
On deviation matrices

for birth-death processes

G.M. Koole∗ F.M. Spieksma†

To appear in Probability in the Engineering and Informational Sciences,
2001/2002

Abstract

We study deviation matrices of birth-death processes. This is relevant to the control of
multi-dimensional queueing systems. We give an algorithm for computing deviation matrices
for birth-death processes. As an application, we compute them explicitly for the M/M/s/N-
and M/M/s/∞-queues.

1 Introduction

In principle, Markov decision theory can be used to find optimal policies in controlled queueing
networks. Standard methods are value iteration and policy iteration (see, e.g., [8]). To execute
these algorithms one needs to store in computer memory at least one vector of size the state
space. This is of course infeasible for models with an unbounded state space. But even if
we bound the state space in an appropriate way, then often its size prohibits us from storing
this vector. This is even more so for high-dimensional (queueing) models: depending on the
number of states per component, in practice, models with more than say 4 state components
can not be solved anymore. This phenomenon is called the curse of dimensionality. It calls for
approximation methods. A successful method is one-step improvement.

One-step improvement is based on the policy iteration method. This method repeats the
following two steps (see [8] for terminology):
1) For a given value function compute the minimising action in each state;
2) Compute the value function for this new policy.

It can be shown that this gives a sequence of policies for which every policy is better (i.e.,
has lower average costs) than the previous one. For one-step improvement, we assume that the
value function has been determined for some fixed policy. By applying Step 1 once (only in
states in which we are interested) we know to have a better policy. This policy is used as an
approximation for the optimal policy. In general the value of this policy cannot be computed,
let alone the optimal policy. Therefore it is hard to assess the quality of the one-step improved
policy. But for low-dimensional cases the method has been tested, and has been shown to give
surprisingly good results ([7, 9, 6]). The crucial step is to compute the value for some fixed policy
(preferably one for which we hope that one-step improvement gives good results). Both [7] and
[9] can be seen as models consisting of parallel queues with a dependency created by the control.
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For certain classes of policies the queues behave independently. (The model of [6] is a priority
queue, for which there is always a dependency.) If the queues are independent, then it can be
seen that the value function is simply the sum of the values of the individual queues, thereby
reducing the N -dimensional problem to N 1-dimensional problems. These are of course easy to
solve, either numerically, or by using a closed formula. In [7, 9] closed formulas are computed
for value functions of certain queues. These formulas depend not only on the type of queue and
its parameter values, but also on the cost structure.

The deviation matrix of a Markov chain allows us to compute the value independent of the
cost structure. Indeed, the deviation matrix D of a Markov chain is independent of the cost
structure; for a cost vector c the bias vector v (for more details: see Section 3) is simply given
by v = Dc. This means that by calculating the deviation matrix of a Markov chain we can
simply compute (by a single summation) the bias vector for any cost structure that is a function
of the state. This included cost functions such as queue length, idleness, but also the blocking
probability in finite buffer systems.

In this paper we first introduce notation and derive some general results for the deviation
matrix in Section 2. In Section 3 we show the relation with Markov decision chains through the
Poisson equation. Finally in Section 4 we derive an algorithm for computing the deviation matrix
for a special class of birth-death processes, including the M/M/s/N- and M/M/s/∞-queues. In
the same section we also derive closed-form expressions for these queues.

2 Model and basic formula for the deviation matrix

Let {ξt}t be an irreducible, aperiodic and time homogeneous Markov chain on a countable state
space S, which is positive recurrent. Thus it has a stationary distribution that we denote by
π = {πx}x∈S . The corresponding stationary matrix Π : S → S is the matrix with all rows equal
to π.

Let us write P (n), n = 0, 1, 2, . . ., for the n-step transition probability matrix of our Markov
chain, i.e.

p(n)
xy = P{ξn = y | ξ0 = x},

and we set P (0) equal to the identity matrix I. The deviation matrix D is defined by

Dxy = lim
α↑1

∞∑
n=0

(
p(n)
xy − πy

)
αn,

provided this limit exists. Note that the fundamental matrix Z = (I− P + Π)−1 exists with D
and it relates to it in the following way:

Z = D + Π.

When the state space is finite, the deviation and fundamental matrices always exist and they
can be expressed in terms of stationary probabilities and first passage times (cf. [4]). We will
introduce these quantities first and then recall the formula for the deviation matrix for the finite
state case.

Let z ∈ S be a given state. Then the taboo transition probability matrix zP with taboo
state z is defined by

zpxy =
{

pxy, y 6= z,
0, y = z.

Write zmxy =
∑∞
n=0 zp

(n)
xy . This has the well-known interpretation of being the expected number

of visits of state y, given the initial state x, before returning to z. Similarly, set Tz = inf{t >
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0 | ξt = z, ξ1, . . . , ξt−1 6= z} and let τxz = E{Tz | ξ0 = x} the first passage time of z when starting
in x. A straightforward computation yields∑

y

zmxy = τxz.

These quantities can be solved using systems of linear equations. In particular, letting δxy denote
the Kronecker delta

zmxy = δxy +
∑
a

zpxazmay (2.1)

and taking the summation over y,

τxz = 1 +
∑
a

zpxaτaz. (2.2)

Note that πx = πz · zmzx, and πz = 1/τzz.
Next we summarise some known results on deviation matrices for finite state chains (cf. also

[4] Theorem 4.4.7).

Theorem 2.1 Let S be finite. The deviation matrix D is the unique solution to the following
set of equations

D = I−Π + PD (2.3)
ΠD = DΠ = 0, PD = DP . (2.4)

Moreover,

Dxy = πy

(∑
v 6=y

πvτvy − 1{x6=y}τxy
)

(2.5)

= Dyy − 1{x6=y}πyτxy. (2.6)

Formula (2.6) can be heuristically explained as follows. We can say that Dxy counts the number
of visits of y starting from x compared to starting in a stationary situation. The first visit to
y occurs on average only after τxy time periods, while from a stationary initial state πy visits
are counted each time unit. Thus the difference in visits between starting in x or in stationarity
from time 0 to the epoch just before y is reached is −πyτxy. The remaining difference starting
from the moment y is reached is Dyy, which indeed includes the first visit after (on average) τxy
time.

The theorem has two immediate interesting consequences: the first one is that Dyy > 0. The
second one is that DΠ = 0 implies

0 =
∑
y

Dxy =
∑
y

Dyy −
∑
y 6=x

πyτxy. (2.7)

In turn this implies that
∑
y 6=x πyτxy does not depend on x! This statement can be proved to

hold for the countable state space case. Unfortunately, the expressions involved may not be
finite, so that changing the order of subtraction on summation in (2.7) may not be allowed. This
is the case in the infinite buffer example that we will discuss later on.

For completeness, we will show independence of
∑
y 6=x πyτxy on x. This is equivalent to show-

ing that
∑
y πyτxy is independent of x. Indeed, the term corresponding to y equals πyτyy = 1.
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Lemma 2.1 We have that
∑
y πyτxy is independent of the initial state x, i.e., there exists a

constant 1 < c ≤ ∞ such that ∑
y

πyτxy = c, for all x ∈ S.

As a consequence ∑
x,y

πyπxτxy = c,

as well.

Proof. Denote f(x) =
∑
y πyτxy: this may be infinite. We will first argue that the f(x) are

either all finite or all infinite.
Assume that f(x) <∞ for some state x. Choose any state l 6= x, some (finite) path from x

to l and denote the probability of this path by q. Then τly ≤ τxy/q and so f(l) ≤ f(x)/q <∞.
So me may assume that f(x) <∞ for all x. By (2.2)

f(x) =
∑
y

πy
(
1 +

∑
l 6=y

pxlτly
)

= 1 +
∑
l

pxl
∑
y 6=l

πyτly

= 1 +
∑
l

pxl
(
f(l)− 1

)
.

Bu subtracting 1 from the right hand side, and writing g(x) = f(x)− 1, we get

g(x) = f(x)− 1 =
∑
l

pxlg(l),

in matrix notation
g = Pg.

Interating this, yields
g = P (n)g,

and taking the limit on both sides and using Fatou’s lemma we get

g ≥ Πg.

Suppose that g 6≡ Πg. Then there must be at least one state x for which g(x) > (Πg)(x). Since

g(l) ≥
∑
y

πyg(y),

for all states l, we obtain by multiplying by πl and taking the summation over l∑
l

πlg(l) >
∑
l

πl
∑
y

πyg(y) =
∑
y

πyg(y),

a contradiction. Thus g(x) =
∑
y πyg(y) for all states x. This proves the lemma. QED

The next theorem shows essentially that formula (2.6) holds, whenever the deviation matrix
exists.

4



Theorem 2.2 Suppose that there exists a unique solution D to (2.3) and (2.4). Then (2.5)
holds.

Proof. First we show that the matrix A with entries

axy = Dyy − 1{x6=y}πyτxy

solves (2.3). Indeed,

δxy − πy +
∑
k

pykaky = δxy − πy +Dyy −
∑
k 6=y

pykπyτky

= Dyy + δxy − πy
(
1−

∑
k 6=y

pykτky
)

= Dyy + δxy − πτxy = axy.

Next we show that this must be the only solution. We have that

D −A = P
(
D −A

)
.

This difference matrix has all diagonal elements equal to 0. Also(
D −A

)+ ≤ P
(
D −A

)+
.

Iterating this, yields (
D −A

)+ ≤ P (t)
(
D −A

)+
.

Taking the limsup for t→∞ and using Fatou’s lemma gives(
D −A

)+ ≤ Π
(
D −A

)+
.

Consequently,
(
D−A

)+ has bounded columns. In the same manner, one can show that
(
D−A

)−
has bounded columns. Using the fact that D − A = P (t)

(
D − A

)
and dominated convergence,

shows that
D −A = Π

(
D −A

)
.

Thus D − A has constant columns. Since it has zero diagonal elements, the whole matrix must
be identically 0. As a consequence, D = A.

This shows the validity of formula (2.6), that is Dxy = Dyy − 1{x6=y}πyτxy. Using that
ΠD = 0, we obtain Dyy = πy

∑
v 6=y πvτvy. QED

The natural question arises whether the reverse implication holds. That is, provided the
right-hand side of (2.6) is finite, does it yield a unique solution of (2.3) and (2.4)? It yields
a solution of (2.3) indeed. However, it is not clear whether (2.4) holds without any further
conditions.

A possible counterexample could be an ergodic, embedded M/GI/1-queue with a suitable
service time distribution. If the service time distribution has a finite first moment, but an infinite
second one, then the stationary distribution has an infinite first moment (see for instance Chapter
14.4 [3]). By homogeneity properties and the fact that downward jumps have size at most 1, one
can show that τxy = c(x− y), x > y, for some constant c. Indeed, applying Theorem 2.2 yields
that a unique solution to (2.3) and (2.4) cannot exist. In that case

∑
v>y πvτvy =

∑
v>y πvc(v−y)

is necessarily finite. This contradicts the fact that the stationary distribution does not have a
finite first moment.
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Requiring the service time distribution to have at best a finite (2 + ε)-th moment, for some
sufficiently small ε > 0, yields finite expressions in the right-hand side of (2.6). Defining the
matrix A with entries axy through (2.6), it easily follows that (2.3) is satisfied. However, it is
not clear whether ΠA converges. We believe that not.

To guarantee the existence of unique solutions to (2.3) and (2.4), one can use the following
theorem from [2]. The contractive Lyapunov function condition used there, is satisfied by our
examples studied later on.

Theorem 2.3 Consider an aperiodic, irreducible and time homogeneous Markov chain ξt on a
countable state space S. Suppose that ξt satisfies the following contractive Lyapunov function
criterion: there exists a state z ∈ S, a positive function f : S → R with infx f(x) > 0, and
a positive constant α such that zP f ≤ exp−α f . Then the Markov chain is positive recurrent,
in particular it is f-exponentially ergodic (see [1]). Then the deviation matrix D is the unique
f-bounded solution to the following set of equations and the following formula holds:

D =
(
I−Π

) ∞∑
n=0

zP
(n)
(
I−Π

)
. (2.8)

3 The Poisson equation

The deviation matrix plays an important role in Markov decision chains. In a Markov decision
chain, the transition matrix P depends on the policy f : S → A, with A the set of actions.
Therefore we often write P (f) instead of P . There are also immediate costs c = {c(x)}x∈S .

An intermediate step in many algorithms (e.g., policy iteration, or the approximation algo-
rithm described in the Introduction) is solving the Poisson equation

c− g = v − P (f)v

for a given policy f . Under the conditions of Theorem 2.3 the Poisson equation has a unique
solution upto a constant, namely v = Dc, and g = Πc (for P = P (f)).

We make some observations on computational issues. Choose any set A ⊂ S and suppose
that

∑
y∈ADyyc(y) converges. This is true for any finite set. Then by Theorem 2.2, vA given by

vA(x) = v(x)−
∑
y∈A

Dyyc(y) = −
∑

y∈A, 6=x

πyτxyc(y) +
∑
y 6∈A

(
Dyy − 1{y 6=x}πyτxy

)
c(y)

is a solution as well. When the state space is finite, we can always take A = S. Suppose the
costs have equal sign, or can be made to have equal sign by adding a constant. The latter is
the case for instance when the costs have a monotone structure. Then it follows immediately
that the vS(x) have equal sign. This allows for numerically stable algorithms for computing a
solution of the Poisson equation.

4 The deviation matrix for the M/M/s/N- and M/M/s/∞-
queues

By virtue of Theorem 2.2 we need to compute hitting times and stationary probabilities in order
to explicitly calculate the deviation matrix. We will do so through formulae for ymxv.

We will first compute these quantities for the time discretised approximation of a birth-death
processes on the non-negative integers with the following boundedness conditions on the jump
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rates. For λx and µx the birth and death rates in state x respectively, such that µ0 = 0, assume
that

0 < lim inf
x→∞

λx
µx
≤ lim sup

x→∞

λx
µx

< 1

0 < inf
x

(
λx + µx

)
≤ sup

x

(
λx + µx

)
<∞.

Let N = inf{x |λx = 0}, where N may be infinite if all birth rates are positive. After suitable
renormalisation, we obtain an approximating Markov chain on {0, . . . , N} with the following
transition probabilities

pxy =


λx, y = x+ 1, x < N
µx, y = x− 1, x > 0
1−

∑
s 6=x pxs, y = x.

This Markov chain trivially satisfies the conditions of Theorem 2.3, whenever N is finite; it
also satisfies these conditions when N is infinite. This can be shown by constructing a suitable
Lyapunov function.

Lemma 4.1 Choose state z > 0 with supx≥z λx/µx < 1. Next we determine a number of positive
constants satisfying the following conditions:

i) choose δ with exp{δ} ≤ infx≥z µx/λx;

ii) let γ and c < 1 be such that exp{−γ} ≤ infx≤z µx/λ and
(
1+c

)(
1+
(

exp{−γ}/4
)z) ≤ exp{δ};

iii) finally, let α satisfy supx
(
1−exp{−α}

)
/λx ≤ c·

(
exp{−γ}/4

)z and λ0

(
1+
(

exp{−γ}/4
))
≤

exp{−α}.

Let

βx =
{ (

exp{−γ}/4
)x
, x ≤ z

βz, x > z.

Then the function f defined recursively by f(0) = 1 and f(x) = (1 + βx)f(x − 1), x > 0, is a
Lyapunov function that satisfies the conditions of Theorem 2.3 with taboo state 0 and contraction
factor exp{−α}.

Proof. We need to check that
∑
y 6=0 0pxyf(y) ≤ exp{−α}f(x). For x = 0 this reduces to

checking
λ0

(
1 + β1

)
≤ exp{−α}.

This follows immediately from (iii). For x > 0 we have got to check that

µx

( f(x)
1 + βx

)
+ (1− λx − µx)f(x) + λxf(x)

(
1 + βx+1

)
≤ exp{−α}f(x),

or

βx+1 +
1− exp{−α}

λx
≤ µx
λx

βx
1 + βx

. (4.1)

For x < z, this follows from the fact that

2βx+1 = 2
(exp{−γ}

4

)x+1

≤ 2
µx
4λx

βx ≤
µx
λx

βx
1 + βx

,
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since 1 + βx < 2 and (1− exp{−α})/λx ≤ c · βz ≤ βx+1 by (iii). For x ≥ z, (4.1) reduces to

βz +
1− exp{−α}

λx
≤ µx
λx

βz
1 + βz

.

This is implied by

βz(1 + c) ≤ exp{δ} βz
1 + βz

,

or, dividing both sides by βz and multiplying them by 1 + βz, by

(1 + c)(1 + βz) ≤ exp{δ}.

The latter is true by (ii). QED

We would like to point out that one can take any state for the taboo state. In that case it
suffices to change the function f defined in the lemma, in state 1.

The stationary distribution expressed in terms of πy is known to be given by

πx =


πy
λx−1 · · ·λy
µx · · ·µy+1

, x > y

πy
µy · · ·µx+1

λy−1 · · ·λx
, x < y.

For computing the ymxv we have to do some work. Note that for x ≤ v < y and x ≥ v > y we
have ymxv = ymvv. Indeed, to reach y from such x, we must reach v first and from then on the
number of visits to state v is exactly the same as if we had started in v.

Similarly, for x > y > v and x < y < v we have ymxv = 0. Further, for v = y

ymxy =
{

1, x = y
0, x 6= y.

(4.2)

Finally, since πv = ymyvπy, we have for x = y

ymyv =


.
λv−1 · · ·λy
µv · · ·µy+1

, v > y

µy · · ·µv+1

λy−1 · · ·λv
, v < y.

The only cases left to consider are the cases v ≤ x < y and y < x ≤ v.
Let y < x < v. Then by (2.1)

ymyv = λy ymy+1 v.

For x = y + 1 we get, writing ∆ymxv = ymx+1 v − ymxv,

∆ymy+1 v =
µy+1

λy+1
ymy+1 v,

and for x > y + 1

ymxv = (1− λx − µx)ymxv + λx · ymx+1 v + µx · ymx−1 v,

so that

∆ymxv =
µx
λx

∆ymx−1 v
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=
µx · · ·µy+1

λx · · ·λy+1
ymy+1 v

=
µx · · ·µy+1

λx · · ·λy
ymy v

=
µx · · ·µy+1

λx · · ·λy
λv−1 · · ·λy
µv · · ·µy+1

=
λv−1 · · ·λx+1

µv · · ·µx+1
.

As a consequence, for x, v > y

ymxv = ymy+1v +
x−1∑
l=y+1

∆ymlv

=
min{x,v}∑
l=y+1

λl · · ·λv−1

µl · · ·µv
=

min{x,v}∑
l=y+1

πv
λl−1πl−1

=
min{x,v}∑
l=y+1

πv
µlπl

. (4.3)

By the same reasoning we find for x, v < y

ymxv =
y−1∑

l=max{x,v}

µv+1 · · ·µl
λv · · ·λll

=
y−1∑

l=max{x,v}

πv
λlπl

. (4.4)

For the first passage times, we thus find for x > y

τxy =
∑
v>y

ymxv

=
x∑

v=y+1

ymvv +
∑

v≥x+1

ymxv

=
x∑

v=y+1

v∑
l=y+1

λl · · ·λv−1

µl · · ·µv
+
∑

v≥x+1

x∑
l=y+1

λl · · ·λv−1

µl · · ·µv

=
x∑

l=y+1

∑
v≥l

λl · · ·λv−1

µl · · ·µv
=

x∑
l=y+1

∑
v≥l

πv
µlπl

, (4.5)

and similarly for x < y

τxy =
y−1∑
l=x

∑
v≤l

µv+1 · · ·µl
λv · · ·λl

=
y−1∑
l=x

∑
v≤l

πv
λlπl

. (4.6)

Next we will calculate Dyy in terms of the stationary probabilities:

Dyy = πy
∑
v 6=y

πvτvy

= πy
∑
v>y

πv

v∑
l=y+1

∑
r≥l

πr
µlπl

+ πy
∑
v<y

πv

y−1∑
l=v

∑
r≤l

πr
λlπl

= πy
∑
l>y

(∑
v≥l

πv
)2 1
µlπl

+ πy
∑
l<y

(∑
v≤l

πv

)2 1
λlπl

. (4.7)

By expression (4.7)

Dy+1 y+1

πy+1
− Dyy

πy
= −

( ∑
v≥y+1

πv

)2 1
µy+1πy+1

+
(∑
v≤y

πv

)2 1
λyπy
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=
1

λyπy

{
−
( ∑
v≥y+1

πv

)2

+
(∑
v≤y

πv

)2}
=

1
λyπy

{∑
v≤y

πv −
∑
v≥y+1

πv

}
.

Therefore, writing
vy+1 =

∑
v≤y

πv −
∑
v≥y+1

πv, (4.8)

we find that

Dy+1 y+1 =
λy
µy+1

Dyy +
1

µy+1
vy+1 (4.9)

Dy−1 y−1 =
µy
λy−1

Dyy −
1

λy−1
vy. (4.10)

This suggests the following algorithm for computing the deviation matrix.

Algorithm for computing D

Step 1 Choose a reference state s and compute Dss.

Step 2 For y = s, s− 1, . . . do: compute vy and set Dy−1 y−1 = µy
λy−1

Dyy − 1
λy−1

vy.

Step 3 For y = s, s+ 1, . . . do: compute vy+1 and set Dy+1,y+1 = λy
µy+1

Dyy + 1
µy+1

vy+1.

Step 4 For any y and x compute Dxy for x 6= s using formulae (2.6) and (4.5) or (4.6).

N -state truncations.
Suppose that the stationary distribution for the infinite system has exponentially decaying tails.
Let us truncate the state space by throwing away all states larger than N and sending the
disappearing mass flowing from state N back to itself. Then the entries of the deviation matrix
for the truncated system and the corresponding entries for the original system differ by a factor
that decays exponentially quickly with N . This follows easily from the above algorithm and
formula (2.5).

Let us next introduce the time-discretised approximations of the M/M/s/N- and M/M/s/∞-
queues and calculate their deviation matrices.

M/M/s/N-queue.
This is a system with s servers, and a buffer (waiting room) of size N−s for some integer N ≥ s.
This means that the total amount of jobs in the system can be at most N .

The time discretised approximation has the following service rates

µx =
{
xµ, x ≤ s
sµ, x > s.

A suitable reference state is the state s which is the boundary of the set of states where the
service rates are non-homogeneous and the one where they are homogeneous.

The stationary distribution is given by

πx =


πs
s!
x!

(µ
λ

)s−x
= πs

s!
x!ss−x

ρx−s, x < s

πs

( λ
sµ

)x−s
= πsρ

x−s, x > s,
(4.11)
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where ρ = λ/sµ and where by normalisation

πs =
1∑s

l=1 ρ
−l (s)!

(s−l)!sl +
∑N−s
l=0 ρl

=
1− ρ∑s

l=1 ρ
−l s!l

(s−l)!sl+1 − ρN+1−s
.

Let us first calculate Dss and vy in terms of πs.

Dss

πs
=

∑
l>s

(∑
v≥l

πv

)2 1
sµπl

+
∑
l<s

(∑
v≤l

πv

)2 1
λπl

=
πs
sµ

∑
l>s

ρl−s
(N−l∑
v=0

ρv
)2

+
s!ρ−sπs
ssλ

∑
l<s

l!
ρlsl

(∑
v≤l

ρvsv

v!

)2

. (4.12)

The first term in (4.12) is simple to further comprise:

πs
sµ

∑
l>s

ρl−s
(N−l∑
v=0

ρv
)2

=
πs

sµ(1− ρ)2

∑
l>s

ρl−s
(

1− 2ρN−l+1 + ρ2N−2l+2
)

=
πs

sµ(1− ρ)3

(
ρ− ρN+1−s − 2(N − s)(1− ρ)ρN+1−s + ρN−s+2

−ρ2N−2s+2
)

=
πs

sµ(1− ρ)3

(
ρ− (1− ρ)(2N − 2s+ 1)ρN+1−s − ρ2N−2s+2

)
.

As a consequence,

Dss =
π2
s

sµ(1− ρ)3

(
ρ− (1− ρ)(2N − 2s+ 1)ρN+1−s − ρ2N−2s+2

)
+

s!ρ−sπ2
s

ssλ

∑
l<s

l!
ρlsl

(∑
v≤l

ρvsv

v!

)2

. (4.13)

Calculation of vy yields

vy =


1− 2

∑
v≥y

πv = 1− 2πs
ρy−s − ρN+1−s

1− ρ
, y ≥ s

2
∑

v≤y−1

πv − 1 = 2πs
y−1∑
v=0

s!
v!ss−v

ρv−s − 1 y < s.

(4.14)

Next, we will express Dyy in terms of Dss and πs. Using (4.9) and the expression for vs+1, it
follows that

Ds+1 s+1 = ρDss +
1
sµ
− 2πs

sµ

ρ− ρN+1−s

1− ρ
.

Consequently,

Ds+2 s+2 = ρDs+1 s+1 +
1
sµ
− 2πs

sµ

ρ2 − ρN+1−s

1− ρ

= ρ2Dss +
1
sµ

1− ρ2

1− ρ
− 4πs
sµ(1− ρ)

· ρ2 +
2πs

sµ(1− ρ)
· 1− ρ2

1− ρ
ρN+1−s.

11



Iterating this yields

Ds+k s+k = ρkDss +
1− ρk

sµ(1− ρ)
− 2kπs
sµ(1− ρ)

· ρk +
2πs

sµ(1− ρ)
· 1− ρk

1− ρ
ρN+1−s.

Next, we obtain Ds−1 s−1 from (4.10) and the expression for vs:

Ds−1 s−1 = ρ−1Dss −
2πs
λ

s−1∑
r=0

s!
r!ss−r

ρr−s +
1
λ
.

Iterating this, easily yields

Ds−k s−k =
s!

(s− k)!sk
ρ−kDss −

2πs
λ

k∑
l=1

(s− l)!
(s− k)!sk−l

ρl−k
s−l∑
r=0

s!
r!ss−r

ρr−s

+
1
λ

k∑
l=1

(s− l)!
(s− k)!sk−l

ρl−k.

We will finally calculate Dxy for x 6= y, and express these in terms of Dyy. We need to consider
a number of different cases.

s ≤ x

i)y > x. We have

Dxy = Dyy − πyτxy

= Dyy −
πsρ

y−s

λ

y−1∑
l=x

(1−
∑
v>l πv

πl

)
= Dyy −

πsρ
y−s

λ

(ρs
πs

y−1∑
l=x

ρ−l −
y−1∑
l=x

∑
v>l

ρv−l
)

= Dyy −
πsρ

y−s

λ(1− ρ)

(ρs+1−y − ρs+1−x

πs
−
y−1∑
l=x

(
ρ− ρN−l+1

))
= Dyy −

ρ− ρy+1−x

λ(1− ρ)
+
πsρ

y+1−s(y − x)
λ(1− ρ)

− πs
λ(1− ρ)2

(ρN−s+2 − ρN+y−x−s+2)

= Dyy −
1− ρy−x

sµ(1− ρ)
+
πsρ

y−s(y − x)
sµ(1− ρ)

− πs(ρN+1−s − ρN+1+y−x−s)
sµ(1− ρ)2

.

ii)s ≤ y < x. In this case

Dxy = Dyy − πyτxy

= Dyy −
πsρ

y−s

sµ

x∑
l=y+1

∑
v≥l

ρv−l

= Dyy −
πsρ

y−s

sµ(1− ρ)

x∑
l=y+1

(
1− ρN+1−l)

= Dyy +
πsρ

y−s(y − x)
sµ(1− ρ)

− πs(ρN+1−s − ρN+1+y−x−s)
sµ(1− ρ)2

.
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iii)y < s. Then

Dxy = Dyy − πyτxy

= Dyy − πy
s∑

l=y+1

1−
∑
v<l πv

lµπl
− πy

x∑
l=s+1

∑
v≥l

πv
sµπl

= Dyy −
ρysy

y!µ

s∑
l=y+1

(l − 1)!
ρlsl

+
πss!ρy−s

y!ss−yµ

s∑
l=y+1

∑
v<l

(l − 1)!ρv−l

v!sl−v
− πss!ρy−s

y!ss+1−yµ

x− s
1− ρ

+

+
πss!ρy−s

y!ss+1−yµ

ρN+1−x − ρN+1−s

(1− ρ)2

= Dyy +
πss!ρy−s(s− x)
y!ss−ysµ(1− ρ)

− πss!(ρN+1+y−2s − ρN+1+y−x−s)
y!ss−ysµ(1− ρ)2

+

−ρ
ysy

y!µ

s∑
l=y+1

(l − 1)!
ρlsl

+
πss!ρy−s

y!ss−yµ

s∑
l=y+1

∑
v<l

(l − 1)!ρv−l

v!sl−v
.

s > x

i)y ≥ s. Now we have

Dxy = Dyy − πyτxy

= Dyy − πy
s−1∑
l=x

∑
v≤l

πv
λπl
− πy

y−1∑
l=s

1−
∑
v>l πv

λπl

= Dyy −
πsρ

y−s

λ

s−1∑
l=x

∑
v≤l

l!ρv−l

v!sl−v
− ρ

λ(1− ρ)
(1− ρy−s) +

πsρ
y−s+1(y − s)
λ(1− ρ)

+

− πs
λ(1− ρ)2

(
ρN+2−s − ρN+2+y−2s

)
= Dyy −

1− ρy−s

sµ(1− ρ)
+
πsρ

y−s(y − s)
sµ(1− ρ)

− πs(ρN+1−s − ρN+1+y−2s)
sµ(1− ρ)2

−πsρ
y−s

µ

s∑
l=x+1

∑
v<l

(l − 1)!ρv−l

v!sl−v
.

ii)s > y > x. Now

Dxy = Dyy − πyτxy

= Dyy − πy
y−1∑
l=x

∑
v≤l

πv
λπl

= Dyy −
πss!ρy−s

y!ss−yλ

y−1∑
l=x

∑
v≤l

l!
v!sl−v

ρv−l

= Dyy −
πss!ρy−s

y!ss−yµ

y∑
l=x+1

∑
v<l

(l − 1)!
v!sl−v

ρv−l.
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iii)s > x > y. Finally,

Dxy = Dyy − πyτxy

= Dyy − πy
x∑

l=y+1

1−
∑
v<l πv

lµπl

= Dyy −
ρysy

y!µ

x∑
l=y+1

(l − 1)!
ρlsl

+
πss!ρy−s

y!ss−yµ

x∑
l=y+1

∑
v<l

(l − 1)!ρv−l

v!sl−v
.

Let us summarise these expressions. For any two numbers x and y we use the notation x ∨ y =
sup{x, y} and x ∧ y = inf{x, y}.

Theorem 4.1 The deviation matrix of the M/M/s/N-queue has the following entries:

Dss =
π2
s

sµ(1− ρ)3

(
ρ− (1− ρ)(2N − 2s+ 1)ρN+1−s − ρ2N−2s+2

)
+
s!ρ−sπ2

s

ssλ

∑
l<s

l!
ρlsl

(∑
v≤l

ρvsv

v!

)2

and for (x, y) 6= (s, s)

Dxy =
ρy−ss!

(y ∧ s)!ss−y∧s
Dss +

ρ(y∨s−x∨s)∨0 − ρy∨s−s

sµ(1− ρ)

+
πss!ρy−s

(y ∧ s)!ss−y∧ssµ(1− ρ)
(
2s− x ∨ s− y ∨ s

)
+

πss!ρy−s

(y ∧ s)!ss−y∧ssµ(1− ρ)2

(
ρN+1−s + ρN+1+y−x∨s−s − ρN+1+y−2s − ρN+1+y∨s−2s

)
+
ρysy

y!µ

( s∑
l=y∧s+1

(l − 1)!
ρlsl

−
x∧s∑

l=y∧s+1

(l − 1)!
ρlsl

)
− πss!ρy−s

(y ∧ s)!ss−y∧sµ

( s∑
l=y∧s+1

∑
v<l

(l − 1)!ρv−l

v!sl−v
+

s∑
l=x∧s+1

∑
v<l

(l − 1)!ρv−l

v!sl−v
)
.

For s = 1 the expressions become much simpler since the inhomogeneous part of the state
space disappears (cf. also [5]). The stationary probabilities are given by

πx = ρx
1− ρ

1− ρN+1
.

Then

vx = 1− 2
ρx − ρN+1

1− ρ
, x > 0.

Note that we only need vx, x > 0, for calculating the diagonal of D.
First computing the diagonal element corresponding to s = 1, yields

D11 =
1

(1− ρN+1)2(1− ρ)µ

(
1− 3ρ+ 3ρ2 − (1− ρ)ρN+2(2N − 1)− ρ2N+2

)
.

Plugging this into the expressions for Dyy gives

Dyy =
1

(1− ρN+1)2(1− ρ)µ

(
1− (2y + 1)ρy(1− ρ) + (2y − 1− 2N)ρN+y+1(1− ρ)− ρ2N+2

)
.
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Checking the off-diagonal elements, we finally find the following general expression for the entries
of the deviation matrix (cf. [5] where the same formula has been derived in a slightly different
format).

Corollary 4.1 (of Theorem 4.1) In case s = 1, the deviation matrix has entries

Dxy =
1

µ(1− ρ)(1− ρN+1)2

(
ρ(y−x)∨0(1− ρN+1)2 − (y + x− 1)ρy(1− ρ)(1− ρN+1)

+ρN+y−x+1 − ρ2N+y−x+2 − 2ρy(1− ρ) + ρN+1 − ρ2N+2

−2NρN+y+1(1− ρ)
)
.

M/M/s/∞-queue.
This queue has exactly the same transition mechanism as the M/M/s/N-queue, only the buffer
size is infinitely large, i.e., N =∞. Note that the infinite buffer system is only positive recurrent,
when λ < sµ. In that case, it satisfies the conditions of Lemma 4.1. Consequently, Theorem 2.3
applies, and so the deviation matrix exists and satisfies the conditions of Theorem refhmm.

The formulae derived for the general one buffer network evidence, that the stationary prob-
abilities, first passage times and thus the deviation matrix for the infinite buffer case, can be
obtained from the corresponding expressions for the finite buffer case by taking the limit N →∞.

Thus the stationary probabilities satisfy (4.11) where in this case

πs =
1− ρ∑s

l=1 ρ
−l s!l

(s−l)!sl+1

.

For the diagonal entries of the deviation matrix, taking the limit N → ∞ in the expressions in
Theorem 4.1 gives the following result.

Theorem 4.2

Dss =
π2
sρ

sµ(1− ρ)3
+
s!ρ−sπ2

s

ssλ

∑
l<s

l!
ρlsl

(∑
v≤l

ρvsv

v!

)2

and for (x, y) 6= (s, s)

Dxy =
ρy−ss!

(y ∧ s)!ss−y∧s
Dss +

ρ(y∨s−x∨s)∨0 − ρy∨s−s

sµ(1− ρ)

+
πss!ρy−s

(y ∧ s)!ss−y∧ssµ(1− ρ)
(
2s− x ∨ s− y ∨ s

)
+
ρysy

y!µ

( s∑
l=y∧s+1

(l − 1)!
ρlsl

−
x∧s∑

l=y∧s+1

(l − 1)!
ρlsl

)
− πss!ρy−s

(y ∧ s)!ss−y∧sµ

( s∑
l=y∧s+1

∑
v<l

(l − 1)!ρv−l

v!sl−v
+

s∑
l=x∧s+1

∑
v<l

(l − 1)!ρv−l

v!sl−v
)
.

The formulae for Dyy in the finite and infinite buffer systems have the same format whenever
y < s, and for Dxy, x 6= y, whenever x, y < s. They only differ through Dss and πs.

Next we consider the single server case s = 1. The stationary probabilities are given by

πx = ρx(1− ρ).

A general formula for the deviation matrix entries is obtained by passing to the limit N → ∞
in the Corollary to Theorem 4.1.
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Corollary 4.2 (of Theorem 4.2)

Dxy =
1

µ(1− ρ)

(
ρ(y−x)∧0 − (y + x+ 1)ρy(1− ρ)

)
.

References

[1] A. Hordijk and F.M. Spieksma (1992), On ergodicity and recurrence properties of a Markov
chain with an application to an open Jackson network. Adv. Appl. Prob. 24, 343–376.

[2] A. Hordijk and F.M. Spieksma (1994), A new formula for the Deviation matrix. In Proba-
bility, Statistics and Optimisation, 497–507. J. Wiley.

[3] S. Karlin (1966), A first Course in Stochastic Processes. Academic Press, London.

[4] J.G. Kemeny and J.L. Snell (1960), Finite Markov Chains. Van Nostrand, New York.

[5] G.M. Koole (1998), The deviation matrix of the M/M/1/∞ and M/M/1/N queue, with
applications to controlled queueing models. In Proceedings of the 37th IEEE CDC, 55–59,
Tampa.

[6] G.M. Koole and P. Nain (2000), On the value function of a priority queue with an application
to a controlled polling model. Queueing Systems, 34, 199–214.

[7] T.J. Ott and K.R. Krishnan (1992), Separable routing: A scheme for state-dependent
routing of circuit switched telephone traffic. Annals of Operations Research, 35, 43–68.

[8] M.L. Puterman (1994), Markov Decision Processes. Wiley, New York.

[9] S.A.E. Sassen, H.C. Tijms, and R.D. Nobel (1997), A heuristic rule for routing customers
to parallel servers. Statistica Neerlandica, 51, 107–121.

16


