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Summary. We consider the problem of estimating the noise variance in homoscedastic non-
parametric regression models. For the case of low dimensional covariates t ∈ R

d, d = 1, 2,
difference-based estimators have been investigated in a series of papers. For a given length of
such an estimator, difference schemes which minimize the asymptotic MSE can be computed
for d = 1 and d = 2, respectively. However, from numerical studies it is known that for finite
sample sizes the performance of these estimators may be deficient due to a large finite sample
bias. In this paper, we provide theoretical support for these findings. In particular, we show
that with increasing dimension d this becomes more drastic. If d ≥ 4, these estimators even
fail to be consistent. A different class of estimators is discussed which allow a better control of
the bias and remain consistent when d ≥ 4. These estimators are compared numerically with
kernel type estimators (which are asymptotically efficient), and some guidance is given as to
when their use becomes necessary.

1. Introduction

Recently, estimation of the error variance σ2 = E[ε2
i ] in a nonparametric regression model

Yi = g(ti) + εi ti ∈ R
d , i = 1, . . . , N, (1)

has received much interest. Knowledge of the variance is required for the purpose of signal
estimation itself, for instance for the computation of confidence bands or the optimal choice
of the bandwidth and other smoothing parameters. In addition, the variance or transforms
of it are of direct interest in technical applications, image restoration, the analysis of financial
time series and so on. For further applications we refer to Carroll and Ruppert (1988); Kay
(1988); Härdle and Tsybakov (1997). In particular, the case of a one-dimensional predictor,
t ∈ R

1, has been treated extensively in the literature and various estimators have been
suggested. The most popular of these estimators dates back to von Neumann (1941), a
simple average of squared successive differences of the observations,

σ̂2 =
1

2(N − 1)

N∑
i=2

(Yi − Yi−1)2. (2)

This estimator also has been used by Rice (1984) and was modified in various ways to so-
called difference-based estimators (Gasser et al. (1986); Kay (1988); Hall et al. (1990, 1991);
Thompson et al. (1991); among others). Difference estimators are only applicable when
homogeneous noise is present, i.e. the error variance does not depend on the regressor t. For
regression models with inhomogeneous variance, kernel-based estimators were suggested by
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Müller and Stadtmüller (1987); Hall and Carroll (1989); Hall and Marron (1990); Neumann
(1994), and more recently, local polynomial estimators were investigated independently by
Ruppert et al. (1997); Härdle and Tsybakov (1997); Fan and Yao (1998).

Although variance estimation for d = 1 is extensively treated in the literature, the case
d = 2 has been considered by relatively few authors, and to our knowledge d ≥ 3 has never
been explicitly treated. This might be founded in the tempting conjecture that, in principle,
results for d = 1, 2 can be transferred in a straightforward manner to the higher dimensional
case. We will see, however, this is not the case for difference-based estimators.

Difference-based estimators are very popular in practice, because they are easy to per-
form, in particular when the dimension of the covariate is larger than 1. In contrast,
smoothing methods are computationally much more involved, and data driven selection of
smoothing parameters is a difficult practical problem (Ruppert et al. (1997)). In particular,
when the covariate is high dimensional additional difficulties occur due to the well known
’curse of dimensionality’. Nevertheless, as pointed out by Hall et al. (1990), difference esti-
mators suffer from the fact that their asymptotic efficiency is less compared to smoothing
methods, for instance kernel estimators, which achieve asymptotic minimax bounds (Hall
and Marron (1990)). Therefore, within the class of difference estimators it is a reasonable
goal to select a particular difference estimator which is obtained by minimizing the mean
squared error (MSE). It turns out that this can be done under a constraint on the max-
imum number of observations (the length of the difference scheme) taken into account to
compute a local residual required for such an estimator. This idea was exploited by Hall
et al. (1990) for the case of a one-dimensional covariate and extended in Hall et al. (1991)
to the case d = 2. In both cases it turns out that the bias contribution for the class of
difference-based estimators with prescribed length is (asymptotically) negligible and hence
it remains to minimize the variance as that part of the MSE which is asymptotically dom-
inating. The resulting estimators will be called optimal difference estimators.

In the following we will show, however, that for general d ∈ N an analogous result
does not hold anymore. More precisely, we show that the bias of the variance minimizing
difference estimator is of order O(N−2/d). In contrast, the variance is of order O(N−1),
and hence for d ≥ 4 the bias is not negligible for the asymptotic MSE. More drastically,
if d ≥ 4 this implies that these estimators are no longer

√
N -consistent. Note that this

implies that the generalization of von Neumann’s (1941) estimator (2) to regressors having
dimension d ≥ 4 leads to

√
N -inconsistent estimators. As a consequence the corresponding

central limit theorems fail to hold.
It is well known (Hall et al. (1991); Thompson et al. (1991)) that already for the case

d = 1, 2 optimal difference-based estimators may provide a rather large finite sample bias
- although asymptotically not relevant - particularly for spiky or rapidly vaying signals g.
Thompson et al. (1991) obtained improved performance using edge detecting algorithms
which remove observations at points where rapid changes of the image occur. This will be
explained in Section 3 by a second order expansion of the bias. Further, this shows that
already for d = 1, 2, 3 difference-based estimators minimizing the asymptotic MSE have to
be applied with greater caution, the more the dimension of the covariate increases.

To overcome these drawbacks of optimal difference schemes, in Section 3 a particu-
lar class of difference-based estimators with a polynomial weighted difference scheme is
suggested. These estimators are characterized by estimating σ2 unbiasedly for any d-
dimensional polynomial g up to a specific degree. This extends ideas of Kay (1988);
Thompson et al. (1991); Seifert et al. (1993); Dette et al. (1998). It is shown that the
estimators have sufficiently small bias, even for large dimensions d ≥ 4. In particular, these
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estimators remain consistent, although they are asymptotically not as efficient as kernel
estimators, say. Our findings are related to a minimax result by Spokoiny (2002) who
showed for two-times differentiable regression functions that only for d ≤ 8 the

√
N -rate is

achievable, otherwise the optimal rate is N−4/d. In fact, a modification of his proof yields
for one-time differentiable function g the

√
N -rate for d ≤ 4 as minimax rate and N−2/d if

d > 4. Hence, our estimates are rate optimal for any d ∈ N. In order to investigate this in
more detail, in Section 4 we extend the kernel estimator of Hall and Marron (1990) to the
case d ≥ 2 and compare it to local polynomial and difference-based estimators, respectively,
in a Monte-Carlo study. C++ code can be obtained from the authors on request. Our
results can be summarized as follows. In practically all cases a kernel estimator with cross
validated bandwidth outperforms any of the (asymptotically) optimal difference estimators.
In addition to that, it turns out that the additional improvement by a local linear estimator
is negligible. For fluctuating signals, kernel based estimators are outperformed by poly-
nomial weighted estimators in general. This effect becomes more significant for increasing
d. In addition, the computational effort of kernel based estimators increases drastically
as d increases. In contrast, even for large d polynomial weighted estimators are easy to
perform and computationally feasible. A good compromise between control of bias and a
small variance is achieved for polynomial weighted estimators with length r ≤ 4. Only for
very smooth signals a significant improvement is obtained by optimal weighted estimators
or kernel based estimators. In summary, difference estimators with polynomial weighting
schemes of length r ≤ 4 are a valid alternative to the more efficient but computationally
intensive kernel estimators. They should always be used when it cannot be excluded a priori
that the signal g is spiky or fluctuating.

In order to keep the paper more readable we have deferred all proofs to an Appendix.
We will start in the next section with a brief summary of results on the MSE of difference-
based estimators which are available for the case d = 1. This will be helpful for a better
understanding of the case d ≥ 2.

2. Difference estimators for d = 1

Assume throughout this section that we observe independent data from model (1), where
d = 1 and E[εi] = 0, E[ε2

i ] = σ2, γ4 := σ−4E[ε4
i ] < ∞. Let Y = (Y1, . . . , YN )′, and let tr D

denote the trace of a matrix D. Throughout this paper, for triangular schemes of design
points (t1,N , . . . , tN,N) we will simply write (t1, . . . , tN ).

Definition 1. A difference (or weighting) scheme of order r ∈ N is a vector d =
(dk)k=0,...,r ∈ R

r+1 such that

r∑
k=0

dk = 0 ,

r∑
k=0

d2
k = 1 .

A difference estimator of order (or length) r ∈ N is a random quadratic form

σ̂2
D =

Y ′D Y

trD
, (3)
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where D = D̃′D̃ and

D̃ =

⎛
⎜⎜⎜⎜⎝

d0 . . . dr 0 . . . 0
. . . . . .

. . . . . .
0 . . . 0 d0 . . . dr

⎞
⎟⎟⎟⎟⎠ ∈ R

(N−r)×N .

Theorem 1. (Hall et al. (1990)). Assume that the design points (ti)i=1,...,N are located
in the unit interval [0, 1] and fulfill the condition∫ ti

0

f(t) dt = i/N, i = 1, . . . , N, (4)

for any N ∈ N, where f is a density on [0, 1] which is bounded away from zero. Assume
further that g, f ∈ Lipγ[0, 1]1 , γ > 1/4, where

Lipγ [0, 1]d :=
{
f : [0, 1]d → R : ∃ c ∈ R s.t. |f(x) − f(y)| ≤ c‖x − y‖γ , x, y ∈ [0, 1]d

}
.

Then, the asymptotic MSE of σ̂2
D is minimized among the class of difference-based estimators

of order r, if and only if (iff)

min(r,r−k)∑
i=max(0,−k)

di di+k = − 1
2r

(5)

for 1 ≤ |k| ≤ r. The corresponding weights (d∗0, . . . , d∗r) are (up to the initial sign and
reversal order) unique, and the MSE of the corresponding difference estimator σ̂2

D∗ has the
following first order expansion

MSE[σ̂2
D∗ ] =

σ4

N

(
γ4 − 1 +

1
r

)
+ o(N−1) . (6)

A proof of Theorem 1 can be found in Hall et al. (1990). We mention that a simpler
proof can be obtained when instead of the minimization problem in terms of the scheme
(dk)k=0,...,r the matrix D in (3) is minimized in an appropriate class (Munk (2002)). Note
that from Theorem 1 it follows that for increasing r the asymptotic MSE of σ̂2

D∗ decreases.
However, as stated in the introduction this can be in contrast to the finite sample MSE of
σ̂2

D∗ . This depends essentially on measures of curvature of g and the sample size N . Let
C(m)[0, 1] be the space of m times continuously differentiable functions on [0, 1].

Theorem 2. (Dette et al. (1998)). Let γ3 := σ−3E[ε3
i ] = 0 and assume that the design

is equidistantly spaced, i.e. ti = i/N , i = 1, . . . , N . Then we have for g ∈ C(2)[0, 1] with
‖g‖2

2 =
∫ 1

0
g2(t) dt,

MSE[σ̂2
D∗ ] =

σ4

N

(
γ4 − 1 +

1
r

)
+

(2r + 1)2 (r + 1)2

144N4

(
‖g′‖4

2 +
4σ2

N
‖g′′‖2

2

)
+ o(N−5) .

From this result it becomes apparent that for large values of ‖g′‖2 and ‖g′′‖2, respec-
tively, the finite sample MSE becomes large. Moreover, the MSE increases as r increases.
Recall that this is in contrast to the first order expansion (6), which suggests to choose r
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as large as possible. For some illustrating examples and numerical investigations we refer
to Thompson et al. (1991) or Dette et al. (1998). A class of difference-based estimators
which allows the reduction of the bias to any order O(N−m), m ∈ N, was introduced by
Kay (1988); Thompson et al. (1991); Seifert et al. (1993). It is given by the polynomial
difference scheme

dm
k =

(
m
k

)
(−1)k(

2m
m

)1/2
, k = 0, . . . , m . (7)

If we denote the corresponding estimator by σ̂2
Dm it can be shown that for g ∈ C(2m)[0, 1],

MSE[σ̂2
Dm ] ≈ σ4

N

(
γ4 − 1 + 2

(
4m

2m

)(
2m

m

)−2
)

+
(

2m

m

)−2(‖g(m)‖4
2

N4m
+

4σ2 ‖g(2m)‖2
2

N4m+1

)
.

In particular, the bias is of order O(N−2m). Note that the polynomial difference scheme
(7) provides an unbiased estimator of the variance whenever the signal is a polynomial of
order m − 1 (Thompson et al. (1991)).

Remark 1. We indicate briefly how the above discussion can be transferred to non-
equidistant or random designs, respectively. For more details we refer to Wagner (1999).
To reduce the bias up to order O(N−2m) in any non-equidistant design model there are in
general two options. One is that the matrix D is constructed according to the method of
divided differences, analogously to the Newton interpolation formula (see Stoer (1979)). In
this case, the resulting difference scheme additionally depends on the design points ti, and
it yields an unbiased estimator for all polynomials g of a certain degree, exactly as in the
equidistant case (see Seifert et al. (1993)).

The other possibility is to pose the restriction f ∈ C(r−1)[0, 1] on the density f in (4)
generating the design points. In this case, it can be shown that the same difference scheme
as in the equidistant design model can be used in order to achieve asymptotically the same
order of bias. Note, however, that the resulting estimator is no longer unbiased for the class
of regression polynomials.

To reduce the bias in a random design model up to order O(N−2m), difference schemes
not depending on the design points are no longer valid. To see this, consider the simple
difference estimator for r = 2 and (d0, d1, d2) = (1,−2, 1)/

√
6. Let g(x) = x and assume

independent, identically distributed (i.i.d.) design points Xi ∼ U(0, 1) independent of the
error εi. In this case a simple calculation shows that the bias of the variance estimator σ̂2

D

equals E[(X(i+2) − X(i+1)) − (X(i+1) − X(i))]2/
√

6 = 2/(
√

6(N + 1)(N + 2)) and hence is
of order O(N−2), instead of order O(N−4) as for the fixed design. However, again a valid
possibility for a bias reduction is to constitute the matrix D as a function of the design
points with the above mentioned method of divided differences.

3. Higher dimensions

Now we turn to the investigation of difference-based estimators in higher dimensions. In
particular, the case d = 2 occurs in various applications (see Bissantz and Munk (2002) for
an application in astrophysics) and is of particular interest in imaging, because here model
(1) is a standard model for digital image processing where a noisy version of an image g has
to be recovered from the data. Here the knowledge of the variance is important for the choice
of smoothing parameters, and as a global measure of quality of the resulting image. Early
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references are Lee (1981); Kay (1988); further references can be found in Thompson et al.
(1991) or Hall et al. (1991). Herrmann et al. (1995) considered a two-dimensional difference-
based estimator taking into account the edges of all possible Delaunay triangulations (Ripley
(1981)).

Consider model (1) where ti = (ti1 , . . . , tid
)′ ∈ R

d. We assume that observations are
drawn from a d-dimensional grid so that ik = 1, . . . , nk, k = 1, . . . , d. Throughout the
following, let

n := min
k=1,...,d

nk , N :=
d∏

k=1

nk , (8)

and let
ik
nk

=
∫ tik

0

fk(s) ds, k = 1, . . . , d, (9)

where fk, k = 1, . . . , d, are design densities bounded away from zero. The errors are
assumed to fulfill

E[εi] = 0 , E[ε2
i ] = σ2, and γp := σ−pE[εp

i ] < ∞, p = 3, 4 . (10)

Generalizing ideas of Kay (1988); Thompson et al. (1991) and Hall et al. (1991), we introduce
a class of difference-based estimators for arbitrary dimension d ∈ N as follows.

Definition 2. A generalized difference scheme estimator for the variance σ2 in the
regression model (1) is defined as

σ̂2 =
L∑

l=1

µl n−1
Rl

∑
i∈Rl

⎛
⎝∑

j∈Jl

d
(l)
j Yi+j

⎞
⎠

2

=:
L∑

l=1

µl σ̂2
l , (11)

where σ̂2
l is defined by the last identity. Here the sum of the weights µl equals 1, and the

so-called generalized difference scheme (d(l)
j )j∈Jl

, l = 1, . . . , L, satisfies
∑

j∈Jl
d
(l)
j = 0 and∑

j∈Jl

(
d
(l)
j

)2

= 1.

Further, Jl ⊂ Z
d denotes some index set, the set Rl is given by

Rl :=
{
i ∈ ×d

k=1{1, . . . , nk} | ∀j ∈ Jl : (i + j) ∈ ×d
k=1{1, . . . , nk}

}
,

where A × B denotes the cartesian product of two sets A and B, and nRl
denotes the

cardinality #Rl of Rl.

In order to illustrate this definition and notation we will consider throughout the following
various special cases.

Example 1. (The case d = 2). Let n1 = n2 = n. We consider the following configura-
tions.
a) Jl = {(0, 0), (1, 1), (2, 2), (3, 3)}, Rl = {(i1, i2) : i1, i2 = 1, . . . , (n − 3)}, nRl

= (n − 3)2.
b) Jl = {(0, 0), (0, 1), (0, 2)}, Rl = {(i1, i2) : i1 = 1, . . . , n , i2 = 1, . . . , (n − 2)}, nRl

=
n(n − 2).
c) Jl = {(0, 0), (−1, 1), (0, 1), (1, 1)}, Rl = {(i1, i2) : i1 = 2, . . . , (n−1) , i2 = 1, . . . , (n−1)},
nRl

= (n − 1)(n − 2).

In a) and b) the design points ti+k with k ∈ Jl constitute a straight line, whereas the
design points in c) are ’T-shaped’ (Figure 1).
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Fig. 1. Configurations as described in Example 1.

Remark 2. We mention that for reasonable configurations generally it holds that 0 ∈ Jl

for all l = 1, . . . , L, and Rl will consist mainly in the set ×d
k=1{1, . . . , nk}, except for O(nd−1)

points located on the edge of the configuration, so that nRl
= N +O(nd−1) = nd+O(nd−1).

Furthermore, often L = d, although this is not always the best choice as we will see.

Hall et al. (1991) showed that for d = 2 the MSE within the class of difference-based
estimators is minimized asymptotically by estimators where the local residuals are on a
straight line with the same optimal weights as for d = 1 given in Theorem 1 (or a discon-
nected combination of it), i.e. for s(l) ∈ Z

2 the residuals are supported on

Jl = {κ s(l) : κ = 0, . . . , rl}, l = 1, . . . , L . (12)

A similar result holds for d = 3, as we will show in Theorem 3.

Example 2. (The case d = 3). Let n1 = n2 = n3 = n. The difference scheme according
to Jl = {(0, 0, 0), (0, 0, 1), (0, 0,−1), (0, 1, 0), (0,−1, 0), (1, 0, 0), (−1, 0, 0)}, Rl = {(i1, i2, i3) :
i1, i2, i3 = 2, . . . , n − 1}, and nRl

= (n − 2)3 (Figure 2).

�

�

�

��

�

�

Fig. 2. Configuration as described in Example 2.

Theorem 3. Let d = 1, 2, 3. If g ∈ Lipγ[0, 1]d, γ > d/4, then under the conditions (1)
and (9) we have for any difference estimator defined in (11),

MSE[σ̂2] =
σ4

N

⎛
⎜⎝γ4 − 1 + 2

∑
k �=0

⎛
⎝ L∑

l=1

µl

∑
j

d
(l)
j d

(l)
j+k

⎞
⎠

2
⎞
⎟⎠ + o(N−1) . (13)

A variation of the last theorem together with a central limit theorem for random
quadratic forms of de Jong (1987) gives also

√
N -consistency of σ̂2 as long as d ≤ 3,

that is N1/2(σ̂2 −σ2) is asymptotically centered normal with finite variance as given on the
right-hand side in (13).

However, as pointed out for d = 2 by Hall et al. (1991) and by Thompson et al. (1991),
the bias contribution may become very large for configurations located on a straight line
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for finite sample sizes, particularly when the signal fluctuates sharply. Hence, in Hall
et al. (1991) it was recommended to use ’compact’ configurations, whereas ’long linear’
configurations should be avoided. This is highlighted in the next theorem, which provides
a second order expansion of the bias of σ̂2 for arbitrary d ∈ N.

Theorem 4. Let d ∈ N and assume model (1), such that g ∈ C(2)[0, 1]d. Furthermore,
assume that (8), (9) and (10) hold. Then for any difference-based estimator σ̂2 defined in
(11) with residuals located on index sets Jl as in (12), we have that

Bias2
[
σ̂2
]

=

(
L∑

l=1

{
n−2

l µl C(rl) ‖ <∇g, s(l) > ‖2
2 + o(n−2

l )
})2

, (14)

where C(rl) =
{∑rl

j=0 jd
(l)
j

}2

, ∇g = ( ∂g
∂t1

, . . . , ∂g
∂td

)′ denotes the vector of partial derivatives,

and the norm ‖ · ‖2
2 is with respect to the design density

∏d
k=1 fk. If n1 = . . . = nd = n, this

simplifies to

Bias2
[
σ̂2
]

= n−4

(
L∑

l=1

µlC(rl) ‖ <∇g, s(l) > ‖2
2

)2

+ o(n−4).

Together with the definition of (12), the proof of the last theorem follows similar lines
as the calculations in Dette et al. (1998), p.755-756. Note that by means of Remark 1 a
similar result can be obtained for the case of random grid points.

Example 3. In the case d = 2 with equidistant grid points (n × n) the configuration
(for L = 1) J1 = {κ (1, 0) : κ = −2, . . . , 2}, as well as the configuration (for L = 2)
J̃1 = {κ1 (1, 0) : κ1 = −1, 0, 1}, J̃2 = {κ2 (0, 1) : κ2 = −1, 0, 1}, will lead to the same
asymptotic MSE, n−2σ4(γ4−1+1/4)+O(n−4), but the finite sample term of order O(n−4)
for the (long linear) configuration J1 is 9 times larger (here r = 4) than that of the (compact)
configuration J̃1, J̃2 (here r = 2), as one can easily deduce from Theorem 4.

If d increases, a first order approximation of the bias becomes even worse, as illustrated
in the next example.

Example 4. For the optimal difference scheme of Hall et al. (1990) (applied to each
of the L directions, separately) we get C(rl) = (2rl + 1)(rl + 1)/12. As an example, we
consider the generalized von Neumann (1941) estimator (see also Rice (1984)), r = 1,
d
(l)
0 = −d

(l)
1 = 2−1/2, L = d. Here the index set Jl = {0, el}, where el, l = 1, . . . , d, denotes

the standard basis in R
d. Assume that n1 = . . . = nd = n, µl = d−1. Then Theorem 4

yields

Bias2
[
σ̂2
]

= n−4(2d)−2

{
d∑

l=1

∥∥∥ ∂g

∂tl

∥∥∥2
2

}2

+ o(n−4),

which is of no better order than O(n−4), provided g is not constant. For any difference
scheme, however, the variance contribution to the MSE is of the order of the inverse
number of grid points, O(n−d).
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Hence, from this simple example it follows that even asymptotically for d ≥ 4, in general,
the bias will dominate the MSE, in contrast to the case d ≤ 3. This implies in particular
that the von Neumann (1941) estimator is not any more

√
N -consistent if d ≥ 4. In order

to correct for this bias the polynomial weighting scheme in (7) will become necessary.

Theorem 5. Assume that d ∈ N and assume that g ∈ C(m)[0, 1]d for m = [d/4] +
1. (Here [x] denotes the largest integer smaller than x ∈ R.) Under the model (1) and
assumption (9) for any polynomial difference-based estimator with weighting scheme (7) of
order r, such that r ≥ m, the asymptotic expansion (13) of the MSE holds. Moreover,
these estimators are

√
N -consistent.

We have seen that for increasing dimension d the control of the bias becomes the major
task for difference-based estimators, particularly for fluctuating signals. This was high-
lighted in Theorem 4, where it is shown that the second-order term of the bias dominates
the finite sample MSE in these cases. Nevertheless, the first order bias term serves still as a
good approximation if the signal fluctuates only slowly, and it might be of interest whether
asymptotically the MSE can be minimized as for d = 1 (Theorem 1). For d ≥ 2 this task is
more involved because the particular configuration of the difference schemes (see Definition
2) may play a role. In the next theorem we will determine the specific configuration which
minimizes asymptotically the MSE, provided L is fixed. Due to our preceding discussion
it becomes necessary to treat the cases 1 ≤ d ≤ 3 and d ≥ 4 separately. It turns out,
however, that for both cases it is sufficient for the minimization of the MSE to consider
sets Jl, l = 1, . . . , L, of non-parallel straight lines as in (12). Note that the next theorem
has to be applied with some caution and will yield only a valid approximation for slowly
fluctuating signals, because it is based on a first order expansion of the MSE, which is
asymptotically valid, as long as d ≤ 3.

Theorem 6. Let d = 2 (d = 3) and g ∈ Lipγ [0, 1]d with γ > 1/2 (γ > 3/4). Assume
the model (1) with (9) and (10). In the class of variance estimators as in Definition 2 with
fixed L ∈ N, rl = #Jl − 1, l = 1, . . . , L, and r =

∑L
l=1 rl, the asymptotically optimal MSE

MSE
[
σ̂2

opt,r

]
=

σ4

N

(
γ4 − 1 +

1
r

)
+ o(N−1) ,

is achieved for a difference estimator σ̂2
opt,r which has weights of the form µl = rl/r,

l = 1, . . . , L, and the Jl are non-parallel straight lines. The generalized difference schemes
(d(l)

j )j∈Jl
are exactly as in the one-dimensional case described in Hall et al. (1990), i.e. they

fulfill the one-dimensional asymptotic optimality criterion
∑

j∈Jl(k) d
(l)
j d

(l)
j+k = −1/(2 rl) as

in (5) for all 0 �= k with Jl(k) = {j ∈ Jl : l + k ∈ Jl} �= ∅.

We mention that for d ≥ 4 a similar result can be shown, where, however, the class
of difference estimators has to be restricted to those which are unbiased estimators for
polynomials of order m = [d/4]+1 (see Wagner (1999)). The last theorem can be illustrated
with the help of the following example.

Example 5. Assume d = 2 and an equidistant design. In Figure 3 an example is given
for a particular configuration in the case L = 4 , r1 = r2 = 4 (horizontal and vertical lines)
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Fig. 3. Example for a difference scheme estimator of the variance with d = 2 and L = 4.

and r3 = r4 = 2 (diagonal lines). In order to achieve the asymptotically minimal MSE in
the class of generalized difference estimators where r = 12,

MSE
[
σ̂2

opt,12

]
=

σ4

N

(
γ4 − 1 +

1
12

)
+ o(N−1),

one has to choose in a first step the weights according to Theorem 6 as µ1 = µ2 = 1/3 and
µ3 = µ4 = 1/6. In a second step the optimal difference schemes of Hall et al. (1990) have
to be used for r = 4 and r = 2, respectively. Observe that here d �= L.

Remark 3. As pointed out by a referee it is an interesting task to discuss the role of L
in generalized difference estimators. This is in principle very difficult, because it cannot be
separated from the question of optimal length rl along each direction l. A comprehensive
answer is beyond the scope of this paper, but a qualitative answer can be given by means
of Theorem 4, provided the expansion (14) can be considered as sufficiently accurate, which
is the case for not too strongly oscillating signals. Then, the bias will be minimized when
the directions s(l) are chosen such that the expression on the right-hand side in (14) is
minimized. This is a discrete minimization problem, and the mimimum would be achieved
(if ∇g was known) by choosing L = 1 and s(1) ∈ Z

d as the mimimizer of ‖ <s(1),∇g> ‖2
2.

However, in general higher order terms in the expansion of the bias will involve mixed
derivatives of g, and here L = 1 is not necessarily the best choice. Nevertheless, Theorem
4 justifies in general configurations, so that residuals are computed along directions where
the gradient of g is small. If g fluctuates sharply in all directions, this can only be achieved
by small numbers of local residuals rl but large L. If g is such that the gradient is small
along a specific direction, a large number of residuals along this direction for L = 1 will
give a good result. This is in accordance with the bias trimming algorithms of Thompson
et al. (1991) (for d = 2), because these algorithms identify in a first step those grid points
where ∇g is expected to be large and eliminate these from further calculations.

Finally, note that with increasing variance σ2 (noise level) the optimal estimators fare
better, because the bias does not depend on σ2 (Theorem 4), in general. However, the
practical merits of this finding are limited since in this case the overall quality of the
estimators will be bad.
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4. A numerical comparison

4.1. Kernel estimators
In this section we compare the difference-based estimators with the (asymptotically effi-
cient) d-dimensional generalization of Hall and Marron’s (1990) kernel estimator and the
corresponding local linear estimator. For the sake of brevity we consider product kernels
K(x) =

∏d
i=1 K1(xi) of order r ∈ N (here x = (x1, . . . , xd)′ ∈ R

d) such that K1 : R → R is
symmetric with compact support. Furthermore,∫

Rd

K(x) dx = 1 ,

∫
Rd

xl
i xk

j K(x) dx = 0, i �= j ; 0 ≤ l, k < r ,∫
Rd

xr
i K(x) dx = µr(K) �= 0, i = 1, . . . , d .

Finally, the bandwidth matrix is assumed to be diagonal, H = diag(h1, . . . , hd).

Theorem 7. Consider the nonparametric regression model (1) with g ∈ C(r+1)[0, 1]d

and design points ti ∈ [0, 1]d, i = 1, . . . , N , located on a d-dimensional grid, so that (9)
holds. For the diagonal bandwidth matrix H it holds that hmin := mink=1,...,d hk > 0,
Nhd

min → ∞, λk,N := hk/hmin → λk ∈ (0,∞), k = 1, . . . , d, as N → ∞. Let K be a
d-dimensional kernel of order r. Then, the MSE of the variance estimator

σ̂2
K =

1
v

N∑
i=1

⎛
⎝Yi −

N∑
j=1

wij Yj

⎞
⎠

2

(15)

with v = N − 2
∑

i wii +
∑

i,j w2
ij and wi,j = K(H−1(ti − tj))/

∑N
�=1 K(H−1(ti − t�)) is

given by

MSE
[
σ̂2

K

]
=

1
N

(γ4 − 1)σ4 + C1 (N2
d∏

k=1

hk)−1 + C2
2 h4r

min + o
(
(N2

d∏
k=1

hk)−1 + h4r
min

)
.

Here

C1 = 2σ4

∫
Rd

((K ∗ K)(x) − 2 K(x))2 dx ,

C2 = κ2
r

∫
Rd

(
(g f)(r)(x) − g(x) f (r)(x)

)2

(f(x))−1 dx , κr =
(−1)r

r!
µr(K),

where for a function f ∈ C(r)[0, 1]d we use

f (r)(x) =
d∑

k=1

λr
k

∂r

(∂tk)r
f(t)
∣∣∣
t=x

.

The proof is omitted and follows in principle the pattern of the one-dimensional case as
found in Hall and Marron (1990). Note that due to the special choice of the product kernel
no mixed derivatives are involved in C2.
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Remark 4. As a byproduct of the last theorem we obtain for 4r > d from C2
2 h4r =

C1N
−2h−d the optimal diagonal bandwidth matrix of the form H = h Id, which asymptot-

ically minimizes the MSE, as

h0 =
(
C1(C2 N)−2

) 1
4r+d = O

(
N− 2

4r+d

)
. (16)

In this case, with h0 in (16), one can show that
√

N
(
σ̂2

K − σ2
)

is asymptotically centered
normal with variance (γ4 − 1)σ4, and hence

√
N -efficient.

4.2. A simulation study
In the following, a simulation study for the cases d = 2, 3, 4 will be presented (see Thompson
et al. (1991), or Dette et al. (1998), for an extensive numerical study when d = 1). To this
end we assumed normally distributed errors; similar results where found for skewed errors
which are not displayed. All functions under consideration were defined in [0, 1]d, and equi-
distant designs were used. For the kernel estimator we chose product kernels generated
by the Epanechnikov kernel, K1(x) = 3/4 (1 − x2)1{|x| ≤ 1}, and the bandwidth matrix
H = h Id. In addition to the kernel estimator (15), a local linear estimator with the
same kernel was investigated (Wand and Jones (1995)). The bandwidths required for these
estimators were obtained by cross-validation. Finally, for each setting the ’oracle’ estimator
was calculated, i.e. the estimator of the variance when the true regression function g is
known (the ’ideal’ estimator in Thompson et al. (1991)). This serves as a benchmark for
the best possible estimator. In each simulation scenario 500 (or 1000) runs were performed,
where the random generator g05ddc from C++ NAG was used.

4.2.1. The case d = 2
From our previous discussion it can be expected that the oscillation and the smoothness of
the signal g will affect the effective choice of the weighting scheme significantly. Therefore,
we have considered the following regression functions (RF; Figure 4):

g1(x, y) = y sin(8π x) (heavily oscillating in x-direction)
g2(x, y) = y sin(2π x) (oscillating in x-direction)
g3(x, y) = sin(2π(x + y)) (oscillating in both directions)
g4(x, y) = sin(5π(x + y)) (heavily oscillating in both directions)
g5(x, y) = x y (polynomial function)
g6(x, y) = exp(−(x + y)/2) (monotone function)
g7(x, y) = max{g7h(x), g7h(y)} − g7h(x)g7h(y) (chess-board-like function)

g7h(x) =
{

1, 1/3 < x ≤ 2/3
0, else (17)

g8(x, y) = max{g8h(x), g8h(y)} (spiky function)

g8h(x) =

⎧⎪⎪⎨
⎪⎪⎩

1/8, x = 0
5/8, x = 0.5
2/8, x = 1
0, else

(18)
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Fig. 4. Functions g3(x, y), g7(x, y) (the areas where g7(x, y) = 1 are marked black), and g8(x, y).
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Fig. 5. Residual configurations for various difference estimators.

The following difference estimators were considered:

(a) σ̂2
S,p with residuals as in Fig. 5a), where on each line the polynomial difference scheme

(PolDif) (d0, d1, d2) = (1,−2, 1)/
√

6 was chosen.
(b) σ̂2

K,p with residuals as in Fig. 5b) and PolDif as in (a).
(c) σ̂2

x2,p with residuals as in Fig. 5c) and PolDif as in (a).
(d) σ̂2

x4,p with residuals as in Fig. 5d) and PolDif (d0, d1, d2, d3, d4)=(1,−4, 6,−4, 1)/
√

70.
(e) σ̂2

y2,p with residuals as in Fig. 5e) and PolDif as in (a).
(f) σ̂2

y4,p with residuals as in Fig. 5f) and PolDif as in (d).

Furthermore, the same estimators with optimal difference schemes (OptDif) of order
2, (d0, d1, d2) = (0.809,−0.5,−0.309) and of order 4, (d0, d1, d2, d3, d4) = (0.2708,−0.0142,
0.6909,−0.4858,−0.4617), respectively, were considered (Hall et al. (1990)). The resulting
estimators are denoted as σ̂2

S,o , σ̂2
K,o, . . . , σ̂

2
y4,o. In the following tables we use the notation

4.222 for 4.22 ∗ 10−2, and so on.
In Table 1, results for a heavily oscillating signal in the x-direction (g1) are displayed,

where σ2 = 0.25, 0.5. Observe that here the y direction is linear. From this table it can
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Table 1. The case d = 2. Bias2 and variance for regression function g1

PolDif OptDif Oracle

r = 2 r = 4 r = 2 r = 4
σ2 (n1, n2) var.est. σ̂2

x2,p σ̂2
y2,p σ̂2

x4,p σ̂2
y4,p σ̂2

x2,o σ̂2
y2,o σ̂2

x4,o σ̂2
y4,o

0.25 (10,10) Bias2 2.491 1.435 6.601 3.695 4.512 1.214 7.382 5.974 9.136

Variance 1.772 2.783 4.442 4.953 4.753 1.813 7.233 2.323 1.123

(10,25) Bias2 2.341 5.446 6.211 1.092 4.132 4.746 6.722 1.975 3.517

Variance 7.443 1.093 1.862 3.133 1.853 6.394 2.733 6.804 4.844

(25,10) Bias2 1.023 1.308 1.605 5.193 2.922 6.185 5.972 4.564 1.297

Variance 1.083 1.153 1.523 1.003 1.443 7.534 2.293 9.614 5.024

(30,30) Bias2 2.294 2.907 1.576 3.757 1.542 1.666 4.912 9.436 5.777

Variance 2.964 2.744 4.034 3.994 3.134 1.814 5.554 1.774 1.404

(100,100) Bias2 1.609 2.188 1.009 5.238 1.684 <1.012 1.363 1.898 1.468

Variance 2.485 2.255 3.415 3.075 1.605 1.535 1.515 1.425 1.225

0.5 (10,10) Bias2 2.441 3.906 6.491 1.035 4.472 1.044 7.302 5.464 1.185

Variance 4.242 1.152 1.011 1.852 1.342 7.503 1.842 9.073 5.253

(10,25) Bias2 2.351 8.536 6.221 4.212 4.302 4.806 7.012 1.525 4.246

Variance 1.602 4.513 3.912 1.322 5.233 2.713 7.223 2.593 1.903

(25,10) Bias2 1.053 2.225 1.875 2.002 2.942 1.214 5.892 6.184 1.525

Variance 4.353 4.433 5.943 3.563 4.523 3.043 6.223 3.773 2.273

(30,30) Bias2 1.504 6.247 4.046 1.716 1.492 1.797 4.802 9.738 2.556

Variance 1.153 1.113 1.653 1.643 1.063 7.664 1.603 7.204 5.864

(100,100) Bias2 3.509 2.037 1.318 2.877 1.764 3.248 1.373 6.798 2.509

Variance 1.014 9.365 1.404 1.314 5.965 6.045 5.515 5.455 4.615

be concluded that for larger sample sizes the use of asymptotically optimal weights along
the x-axis direction leads to a much larger bias compared to the polynomial estimators, as
was expected. Of course, if the optimal weighting scheme is chosen in the y-direction, the
resulting estimator outperforms the polynomial weighting scheme, particularly for sample
sizes where n1, n2 ≥ 30. Furthermore, increasing the order of the optimal difference-based
estimator in the x-direction results in a decrease of the MSE when the sample size grows
(n1 = n2 = 100). For smaller sample sizes (n1, n2 ≤ 30) this is not observed. Note that this
is in accordance with our theoretical finding in Theorem 4, where the bias increases as r
increases. For large sample sizes, in most cases the variance dominates the squared bias in
this setting. However, for the case of optimal difference schemes along the x-direction the
variance is dominated by the squared bias. For the choice of weights along the x-direction,
the polynomial difference schemes perform better than the corresponding optimal difference
schemes. Further, from Table 1 it becomes apparent that for the polynomial weighting
scheme r = 2 is in most cases superior to r = 4, which is due to the smaller variance. This
is in accordance with the recommendation by Hall et al. (1991) to use short and compact
configurations. Finally, we mention that these findings are independent of the noise level;
similar results hold for σ2 = 1 (not displayed).

In Table 2 the different regression functions are compared. Here only short and com-
pact configurations of the residuals as in Figure 5a) and b) were considered. In most cases,
the variance dominates the squared bias, except for strongly oscillating signals (g4). The
variances are mostly of comparable magnitude in each row of the table. The polynomial
weighting scheme yields a smaller bias than the optimal weighting scheme in case of oscil-
lating and non-smooth signals, in particular for larger sample sizes. It becomes apparent
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Table 2. The case d = 2. Bias2 and variance for σ2 = 0.5

(n1, n2) RF var.est. σ̂2
S,p σ̂2

K,p σ̂2
S,o σ̂2

K,o σ̂2
Kern σ̂2

locLin Oracle

(10, 10) g2 Bias2 7.495 1.745 3.603 2.083 1.724 1.074 4.766

Variance 8.523 1.022 7.373 7.603 6.643 6.773 4.993

g3 Bias2 3.943 2.094 9.212 6.962 1.973 1.313 2.395

Variance 8.483 9.483 1.182 1.142 7.243 8.293 4.633

g4 Bias2 2.871 2.081 2.801 6.231 2.481 2.631 4.898

Variance 2.562 2.472 2.242 4.262 1.622 1.662 4.773

g5 Bias2 6.107 6.136 6.935 5.165 5.435 3.275 2.738

Variance 9.533 1.152 7.363 8.323 5.523 5.443 5.003

g6 Bias2 1.046 1.767 4.796 2.598 6.455 2.025 7.936

Variance 1.012 1.232 7.873 8.633 5.783 5.493 4.853

g7 Bias2 1.672 8.203 4.362 3.742 7.703 8.483 1.295

Variance 1.342 1.592 1.312 1.402 8.693 9.223 5.383

g8 Bias2 4.203 2.283 3.703 1.803 1.713 1.823 8.907

Variance 1.192 1.232 8.413 8.523 6.633 7.683 4.993

(30, 30) g2 Bias2 3.597 1.008 4.675 2.105 1.845 2.735 1.128

Variance 6.894 9.014 5.854 6.234 5.204 5.874 5.104

g3 Bias2 1.353 6.224 5.633 3.003 2.113 2.163 7.107

Variance 8.414 8.864 8.154 8.164 8.214 7.824 6.004

g4 Bias2 7.984 6.705 4.712 2.902 1.123 9.624 1.676

Variance 8.414 9.754 9.244 9.064 1.063 9.934 6.004

g5 Bias2 1.826 1.766 4.867 1.016 6.378 2.809 6.037

Variance 7.674 9.434 6.564 6.904 5.824 5.594 5.874

g6 Bias2 5.488 1.378 1.010 2.228 4.888 3.537 1.177

Variance 7.804 9.474 7.014 7.364 6.284 5.414 5.704

g7 Bias2 5.686 6.566 1.973 9.614 9.245 7.195 1.926

Variance 7.504 8.914 6.664 7.144 6.204 6.654 5.514

g8 Bias2 7.984 6.705 4.712 2.902 1.123 9.624 1.676

Variance 8.414 9.754 9.244 9.064 1.063 9.934 6.004

that for the difference-based estimators the star-shaped configuration tends to be better
than the cross-shaped configuration in case of smooth functions which are not too heavily
oscillating. This is due to a reduction of variance because of the larger number of residuals
taken into account by the first-named estimators. In terms of the MSE, the polynomial
weighting scheme tends to outperform the optimal weighting scheme for oscillating func-
tions (g3, g4) and for the chess-board type function g7. In general, the kernel estimator and
the local linear estimator are comparable or even more efficient than the difference-based
estimators, except for heavily oscillating signals, where the polynomial difference estimator
should be used (g8). However, it has to be taken into account that the computing time for
the kernel and the local linear estimator is much higher than for the difference-based esti-
mators, which is due to the cross validation of the bandwidths. For instance, for n1, n2 = 30
the computation of a single estimator takes 15ms on a Pentium 4 with 512MB RAM and
1.8GHz for a difference estimator, as compared to about 15s (factor 1000) for the kernel
estimator.
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4.2.2. The case d = 3
In the following we briefly consider the case d = 3, with the regression functions

g1(x, y, z) = sin(2π(x + y + z))
g2(x, y, z) = sin(5π(x + y + z))
g3(x, y, z) = max{g7h(x), g7h(y), g7h(z)} − g7h(x)g7h(y)g7h(z), g7h from (17)
g4(x, y, z) = max{g8h(x), g8h(y), g8h(z)}, g8h from (18),

and ’star-shaped’ difference-based estimators of order r = 2,

σ̂2
W,p :=

1
26

1∑
r,s,t=−1

1
nR

∑
j∈R

(
d0Yj−(r,s,t)′ + d1Yj + d2Yj+(r,s,t)′

)2

with polynomial difference scheme. The same estimator using an optimal difference scheme
is called σ̂2

W,o. The cardinality of R := ×3
k=1{2, . . . , nk − 1} is nR := #R. Furthermore, we

investigated ’cross-shaped’ estimators

σ̂2
K,p :=

1
3

3∑
l=1

1
nRl

∑
j∈Rl

(d0Yj−1l
+ d1Yj + d2Yj+1l

)2

with polynomial difference scheme and its counterpart σ̂2
K,o with optimal difference scheme.

The cardinality of Rl :=
{
j = (j1, j2, j3)′ ∈ ×3

k=1{1, . . . , nk} : jl ∈ {2, . . . , nl − 1}} is nRl
:=

#Rl for l = 1, 2, 3.
In Tables 3 and 4 selected results for d = 3 are displayed. It can be seen that the

polynomial weighting scheme mostly outperforms the optimal weighting scheme in case of
oscillating signals, and that the cross-shaped estimators σ̂2

K,∗ tend to outperform the corre-
sponding star-shaped estimators σ̂2

W,∗ (∗ = p, o). In most cases, the squared bias dominates
the variance of the estimators. Interestingly, this fails to hold for the chess-board type func-
tion g3 with polynomial weighting scheme as the sample size increases. Again, the kernel
estimator and the local linear estimator yield comparable results for the sample sizes under
consideration and perform better than the difference-based estimators in case of not heavily
oscillating signals, whereas the estimator σ̂2

K,p yields the best results in case of oscillating
signals, especially for larger sample sizes. Note that, for example, for n1, n2, n3 = 10 the ker-
nel estimator takes about 1300 times the computing time of the difference estimators. For
larger sample sizes (50,50,50) and (100,100,100) the optimal weighting difference estimator
is always outperformed by the bias reducing polynomial weighting estimator. Here it be-
comes nicely apparent that, the more d increases, the more the bias becomes the dominating
term for the MSE.
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Table 3. The case d = 3. Bias2 and variance for σ2 = 0.25

(n1, n2, n3) RF var.est. σ̂2
W,p σ̂2

W,o σ̂2
K,p σ̂2

K,o σ̂2
Kern σ̂2

locLin Oracle

(5, 5, 5) g1 Bias2 2.581 2.681 1.181 5.691 2.481 2.411 3.506

Variance 1.482 9.813 4.203 1.052 5.733 5.823 1.013

g2 Bias2 2.991 2.551 9.641 4.571 2.561 2.571 7.258

Variance 1.942 1.082 1.992 1.042 5.213 5.293 1.013

g3 Bias2 5.272 5.242 5.082 5.142 1.722 2.322 2.426

Variance 9.733 5.213 4.093 3.253 2.793 2.893 9.734

g4 Bias2 6.683 3.073 3.323 2.103 1.463 2.033 3.516

Variance 6.083 2.803 2.253 1.613 1.843 1.833 1.023

(10, 10, 10) g1 Bias2 1.402 1.141 3.514 6.992 1.733 1.533 1.768

Variance 2.954 5.304 1.664 3.094 1.564 1.954 1.154

g2 Bias2 2.571 2.721 2.111 6.031 2.491 2.501 1.009

Variance 1.043 8.904 6.114 1.313 7.064 6.374 1.214

g3 Bias2 8.763 2.382 2.413 1.212 1.733 1.793 2.047

Variance 3.524 3.504 1.984 2.154 2.094 2.204 1.224

g4 Bias2 4.993 4.933 1.063 1.103 9.524 1.173 1.067

Variance 4.284 2.984 2.244 1.694 2.884 3.414 1.254

Table 4. The case d = 3. Bias2 and Variance for σ2 = 0.25

(n1, n2, n3) RF var.est. σ̂2
W,p σ̂2

W,o σ̂2
K,p σ̂2

K,o Oracle

(50, 50, 50) g1 Bias2 2.574 1.193 6.185 3.124 4.010

Variance 1.316 1.296 1.406 1.186 1.036

g2 Bias2 2.574 2.614 5.985 6.235 2.010

Variance 1.456 1.256 1.456 1.166 1.026

g3 Bias2 5.398 4.344 2.209 1.054 <1.012

Variance 1.196 1.116 1.366 1.136 1.026

g4 Bias2 6.605 1.342 7.467 3.893 <1.012

Variance 1.266 1.426 1.416 1.226 1.046

(100, 100, 100) g1 Bias2 6.125 2.974 1.445 7.285 1.010

Variance 1.537 1.497 1.737 1.477 1.317

g2 Bias2 6.875 7.375 1.555 1.575 2.010

Variance 1.487 1.367 1.627 1.337 1.197

g3 Bias2 2.010 2.695 1.010 6.256 <1.012

Variance 1.387 1.307 1.627 1.347 1.247

g4 Bias2 2.857 9.944 3.809 2.444 <1.012

Variance 1.377 1.307 1.657 1.337 1.197
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Table 5. The case d = 4. Bias2 and variance for (n1, n2, n3, n4) = (5, 5, 5, 5)

σ2 RF var.est. σ̂2
W,p σ̂2

W,o σ̂2
K,p σ̂2

K,o σ̂2
Kern σ̂2

locLin Oracle

0.25 g1 Bias2 5.042 1.621 8.464 1.051 3.573 3.083 7.647

Variance 2.223 1.773 2.864 6.234 3.144 2.894 2.024

g2 Bias2 2.461 2.531 1.131 5.631 2.511 2.471 1.026

Variance 5.203 2.883 8.434 2.223 1.063 1.033 2.174

g3 Bias2 2.852 2.852 3.062 3.052 8.633 9.983 4.057

Variance 2.283 1.093 5.944 4.774 3.834 4.414 1.944

g4 Bias2 3.553 1.723 1.533 1.043 1.013 1.213 1.417

Variance 1.463 6.294 3.404 2.754 3.404 3.824 1.934

0.5 g1 Bias2 5.062 1.601 9.634 1.051 4.623 4.443 5.186

Variance 6.893 5.213 1.133 1.943 1.443 1.413 7.954

g2 Bias2 2.421 2.501 1.111 5.551 2.481 2.501 4.897

Variance 1.092 5.913 1.883 4.823 2.533 2.353 8.834

g3 Bias2 2.852 2.832 3.042 3.062 1.032 1.172 1.776

Variance 6.673 3.563 1.873 1.633 1.453 1.523 8.174

g4 Bias2 3.633 1.603 1.323 8.924 1.523 1.513 4.116

Variance 4.503 2.073 1.273 1.003 1.163 1.053 8.134

4.2.3. The case d = 4
For the case d = 4 we considered the regression functions

g1(x, y, z, s) = sin(π(x + y + z + s))
g2(x, y, z, s) = sin(2π(x + y + z + s))
g3(x, y, z, s) = max

t∈{x,y,z,s}
g7h(t) − g7h(x)g7h(y)g7h(z)g7h(s), g7h from (17)

g4(x, y, z, s) = max{g8h(x), g8h(y), g8h(z), g8h(s)}, g8h from (18),

and difference-based estimators analogous to the case d = 3. Tables 5 and 6 show selected
results from our simulation study. We mention that the kernel and local polynomial esti-
mators are computationally feasible only for small sample sizes such as ni = 5, i = 1, ..., 4,
due to the cross validation procedure. In this case, the calculation of the kernel estimator
takes 13s, for ni = 6 it takes 54s, and for ni = 7 more than 3min.

Again, as for d = 3, the estimator σ̂2
K,p performs best almost always among the difference-

based estimators. From Table 6 we find that in accordance with Theorem 3.6, as the sample
size increases the use of the polynomial weighting scheme corrects for the bias, whereas the
generalized von Neumann (1941) estimator completely fails for g1 − g3. Observe that g4 is
close to a constant function.

4.2.4. Comparison between dimensions
To illustrate the inconsistency of the optimal weighting scheme estimators (including the
von Neumann (1941) estimator) for increasing dimension (see Example 4), we considered
the functions g̃d(x) := 21/2π−1 sin(π

∑d
l=1 xl), for d = 2, 3, 4. Note that ‖∂g/∂tl‖2

2 = 1,
l = 1, . . . , d, in order to render the functions comparable.

Figure 6 shows that the bias (normed by
√

N , which stems from the C.L.T., see the
comment below Theorem 3) gets larger for increasing values of d except for the polynomial
weighting scheme estimators. In contrast, the variance plays only a minor role (Figure 7).
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Table 6. The case d = 4. Bias2 and variance for σ2 = 0.25

(n1, n2, n3, n4) RF var.est. σ̂2
W,p σ̂2

W,o σ̂2
K,p σ̂2

K,o Oracle

(10, 10, 10, 10) g1 Bias2 3.644 2.652 1.216 5.393 5.409

Variance 2.725 3.345 1.645 1.565 1.155

g2 Bias2 2.932 1.361 3.384 7.052 1.508

Variance 3.745 6.075 1.645 2.925 1.215

g3 Bias2 4.133 1.062 9.484 4.803 4.709

Variance 4.105 3.655 1.765 1.685 1.165

g4 Bias2 5.673 5.203 6.954 6.984 1.268

Variance 4.895 3.345 1.945 1.485 1.195

(50, 50, 50, 50) g1 Bias2 3.010 4.715 1.010 6.486 1.010

Variance 2.308 2.198 2.558 2.158 1.988

g2 Bias2 1.727 7.214 5.010 1.044 <1.012

Variance 2.078 1.998 2.338 2.008 1.868

g3 Bias2 1.564 7.044 2.335 1.184 <1.012

Variance 2.448 2.438 2.598 2.188 1.968

g4 Bias2 4.114 4.154 5.695 5.895 <1.012

Variance 2.768 2.508 2.658 2.158 1.988
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Fig. 6.
√

NBias in dependence on N .

5. Conclusions

In summary, we found that polynomial difference estimators with ’compact’ configurations
and not too large length of local residuals (r ≤ 4 was sufficient in all settings we have
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considered) perform well for small and moderate sample sizes, provided a fluctuating signal
cannot be excluded a priori. The polynomial difference estimators are simple to calculate
and

√
N -consistent in arbitrary dimensions of the regressor space. If the signal is known to

be slowly oscillating the use of a kernel type estimator becomes feasible due to its superior
efficiency. However, here a computationally more feasible bandwidth selection than cross
validation is required (see Herrmann et al. (1995)). We did not pursue this topic in this
paper. The local linear estimator was not found to be significantly different to the kernel
estimator. This might be due to the fact that, when the variance is constant, boundary
effects do not play a big role in contrast to the case when σ2 is a function (see Ruppert et al.
(1997)). Hence, the more simple kernel estimator can be used instead, without significant
loss of performance. Note, however, that the computing time for these estimators increases
drastically with higher dimensions as compared to the difference estimators. This yields a
considerable practical burden, for example in image analysis where computation in real time
is often required. For d > 2, the use of optimal difference schemes cannot be recommended
at all, including the generalization of von Neumann’s (1941) estimator. Note that these
estimators even fail to be

√
N -consistent if the dimension of the regressor space is larger

than three.
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6. Appendix: Proofs

Proof of Theorem 3. As in the proof of Theorem 2.1 in Hall et al. (1991),

E[σ̃2
l σ̃2

j ] =
1

nRl
nRj

∑
i1∈Rl

∑
i2∈Rj

∑
j11,j12∈Jl

∑
j21,j22∈Jj

d
(l)
j11

d
(l)
j12

d
(j)
j21

d
(j)
j22

E[εi1+j11εi1+j12εi2+j21εi2+j22 ]

= σ4 + N−1
(
E[ε4] − 3σ4 + 2 σ4

∑
j11∈Jl

∑
j21∈Jj

∑̃
k

d
(l)
j11

d
(l)
j11+k d

(j)
j21

d
(j)
j21+k

)
+ o(N−1)

= σ4 +
σ4

N

(
γ4 − 1 + 2

∑̃
k �=0

( ∑
j11∈Jl

d
(l)
j11

d
(l)
j11+k

)( ∑
j21∈Jj

d
(j)
j21

d
(j)
j21+k

))
+ o(N−1) ,

where
∑̃

k and
∑̃

k �=0 denote summation over {k ∈ Z
d : j11 + k ∈ Jl ∧ j21 + k ∈ Jj}

and {k ∈ Z
d\{0} : j11 + k ∈ Jl ∧ j21 + k ∈ Jj}, respectively. Because the bias is of

order O(n−2γ) = o(n−d/2) = o(N−1/2) in the same way as in the one-dimensional case, the
variance contribution of order O(N−1) dominates the MSE. The variance equals

V ar[σ̂2] = V ar
[ L∑

l=1

µl σ̂2
l

]

=
L∑

l,k=1

µl µk

(
Cov[σ̃2

l , σ̃2
k] + O(n−2γ)Cov[ξl, ξk] + O(n−γ)Cov[ξl, σ̃

2
k]
)
,

with

Cov[ξl, ξk] =
1

nRl
nRk

∑
i∈Rl

∑
j∈Rk

∑
ν∈Jl

∑
η∈Jk

d(l)
ν d(k)

η E[εi+ν εj+η]

=
1

nRl
nRk

∑
i∈Rl

∑
i+ν=j+η

ν∈Jl, η∈Jk, j∈Rk

d(l)
ν d(k)

η E[εi+ν εj+η] = O(N−1) ,

because #Rl = nRl
= N+O(nd−1) for l = 1, . . . , L. In the same way, Cov[ξl, σ̃

2
k] = O(N−1).

Because of E[σ̃2
l ] = σ2 the result follows from the condition

∑
µi = 1. �

Proof of Theorem 5. For the sake of brevity we give only a sketch of the proof. A
similar calculation as in the proof of Theorem 3 shows that the variance of any difference
estimator σ̂2 is given asymptotically by the right-hand side of (13). Therefore, it remains to
show that the bias contribution to the MSE is of order o(N−1). To this end note that the
generalized difference scheme (d(l)

j )j∈Jl
, l = 1, . . . , L, satisfies (7), such that

∑
rl = r ≥ m.

Then a Taylor expansion shows that the bias is of order O(n−2m), by a similar computation
as in the one-dimensional case (Dette et al. (1998)). From m = [d/4]+1, the result follows.

�
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Proof of Theorem 6. The condition of non-parallel straight lines implies that for any
k, such that 0 �= k ∈ Z

d, at most one of the sets Jl(k) = {j ∈ Jl : j + k ∈ Jl} is non-empty
for one l ∈ {1, . . . , L}. Therefore, the part of the MSE which depends on the generalized
difference scheme equals

∑
k �=0

( L∑
l=1

µl

∑
j

d
(l)
j d

(l)
j+k

)2

=
∑
k �=0

L∑
l1=1

L∑
l2=1

µl1 µl2

( ∑
j1∈Jl1(k)

d
(l1)
j1

d
(l1)
j1+k

)( ∑
j2∈Jl2(k)

d
(l2)
j2

d
(l2)
j2+k

)

=
∑
k �=0

L∑
l=1

µ2
l

( ∑
j∈Jl(k)

d
(l)
j d

(l)
j+k

)2

+
∑
k �=0

∑
l1 �=l2

µl1µl2

( ∑
j1∈Jl1(k)

d
(l1)
j1

d
(l1)
j1+k

)( ∑
j2∈Jl2(k)

d
(l2)
j2

d
(l2)
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)
(19)

=
L∑

l=1

µ2
l

∑
k �=0

( ∑
j∈Jl(k)

d
(l)
j d

(l)
j+k

)2

,

because the sum in (19) is zero for l1 �= l2 and k �= 0. Further, #{k �= 0 : Jl(k) �= ∅} = 2 rl,
and hence the MSE can be expanded as

MSE
[
σ̂2
]

=
σ4

N

⎛
⎝γ4 − 1 + 2

L∑
l=1

(rl

r

)2 ∑
k �=0

( ∑
j∈Jl(k)

d
(l)
j d

(l)
j+k

)2

⎞
⎠ + o(N−1).

Now a similar argument as in the case d = 1 (Hall et al. (1990)) shows the asymptotic
optimality of σ̂2

opt,r, and we obtain

MSE
[
σ̂2

opt,r

]
=

σ4

N

(
γ4 − 1 + 2

L∑
l=1

(rl

r

)2

(2rl)
(
− 1

2rl

)2
)

+ o(N−1)

= σ4 N−1 (γ4 − 1 + 1/r) + o(N−1) ,

where we have used that

∑
k �=0

( ∑
j∈Jl(k)

d
(l)
j d

(l)
j+k

)2

= − 1
2 rl

.

It remains to show that σ̂2
opt,r minimizes asymptotically the MSE in the class of variance

estimators of Definition 2. We indicate the proof for d = 2, the case of general d can be
treated analogously. Let

Y = (Y11, ..., Y1n2 , ..., Yn11, ..., Yn1n2)
T ,

then

σ̂2 =
2∑

l=1

µl

tr(Dl)
Y T DlY =: Y T UY ,
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where Dl = D̃T
l D̃l, and

D̃l =

⎛
⎜⎜⎜⎜⎜⎝

d
(l)
0 . . . d

(l)
r 0 . . . 0

. . . . . .
. . . . . .

0 . . . 0 d
(l)
0 . . . d

(l)
r

⎞
⎟⎟⎟⎟⎟⎠ ∈ R

(n1n2−rl)×n1n2 .

We have tr(Dl) = nRl
= N + O(nd−1), where n = min{n1, n2}. Furthermore,

tr(U) = 1 + o(1), tr((diag U)2) = N−1 + o(N−1) .

Hence, we find that

MSE(σ̂2) = σ4
(
(γ4 − 3)N−1 + 2tr(U2)

)
+ O(N−1)

= σ4
(
(γ4 − 1)N−1 + 2

∑
i�=j

u2
i,j

)
+ O(N−1) ,

where ui,j denote the elements of U . Finally,
∑

i�=j u2
i,j is minimized if ui,j = −1/(2 r), i �= j,

up to the order of O(nd−1) terms. Now, the non-diagonal elements of Dl are −1/(2 rl),
l = 1, ..., L, for σ̂2

opt,r up to terms of order O(nd−1), hence the minimum is attained for
µl = rl/r as required. �
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