negligible subsets of fi. The measure p admits a unique extension p

to ZM . The a -algebra Z is said to be p-complete if Z = Z^ . Also, (fi, Z) is
a complete measurable space if there is a positive measure p on (fi, Z) such

that Z„ = Z.
A topological space A is: (i) a Polish space if A is separable and metrizable

by a complete metric; and (ii) a Suslin space if A is a Hausdorff topological

space and the continuous image of a Polish space. A Suslin subset in a topolog-

ical space is a subset which is a Suslin space. "Suslin" sets play very important

roles in measurable selection theory. We remark that if Xx and X2 are Suslin

spaces, then 38(Xx x X2) = 38(Xx) ® 38(X2) (e.g., see [24, p. 113]).
Denote by J? and ST the sets of infinite and finite sequences of positive

integers respectively. Let ^ be a family of sets and F : SF —> if be a map.

For each a = (<t,-)~, £ ^ and n £ N, we shall denote (ax, ... , o„) by a/n ;

then [}aer\X?=\F(aln) is said to be obtained from %/ by the Suslin operation.

Now if every set obtained from 2? in this way is also in &, then & is called

a Suslin family.
Note that, if p is an outer measure on a measurable space (Q, Z), then

Z is a Suslin family (see [25, p. 50]). In particular, if (Q, Z) is a complete

measurable space, then Z is a Suslin family (for more details, see [31, p. 864]).

It also implies that the er-algebra Z of Lebesgue measurable subsets of [0, 1] is

a Suslin family.
If A is a topological space, let C(X) = {A e 2X :A is a closed subset of A}.

Let A, Y be topological spaces, (fi, Z) be a measurable space, and F :

fi x A -♦ 2Y be a map. Then F is: (i) a random operator if for each fixed

x £ X, the map F(-, x): fi -» 2Y is a measurable map; (ii) lower semicontin-

uous (respectively, upper semicontinuous, continuous) if for each fixed co £ fi,
F(co, ■) : X —> 2Y is lower semicontinuous (respectively, upper semicontinu-

ous, continuous); and (iii) random upper semicontinuous (respectively, random

lower semicontinuous, random continuous) if F is both a random operator

and an upper semicontinuous (respectively, lower semicontinuous, continuous)

map.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON DETERMINISTIC AND RANDOM FIXED POINTS 851

Let (fi, Z) be a measurable space, A be a subset of a topological space Y,

and F : fix A -> 2Y be a map. Note that for each co £ fi, unless F(co, A) c A

for all x 6 A, F(co, •) is a non-self-map. The single-valued map tp : fi —> A

is said to be (i) a deterministic fixed point of F if tp(co) £ F(co, <p(co)) for

all co £ fi; and (ii) a random fixed point of F if tp is a measurable map

and tp(co) e .F(<y, 0>(<y)) for all tu £ fi. It should be noted here that some

authors define a random fixed point of F to be a measurable map tp such that

tp(co) £ F(co, tp(co)) for almost every co £ fi (e.g., see [8, 9, 20, 21, 23]).

We remark that if the map F : fi x A -» 2Y has a random fixed point, then,

for each co £ fi, F(co, •) has a fixed point in A. The converse is not true as

the following simple example illustrates.

Example 1.1. Let fi = A = [0, 1], Z be the a -algebra of Lebesgue measurable

subsets of [0, 1], and A be a non-Lebesgue measurable subset of [0, 1] (see

[22, p. 63]). Define F : fi x A -* 2X for any (co, x) £ fi x A by

J{0}   forco£A,
F(co,x):= <

( {1}   for co f A.

Define tp : fi —> A by
r i  ifw04,

^):=l0    if0>E4.

Then rp is not a measurable map and is the only function such that

<p(co) £F(co, tp(co))

for all co £ fi. Hence F has no random fixed point.

The following measurable selection theorem due to Lesse in [16, Corollary to

Theorem 7] which generalizes the earlier result of Aumann's Selection Theorem

in [2] plays a very important role:

Theorem A. Let (fi, Z) be a measurable space, Z be a Suslin family, X be a
Suslin space, and F : (fi, Z) —> 2X be a map such that Graph F £ Z g> 38(X).
Then there exists a sequence {yn}^x of measurable selections of F such that

for each co £ fi the set {yn(co), n = 1, 2, ...} is dense in F(co).

For convenience, we shall list below Theorem 1.3.3 of Chow and Teicher [6,

p. 8]:

Lemma 1.2. For every nonempty family 3 of subsets of £l and every nonempty

set Ac fi, on(3) nA = oA(3f] A).

2. Main results

In order to consider the existence of random fixed points for random non-

self-maps, we first have the following:

Lemma 2.1. If (fi, Z) is a measurable space and A0 is a nonempty subset of a

topological space X, then Z ® 38(X) n (fi x A0) = Z <g> 38(Xo).

Proof. Let tx denote the topology on A and tx0 = ?x n A0, the relative
topology of Tx to Ao. First we note that by Lemma 1.2

38(X) n A0 = ox(tx) n A0 = oXo(zx n A0) = oXo(tx0) = 3S(XQ),
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and it follows that

(Z x &(X)) n (fi x A0) = Z x (38(X) n A0) = Z x 38(X0).

By Lemma 1.2 again,

Z 9 38(X) n (fi x A0) = onxX(Z x 38(X)) n (fi x A0)

= o"nxx„((Z x ^(A)) n (fi x A0)) = afixXo(Z x ^(A0)) = Z ® ̂ (A0).   D

Now we shall prove the following useful random fixed point theorem for

random non-self-maps:

Theorem 2.2. Let (fi, Z) be a measurable space, Z be a Suslin family, X

be a topological space, and Xo be a nonempty Suslin subset of X. Suppose

K : fi —► 2X has a measurable graph and F : fi x Ao —► 2X is such that:

(a) for each w e fi, the set {x £ A0 : x £ F(co, x)} n K(co) ^ 0, and

(b) Graph F £l®38(X0 x X).
Then F has a family {yn}„*Lx of random fixed points such that for each w £ fi

(i) yn(co) £F(co, y„(co)) n K(co),   n = l,2,..., and

(ii) {y^to)}^ is a dense subset of {x £ Xo : x £ F(co, x)} n K(co).

Proof. For each co £ fi, define

O(w) = {(x, x) £ X0x X0: x £ F(co, x) n K(co)};

then O(w) is a nonempty subset of A0 x A0 by (a). Thus O : fi -> 2XoxX°. Let

A = {(x, x): x £ Xo}; then A e ^(A0 x A0) since A is closed in A0 as A0 is
Hausdorff so that fi x A e 1®38(X0 x A0). Since GraphF £ Z<g>^(A0 x A) by

(b), (GraphF)n(fixA0xA0)eZ(8>^,(AoxA)n(fixAoxAo) = Z®^(AoxAo)
by Lemma 2.1. By assumption, Graph A 6 2Z®38(X) so that (Graph A) x
A0 6 (1®38(X)) ®38(X0) cl®38(X x A0) and hence by Lemma 2.1 again,
(GraphA)xA0n(fixA0xA0) €Z<g)^,(AxAo)n(fixA0xAo) = Z®^(A0xA0).
It follows that

Graph <D = (fi x A) n (Graph F) n ((Graph K) x A0)

= (fi x A) n ((GraphF) n (fi x A0 x A0))

n (((Graph A) x A0) n (fi x A0 x A0))

€Z®^(A0x A0).

By Theorem A, there exists a sequence {y1,,}^ of measurable selections of O,

where y'n : fi -> A0 x A0, such that, for each co £ fi, {y^(w)}~ x is dense in

0(<y). But then for each n = 1,2,..., there exists y„ : fi —► Ao such that

y'„(co) = (yn(co), yn(co)) for all co £ fi. Now, if A is a closed subset of A0,

then Ax A is a closed subset of A0 x A0; thus for each n - 1,2, ... ,

y~x(A) = {co £ fi : yn(co) £ A} = {co £ fi : y'n(co) £(AxA)]£2Z

and hence each yn is measurable. Moreover, for each wefi, since {y'n(co)}%Ll

is dense in <P(<y), {y«(w)}^i1 is also dense in {x £ Xo : x £ F(co, x) n

K(co)}.   a

We remark that in the proof of Theorem 2.2, we applied the measurable

selection theorem to the mapping O defined by $>(co) = {(x, x) £ A0 x A0 :

x £ F(co, x)nK(co)} which is different than the usual technique of applying the
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measurable selection theorem to the set-valued mapping O defined by <D(<o) =

{x € A : x e F(co,x)} (e.g., see [8, 14, 21, 23, 32]).
When A is a Polish space and Ao = A, Theorem 2.2 has been given in

[20, Theorem 1]. We remark that in Theorem 2.2, if we define Fx(co, x) =
F(co, x) n Ao for each (co, x) £ fi x Ao , since Z is a Suslin family and Ao

is a Suslin space, Fx is weakly measurable (see, e.g., [12, Corollary 5.1]); if in

addition, Fx is closed-valued, then Graph Fx £~L®38(Xqx Xq) (see, e.g., [31,
Theorem 4.2]). Moreover, when Fx is single-valued, then Fx is measurable

if and only if Graph Fi e Z ® 38(Xo x A0). In this case, Theorem 2.2 was
also given by [15]. Thus Theorem 2.2 unifies and generalizes the corresponding

results of [15] and [20] to set-valued and non-self-maps in Suslin spaces.

By taking K(co) = X for all co £ fi in Theorem 2.2 we have:

Theorem 2.3. Let (fi, Z) be a measurable space, Z be a Suslin family, X be a

topological space, and Xq be a Suslin subset of X. Suppose F : fi x Ao —► 2X

is such that Graph F £ "L®38(Xo x X). Then F has a random fixed point if
and only if F has a deterministic fixed point, i.e., for each wefi, F(co,-) has

a fixed point in A0.

We remark that if Ao = A, Theorem 2.2 (respectively, Theorem 2.3) reduces

to Theorem 2.1 (respectively, Theorem 2.2) in [29].

Example 1.1 shows that the condition "GraphF £ 'L®38(Xq x A)" cannot

be omitted in Theorem 2.3.
The following result is Theorem 2 of [20]; for completeness we include the

proof:

Lemma 2.4. Let (fi, Z) be a measurable space and X and Y be separable

metric spaces. Suppose F : fix A -+ C(Y) is such that for each (co, x) £ fix A

(i) F(-, x) : fi —► 2Y is weakly measurable, and

(ii) F(co, •): X —► 2Y is continuous.
Then F is jointly weakly measurable and Graph F £ (L®38(X)) ®38(Y).

Proof. For each z £ Y, define dz(co, x) = d(z, F(a>, x)) for all (co, x) £

fi x A, where d is the given metric on the space Y. Note that for each co £ fi,

the continuity of x i-> F(co, x) implies the continuity of x h-> dz(co, x).

Next for an arbitrarily fixed x e A, since F(-, x) : fi —*2Y is weakly mea-

surable, dz(-, x) is measurable by [11, Theorem 3.3]. Thus by [11, Theorem

6.1] (also [4, Lemma III-14, p. 70]), the map (co, x) h-> dz(co, x) is jointly

measurable, so that by [11, Theorem 3.3] again, the map F : fi x A -» 2Y is

jointly weakly measurable. Finally, as F is closed-valued, by [11, Theorem

3.3], GraphFe (1®38(X))®38(Y).    a

Theorem 2.5. Let (fi, Z) be a measurable space, Z be a Suslin family, and Xo

be a Suslin subset of a separable metric space X. Suppose F:QxI0-» C(X)

is a random continuous map. Then F has a random fixed point if and only if,

for each co £ fi, F(co, ■) has a fixed point in A0 .

Proof. By assumption, for each x £ A0, F(-, x): fi -> 2X is measurable; as A
is metrizable, [11, Proposition 2.1] shows that F(-, x) is weakly measurable.
Hence by Lemma 2.4, GraphF 6 (1®38(X0))®38(X) c Z®^(A0 x A). The
conclusion now follows from Theorem 2.3.   □
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We remark that if A0 = A, Theorem 2.5 reduces to [29, Theorem 2.6]. Also,

Theorem 2.5 generalizes [32, Theorem l(i)] of Xu in the following ways: (i) F

is a set-valued random continuous map (instead of a single-valued nonexpansive

random map); and (ii) A0 is a Suslin subset of a separable metric space A

(instead of A = A0 and is a closed bounded convex separable subset of a

reflexive Banach space).

In view of Theorems 2.3 and 2.5, every fixed point theorem for single- or

set-valued maps gives rise to some random fixed point theorems; this idea was

implicitly utilized, for example, by Bocsan [3], Chang [5], Engl [8, 9], Itoh [13,
14], Kucia and Nowak [15], Lin [17], Nowak [20], Rybinski [23], Sehgal and
Singh [26], Sehgal and Waters [28], Xu [32], etc., and explicitly utilized by Tan
and Yuan [29]. As an illustration, we have:

Theorem 2.6. Let (fi, Z) be a measurable space and I. be a Suslin family.

Let S be a nonempty closed convex subset of a separable Hilbert space X and

F : fi x S —> A be a random map such that, for each co £ fi, F(co, •) has

bounded range and F(co, •) is either a continuous densifying map [10] or a

nonexpansive map satisfying any of the following conditions:

(1) For each x £ S, there is a number X (real or complex, depending on

whether the vector space X is real or complex) such that \X\ < 1 and Xx +

(l-X)F(co,x)£S.
(2) For each x £ S with x ^ F(co, x), there exists y £ Is(x) := {x +

c(z - x) : z £ S, c > 0} such that \\y - F(co, x)\\ < ||x - F(co, x)|j.

(3) F(co, ') is weakly inward (i.e., for each x £ S, F(co, x) £ Is(x), the

closure of Is(x) in X).

(4) For each u in the boundary ofS, if \\F(co, u) - u\\ = inf{||.F(G;, u) -s\\ :
s £ S}, then F(co,u) — u.

(5) For each x in the boundary ofS, there exists y £ S, such that \\F(co, x) -

v||<||x-y||.
Then F has a random fixed point.

Proof. By [18, Corollary 4], F has a deterministic fixed point. By Theorem

2.5, F has a random fixed point.   □

Theorem 2.6 extends [17, Theorem 6' ]. As another illustration, we have the

following

Theorem 2.7. Let (fi, Z) be a measurable space and Z be a Suslin family. Let

S be a nonempty bounded closed convex subset of a separable uniformly convex

Banach space X and F : fi x 5" —► 2X be a random map such that for each

CO£Cl

(i) F(co,x) is compact for each x£S;

(ii) F(co, •) is nonexpansive, i.e., D(F(co, x), F(co, y)) < \\x — y\\ for all
x, y £ S where D is the Hausdorff metric induced by the norm || • || on X;

(iii) F(co, x) c h(x) for each x £ S.
Then F has a random fixed point.

Proof. For each co £ fi, F(co, •) has a fixed point in 5" by [7, Theorem 4];

thus F has a deterministic fixed point. Also, for each co e fi, since F(co, •) is
nonexpansive, F(co, •) is continuous; thus F is also random continuous. By

Theorem 2.5, F has a random fixed point.   D

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON DETERMINISTIC AND RANDOM FIXED POINTS 855

We remark that throughout this paper, the a-algebra Z is always assumed

to be a Suslin family. For related results where Z is not assumed to be a Suslin

family, we refer to [29, Theorem 2.8 and 3.6; 30].
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