
ON DIAGONALLY-RELAXED ORTHOGONAL PROJECTION

METHODS

YAIR CENSOR † , TOMMY ELFVING ‡ , GABOR T. HERMAN § , AND

TOURAJ NIKAZAD ¶

September 2, 2005. Revised: May 29, 2007

Abstract. We propose and study a block-iterative projections method for solving linear equa-
tions and/or inequalities. The method allows diagonal component-wise relaxation in conjunction with
orthogonal projections onto the individual hyperplanes of the system, and is thus called diagonally-
relaxed orthogonal projections (DROP). Diagonal relaxation has proven useful in accelerating the
initial convergence of simultaneous and block-iterative projection algorithms but until now it was
available only in conjunction with generalized oblique projections in which there is a special rela-
tion between the weighting and the oblique projections. DROP has been used by practitioners and
in this paper a contribution to its convergence theory is provided. The mathematical analysis is
complemented by some experiments in image reconstruction from projections which illustrate the
performance of DROP.

Key words. block-iterations, convex feasibility, diagonal relaxation, projection methods, simul-
taneous algorithms

AMS subject classifications. 15A06, 15A29, 15A39, 65F10, 65F50

1. Introduction.

1.1. Motivation and algorithmic structure. In this paper we investigate
diagonal component-wise relaxation in simultaneous and in block-iterative projec-
tion methods for the linear feasibility problem. The method that we study, called
diagonally-relaxed orthogonal projections (DROP), has been used by practitioners
and our paper makes a contribution to its convergence theory. We also illustrate the
performance of DROP as compared to similar methods on some examples, but these
experiments, performed on a single processor, indicate that none of these methods
is superior to all others, as long as the free parameters of the methods are carefully
selected.

Our main contributions are convergence results (Theorem 2.3) for the fully-
simultaneous DROP in the inconsistent case and (Theorems 2.9, 2.10) for the block-
iterative DROP in the consistent case. The novel features of these results are the
generality of the relaxation parameters intervals and the constructive explicit bounds
for them. These are achieved by combining general results for block-iterative projec-
tion methods, such as those in Censor and Elfving [11] and Jiang and Wang [34], with
a key lemma (Lemma 2.2) which generalizes a result of Lent that appeared in [11,
Lemma 7.1].

Many problems in mathematics, in physical sciences and in real-world applications
of various technological innovations can be modeled as a convex feasibility problem;

†Department of Mathematics, University of Haifa, Mt. Carmel, Haifa 31905, Israel
(yair@math.haifa.ac.il).

‡Department of Mathematics, Linköping University, SE-581 83 Linköping, Sweden
(toelf@mai.liu.se).

§Department of Computer Science, The Graduate Center, City University of New York, New
York, NY 10016, USA (gabortherman@yahoo.com).

¶Department of Mathematics, Linköping University, SE-581 83 Linköping, Sweden
(tonik@mai.liu.se) (on leave from the Department of Mathematics, Iran University of Science
and Technology). His work is supported by a grant from the Iran Ministry of Science, Research
& Technology.

1

2 Y. CENSOR, T. ELFVING, G. T. HERMAN AND T. NIKAZAD

i.e., a problem of finding a point x∗ ∈ Q := ∩m
i=1Qi in the intersection of finitely

many closed convex sets Qi ⊆ Rn in a finite-dimensional Euclidean space. Projection
algorithms play a central role in the area of constructive solution of such problems.

Although projections onto sets are used in many methods in optimization the-
ory, not every method that uses projections really belongs to the class of projection
algorithms. Projection algorithms are iterative algorithms that use projections onto
sets while relying on the general principle that when a family of (usually closed and
convex) sets is present, then projections onto the individual sets are easier to perform
than projections onto other sets (intersections, image sets under some transforma-
tion, etc.) that are derived from the individual original sets. A projection algorithm
reaches its goal that is related to the whole family of sets by performing projections
onto the individual sets. Projection algorithms employ projections onto convex sets
in various ways. They may use different kinds of projections and, sometimes, even
use different projections within the same algorithm. They serve to solve a variety
of problems that are either of the feasibility or the optimization types. They have
different algorithmic structures (e.g., Butnariu, Censor and Reich [6], Censor, Elfving
and Herman [10], Censor and Zenios [14, Section 1.3]) of which some are particularly
suitable for parallel computing, and they demonstrate nice convergence properties
and/or good initial behavior patterns.

This class of algorithms has witnessed great progress in recent years and its mem-
ber algorithms have been applied with success to fully-discretized models of problems
in image reconstruction from projections (e.g., Herman [30]), in image processing
(e.g., Stark and Yang [37]), and in intensity-modulated radiation therapy (IMRT)
(e.g., Censor [9]). Apart from theoretical interest, the main advantage of projection
methods that makes them successful in real-world applications is computational. They
commonly have the ability to handle huge-size problems of dimensions beyond which
other, more sophisticated currently available, methods cease to be efficient. This is
so because the building bricks of a projection algorithm are the projections onto the
individual sets (that are assumed easy to perform) and the algorithmic structure is
either sequential or simultaneous (or in-between).

If Q 6= ∅ the convex feasibility problem is called consistent, otherwise it is incon-
sistent. Our starting point is the well-known Cimmino algorithm for linear equations
whose iterative step for equally-weighted linear equations has the form

(1.1) xk+1 = xk +
λk

m

m
∑

i=1

bi − 〈ai, xk〉
‖ai‖2

2

ai,

where, here and throughout the paper, λk are relaxation parameters, and ai =
(ai

j)
n
j=1 ∈ Rn, ai 6= 0, and bi ∈ R are the given data of the linear equations or

inequalities. Fully-simultaneous (parallel) algorithmic schemes for general (not nec-
essarily linear) convex sets employ a similar iterative step of the form

(1.2) xk+1 = xk + λk

(

m
∑

i=1

wi

(

PQi
(xk) − xk

)

)

,

where PΩ(x) stands for the orthogonal (nearest Euclidean distance) projection of a
point x onto the closed convex set Ω, the parameters {wi}m

i=1 are a system of weights
such that wi > 0 for all i = 1, 2, . . . ,m (sometimes

∑m
i=1 wi = 1 is also required),

and the relaxation parameters {λk}∞k=0 are user-chosen and, in most convergence
analyses, must remain in a certain fixed interval, in order to guarantee convergence.

ON DIAGONALLY-RELAXED ORTHOGONAL PROJECTION METHODS 3

This scheme (1.1) for linear equations was first proposed by Cimmino [15] (read about
the profound impact of this paper on applied scientific computing in Benzi’s paper
[4]). Its generalization to general convex sets was done by Auslender [2].

The question of diagonal component-wise relaxation is: may the weights wi be
allowed to depend on the component index j as iterations proceed, without loosing
the guaranteed convergence of the algorithm? Or, phrased in mathematical notation,
may the iterations proceed according to

(1.3) xk+1
j = xk

j + λk

(

m
∑

i=1

wij

(

(

PQi
(xk)

)

j
− xk

j

)

)

, for j = 1, 2, . . . , n,

where the parameters {wij}m
i=1 form n systems of weights such that, for j = 1, 2, . . . , n,

wij ≥ 0 for all i = 1, 2, . . . ,m, and possibly also
∑m

i=1 wij = 1? If such component-
wise relaxation is possible, then we can use it to exploit sparsity of the underlying
problem and to control asynchronous (block) iterations, as will be explained in the
sequel. To demonstrate the advantages of such diagonal relaxation let us consider
linear equations and their associated hyperplanes

(1.4) Hi =
{

x ∈ Rn | 〈ai, x〉 = bi

}

,

for i = 1, 2, . . . ,m. The orthogonal projection Pi(z) of any point z ∈ Rn onto Hi is

(1.5) Pi(z) = z +
bi − 〈ai, z〉

‖ai‖2
2

ai ,

where ‖ · ‖2 is the Euclidean norm. In a simultaneous projections method (1.2), see
also Censor and Zenios [14, Algorithm 5.6.1], with relaxation parameters and with
equal weights wi = 1/m, the next iterate xk+1 is the average of the projections of xk

on the hyperplanes Hi,

(1.6) xk+1 = xk +
λk

m

m
∑

i=1

(

Pi(x
k) − xk

)

.

Equivalently, combining (1.6) and (1.5), we obtain the fully-simultaneous Cimmino
algorithm with equal weights for the solution of linear equations.

Algorithm 1.1. Cimmino’s Algorithm (CIM) with Equal Weights for
Linear Equations
Initialization: x0 ∈ Rn is arbitrary.
Iterative Step: Given xk compute, for j = 1, 2, . . . , n,

(1.7) xk+1
j = xk

j +
λk

m

m
∑

i=1

bi − 〈ai, xk〉
‖ai‖2

2

ai
j ,

where {λk}∞k=0 are user-chosen relaxation parameters.
When the m × n system matrix A = (ai

j) is sparse, as often happens in some
important real-world applications, only a relatively small number of the elements
{a1

j , a
2
j , . . . , a

m
j } in the j-th column of A are nonzero, but in (1.7) the sum of their

contributions is divided by the relatively large m – slowing down the progress of the
algorithm. This observation led us in [12] to consider replacement of the factor 1/m
in (1.7) by a factor that depends only on the number of nonzero elements in the set

4 Y. CENSOR, T. ELFVING, G. T. HERMAN AND T. NIKAZAD

{a1
j , a

2
j , . . . , a

m
j }. Specifically, for each j = 1, 2, . . . , n, we denoted by sj the number of

nonzero elements in column j of the matrix A. Since we assume throughout this work
that all columns of A are nonzero, we have that sj 6= 0, for all j. Then we replace
(1.7) by

(1.8) xk+1
j = xk

j +
λk

sj

m
∑

i=1

bi − 〈ai, xk〉
‖ai‖2

2

ai
j , for j = 1, 2, . . . , n.

This iterative formula is the backbone of the proposed DROP algorithm. Certainly,
if the matrix A is sparse, then the sj values will be much smaller than m. Equation
(1.8) can be rewritten and, at the same time generalized to a weighted case as in (1.2),
in the form

(1.9) xk+1 = xk + λk

m
∑

i=1

Gi

(

Pi(x
k) − xk

)

,

where

(1.10) Gi = wiS and S = diag(1/sj).

All this leads us to consider the following algorithmic structure.
Algorithm 1.2. The Fully-Simultaneous Diagonally-Relaxed Orthogo-

nal Projections (DROP) Method for Linear Equations
Initialization: x0 ∈ Rn is arbitrary.
Iterative Step: Given xk compute, for j = 1, 2, . . . , n,

(1.11) xk+1
j = xk

j +
λk

sj

m
∑

i=1

wi
bi − 〈ai, xk〉

‖ai‖2
2

ai
j ,

where {λk}∞k=0 are user-chosen relaxation parameters and wi > 0, for all i = 1, 2, . . . ,m,
are user-chosen weights.

1.2. Relation to other works: History and terminology. Censor, Gordon
and Gordon [12] proved convergence of a diagonally-relaxed simultaneous projections
algorithmic scheme only in conjunction with certain generalized oblique projections
that replaced the orthogonal projections, resulting in an iterative scheme for linear
equations called the CAV (component averaging) method. In [13] BICAV was pro-
posed as a block-iterative companion to CAV. (These algorithms are further discussed
in Section 3 below.) In these methods the sparsity pattern of the matrix A is explicitly
used when constructing the generalized oblique projections in the iteration formula.
Using this scaling, considerable improvement was experimentally observed in [12] and
[13] in problems of image reconstruction from projections. In [11] a complete conver-
gence theory was given, including a generalization to linear inequalities of the CAV
and BICAV schemes for equations; see also the work of Jiang and Wang [34].

The possibility of doing diagonal relaxation in conjunction with orthogonal pro-
jections (and not with oblique projections) was raised already in [12, Subsection 5.5]
but was abandoned in view of the lack of any mathematical validation at that time.
Specifically, Eq. (1.9) of [12] and Eq. (2.8) of [13] are identical with our Eq. (1.8) and
with the iterative step of Algorithm 1.2 when all wi = 1 and was experimented with
in [12, Subsection 5.5]. It is also identical with the algorithm called CARP1 that is
mentioned below. A block-iterative version of it was experimented with and reported
in Figure 8 of [13].

ON DIAGONALLY-RELAXED ORTHOGONAL PROJECTION METHODS 5

We present DROP below as a block-iterative projections algorithm with diagonal
relaxation that uses orthogonal projections (1.9), without resort to generalized oblique
projections. This method was already used in applications by Herman, Matej and
Carvalho [32] and by Sorzano et al. [36, see Eq. (3)], but without mathematical
validation. Our present work makes a contribution here. Recently we learned that
Gordon and Gordon [28] developed a new iterative method called component-averaged
row projections (CARP). In one special case CARP and DROP coincide. We will
discuss the details right after Algorithm 3.3 below. We wish to add here that in [7]
we proposed and studied a simultaneous projections algorithm that employs Bregman
projections and allows component-dependent weighting. There also has to be a specific
relation between the component-dependent weights wij and the Bregman functions
fi according to which the projections are performed.

There is a terminological hurdle that should be observed here. When sparsity-
pattern-induced diagonal relaxation (such as the use of sj in our Algorithm 1.2) is
applied in conjunction with sparsity-pattern-oriented generalized oblique projections,
as is done in CAV and BICAV for linear equations [12, 13], the combined effect on the
iteration formula amounts to orthogonal projections. This can be easily verified from
the iterative formulas of CAV and BICAV, see also the explanation in [28, p. 1101].
The other side of the same phenomenon is that applying sparsity-pattern-induced
diagonal relaxation in conjunction with orthogonal projections, as we do here in the
fully-simultaneous or in the block-iterative versions of DROP, has the combined effect
on the iterative formula of oblique (non-orthogonal) projections.

A variant of (1.2) called BIP, proposed by Aharoni and Censor [1], has the prop-
erty that the weights are allowed to vary with the iteration index k (but not with the
component index j).

Algorithm 1.3. The Block-Iterative Projections (BIP) Method for Lin-
ear Equations
Initialization: x0 ∈ Rn is arbitrary.
Iterative Step: Given xk compute

(1.12) xk+1 = xk + λk

(

m
∑

i=1

wk
i

bi − 〈ai, xk〉
‖ai‖2

2

ai

)

,

where {λk}∞k=0 are user-chosen relaxation parameters and {wk}∞k=1 is a user-chosen
infinite sequence of weight vectors such that wk = (wk

i)m
i=1 and, for every k ≥ 0,

wk
i ≥ 0 for all i = 1, 2, . . . ,m.

An important feature of BIP is that some of the weights in every iteration are
allowed to take the value zero. This enables creation of block-iterations (because when
a wk

i = 0 then the i-th constraint does not affect the k-th iteration) with variable block
sizes, and varying assignments of constraints to blocks become permissible as long as
a technical condition (

∑

∞

k=0 wk
i = +∞, for all i = 1, 2, . . . ,m, see [1]) is satisfied.

BIP also encompasses as a special case fully-simultaneous CIM (Algorithm 1.1) by
setting wk

i = 1/m for all i = 1, 2, . . . ,m and all k ≥ 0. The block-iterative methods
of Elfving [22] and the block-iterative ART (Algebraic Reconstruction Technique) of
Eggermont, Herman and Lent [21] were forerunners of the BIP methods for the convex
feasibility problem. A related family of methods is studied [35, (5.49)] by Natterer
and Wübbeling. None of these nor BIP allow for diagonal relaxation.

Another family of iterative methods for solving linear systems of equalities and/or
inequalities are the projected aggregation methods (called PAM) of Garćıa-Palomares

6 Y. CENSOR, T. ELFVING, G. T. HERMAN AND T. NIKAZAD

[27] which were recently adapted to diagonally-scaled oblique projections by Echebest
et al. [20].

2. DROP for linear equations and inequalities .

2.1. The fully-simultaneous DROP. We study first the fully-simultaneous
algorithmic scheme of DROP for linear equations and prove its convergence regardless
of the consistency of the system. With S as in (1.10) and

(2.1) W = diag
(

wi/‖ai‖2
2

)

,

we rewrite Algorithm 1.2 in matrix-vector form.
Algorithm 2.1. The Fully-Simultaneous Diagonally-Relaxed Orthogo-

nal Projections (DROP) Method for Linear Equations (in Matrix Form)
Initialization: x0 ∈ Rn is arbitrary.
Iterative Step: Given xk compute

(2.2) xk+1 = xk + λkSAT W
(

b − Axk
)

,

where {λk}∞k=0 are user-chosen relaxation parameters and wi > 0, for all i = 1, 2, . . . ,m,
are user-chosen weights.

Here b = (bi) ∈ Rm and AT (the transposed matrix of A) has ai in its i-th column.
Let ρ(Q) denote the spectral radius (i.e., the largest, in absolute value, eigenvalue of
a matrix Q). As will be seen later, the choice of relaxation parameters and weights is
theoretically-limited by conditions in convergence theorems and is, in practice, chosen
based on computational experience. A key result in our mathematical development is
the following generalization of a lemma due to A. Lent that appeared in [11, Lemma
7.1].

Lemma 2.2. Assume that wi > 0, for all i = 1, 2, . . . ,m, and that A ∈ Rm×n.
If W = diag(wi/||ai||22) ∈ Rm×m and S = diag(1/sj) ∈ Rn×n, where sj 6= 0 is the
number of nonzero elements in the j-th column of A, then ρ(SAT WA) ≤ max{wi |
i = 1, 2, . . . ,m}.

Proof. Let (µ, v) be an eigenpair of SAT WA, i.e., SAT WAv = µv. Multiplying
by A and putting u = WAv, we get

(2.3) ASAT u = µW−1u.

Hence,

(2.4) µ =
uT ASAT u

uT W−1u
.

Now,

uT ASAT u = ||S1/2AT u||22 =

n
∑

j=1

(

m
∑

i=1

(

1/
√

sj

)

ai
jui

)2

=

n
∑

j=1

(1/sj)

(

m
∑

i=1

ai
jui

)2

,(2.5)

which implies

(2.6) µ =

∑n
j=1 (1/sj)

(
∑m

i=1 ai
jui

)2

∑m
i=1 u2

i (||ai||22/wi)
.

ON DIAGONALLY-RELAXED ORTHOGONAL PROJECTION METHODS 7

Cauchy’s inequality guarantees that

(2.7)

(

m
∑

i=1

ai
jui

)2

≤ sj

m
∑

i=1

u2
i

(

ai
j

)2
.

Applying (2.7) to the numerator of (2.6), and changing the order of summation yields

(2.8) µ ≤
∑m

i=1 u2
i ||ai||22

∑m
i=1 (1/wi) u2

i ||ai||22
≤ max{wi | i = 1, 2, . . . ,m},

which completes the proof.
Denoting by ||z||2W = 〈z,Wz〉 the W -norm, the following convergence results

holds (which is our first main contribution).
Theorem 2.3. Assume that wi > 0, for all i = 1, 2, . . . ,m. If, for all k ≥ 0,

(2.9) 0 < ǫ ≤ λk ≤ (2 − ǫ) /max{wi | i = 1, 2, . . . ,m},
where ǫ is an arbitrarily small but fixed constant, then any sequence {xk}∞k=0, generated
by Algorithm 2.1, converges to a weighted least squares solution x∗ = arg min{||Ax −
b||W | x ∈ Rn}. If, in addition, x0 ∈ R(SAT), the range of SAT , then x∗ has minimal
S−1-norm.

Proof. Using the transformations

(2.10) yk = S−1/2xk, and Ā = AS1/2,

the iterative step (2.2) becomes

(2.11) yk+1 = yk + λkĀT W (b − Āyk).

Assuming that

(2.12) 0 < ǫ ≤ λk ≤ (2 − ǫ)/ρ(ĀT WĀ),

we apply [11, Theorem 6.1] to conclude that

(2.13) lim
k→∞

yk = y∗ and y∗ = argmin { ||Āy − b||W | y ∈ Rm},

which implies that

(2.14) lim
k→∞

xk = S1/2y∗ = x∗ and x∗ = argmin { ||Ax − b||W | x ∈ Rn}.

Also, if y0 ∈ R(ĀT) then y∗ has minimal Euclidean norm. Hence, by using

(2.15) ||y∗||2 = ||S−1/2S1/2y∗||2 = ||x∗||S−1 ,

it follows that x∗ has minimal S−1-norm provided that x0 = S1/2y0 ∈ R(SAT).
Finally,

ρ(ĀT WĀ) = ρ(S1/2AT WAS1/2) = ρ(S1/2(S1/2AT WAS1/2)S−1/2)

= ρ(SAT WA)(2.16)

and the result now follows from Lemma 2.2.
This theorem allows us to replace the spectral radius ρ(SAT WA) by max{wi |

i = 1, 2, . . . ,m} in the sufficient condition (2.12) on the relaxation parameters. This
maximal weight is user-provided and using it saves the need to calculate the spectral
radius. However, for fast initial performance it may well be the case that the relaxation
parameters ought to be selected in violation of the simpler, but more restrictive,
condition (2.9). We will return to this point when discussing our experiments below.

8 Y. CENSOR, T. ELFVING, G. T. HERMAN AND T. NIKAZAD

2.2. The block-iterative DROP. We now move from the fully-simultaneous
DROP to its “block-iterative” generalization. This algorithmic model of block iter-
ations is a special case of asynchronous iterations, see, e.g., Frommer and Szyld [26]
and Elsner, Koltracht and Neumann [23]. Those were called in early days chaotic
relaxation by Chazan and Miranker [16]. In recent literature in image reconstruction
from projections the term “ordered subsets” is used for “block-iterative”, see, e.g.,
Hudson and Larkin [33]. The basic idea of a block-iterative algorithm is to partition
the A and b of the system Ax = b or Ax ≤ b into “blocks” of equations and/or
inequalities and treat each block according to the rule used in the simultaneous algo-
rithm for the whole system, passing, e.g., cyclically over all the blocks. Throughout
the following, T will be the number of blocks (T is also used for matrix transposition
but the meaning will always be clear from the way it is used). For t = 1, 2, . . . , T, the
block Bt ⊆ {1, 2, . . . ,m} will be a subset of indices of the form Bt = {it1, it2, . . . , itm(t)},
where m(t) is the number of elements in Bt. There is nothing to prevent different
blocks from containing common indices; we will require, however, the following:

Condition 2.4. Every element of {1, 2, . . . ,m} appears in at least one of the
sets Bt, t = 1, 2, . . . , T.

A sequence {t(k)}∞k=0 such that 1 ≤ t(k) ≤ T, called a control sequence, governs
which block is taken up at the k-th iteration of the algorithm. A common control is
the cyclic control, t(k) = k mod T + 1. For other possibilities see, e.g., [14, Definition
5.1.1].

The block-iteration corresponding to the method (1.9) is

(2.17) xk+1 = xk + λk

∑

i∈Bt(k)

Gi

(

Pi(x
k) − xk

)

.

This can be reformulated for the case of linear inequalities in matrix-vector notation
as follows. For t = 1, 2, . . . , T , let At denote the matrix formed by all rows of A whose
indices belong to the block of indices Bt (and correspondingly for the right-hand side
vector b), i.e.,

(2.18) At :=

(

ait1
)T

(

ait2
)T

...
(

a
itm(t)

)T

, bt :=

bit1
bit2
...

bitm(t)

, t = 1, 2, . . . , T.

The classical partitioning with fixed non-overlapping blocks of equal sizes [21] is ob-
tained by taking in (2.18) m(t) = ℓ, t = 1, 2, . . . , T with ℓ×T = m. We first consider
a system of linear inequalities

(2.19) Ax ≤ b,

which we will assume to be consistent, i.e., {x ∈ Rn | Ax ≤ b} 6= ∅. For each
i = 1, 2, . . . ,m, the closed half-space

(2.20) Li = {x ∈ Rn |
〈

ai, x
〉

≤ bi}

has (1.4) as its bounding hyperplane. Define L := ∩m
i=1Li and note that L is a closed

convex set in Rn. The task of finding a member of L, i.e., a solution of (2.19), is

ON DIAGONALLY-RELAXED ORTHOGONAL PROJECTION METHODS 9

called the linear feasibility problem, which is a special case of the convex feasibility
problem; see, e.g., the review papers of Bauschke and Borwein [3], Combettes [17] or
[14, Chapter 5]. It is well-known, and is easy to verify, that the orthogonal projection
PLi

(z) of a point z ∈ Rn onto Li is

(2.21) PLi
(z) = z + ci(z)ai, where ci(z) = min

{

0,
bi − 〈ai, z〉

‖ai‖2
2

}

.

Note that, if z /∈ Li then ci(z) < 0, otherwise ci(z) = 0. Further, define

(2.22) It(z) := { i | i ∈ {it1, it2, . . . , itm(t)} and ci(z) < 0 }

as the set of indices of the half-spaces in the t-th block that are violated by z. We
also introduce m(t) × m(t) diagonal matrices {Dt}T

t=1, corresponding to the blocks
{At}T

t=1, namely,

(2.23) (Dt(z))qq =

{

1, if q ∈ It(z),
0, otherwise.

Let {Wt}T
t=1 be a finite set of some given positive definite diagonal matrices, and

define

(2.24) Vt(z) := Dt(z)WtDt(z), for all t = 1, 2, . . . , T.

To define DROP in its general formulation let {Ut}T
t=1 be some given collection of

symmetric and positive definite matrices. Different choices of this collection may give
rise to different realizations of the general DROP scheme. The specific choices that
we used in our computations are given in Algorithms 3.4 and 3.5 below. Now the
formulation of DROP for linear inequalities is as follows when written in matrix form.

Algorithm 2.5. DROP for Linear Inequalities (in Matrix Form)
Initialization: x0 ∈ Rn is arbitrary.
Iterative Step: Given xk compute

(2.25) xk+1 = xk + λkUt(k)A
T
t(k)Vt(k)(x

k)(bt(k) − At(k)x
k),

where {λk}∞k=0 are user-chosen relaxation parameters and {t(k)}∞k=0 is a control se-
quence.

Observe that, as an algorithm name, we designate the acronym DROP to this
block-iterative formulation with any such collection of matrices {Ut}T

t=1. This will
make the fully-simultaneous case just a special case of Algorithm 2.5.

The corresponding block-iterative algorithmic scheme for linear equations

(2.26) Ax = b

is formulated as follows. Let {Wt}T
t=1 be a finite set of some given positive definite

matrices (note that we now, for equalities, allow not only diagonal weight matrices).
Algorithm 2.6. DROP for Linear Equations (in Matrix Form)

Initialization: x0 ∈ Rn is arbitrary.
Iterative Step: Given xk compute

(2.27) xk+1 = xk + λkUt(k)A
T
t(k)Wt(k)(b

t(k) − At(k)x
k),

where {λk}∞k=0 are user-chosen relaxation parameters and {t(k)}∞k=0 is a control se-
quence.

10 Y. CENSOR, T. ELFVING, G. T. HERMAN AND T. NIKAZAD

Algorithm 2.1 is a special case of Algorithm 2.6, obtained by choosing T = 1,
U1 = S and W1 = W .

Although the formulation of Algorithm 2.5 and 2.6 allows a family of matri-
ces {Ut}T

t=1 our current convergence results only include the case Ut = U, for t =
1, 2, · · · , T, for some fixed matrix U.

Our first result is for systems of linear inequalities.
Theorem 2.7. Let U be a given symmetric and positive definite matrix and let

{Wt}T
t=1 be a given collection of positive definite diagonal matrices and define the

matrices

(2.28) Φk := UAT
t(k)Vt(k)(x

k)At(k),

where Vt(z) is defined by (2.23) and (2.24). Assume that L := ∩m
i=1Li 6= ∅ and that

the relaxation parameters are restricted, for all k ≥ 0, to

(2.29) 0 < ǫ ≤ λk ≤ (2 − ǫ)/ρ(Φk),

where ǫ is an arbitrarily small but fixed constant. If {t(k)}∞k=0 is the cyclic control,
then any sequence {xk}∞k=0, generated by Algorithm 2.5, converges to a solution of the
system (2.19), provided that Condition 2.4 holds.

Proof. We simplify notation by writing bk = bt(k), Ak = At(k) and Vk = Vt(k)(x
k),

and multiply (2.25) by U−1/2 (the inverse of the square root of U) to get

(2.30) uk+1 = uk + λkU1/2AT
k Vk(bk − AkU1/2uk),

where uk = U−1/2xk. First note that the solution set of AU1/2u ≤ b is feasible, by
the assumption L 6= ∅. It follows by [11, Theorem 4.1] (here we need Condition 2.4)
that limk→∞ uk = u∗ such that AU1/2u∗ ≤ b, provided that

(2.31) 0 < ǫ ≤ λk ≤ (2 − ǫ)/ρ(ΦU
k),

where ΦU
k := U1/2AT

k VkAkU1/2. But

(2.32) Φk = UAT
k VkAk = U1/2ΦU

k U−1/2,

so that ρ(Φk) = ρ(ΦU
k) follows.

We also give the corresponding convergence result for linear equations.
Theorem 2.8. Let U be a given symmetric and positive definite matrix, let

{Wt}T
t=1 be given positive definite diagonal matrices and define the matrices

(2.33) Ψk := UAT
t(k)Wt(k)At(k).

Assume that H := ∩m
i=1Hi 6= ∅ and that the relaxation parameters are restricted, for

all k ≥ 0, to

(2.34) 0 < ǫ ≤ λk ≤ (2 − ǫ)/ρ(Ψk),

where ǫ is an arbitrarily small but fixed constant. If {t(k)}∞k=0 is a cyclic control
then any sequence {xk}∞k=0, generated by Algorithm 2.6, converges to a solution of the
system (2.26), provided that Condition 2.4 holds. If, in addition x0 ∈ R(UAT), then
the solution has minimal U−1-norm.

ON DIAGONALLY-RELAXED ORTHOGONAL PROJECTION METHODS 11

Proof. The proof is obtained by using a similar technique to that used in the
proof of Theorem 2.3 and relying on [11, Theorems 4.2, 7.6].

Theorem 2.7 gives rise to the next theorem. We consider, and refer to, the block-
iterative structure described just before Condition 2.4 and in (2.18). Let, for all
t = 1, 2, . . . , T, and all q = 1, 2, . . . ,m(t), wt

q denote a positive real number. In
analogy with (2.1), we define, for all t = 1, 2, . . . , T, the matrices

(2.35) Wt = diag(µt
q) ∈ Rm(t)×m(t),

where

(2.36) µt
q =

wt
q

∥

∥

∥

∥

aitq
∥

∥

∥

∥

2

2

, q = 1, 2, . . . ,m(t).

Theorem 2.9. Let Wt be defined as in (2.35)–(2.36). Let U = diag(1/τj) where
τj ≥ max{st

j | t = 1, 2, . . . , T} with st
j being the number of nonzero elements in column

j of block At. Assume that L := ∩m
i=1Li 6= ∅ and that the relaxation parameters are

restricted, for all k ≥ 0, to

(2.37) 0 < ǫ ≤ λk ≤ (2 − ǫ)/max{wt(k)
q | q = 1, 2, . . . ,m(t(k))},

where ǫ is an arbitrarily small but fixed constant. If {t(k)}∞k=0 is a cyclic control,
then any sequence {xk}∞k=0, generated by Algorithm 2.5, converges to a solution of the
system (2.19), provided that Condition 2.4 holds.

Proof. To prove this theorem we need, by Theorem 2.7, to show that the upper
bound in (2.29) can be replaced by that of (2.37). To see this we first observe that
the matrices ΦU

k , defined in the proof of Theorem 2.7 by ΦU
k = U1/2AT

k VkAkU1/2, can
be rewritten as

(2.38) ΦU
k =

∑

q ∈ It(k)(x
k)

µt(k)
q (U1/2ait(k)

q)(U1/2ait(k)
q)T ,

where It(k)(x
k) is defined by (2.22). Hence,

ρ(ΦU
k) ≤ ρ

m(t(k))
∑

q=1

µt(k)
q (U1/2ait(k)

q)(U1/2ait(k)
q)T

= ρ
(

U−1/2ΨkU1/2
)

= ρ(Ψk),(2.39)

where Ψk is defined in (2.33) and Wt(k) is given in (2.35)–(2.36). Next we wish to use
Lemma 2.2 to estimate ρ(Ψk). To do so we identify At(k) and Wt(k) of (2.33) with A
and with W in Lemma 2.2, respectively, but U of (2.33) is not identifiable with S of
Lemma 2.2. However, we note that Lemma 2.2 remains true if instead of sj we use τj

in the definition of S. Nothing would change in the proof of Lemma 2.2 except that

(2.7) would remain true also with τj because τj ≥ s
t(k)
j . The proof of the theorem is

then complete by applying the modified version of Lemma 2.2.
For linear equations we have now the next theorem which is our second main

contribution.

12 Y. CENSOR, T. ELFVING, G. T. HERMAN AND T. NIKAZAD

Theorem 2.10. Let Wt be defined as in (2.35)–(2.36). Let U = diag(1/τj) where
τj ≥ max{st

j | t = 1, 2, . . . , T} with st
j being the number of nonzero elements in column

j of block At. Assume that H := ∩m
i=1Hi 6= ∅ and that the relaxation parameters are

restricted, for all k ≥ 0, to

(2.40) 0 < ǫ ≤ λk ≤ (2 − ǫ)/max{wt(k)
q | q = 1, 2, . . . ,m(t(k))},

where ǫ is an arbitrarily small but fixed constant. If {t(k)}∞k=0 is a cyclic control,
then any sequence {xk}∞k=0, generated by Algorithm 2.6, converges to a solution of the
system (2.26), provided that Condition 2.4 holds. If, additionally, x0 ∈ R(UAT) then
the limit vector has minimal U−1-norm.

Proof. The last sentence in the statement of Theorem 2.10 is proved similar to the
corresponding result in Theorem 2.3. The rest of the proof is similar almost verbatim
to the proof of Theorem 2.9.

We end this section with additional comments on the inconsistent case for linear
equations. Jiang and Wang [34] recently extended our convergence results of [11] for
Algorithm 2.6. In both these papers a constant U -matrix is used. By assuming for
the parameters {λk}∞k=0 that limk→∞ λk = 0 and

∑

∞

k=0 λk = +∞, instead of what we
have assumed, convergence towards a weighted least squares problem is proved in [34,
Theorem II.1(2)]. Another possible way of coping with inconsistency in Algorithm 2.6
is to replace (2.26) by the normal equations. Consider, e.g., a regularized weighted
least squares problem (here W2 is a positive semidefinite and symmetric matrix and
M is a positive definite and symmetric matrix)

(2.41) min
{

||Ax − b||2M + ||x − x0||2W2
| x ∈ Rn

}

.

The normal equations corresponding to (2.41) are

(2.42) (AT MA + W2)x = AT Mb + W2x
0.

This is a consistent system of equations, and its solution x solves (2.41) and is unique
if W2 is positive definite (or, of course, if A has full-rank). By introducing the residual
vector

(2.43) r = M1/2(b − Ax)

and noting that

(2.44) AT M1/2r = AT M(b − Ax) = W2(x − x0),

the normal equations (2.42) can be written as two sets of equations

(2.45) M1/2Ax + r = M1/2b, W2x − AT M1/2r = W2x
0.

At least two options are now available. Either apply Algorithm 2.6 directly to the
normal equations (2.42) or, to avoid the complexity associated with forming AT MA,
use the equations (2.45) at the expense of iterating in both x and r, as was done by
Eggermont, Herman and Lent [21, Section 2.2].

ON DIAGONALLY-RELAXED ORTHOGONAL PROJECTION METHODS 13

3. The algorithms that are used in our experiments. In this section we
give precise formulations of the algorithms that we are using in our experiments. As
said at the beginning of Section 1, we are interested in projection methods because of
their fundamental ability to handle huge-size problems of dimensions beyond which
other, more sophisticated currently available, methods cease to be efficient. This
is so because the building bricks of a projection algorithm are the projections onto
the individual sets (that are assumed easy to perform) and the algorithmic structure
which is either sequential or simultaneous (or in-between). Therefore, we compare
our DROP algorithm with various sequential, simultaneous and block-iterative vari-
ants of commonly-used projection methods that are employed in the field of image
reconstruction from projections.

We use the BIP method (Algorithm 1.3) in its block-iterative version. BIP also
encompasses as a special case the algorithm CIM (Algorithm 1.1) that we use in our
experiments. This occurs when in BIP one chooses wk

i = 1/m for all i = 1, 2, . . . ,m
and all k ≥ 0. Another special case of BIP that we use in our experiments is obtained
by choosing, for i = 1, 2, . . . ,m and all k ≥ 0,

(3.1) wk
i :=

{

1, if i = i(k),
0, otherwise,

where {i(k)}∞k=0 is a control sequence over the set {1, 2, . . . ,m}. In this case we get,
for linear equations, the following fully-sequential algorithm.

Algorithm 3.1. Algebraic Reconstruction Technique (ART) for Linear
Equations
Initialization: x0 ∈ Rn is arbitrary.
Iterative Step: Given xk compute

(3.2) xk+1 = xk + λk

bi(k) − 〈ai(k), xk〉
∥

∥ai(k)
∥

∥

2

2

ai(k) ,

where {λk}∞k=0 are user-chosen relaxation parameters and {i(k)}∞k=0 is a control se-
quence that governs the order by which individual equations are employed as the iter-
ations proceed.

This algorithm has a long history and rich literature which we are not going to
present here; see, e.g., [14, 30, 31]. In the block-iterative version of BIP that we used
in our experiments we defined, for i = 1, 2, . . . ,m, and all k ≥ 0,

(3.3) wk
i :=

{

1
m(t(k))

, if i ∈ Bt(k),

0, otherwise,

where {t(k)}∞k=0 is a block control sequence over the set {1, 2, . . . , T}.
Algorithm 3.2. The Block-Iterative Component Averaging (BICAV)

Algorithm
Initialization: x0 ∈ Rn is arbitrary.
Iterative Step: Given xk, compute xk+1 by using, for j = 1, 2, . . . , n, the formula:

(3.4) xk+1
j = xk

j + λk

∑

i∈Bt(k)

bi − 〈ai, xk〉
∑n

ℓ=1 s
t(k)
ℓ (ai

ℓ)
2
ai

j ,

where λk are user-chosen relaxation parameters, the number of nonzero elements ai
j 6=

0 in the j-th column of the block At of the matrix A is st
j, and {t(k)}∞k=0 is a control

14 Y. CENSOR, T. ELFVING, G. T. HERMAN AND T. NIKAZAD

sequence that governs the order by which the blocks are employed as the iterations
proceed.

For details about this algorithm consult [11, 13]. The special case when there is
only one block (T = 1) has been referred to in the literature as CAV [12, Algorithm
3.2].

Next we describe the CARP algorithm of Gordon and Gordon [28, Algorithm
2]. To do so we need the following definitions. Construct a finite number of blocks,
from the row indices of the matrix A, and denote them by {Bt}T

t=1 where Bt =
{it1, it2, . . . , itm(t)} and m(t) is the number of elements in Bt. Denote this family of

blocks by B = {Bt}T
t=1. For each j = 1, 2, . . . , n, define the index set

(3.5) Ij(B) = {t | 1 ≤ t ≤ T, a
it
q

j 6= 0 for some 1 ≤ q ≤ m(t)}.

Given a set of T vectors {xt}T
t=1 in Rn, define the operator CAB({x1, x2, . . . , xT })

whose j-th component is

(3.6)
(

CAB({x1, x2, . . . , xT })
)

j
:= (1/sj)

∑

t∈Ij(B)

xt
j ,

where sj := |Ij(B)| is the number of elements in Ij(B). The second definition describes
the outcome of applying orthogonal projections sequentially along the equations of
some block Bt, namely, given an index t and a point x ∈ Rn, define KSWP (t, x) to
be the vector xt := xm(t) obtained by running the loop:

(3.7) x0 = x, and xq+1 = xq + λq

bit
q
− 〈aitq , xq〉
∥

∥

∥

∥

aitq
∥

∥

∥

∥

2

2

aitq , for 0 ≤ q < m(t),

where λq are relaxation parameters. With these definitions at hand, the CARP algo-
rithm that we used is as follows.

Algorithm 3.3. The Component-Averaged Row Projection (CARP)
Algorithm
Initialization: x0 ∈ Rn is arbitrary.
Iterative Step: Given xk,

(3.8) xk+1 = CAB({x1, x2, . . . , xT }),

where, for t = 1, 2, . . . , T,

(3.9) xt = (KSWP)pk(t, xk),

and pk is the number of times that KSWP is applied consecutively to the block Bt.
In all our experiments with CARP we used pk = 1, for all k ≥ 0. We remark that

Algorithm 2.1, with the choice wi = 1, for all i = 1, 2, . . . ,m, is identical to the special
case of CARP (called CARP1 in [28]) in which the whole system is partitioned into
m single element blocks that contain one equation each. The method of proof in [28]
is quite different from ours in Section 2 and is based on a clever way of expressing
CARP in a product space. In this space the method BIP (1.12) is applied and, for the
consistent case, CARP is a special case of BIP. In the inconsistent case one cannot
have convergence of CARP, in [28] the authors prove cyclic convergence relying on

ON DIAGONALLY-RELAXED ORTHOGONAL PROJECTION METHODS 15

Eggermont, Herman and Lent [21, Theorem 3.1]. In contrast, we have here a complete
convergence (not just cyclic) result (Theorem 2.3) for the fully-simultaneous DROP
in the inconsistent case. Note also that when for CARP (Algorithm 3.3) one puts all
constraints into a single block, then CARP becomes identical with ART (Algorithm
3.1).

We used in our computational experiments two special cases of DROP for linear
equations (Algorithm 2.6). The first is with Ut = U, t = 1, 2, · · · , T with a specific
choice of U . The second is with a specific choice of {Ut}T

t=1.
Algorithm 3.4. DROP1

Initialization: x0 ∈ Rn is arbitrary.
Iterative Step: Given xk compute

(3.10) xk+1 = xk + λkU

m(t(k))
∑

q=1

µt(k)
q

(

b
i
t(k)
q

− 〈ait(k)
q , xk〉

)

ait(k)
q .

where {λk}∞k=0 are user-chosen relaxation parameters, {t(k)}∞k=0 is a control sequence
that governs the order according to which the blocks are employed as the iterations

proceed, µ
t(k)
q are determined according to (2.36) with weights w

t(k)
q = 1 for all q =

1, 2, . . . ,m(t(k)), and U = diag(1/τj) where τj = max{st
j | t = 1, 2, . . . , T} with st

j

being the number of nonzero elements in column j of block At.
Algorithm 3.5. DROP2

Initialization: x0 ∈ Rn is arbitrary.
Iterative Step: Given xk compute

(3.11) xk+1 = xk + λkUt(k)

m(t(k))
∑

q=1

µt(k)
q

(

b
i
t(k)
q

− 〈ait(k)
q , xk〉

)

ait(k)
q .

where {λk}∞k=0 are user-chosen relaxation parameters, {t(k)}∞k=0 is a control sequence
that governs the order according to which the blocks are employed as the iterations

proceed, µ
t(k)
q are determined according to (2.36) with weights w

t(k)
q = 1 for all

q = 1, 2, . . . ,m(t(k)), and Ut(k) = diag(min(1, 1/s
t(k)
j)) with st

j being the number
of nonzero elements in column j of block At.

4. Computational results. Our experimental work with the DROP algorithm
is intended to assess the computational aspects of using it in the field of image re-
construction from projections [30]. We work with a medical test phantom and with
a reconstruction problem in electron microscopy. In both of our examples a planar
cross-section of the object is considered and the distribution of some physical pa-
rameter (the X-ray attenuation in medicine and the Coulomb potential in electron
microscopy) in the cross-section has to be reconstructed from estimates of its line
integrals for a finite number m of lines in the cross-section; we use bi to represent the
estimated line integral for the i-th line. The unknown function of two variables has
real values and is called the picture.

A fundamental model for solving this task is provided by the series-expansion
approach (e.g., Herman [30] or Censor [8]), which we formulate here as follows. A
Cartesian grid of square picture-elements, called pixels, is introduced into the region
of interest so that it covers the whole picture that has to be reconstructed. The pixels
are numbered in some agreed manner, say from 1 (top left corner pixel) to n (bottom
right corner pixel), see Figure 5.1.

16 Y. CENSOR, T. ELFVING, G. T. HERMAN AND T. NIKAZAD

The function to be reconstructed is approximated by one that takes a constant
uniform value xj throughout the j-th pixel, for j = 1, 2, . . . , n. The value of xj should
closely approximate x̂j , which is defined as the average value of the function within
the j-th pixel. Thus, the vector x̂ = (x̂j)

n
j=1 is the discretized version of the “true”

function that is being reconstructed. We denote the length of intersection of the i-th
line with the j-th pixel by ai

j , for all i = 1, 2, . . . ,m, j = 1, 2, . . . , n. Therefore, in this
model, each line integral is approximated by a finite sum, and the task is represented
by a system of linear equations

(4.1)

n
∑

j=1

ai
jxj = bi , i = 1, 2, . . . ,m .

For both our examples we simulated the parallel mode of data collection. In this
mode, the set of all lines for which line integrals are estimated is divided into K
sets of m/K lines in each. The lines within a set are parallel and equidistant. The
information provided by the estimated line integrals in one set is called a projection
and the angle that the lines of that set make with the horizontal axis is called its
projection angle. (Observe the dual use of the word “projection” here and in the
theory of projection algorithms.) Thus we can write

(4.2) A =

A1

A2

...
AK

,

where each submatrix Aθ contains rows whose coefficients represent the line integrals
that belong to the θ-th projection. Since only estimates of the line integrals bi are
known to us and the left-hand side of (4.1) involves an approximation due to the
uniform pixels assumption, the system (4.1) is likely to be inconsistent. This matches
the real-life situation.

Our experimental results demonstrate the performance of several algorithms in
reconstructing two specific phantoms. The numerical experiments were performed us-
ing the SNARK93 software package [5]. Some of the algorithms that we implemented
are dependent on the order in which the equations are processed. This data access
ordering has a significant effect on the practical performance of the algorithms. We
used the ordering proposed by Herman and Meyer [31] both for equations inside a
projection and for the projections. The underlying intuitive principle of this ordering
is that in a subsequence of sequential iterative steps the action should be as inde-
pendent as possible of the previous actions. Phrased slightly more mathematically,
the data vector (i.e., the row of the system matrix A) that is used should be as or-
thogonal as possible to the space spanned by the recently used corresponding data
vectors. Heuristically, this aim is achieved by selecting data vectors so that vectors
have very few nonzero components in common with any of the recently used vectors.
As the initial vector in all our algorithmic runs we always picked the zero vector. In
all our experiments we used a fixed relaxation parameter. (We are, however, aware
that using non-constant relaxation strategies may improve convergence of individual
methods; see, e.g., dos Santos [19] and Combettes [18] for CIM and [31] for ART.)

In our experiments we choose a function that will be reconstructed (i.e., a phantom
picture) and calculate its line integrals. These line integrals along with the system
matrix A are the input data to the reconstruction algorithm and the resulting vector

ON DIAGONALLY-RELAXED ORTHOGONAL PROJECTION METHODS 17

representation of the reconstructed image is then compared with the original (known
to us since we created it) phantom picture. Denoting by || · ||1 the ℓ1-norm, we
report below the relative error ||xcT − x̂||1/||x̂||1 versus the cycle number c, where
a cycle is one pass through all data and the number of blocks T equals the number
of iterations needed to complete a cycle. We do this because the iteration index k
reflects different algorithmic progress in each algorithm depending on the amount of
data that is used by the algorithm in passing from iteration k to the next (k + 1)-
th iteration. For example, ART uses a single equation in each iteration and takes
m iterations to complete a cycle, while CIM uses m equations in each iteration and
takes a single iteration to complete a cycle. The formulation in (4.2) naturally leads
to a block-iterative approach in which each projection defines a block with the At as
in (2.18). In this case T is the number of projections K. To make our comparisons
equally relevant to all algorithms, we report on the relative error versus the number
of cycles. Note that although in one cycle we go through all equations (rows of the
matrix), this results in essentially the same number of arithmetic operations as doing
two matrix-vector multiplications (by the matrix and its transpose, respectively).

4.1. The head phantom. Our first image is the standard head phantom from
[30] (it appears on the top of Figure 5.2) which has been repeatedly used in the liter-
ature as a benchmark, discretized into 63× 63 pixels, and so its vector representation
x̂ is 3, 969-dimensional. To model the scanning geometry, we are using 16 projections
with 99 lines per projection (evenly distributed between 0 and 174 degrees). All detec-
tor readings (i.e., the line integrals) for all views (i.e., projections) can be represented
as a sinogram. The intensities in the sinogram are proportional to the line integrals of
the X-ray attenuation coefficient between the corresponding source and the detector
positions. We present such 16 × 99 sinograms in Figure 5.2.

The resulting projection matrix A has, therefore, dimension 1, 584×3, 969, so that
the system of equations is quite underdetermined. To make our experiments realistic
we used, besides noiseless data, also data with Gaussian additive independent noise
of mean 0 and standard deviation 0.2. The values of the 1, 584 line integrals of this
phantom all lie between 0 and 4. This gives rise to a relative noise strength of (at
least) 0.2/4 = 5%.

In our series of tests for the head phantom we compared the behavior of ART
(Algorithm 3.1), BIP (Algorithm 1.3), DROP (Algorithm 3.4 and 3.5), BICAV (Algo-
rithm 3.2) and CARP (Algorithm 3.3), with the last four algorithms tested for both
T = 1 (all equations included in a single block resulting in a fully-simultaneous algo-
rithm) and T = 16 (i.e., using 16 blocks each consisting of all equations associated
with one projection of the line integrals). Note that for T = 1 Algorithm 3.4, DROP1
and Algorithm 3.5, DROP2 coincide.

To determine an optimal value of the relaxation parameter for each algorithm,
we compared the behavior of that algorithm with different relaxation parameters λ
within ranges that appear in the appropriate convergence results, such as (2.9), (2.12),
(2.29), (2.31), (2.34), and (2.37). Since there is no convergence result for Algorithm
3.5 we picked up the relaxation parameter in (0, 2). By “optimal value” we mean that
constant value of the relaxation parameters that gives rise to the smallest relative
error within 10 cycles. In Figures 5.3–5.6 we show examples of such plots for the
sequential ART and for DROP with T = 16. Note the different character of the plots
obtained when reconstructing noisy data as opposed to those obtained with noiseless
data. The relaxation parameter and the number of iterations have a regularizing
effect on the behavior of the algorithms when data are noisy. When searching for an

18 Y. CENSOR, T. ELFVING, G. T. HERMAN AND T. NIKAZAD

optimal value of the relaxation parameter for noisy data we ran each method, for a
fixed value of λ, five times, using in each run a new sample of the noisy data. The
displayed plots are based on the means of the individual five runs.

The optimal combinations of fixed relaxation parameter and stopping cycle num-
ber for the (sequential) ART and for BIP, DROP, BICAV and CARP algorithms with
T = 16, when applied to the noiseless and to the noisy data of the head phantom,
are shown in Table 4.1. The same information for the fully-simultaneous algorithms
obtained with T = 1 is shown in Table 4.2 (ART is repeated in both tables).

Algorithm ART BIP DROP1 DROP2 BICAV CARP
Noiseless data (0.15, 10) (44, 3) (0.4, 8) (0.7, 2) (0.81, 2) (1, 10)

Noisy data (0.05, 10) (5, 9) (0.1, 10) (0.5, 1) (0.075, 9) (0.1, 10)
Table 4.1

Optimal pairs of relaxation parameter and stopping cycle number for the head phantom. All
algorithms (except ART) use T = 16 blocks.

Algorithm ART BIP DROP1 BICAV CARP
Noiseless data (0.15, 10) (90, 10) (1.57, 10) (1.57, 10) =ART

Noisy data (0.05, 10) (100, 7) (1.7, 6) (1.7, 6) =ART
Table 4.2

Optimal pairs of relaxation parameter and stopping cycle number for the head phantom. All
algorithms (except ART) use T = 1 and, therefore, BIP, DROP and BICAV are fully-simultaneous
while CARP (with T = 1) is identical to ART.

In Figures 5.7–5.11 we compare the initial behavior of the various methods with
the optimal fixed relaxation parameters obtained by the methodology of the previous
paragraph. As an illustration of the point we have made following Theorem 2.3, in the
case of the fully-simultaneous BIP algorithm (which is in fact CIM), we also indicate
the performance with a relaxation parameter λ that is optimal for a smaller range
(such as (2.9) rather than (2.12)). The performance with this λ is much worse than
with the one that is optimal over the larger range. No such differences were found
when similar experiments were done with DROP. Observe also that in all these figures
the block-iterative versions of the algorithms are superior to their fully-simultaneous
versions.

Looking at the behavior of fully-simultaneous DROP in Figure 5.9, we note that
the relative error increases after the 6-th cycle. This does not contradict Theorem
2.3, which states that fully-simultaneous DROP converges to a weighted least squares
solution. To illustrate this, we plot in Figure 5.10 the values of the weighted least
squares functional ||Axc − b||W versus cycle number c for fully-simultaneous DROP
applied to the noisy data of the head phantom. In Figure 5.2 the head phantom and its
reconstructions produced by ART, DROP1 and DROP2 using 16 blocks are displayed.
We also present the sinograms of the projection data, calculated by SNARK93, for
the noiseless and noisy data.

4.2. The mitochondrion phantom. Our second phantom is taken from Fernández
et al. [24]. That paper is on electron microscopy tomographic reconstruction of bi-
ological specimens. One of their phantoms is designed to resemble a mitochondrion.
It consists of hollow cylinders representing the membranes and a set of solid cylin-
ders simulating the cristae. The cristae are embedded in a region of intermediate

ON DIAGONALLY-RELAXED ORTHOGONAL PROJECTION METHODS 19

density resembling the mitochondrial inner matter. In our experiments we took a
two-dimensional (2D) slice of the phantom with size of 341 × 341 pixels. This phan-
tom is shown on the top of Figure 5.18. The projections simulating a single-axis
geometry (see Frank [25, pp. 186–187]) ranged over 72 projection angles evenly dis-
tributed between 1 degree and 143 degrees; each of the 72 projections consisted of 495
lines. This resulted in 116, 281 columns and 35, 640 rows in the projection matrix A.
We generated both noiseless projection data and Gaussian zero-mean noisy projection
data with standard deviation 1. The values of the 35, 640 line integrals lie between 0
and 22. So this gives a relative noise strength of (at least) 1/22 ≈ 5% (of the same
order as for the head phantom). The difference in line integrals along horizontal lines
that go through the cristae and those that do not is 5. For this phantom we compared
the initial algorithmic behavior of ART (Algorithm 3.1) and DROP1 (Algorithm 3.4)
with T = 72 blocks as in (4.2).

In Figures 5.12–5.15 we show the relative error versus number of cycles through
the data for ART and DROP1 (using 72 blocks) with various relaxation parameters.
Based on these we picked optimal pairs of relaxation parameter and stopping cycle
number for the two methods both for the noiseless and noisy case, see Table 4.3.

Algorithm ART DROP1 (T = 72)
Noiseless data (0.9, 10) (1.8, 10)

Noisy data (0.07, 3) (0.15, 3)
Table 4.3

Optimal pairs of relaxation parameter and stopping cycle number for the mitochondrion phantom.

We display the behavior of the two algorithms with the optimal value of the
relaxation parameter in Figure 5.16 (noiseless data) and in Figure 5.17 (noisy data),
and in Figure 5.18 we show the mitochondrion phantom and its reconstructions that
were produced by ART and by DROP1 with 72 blocks. Again, the 72×495 sinograms
of the projection data, calculated by SNARK93, for the noiseless and noisy phantoms
are presented.

4.3. General comments . In Table 4.4 we display the mean run times τ , in
seconds, per cycle obtained for the head phantom with the various algorithms. In
Table 4.5 we have listed the mean run times τ , in seconds, per cycle obtained for the
mitochondrion phantom for ART, DROP1 (T = 72) and, for run-time comparison
only, the fully-simultaneous DROP (T = 1). We see that the cost of performing block-
iterations on the larger mitochondrion phantom is quite high on a single processor.

Algorithm Run-time τ

ART (sequential) 0.042
BIP (T = 1) 0.044

DROP (T = 1) 0.043
BICAV (T = 1) 0.051
CARP (T = 1) =ART
BIP (T = 16) 0.053

DROP1 (T = 16) 0.056
BICAV (T = 16) 0.063
CARP (T = 16) 0.055

Table 4.4

Run-times τ , in seconds, per cycle for the head phantom.

20 Y. CENSOR, T. ELFVING, G. T. HERMAN AND T. NIKAZAD

Algorithm Run-time τ

ART (sequential) 4.776
DROP1 (T = 72) 8.463
DROP (T = 1) 5.261

Table 4.5

Run-times τ , in seconds, per cycle for the mitochondrion phantom.

The tests were performed on a single processor within a SUNRAY multi-user
network with the Solaris operating system. As remarked above we used the SNARK93
program [5], which is a (Fortran) programming system for image reconstruction from
projections. It facilitates simulating the model, running reconstruction algorithms
and evaluating the results, including run times. Only the ART algorithm was used
from the built-in algorithms of SNARK93; the other methods were all coded by us
and given to SNARK93 as user’s algorithms.

In all relative error versus cycle plots of noisy experiments we observe that the
relative errors start to increase after a certain number of cycles. One reason for this is
the error in the right-hand side of the linear system combined with the ill-conditioning
of the matrix. The more ill-conditioned the matrix is the faster the divergence (for
a fixed error in the right-hand side) and vice versa. The iterates converge to a least-
squares solution which is based on the noisy right-hand side vector rather than the
noise-free one. This can also be analyzed using the singular value expansion of the
matrix, see, e.g., Hansen [29].

It is, therefore, important to correctly stop the iteration process. Iterating too
long means that the noise-component in the right-hand side vector dominates the
solution whereas performing too few iterations means loss of resolution in the iterates.
Another aspect is that even the noise-free least-squares solution might not be a good
approximation to the phantom. This could be so due to insufficient modelling for
instance.

5. Summary. In the literature on reconstruction from projections, for example
in [32] and [36, see Eq. (3)], researchers introduced diagonally-relaxed orthogonal
projections (DROP) for heuristic reasons that are outlined in Section 1. However,
there has been until now no mathematical study of the convergence behavior of such
algorithms. Our paper makes a contribution here.

In Section 2 we have considered a fully-simultaneous DROP algorithm for linear
equations and have proved its convergence without consistency assumptions. We have
also introduced general (block-iterative) algorithms both for linear equations and for
linear inequalities and have studied their convergence in special cases, but only for
the consistent case. We have followed this by two sections, the first containing precise
descriptions of a number of iterative algorithms that we have implemented for the
purpose of an experimental study (both DROP-type and other classical algorithms)
and the second reporting on the experimental study itself. A phantom based on a
medical problem and another based on a problem of electron microscopy have been
used to generate both noiseless and noisy projection data, and various algorithms have
been applied to such data for the purpose of comparison. The results show that the
use of DROP as an image reconstruction algorithm is not inferior to previously used
methods. Those practitioners who used it without the mathematical justification
offered here were indeed creating very good reconstructions. All our experiments
are performed in a single processor environment. Further computational gains can
be achieved by DROP in a parallel computing environment with appropriate block

ON DIAGONALLY-RELAXED ORTHOGONAL PROJECTION METHODS 21

choices but doing so and comparing it to other algorithms that were used in the
comparisons made here calls for a separate study.

Acknowledgments. We thank Rachel Gordon and Dan Gordon for having sent
us a preprint of their paper [28] and for providing advice in computational matters.
Their detailed comments on an earlier version are also gratefully acknowledged. We
thank two anonymous referees for their constructive reports. We thank Paulo J.S.
Silva and Marlon Wisner for drawing our attention to an error in a previous version
of the paper. This research is supported by the National Institutes of Health (NIH)
through grant No. HL70472 and by grant No. 2003275 from the United States-Israel
Binational Science Foundation (BSF). Part of this work was done at the Center for
Computational Mathematics and Scientific Computation (CCMSC) at the University
of Haifa and was supported by research grant No. 522/04 from the Israel Science
Foundation (ISF).

REFERENCES

[1] R. Aharoni and Y. Censor, Block-iterative projection methods for parallel computation of
solutions to convex feasibility problems, Linear Algebra and Its Applications, 120 (1989),
pp. 165–175.

[2] A. Auslender, Optimisation: Méthodes Numériques, Masson, Paris, France, 1976.
[3] H. H. Bauschke and J. M. Borwein, On projection algorithms for solving convex feasibility

problems, SIAM Review, 38 (1996), pp. 367–426.
[4] M. Benzi, Gianfranco Cimmino’s contributions to numerical mathematics, Seminario di Analisi

Matematica, Dipartimento di Matematica dell’Università di Bologna, Ciclo di Conferenze
in Ricordo di Gianfranco Cimmino, Marzo-Maggio 2004. Tecnoprint, Bologna, Italy (2005),
pp. 87–109.

[5] J. A. Browne, G. T. Herman and D. Odhner, SNARK93: A programming system for
image reconstruction from projections, The Medical Imaging Processing Group (MIPG),
Department of Radiology, The University of Pennsylvania, Technical Report MIPG198,
1993.

[6] D. Butnariu, Y. Censor and S. Reich, eds., Inherently Parallel Algorithms in Feasibility
and Optimization and Their Applications, Elsevier Science Publishers, Amsterdam, The
Netherlands, 2001.

[7] C. Byrne and Y. Censor, Proximity function minimization using multiple Bregman pro-
jections, with applications to split feasibility and Kullback-Leibler distance minimization,
Annals of Operations Research, 105 (2001), pp. 77–98.

[8] Y. Censor, Finite series-expansion reconstruction methods, Proceedings of the IEEE, 71
(1983), pp. 409–419.

[9] , Mathematical optimization for the inverse problem of intensity-modulated radiation
therapy, in Intensity-Modulated Radiation Therapy: The State of The Art, J. R. Palta
and T. R. Mackie, eds., American Association of Physicists in Medicine (AAPM), Medical
Physics Monograph No. 29, Medical Physics Publishing, Madison, Wisconsin, USA, 2003,
pp. 25–49.

[10] , T. Elfving and G. T. Herman, Averaging strings of sequential iterations for convex
feasibility problems, in Inherently Parallel Algorithms in Feasibility and Optimization and
their Applications, D. Butnariu, Y. Censor, and S. Reich, eds., Elsevier Science Publishers,
Amsterdam, The Netherlands, 2001, pp. 101–114.

[11] and T. Elfving, Block-iterative algorithms with diagonally scaled oblique projections
for the linear feasibility problem, SIAM Journal on Matrix Analysis and Applications, 24
(2002), pp. 40–58.

[12] , D. Gordon and R. Gordon, Component averaging: An efficient iterative parallel algo-
rithm for large and sparse unstructured problems, Parallel Computing, 27 (2001), pp. 777–
808.

[13] , , , BICAV: An inherently parallel algorithm for sparse systems with pixel-
dependent weighting, IEEE Transactions on Medical Imaging, 20 (2001), pp. 1050–1060.

22 Y. CENSOR, T. ELFVING, G. T. HERMAN AND T. NIKAZAD

[14] and S. A. Zenios, Parallel Optimization: Theory, Algorithms, and Applications, Oxford
University Press, New York, NY, USA, 1997.

[15] G. Cimmino, Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari, La Ricerca
Scientifica, XVI, Series II, Anno IX, 1 (1938), pp. 326–333.

[16] D. Chazan and W. L. Miranker, Chaotic relaxation, Linear Algebra and Its Application, 2
(1969), pp. 199–222.

[17] P. L. Combettes, The convex feasibility problem in image recovery, in Advances in Imaging
and Electron Physics, P. W. Hawkes, ed., pp. 155–270, Academic Press, New York, NY,
USA, 1996.

[18] , Convex set theoretic image recovery by extrapolated iterations of parallel subgradient
projections, IEEE Transactions on Image Processing, 6 (1997), pp. 493–506.

[19] L.T. dos Santos, A parallel subgradient projections method for the convex feasibility problem,
Journal of Computational and Applied Mathematics, 18 (1987), pp. 307–320.

[20] N. Echebest, M. T. Guardarucci, H.D. Scolnik and M.C. Vacchino, An accelerated itera-
tive method with diagonally scaled oblique projections for solving linear feasibility problems,
Annals of Operations Research, 138 (2005), pp. 235–257.

[21] P. P. B. Eggermont, G. T. Herman and A. Lent, Iterative algorithms for large partitioned
linear systems, with applications to image reconstruction, Linear Algebra and Its Applica-
tions, 40 (1981), pp. 37–67.

[22] T. Elfving, Block-iterative methods for consistent and inconsistent linear equations, Nu-
merische Mathematik, 35 (1980), pp. 1–12.

[23] L. Elsner, I. Koltracht and M. Neumann, Convergence of sequential and asynchronous
nonlinear paracontractions, Numerische Mathematik, 62 (1992), pp. 305–319.

[24] J.-J. Fernández, A. F. Lawrence, J. Roca, I. Garćıa, M. H. Ellisman and J.-M. Carazo,
High-performance electron tomography of complex biological specimens, Journal of Struc-
tural Biology, 138 (2002), pp. 6–20.

[25] J. Frank, Three-Dimensional Electron Microscopy of Macromolecular Assemblies, Academic
Press, San Diego, CA, USA, 1996.

[26] A. Frommer and D. B. Szyld, On asynchronous iterations, Journal of Computational and
Applied Mathematics, 123 (2000), pp. 201–216.

[27] U. M. Garćıa-Palomares, Parallel projected aggregation methods for solving the convex fea-
sibility problem, SIAM Journal on Optimization, 3 (1993), pp. 882–900.

[28] D. Gordon and R. Gordon, Component-averaged row projections: A robust block-parallel
scheme for sparse linear systems, SIAM Journal on Scientific Computing, 27 (2005), pp.
1092–1117.

[29] P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear
Inversion, Society for Industrial and Applied Mathematics (SIAM), Philadelphia PA, USA,
1998.

[30] G. T. Herman, Image Reconstruction from Projections: The Fundamentals of Computerized
Tomography, Academic Press, New York, NY, USA, 1980.

[31] and L. B. Meyer, Algebraic reconstruction technique can be made computationally ef-
ficient, IEEE Transactions on Medical Imaging, 12 (1993), pp. 600–609.

[32] , S. Matej and B. M. Carvalho, Algebraic reconstruction techniques using smooth basis
functions for helical cone-beam tomography, in Inherently Parallel Algorithms in Feasibility
and Optimization and Their Applications, D. Butnariu, Y. Censor and S. Reich, eds.,
Elsevier Science Publishers, Amsterdam, The Netherlands, 2001, pp. 307–324.

[33] H. M. Hudson and R. S. Larkin, Accelerated image reconstruction using ordered subsets
projection data, IEEE Transactions on Medical Imaging, 13 (1994), pp. 601–609.

[34] M. Jiang and G. Wang, Convergence studies on iterative algorithms for image reconstruction,
IEEE Transactions on Medical Imaging, 22 (2003), pp. 569–579.

[35] F. Natterer and F. Wübbeling, Mathematical methods in image reconstruction, Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA, USA, 2001.

[36] C. O. S. Sorzano, R. Marabini, G. T. Herman and J.-M. Carazo, Multiobjective algo-
rithm parameter optimization using multivariate statistics in three-dimensional electron
microscopy reconstruction, Pattern Recognition, 38 (2005), pp. 2587–2601.

[37] H. Stark and Y. Yang, Vector Space Projections: A Numerical Approach to Signal and Image
Processing, Neural Nets, and Optics, John Wiley & Sons, New York, NY, USA, 1998.

ON DIAGONALLY-RELAXED ORTHOGONAL PROJECTION METHODS 23

Fig. 5.1. The fully-discretized model of the image reconstruction problem.

24 Y. CENSOR, T. ELFVING, G. T. HERMAN AND T. NIKAZAD

phantom

ART

cycle 10

n
o

is
e

le
ss

sinogram

noiseless

DROP1

cycle 8

cycle 10

n
o

is
y

sinogram

noisy

cycle 10

DROP2

cycle 2

cycle 1

Fig. 5.2. Images of the head phantom and of its reconstructions produced by ART, DROP1 and
DROP2 (with 16 blocks), with and without noise. Beneath the phantom are displayed the sinograms
of the noiseless and noisy data, respectively.

ON DIAGONALLY-RELAXED ORTHOGONAL PROJECTION METHODS 25

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cycle

R
el

at
iv

e
er

ro
r

λ=0.05

λ=0.1

λ=0.15

λ=0.5

λ=0.25

Fig. 5.3. Plots of the relative error versus cycle for the ART algorithm on the head phantom
noiseless data for different values of the relaxation parameter λ.

26 Y. CENSOR, T. ELFVING, G. T. HERMAN AND T. NIKAZAD

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cycle

R
el

at
iv

e
er

ro
r

λ=0.01
λ=0.03
λ=0.05
λ=0.07
λ=0.09

Fig. 5.4. Plots of the relative error versus cycle for the ART algorithm on the head phantom
noisy data for different values of the relaxation parameter λ. Each curve is based on the means of
5 independent runs.

ON DIAGONALLY-RELAXED ORTHOGONAL PROJECTION METHODS 27

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cycle

R
el

at
iv

e
er

ro
r

λ=0.2

λ=1.6λ=1.8

λ=0.4

λ=0.6:0.2:1.4

Fig. 5.5. Plots of the relative error versus cycle for the DROP1 algorithm (with 16 blocks) on
the head phantom noiseless data for different values of the relaxation parameter λ. The encircled
area indicates almost overlapping plots for λ values between 0.6 and 1.4, gradually incremented by
0.2 steps.

28 Y. CENSOR, T. ELFVING, G. T. HERMAN AND T. NIKAZAD

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cycle

R
el

at
iv

e
er

ro
r

λ=0.05
λ=0.1
λ=0.2
λ=0.3
λ=0.4

Fig. 5.6. Plots of the relative error versus cycle for the DROP1 algorithm (with 16 blocks) on
the head phantom noisy data for different values of the relaxation parameter λ. Each curve is based
on the means of 5 independent runs.

ON DIAGONALLY-RELAXED ORTHOGONAL PROJECTION METHODS 29

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cycle

R
el

at
iv

e
er

ro
r

ART, λ=0.15
BIP, λ=1.95
BIP, λ=90
DROP, λ=1.57
BICAV, λ=1.57

Fig. 5.7. Relative error versus cycle performance plots. The noiseless head phantom data is
being reconstructed here by the ART, BIP, DROP, BICAV and CARP algorithms, the last four
in their fully-simultaneous versions, i.e., all equations form a single block. The fully-simultaneous
versions of BIP and BICAV are also called CIM and CAV, respectively. CARP with a single block is
identical to the (fully-sequential) ART algorithm. Each algorithm uses the optimal (fixed) relaxation
parameter value that suites it best according to previous runs, and in the case of BIP we also indicate
performance with a suboptimal relaxation parameter.

30 Y. CENSOR, T. ELFVING, G. T. HERMAN AND T. NIKAZAD

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cycle

R
el

at
iv

e
er

ro
r

ART, λ=0.15
BIP, λ=1.95
BIP, λ=44
BICAV, λ=0.81
CARP, λ=1
DROP1, λ=0.4
DROP2, λ=0.7

Fig. 5.8. Relative error versus cycle performance plots. The noiseless head phantom data is
being reconstructed here by the (fully-sequential) ART, BIP, DROP1, DROP2, BICAV and CARP
algorithms, the last four using 16 blocks each. Each algorithm uses the optimal (fixed) relaxation
parameter value that suites it best according to previous runs, and in the case of BIP we also indicate
performance with a suboptimal relaxation parameter.

ON DIAGONALLY-RELAXED ORTHOGONAL PROJECTION METHODS 31

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cycle

R
e

la
tiv

e
 e

rr
o

r

ART, λ=0.15
BIP, λ=1.95
BIP, λ=100
DROP, λ=1.7
BICAV, λ=1.7

Fig. 5.9. Relative error versus cycle performance plots. The noisy head phantom data is being
reconstructed here by the ART, BIP, DROP, BICAV and CARP algorithms, the last four in their
fully-simultaneous versions, i.e., all equations form a single block. CARP with a single block is
identical to the fully-sequential ART algorithm. Each algorithm uses the optimal (fixed) relaxation
parameter value that suites it best according to previous runs, and in the case of BIP we also
indicate performance with a suboptimal relaxation parameter. Each curve is based on the means of
5 independent runs.

32 Y. CENSOR, T. ELFVING, G. T. HERMAN AND T. NIKAZAD

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cycle

||A
xc −

b|
| W

/||
b|

| W

Fig. 5.10. Plot of the values of the weighted least squares functional versus cycle number for
the fully-simultaneous DROP algorithm applied to the noisy head phantom data. The relaxation
parameter is the same as used for DROP in Figure 5.9, i.e., λ = 1.7.

ON DIAGONALLY-RELAXED ORTHOGONAL PROJECTION METHODS 33

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cycle

R
el

at
iv

e
er

ro
r

ART, λ=0.05
BIP, λ=1.95
BIP, λ=5
BICAV, λ=0.075
CARP, λ=0.1
DROP1, λ=0.1
DROP2, λ=0.5

Fig. 5.11. Relative error versus cycle performance plots. The noisy head phantom data is
being reconstructed here by the ART, BIP, DROP1, DROP2, BICAV and CARP algorithms, the
last four using 16 blocks each. Each algorithm uses the optimal (fixed) relaxation parameter value
that suites it best according to previous runs, and in the case of BIP we also indicate performance
with a suboptimal relaxation parameter. Each curve is based on the means of 5 independent runs.

34 Y. CENSOR, T. ELFVING, G. T. HERMAN AND T. NIKAZAD

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ=0.05

λ=0.15
λ=0.25

λ=0.9

Cycle

R
el

at
iv

e
er

ro
r

λ=0.45

Fig. 5.12. Plots of the relative error versus cycle for the ART algorithm on the noiseless
mitochondrion phantom data for different values of the relaxation parameter λ, ranging from 0.05
to 0.9.

ON DIAGONALLY-RELAXED ORTHOGONAL PROJECTION METHODS 35

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
el

at
iv

e
er

ro

Cycle

λ=0.01
λ=0.03
λ=0.05
λ=0.07
λ=0.09

Fig. 5.13. Plots of the relative error versus cycle for the ART algorithm on the noisy mito-
chondrion phantom data for different values of the relaxation parameter λ, ranging from 0.01 to
0.09 and gradually incremented by 0.02 steps. Each curve is based on the means of 5 independent
runs.

36 Y. CENSOR, T. ELFVING, G. T. HERMAN AND T. NIKAZAD

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cycle

R
el

at
iv

e
er

ro
r

λ=0.02

λ=1.8

λ=0.4
λ=0.8

Fig. 5.14. Plots of the relative error versus cycle, reconstructing the noiseless mitochondrion
phantom. The DROP1 algorithm with 72 blocks is used with different (fixed per run) values of the
relaxation parameter λ.

ON DIAGONALLY-RELAXED ORTHOGONAL PROJECTION METHODS 37

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
el

at
iv

e
er

ro
r

Cycle

λ=0.05
λ=0.15
λ=0.25
λ=0.35
λ=0.45

Fig. 5.15. Plots of the relative error versus cycle, reconstructing the noisy mitochondrion
phantom. The DROP1 algorithm with 72 blocks is used with different (fixed per run) values of the
relaxation parameter λ. Each curve is based on the means of 5 independent runs.

38 Y. CENSOR, T. ELFVING, G. T. HERMAN AND T. NIKAZAD

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cycle

R
el

at
iv

e
er

ro
r

ART
DROP1

Fig. 5.16. Relative error versus cycle performance plots, reconstructing the noiseless mitochon-
drion phantom with the DROP1 algorithm using 72 blocks, and the fully-sequential ART algorithm.
Each algorithm uses the optimal (fixed) relaxation parameter value that suites it best according to
previous runs.

ON DIAGONALLY-RELAXED ORTHOGONAL PROJECTION METHODS 39

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cycle

R
el

at
iv

e
er

ro
r

ART
DROP1

Fig. 5.17. Relative error versus cycle performance plots, reconstructing the noisy mitochondrion
phantom with the DROP1 algorithm sing 72 blocks, and the fully-sequential ART algorithm. Each
algorithm uses the optimal (fixed) relaxation parameter value that suites it best according to previous
runs. Each curve is based on the means of 5 independent runs.

40 Y. CENSOR, T. ELFVING, G. T. HERMAN AND T. NIKAZAD

phantom

ART

cycle 10

no
is

el
es

s sinogram

DROP1

cycle 10

cycle 3

no
is

y

sinogram

cycle 3

Fig. 5.18. Images of the mitochondrion phantom and of reconstructions produced by ART
and by DROP1 (with 72 blocks), with and without noise. The appearance of the reconstructions is
influenced by the fact that the projection angles range over only 142 degrees (rather then the full
180 degrees). This accurately reflects the limitation of electron microscopy using a single-axis data
collection geometry. Beneath the phantom are displayed the sinograms of the noiseless and noisy
data, respectively.

