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Abstract
By the study of various properties of some divided-difference equations, we simplify the defi-

nition of classical orthogonal polynomials given by Atakishiyev, Rahman and Suslov (1995), then
prove that orthogonal polynomials obtained by some modifications of the classical orthogonal
polynomials on nonuniform lattices satisfy a single fourth-order linear homogeneous divided-
difference equation with polynomial coefficients. Moreover, we factorize and solve explicitly
these divided-difference equations. Also, we prove that the product of two functions, each of
which satisfying a second-order linear homogeneous divided-difference equation is a solution of
a fourth-order linear homogeneous divided-difference equation. This result holds in particular
when the divided-difference operator is carefully replaced by the Askey-Wilson operator Dq, fol-
lowing pioneering work by Alphonse Magnus (1988) connecting Dq and divided-difference oper-
ators. Finally, we propose a method to look for polynomial solutions of linear divided-difference
equations with polynomial coefficients.
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1 Introduction
Let x(s) be a function of the variable s and y(x(s)) a function of x(s) satisfying a difference equation
of hypergeometric type namely

�(x(s))
Δ

Δx−1(s)

[
∇y(x(s))

∇x(s)

]
+
 (x(s))

2

[
Δy(x(s))

Δx(s)
+
∇y(x(s))

∇x(s)

]
+ � y(x(s)) = 0, (1)

where � and  are polynomials of degree at most 2 and 1 respectively; � is a constant, Δ and ∇ are
the forward and the backward operators

Δf(s) = f(s+ 1)− f(s), ∇f(s) = f(s)− f(s− 1). (2)
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Here the lattice x�(s) for a complex number � is defined as

x�(s) = x(s+
�

2
). (3)

Atakishiyev, Rahman and Suslov [5] (see also [28]) proved that the divided-difference Δy(x(s))
Δx(s)

sat-
isfies an equation of the same type as (1) if and only if x(s) is a linear, a q-linear, a quadratic or a
q-quadratic lattice; that is x(s) is of the form

x(s) =

{
c1 q

−s + c2 q
s + c3 if q ∕= 1

c4 s
2 + c5 s+ c6 if q = 1,

(4)

where q ∈ ℂ, and the ci are arbitrary constants such that (c1, c2) ∕= (0, 0) and (c4, c5) ∕= (0, 0).
Lattices of the form (4) with c1 c2 ∕= 0 or c4 ∕= 0 are called nonuniform lattices [5, 28].

Next they used this characterization to give a definition of classical orthogonal polynomials (in
the broad sense of Hahn, and consistent with the latest definition proposed by Andrews and Askey
[2]):

Definition 1 A polynomial sequence (Pn) is classical if and only if:

1. (Pn) is orthogonal on a real interval (x(a), x(b)) with respect to the weight function �(s) i.e.⎧⎨⎩
degree(Pn) = n, n ≥ 0,

N∑
i=0

Pn(x(si))Pm(x(si)) �(si)∇x1(si) = kn �n,m, kn ∕= 0, n, m ≥ 0,
(5)

with
s0 = a, si+1 = si + 1, sN+1 = b, N ∈ ℕ0 ∪ {∞} (6)

for the discrete orthogonality or⎧⎨⎩
degree(Pn) = n, n ≥ 0,∫
C
Pn(x(s))Pm(x(s)) �(s)∇x1(s) ds = kn �n,m, kn ∕= 0, n, m ≥ 0,

(7)

where C is a contour in the complex s-plane, for the continuous orthogonality;

2. Any Pn(x(s)) satisfies a difference equation of the form (1) with x(s) given by (4).

3. The weight � satisfies the Pearson-type difference equation

Δ

∇x1(s)
(�(s) �(s)) =  (x(s)) �(s), (8)

where  (s) is a polynomial of degree 1 in x(s) and the function � defined by

�(x(s)) = �(s) +
1

2
 (x(s))∇x1(s) (9)

is a non-zero polynomial of degree at most 2 in the variable x(s), with the border conditions⎧⎨⎩
�(s) �(s)xk(s− 1

2
)
∣∣
s=a, b

= 0, k = 0, 1, 2, . . . ,∫
C

Δ
[
�(s) �(s)xk(s− 1

2
)
]
ds = 0, k = 0, 1, 2, . . . .

(10)

for the discrete orthogonality and the continuous orthogonality respectively.
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This definition covers the q-Racah polynomials as well as the Askey-Wilson polynomials and their
limiting and special cases. It covers also the very classical orthogonal polynomials– the classical or-
thogonal polynomials of a continuous variable (Jacobi, Laguerre and Hermite by virtue of the limiting
procedure); the classical orthogonal polynomials of a discrete variable (Hahn, Meixner, Charlier and
Krawtchouk) and the classical orthogonal polynomials of a q-discrete variable (Big q-Jacobi, . . . ).

Remark 1 It should be noticed that in case of the continuous orthogonality, for the family (Pn(x(s)))
to be classical orthogonal polynomials in the real variable x(s), it should be possible [5] to choose
a contour C in such a way that the second relation of (7) can be expressed as a real orthogonality
relation ∫ b

a

Pn(x)Pn(x) �(x) dx = kn �n,m, kn ∕= 0, n, m ≥ 0,

with �(x) > 0, x ∈ (a, b).

According to this definition, for a family of polynomials (Pn) orthogonal with respect to a certain
weight function � to be classical, the weight should satisfy a Pearson-type equation with some border
conditions and any Pn should additionally satisfy an equation of type (1).

By studying various properties of the operators Dx and Sx

Dxf(x(s)) =
Δf(x(s))

Δx(s)
, Sxf(x(s)) =

f(x(s+ 1)) + f(x(s))

2
, (11)

we prove that the second condition of Definition 1 is not necessary. Therefore, we get rid of this
condition and obtain a definition which is similar to that of the very classical orthogonal polynomials.
Next, we derive, factorize and solve the fourth-order divided-difference equation satisfied by the
orthogonal polynomials obtained by modifications of classical orthogonal polynomials.

Section 2 is devoted to the study of the properties of the operators Dx and Sx. In particular, we
prove that the product of two functions, each of which satisfying a second-order linear homogeneous
divided-difference equation is a solution of a fourth-order linear homogeneous divided-difference
equation. We show how this result works when the divided-difference operator is replaced by the
Askey-Wilson operatorDq. In the third section we simplify Definition 1 and derive the expressions of
the recurrence coefficients of classical orthogonal polynomials in terms of the polynomials � and  
in the same line as for the very classical orthogonal polynomials. The fourth section is devoted to the
derivation, the factorization as well as the solution of the fourth-order divided-difference equations
for modifications of classical orthogonal polynomials (see [11, 12, 13] for the cases of the very clas-
sical orthogonal polynomials). Section 5 gives some specializations and applications. In particular,
we point out some situations for which the first associated of the Askey-Wilson (resp. the Racah)
polynomials remains classical and express these in terms of the initial families. We also point out
a method to look for polynomial solutions of higher order divided-difference equations with poly-
nomial coefficients in the same line as the one of higher order differential equation with polynomial
coefficients.

To complete the introduction, we would like to mention that here by modifications of orthogonal
polynomials (Pn) we mean any family of orthogonal polynomials (P̃n) which is related to the initial
family (Pn) by a relation of the form

P̃n = In,r,k(x)Pn+r(x) + Jn,r,k(x)P
(1)
n+r−1(x), (12)

where P (1)
n+r−1 is defined in (13) and (14), r and k are nonnegative integers, In,r,k(x) and Jn,r,k(x) are

polynomials in the variable x with the property that they do not depend on n for n ≥ k, i.e.:

In,r,k := Ir,k, Jn,r,k := Jr,k ∕= 0, n ≥ k.
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Among these modifications are the rth associated orthogonal polynomials which are obtained by re-
placing n by n + r in the recurrence coefficients �n and 
n of the three-term recurrence relation
satisfied by the initial orthogonal polynomial sequence (Pn)

Pn+1(x) = (x− �n)Pn(x)− 
n Pn−1(x), n ≥ 1, P0(x) = 1, P−1(x) = 0. (13)

The new polynomial family obtained, which is denoted by (P
(r)
n ), is orthogonal thanks to Favard’s

theorem [8] since it satisfies

P
(r)
n+1(x) = (x− �n+r)P

(r)
n (x)− 
n+r P

(r)
n−1(x), n ≥ 1, P

(r)
0 (x) = 1, P

(r)
−1 (x) = 0. (14)

The relation

P (r)
n =

Pr−1

Γr−1

P
(1)
n+r−1 −

P
(1)
r−2

Γr−1

Pn+r, n ≥ 0, r ≥ 1, (15)

linking (Pn) and its rth associated compared to relation (12) yields

k = 0, Ir,0 = −
P

(1)
r−2

Γr−1

, Jr,0 =
Pr−1

Γr−1

, with Γk =
k∏
j=1


j, k ≥ 1, Γ0 := 1. (16)

Other modifications of the three-term recurrence relation which lead to relations of the type (12)
are the co-recursive and the generalized co-recursive orthogonal polynomials; the co-recursive as-
sociated and the generalized co-recursive associated orthogonal polynomials; the co-dilated and the
generalized co-dilated orthogonal polynomials; the co-modified and the generalized co-modified or-
thogonal polynomials. Information about these families of orthogonal polynomials as well as the
relations of type (12) they satisfy can be found in [11, 12, 13] and references therein.

2 Properties of some divided-difference operators

2.1 Properties of the quadratic and q-quadratic lattices
Let x(s) be a lattice given by (4). Such lattice satisfies [5]

x(s+ k)− x(s) = 
k∇xk+1(s), (17)
x(s+ k) + x(s)

2
= �k xk(s) + �k, (18)

for k = 0, 1, . . . , with

�0 = 1, �1 = �, �0 = 0, �1 = �, 
0 = 0, 
1 = 1, (19)

where the sequences (�k), (�k), (
k) satisfy the following relations

�k+1 − 2��k + �k−1 = 0,

�k+1 − 2 �k + �k−1 = 2 � �k, (20)

k+1 − 
k−1 = 2�k,

for k = 0, 1, . . .. The lattice x(s) has also the property [28]

x(s+ 1)2 + x(s)2 = 2A2(x1(s)) = a2 x1(s)2 + a1 x1(s) + a0, (21)

where the aj are constants (to be found later in (36)), with a2 ∕= 0.
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For practical reasons, it is important to express xk(s), −4 ≤ k ≤ 4, in terms of x(s) and x(s+1) =
x2(s) using (17) and (18). For this purpose, we consider Equation (17) for k = 2, s = s − 1 and
k = 2, s = s− 3

2
; and Equation (18) for k = 1; s = s, for k = 1; s = s− 1

2
and for k = 2, s = s−1.

Then we solve the system of five linear equations obtained for the unknowns

x−3(s), x−1(s), x−2(s), x1(s), x3(s)

and obtain the expressions

2�x−3(s) = −(2�− 1)(2�+ 1)x2(s) + (4�2 + 2�− 1)(4�2 − 2�− 1)x(s)

+2� (2�+ 1)(4�2 + 2�− 1);

x−2(s) = −x2(s) + (4�2 − 2)x(s) + 4� (�+ 1);

2�x−1(s) = −x2(s) + (2�− 1)(2�+ 1)x(s) + 2� (2�+ 1); (22)

2�x1(s) = x2(s) + x(s)− 2�;

2�x3(s) = (2�− 1)(2�+ 1)x2(s)− x(s) + 2� (2�+ 1),

from which we deduce

x−4(s) = −(4�2 − 2)x2(s) + (4�2 − 1) (4�2 − 3)x(s) + 4�(� + 1)(4�2 − 1);

x4(s) = (4�2 − 2)x2(s)− x(s) + 4�(� + 1). (23)

2.2 The operators Dx and Sx
The operators Dx and Sx defined in (11) transform any polynomial in x(s) into a polynomial of the
variable x1(s). More precisely we have (see also [28], p. 149):

Proposition 1 If Pn(x(s)) is a polynomial of degree n ≥ 1 in x(s), then

Dx(Pn(x(s))) = qn−1(x1(s)), Sx(Pn(x(s))) = rn(x1(s)), (24)

where qn−1 and rn are polynomials of degree n− 1 and n respectively.
More generally,

Dx�(Pn(x�(s))) = q̃n−1(x�+1(s)), Sx�(Pn(x�(s))) = r̃n(x�+1(s)), (25)

where q̃n−1 and r̃n are polynomials of degree n− 1 and n respectively.

Proof: First, for fixed n ≥ 1, we write the relation

Δ(f(s) g(s)) =
f(s+ 1) + f(s)

2
Δ g(s) +

g(s+ 1) + g(s)

2
Δ f(s),

for f(s) = xn−1(s) and g(s) = x(s) and obtain using relations (18) for k = 1

Dx x
n(s) = (�x1(s) + �)Dx x

n−1(s) + Sx xn−1(s).
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In the same way using in addition (21), we obtain by taking f(s) = xn−1(s) ei � s and g(s) = x(s)

Sx xn(s) = (�x1(s) + �)Sx xn−1(s) +
[
A2(x1(s))− (�x1(s) + �)2

]
Dx x

n−1(s).

From the two previous relations, it is easy to show by induction that Dx x
n(s) and Sx xn(s) are poly-

nomials of degree at most n− 1 and n respectively in the variable x1(s). Next, we write

Dx x
n(s) =

n−1∑
k=0

Dn,k x
k
1(s), Sx xn(s) =

n∑
k=0

Sn,k x
k
1(s), (26)

and get from the previous equation a system of two recurrence relations in Dn,n−1 and Sn,n. Solving
this system with the initial conditions D1,0 = 1, D2,1 = 2�, S0,0 = 1, S1,1 = �, one obtains that

Dn,n−1 ∕= 0, n ≥ 1 and Sn,n ∕= 0, n ≥ 0.

This proves the first assertion of the proposition. Equation (25) is obtained by replacing s by s+ �
2

in
(24). The coefficients Dn,k−1 and Sn,k for k = n, n− 1 and n− 2 will be given explicitly later. □

2.2.1 The product and quotient rules for Dx and Sx

Next, we state and prove product and quotient rules for the companion operators Dx and Sx.

Theorem 1 The following statements hold.

1. The operators Dx and Sx obey the following product rules:

Dx (f(x(s))g(x(s))) = Sxf(x(s))Dxg(x(s)) + Dxf(x(s))Sxg(x(s)), (27)

Sx (f(x(s))g(x(s))) = Q2(x1(s))Dxf(x(s))Dxg(x(s)) + Sxf(x(s))Sxg(x(s)), (28)

where Q2 is a polynomial of degree 2

Q2(x1(s)) = (�2 − 1)x2
1(s) + 2 � (� + 1)x1(s) + �x, (29)

and �x is a constant depending on �, � and the initial values x(0) and x(1) of x(s):

�x =
x2(0) + x2(1)

4�2
− (2�2 − 1)

2�2
x(0)x(1)− � (� + 1)

�2
(x(0) + x(1)) +

�2 (� + 1)2

�2
. (30)

2. The operators Dx and Sx also satisfy the quotient rules

Dx
(
f(x(s))

g(x(s))

)
=

Sxf(x(s))Dxg(x(s))− Dxf(x(s))Sxg(x(s))

Q2(x1(s)) [Dxg(x(s))]2 − [Sxg(x(s))]2
; (31)

Sx
(
f(x(s))

g(x(s))

)
=

Q2(x1(s))Dxf(x(s))Dxg(x(s))− Sxf(x(s))Sxg(x(s))

Q2(x1(s)) [Dxg(x(s))]2 − [Sxg(x(s))]2
, (32)

provided that g(x(s)) ∕= 0, s ∈ (a, b).

3. More generally, relations (27)-(32) remain valid if we replace x and x1 by x� and x�+1 re-
spectively, � ∈ ℂ. In particular, the constant �x remains unchanged if we replace x in (30) by
xk, k ∈ ℤ, i.e.,

�xk = �x := �, k ∈ ℤ. (33)
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Proof: First, we solve the equations

Dxf(x(s)) =
f(x(s+ 1))− f(x(s))

x(s+ 1)− x(s)
, Sxf(x(s)) =

f(x(s+ 1)) + f(x(s))

2
,

in terms of f(x(s+ 1)) and f(x(s)). Then, we substitute this result for f and g in the equations

Dx (f(x(s)) g(x(s))) =
f(x(s+ 1))g(x(s+ 1))− f(x(s))g(x(s))

x(s+ 1)− x(s)
,

Sx (f(x(s)) g(x(s))) =
f(x(s+ 1))g(x(s+ 1)) + f(x(s))g(x(s))

2

and obtain respectively (27) and

Sx (f(x(s))g(x(s))) =
(x(s+ 1)− x(s))2

4
Dxf(x(s))Dxg(x(s)) + Sxf(x(s))Sxg(x(s)).

By taking f(x(s)) = g(x(s)) = x(s) in the previous equation, we get

Q2(x1(s)) :=
(x(s+ 1)− x(s))2

4
= Sxx2(s)− (Sxx(s))2 .

By means of Proposition 1, Q2(x1(s)) is a polynomial of degree at most 2 in the variable x1(s).
Hence,

(x(s+ 1)− x(s))2 = �2 x
2
1(s) + �1 x1(s) + �0,

where �j are constants. Application of the operator Dx1 on both sides of the previous equation and
use of Equations (17) and (18) for k = 2 produce

�2 (x1(s+ 1) + x1(s)) + �1 =
(x(s+ 2)− 2x(s+ 1) + x(s)) (x(s+ 2)− x(s))

x1(s+ 1)− x1(s)

= 2 
2 [(�2 − 1)x(s+ 1) + �2].

The previous equation gives by means of (18) for k = 1 and s replaced by s+ 1
2

2�2 (�x(s+ 1) + �) + �1 = 2 
2 [(�2 − 1)x(s+ 1) + �2].

Therefore,

�2 =

2 (�2 − 1)

�
= 4 (�2 − 1), �1 = 8� (� + 1)

and

Q2(x1(s)) =
(x(s+ 1)− x(s))2

4
= (�2 − 1)x2

1(s) + 2 � (� + 1)x1(s) + �x. (34)

Equation (30) is obtained by taking s = 0 in the previous equation and using (22).
To prove the second statement, we take f(x(s)) = 1

g(x(s))
in (27) and (28) to get

Dxg(x(s))Sx
1

g(x(s))
+ Sxg(x(s))Dx

1

g(x(s))
= 0,

Sxg(x(s)) Sx
1

g(x(s))
+Q2(x1(s))Dxg(x(s))Dx

1

g(x(s))
= 1.

The determinant of the previous system with respect to the unknowns

Sx
1

g(x(s))
and Dx

1

g(x(s))
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is
Q2(x1(s)) [Dxg(x(s))]2 − [Sxg(x(s))]2 = 4 g(x(s)) g(x(s+ 1)) ∕= 0. (35)

Hence,

Sx
1

g(x(s))
=

−Sxg(x(s))

Q2(x1(s)) [Dxg(x(s))]2 − [Sxg(x(s))]2
,

Dx
1

g(x(s))
=

Dxg(x(s))

Q2(x1(s)) [Dxg(x(s))]2 − [Sxg(x(s))]2
.

Application of the product rules (27)-(28) to the product f(x(s))× 1
g(x(s))

produces (31) and (32). The
third statement of the theorem is proved by replacing s by s + �

2
in (27)-(32). Also, Equation (33) is

obtained by direct computation using (22) and (30). □

From now on we denote �x by �, i.e. � := �x.

Remark 2 The operators Dx and Sx appeared already in the works of Magnus [23, 24, 25]. In [23]
Magnus gave also the product and quotient rules for a more general divided-difference operator.
Theorem 1 is more specific to quadratic lattices and gives in detail the coefficients appearing in the
product and quotient rules, in terms of the parameters �, � and � of the lattice.

Corollary 1 As direct consequence of the previous theorem we have:

1. From the quotient rules (31) and (32), one observes that the operators Dx and Sx transform a
rational function of the variable x(s) into a rational function of the variable x1(s).

2. If we square both members of (18) for k = 1 and combine with (34), we obtain

x2(s+ 1) + x2(s) = 2 (2�2 − 1)x2
1(s) + 4 � (2� + 1)x1(s) + 2 (�2 + �), (36)

x(s)x(s+ 1) = x2
1(s)− 2 � x1(s) + �2 − �. (37)

Remark 3 The parameters �, � and � are the ingredients for the classical orthogonal polynomials.
As will be shown later, the recurrence coefficients of the classical orthogonal polynomials are ex-
pressed explicitly in terms of these three parameters and the coefficients of the polynomials � and  
involved in the Pearson-type equation satisfied by the orthogonality weight function (see (8)).

2.2.2 Consequences of the product and quotient rules

The product rules for Dx and Sx provide the recurrence relations for the coefficients Dn,k and Sn,k.

Proposition 2 The coefficients Dn,k and Sn,k of the expansions (26) satisfy

Sn,k = −�Dn,k−1 − � Dn,k +Dn+1,k, 0 ≤ k ≤ n, (38)
Sn+1,k = (�2 − 1)Dn,k−2 + 2 (� + 1) � Dn,k−1 + � Dn,k

+�Sn,k−1 + � Sn,k, 0 ≤ k ≤ n+ 1, (39)

with the convention

Dn,n = Dn,n+1 = Sn,n+1 = Dn,−1 = Dn,−2 = Sn,−1 = 0, n ≥ 0. (40)

Proof: Equations (38) and (39) are obtained from the expansion formulaes (26) and the product
rules (27) and (28) for f(x(s)) = xn(s) and g(x(s)) = x(s). □
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Coefficients Dn,k and Sn,k

Substitution of (38) in (39) reads

Dn+2,k − 2�Dn+1,k−1 +Dn,k−2 = 2 � Dn+1,k + (� − �2)Dn,k + 2 � Dn,k−1. (41)

The previous equation for k = n + 1 gives a second-order homogenous linear difference equation
with constant coefficients

Dn+2,n+1 − 2�Dn+1,n +Dn,n−1 = 0,

whose solution with the initial conditions D0,−1 = 0, D1,0 = 1 is

Dn,n−1 =

{
n if � = 1,
q
n
2 −q−

n
2

q
1
2−q−

1
2 )

if � = q
1
2 +q−

1
2

2
,

(42)

where the parameter q is the one appearing in (4).
Sn,n is therefore deduced using (38) for k = n

Sn,n =

{
1 if � = 1,
q
n
2 +q−

n
2

2
if � = q

1
2 +q−

1
2

2
.

(43)

The coefficients Dn,n−2 and Sn,n−1 are deduced by solving (41) for k = n− 1 with the initial condi-
tions D0,−2 = D1,−1 = 0 and using (42) and (43). Using the computer algebra software Maple 9 [27]
we get with p = q2

Dn,n−2 =

{
1
3
� n (n− 1) (2n− 1) if � = 1,

2 p � n (p1−n+pn)
(p+1) (p−1)2

− 2 p2 � (pn−p−n)
(p+1) (p−1)3

if � = q
1
2 +q−

1
2

2
;

(44)

Sn,n−1 =

{
� n (2n− 1) if � = 1,

−� n (p1−n−pn)
p−1

if � = q
1
2 +q−

1
2

2
.

(45)

The coefficients Dn,n−3 and Sn,n−2 are obtained likewise using Equations (38)-(45) with the initial
conditions D1,−2 = D2,−1 = 0

Dn,n−3 =

⎧⎨⎩

1
30n (n− 1) (n− 2) (4�2 n2 − 8�2 n+ 5 � + 3�2), for � = 1;(
p2−n+pn

(p2−1)2
p n− pn−p−n

(p2−1)3
2 p3

)
�

+
(

pn−p2−n
(p−1)3 (p+1)

2 p n2 + p3−n−7 p2−n+7 pn+1+pn

(p−1)4 (p+1)
p n

+ pn−p−n
(p−1)5 (p+1)

6 p3
)
�2, for � = q

1
2 +q−

1
2

2 .

(46)

and

Sn,n−2 =

⎧⎨⎩
1
6
n (n− 1) (4 �2 n2 − 8 �2 n+ 3 � + 3 �2), for � = 1;

pn−p2−n
2 (p2−1)

� n+
(
pn+p2−n

(p−1)2
n2 + pn−3 pn+1+3 p2−n−p3−n

2 (p−1)3
n
)
�2, for � = q

1
2 +q−

1
2

2
.

(47)

The remaining coefficients Dn,k−1 and Sn,k, k = 1 . . . n− 3 can be computed by following the same
procedure.
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Additional properties for Dx and Sx

The product rules for Dx and Sx can also be used to write the expressions Dxx
n(s) and Sxxn(s) in

terms of the polynomials Q1 and Q2 and also in matrix form:

Theorem 2 For any integer n, the following relations hold

Dxxn(s) =

(
Q1(x1(s)) +

√
Q2(x1(s))

)n
−
(
Q1(x1(s))−

√
Q2(x1(s))

)n
2
√
Q2(x1(s))

; (48)

Sxxn(s) =

(
Q1(x1(s)) +

√
Q2(x1(s))

)n
+
(
Q1(x1(s))−

√
Q2(x1(s))

)n
2

, (49)

where Q1(x1(s)) = Sx x(s) = �x1(s) + � and Q2(x1(s) given by (29).

Proof: Let n be a nonnegative integer. From (27) and (28) for f(x(s)) = x(s) and g(x(s)) = xn(s),
we obtain the relation⎡⎣ Dxxn+1(s)

Sxxn+1(s)

⎤⎦ =

⎡⎣ Q1(x1(s)) 1

Q2(x1(s)) Q1(x1(s))

⎤⎦ ⎡⎣ Dxxn(s)

Sxxn(s)

⎤⎦
from which we deduce ⎡⎣ Dxxn(s)

Sxxn(s)

⎤⎦ =

⎡⎣ Q1(x1(s)) 1

Q2(x1(s)) Q1(x1(s))

⎤⎦n ⎡⎣ 0

1

⎤⎦ .
Since the matrix involved in the previous equation is invertible for its determinant being different

from zero, we perform linear algebra calculus to compute its nth power in terms of Q1, Q2 and n and
deduce (48) and (49) for any nonnegative integer n.

Taking into account that relations (48) and (49) are satisfied for nonnegative integers, these rela-
tions for negative integers are obtained by using (31) and (32) for f(x(s)) = 1 and g(x(s)) = xn(s)

Dxx−n(x) = − Dxxn(s)

Q2(x1(s)) [Dxxn(s)]2 − [Sxxn(s)]2

=

(
Q1(x1(s)) +

√
Q2(x1(s))

)−n
−
(
Q1(x1(s))−

√
Q2(x1(s))

)−n
2
√
Q2(x1(s))

;

Sxx−n(x) =
Sxxn(s)

Q2(x1(s)) [Dxxn(s)]2 − [Sxxn(s)]2

=

(
Q1(x1(s)) +

√
Q2(x1(s))

)−n
+
(
Q1(x1(s))−

√
Q2(x1(s))

)−n
2

.

The proof is therefore complete. Notice however that (48) and (49) can also be obtained directly
using the equations

Q1(x1(s)) = �x1(s) + � =
x(s+ 1) + x(s)

2
;

Q2(x1(s)) = (�2 − 1)x2
1(s) + 2 � (� + 1)x1(s) + � =

(x(s+ 1)− x(s))2

4
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to express x(s) and x(s+ 1) in terms of Q1(x1(s)) and Q2(x1(s))

x(s+ 1) = Q1(x1(s)) +
√
Q2(x1(s)), x(s) = Q1(x1(s))−

√
Q2(x1(s)).

□

The following theorem gives relations between the products of the operators Dx and Sx

Dx−1 Dx−2 , Dx−1 Sx−2 , Sx−1 Dx−2 , Sx−1 Sx−2 .

These relations happen to be very important in the next part of this work as well as in the characteri-
zation of the classical orthogonal polynomials [14].

Theorem 3 The following relations hold:

Dx−1 Sx−2T−2 = � Sx−1 Dx−2T−2 + U1(s)Dx−1 Dx−2T−2; (50)

Sx−1 Sx−2T−2 = U1(s)Sx−1 Dx−2T−2 + �U2(s)Dx−1 Dx−2T−2 + I, (51)

where

U1(s) := U1(x(s)) = (�2 − 1)x(s) + � (�+ 1); (52)

U2(s) := U2(x(s)) = Q2(x(s)) = (�2 − 1)x2(s) + 2�(�+ 1)x(s) + �.

Here, the operator T� which acts on the variable s is defined by

T�f(s) = f(s+
�

2
), or T�f(x(s)) = f(x�(s)), (53)

while I is the identity operator If(s) = f(s).

Proof: We write

Dx−1 Sx−2f(x−2(s)) = B1 Sx−1 Dx−2f(x−2(s)) +B2 Dx−1 Dx−2f(x−2(s)) +B3 f(x(s));

Sx−1 Sx−2f(x−2(s)) = C1 Sx−1 Dx−2f(x−2(s)) + C2 Dx−1 Dx−2f(x−2(s)) + C3 f(x(s)),

and use (11) with x replaced by x−1 or x−2 to transform the previous equations into linear combina-
tions of f(x(s−1)), f(x(s)) and f(x(s+1)). Then we equate the coefficients of f(x(s−1)), f(x(s))
and f(x(s+ 1)) in the resulting equations and obtain for each equation a system of three linear equa-
tions in terms of the unknowns Bi (respectively (Ci)). Solving these two systems, we obtain

B1 =
1

2

x(s+ 1)− x(s− 1)

x(s+ 1
2
)− x(s− 1

2
)
, B2 =

x(s+ 1)− 2x(s) + x(s− 1)

4
, B3 = 0,

and

C1 =
x(s+ 1)− 2x(s) + x(s− 1)

4
, C3 = 1,

C2 = −1

8
x(s− 1)x(s+

1

2
) +

1

8
x(s− 1)x(s− 1

2
) +

1

8
x(s+ 1)x(s+

1

2
)− 1

8
x(s+ 1)x(s− 1

2
).

The previous equation combined with (22) and (49) yields

B1 = �, B2 = U1(s), B3 = 0, C1 = U1(s), C2 = �U2(s), C3 = 1.

□
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2.3 The operators Fx and Mx

For the manipulation of the difference equations for orthogonal polynomials, it is sometimes more
convenient to work with the operators Fx and Mx

Fxf(s) =
Δ

Δx(s− 1
2
)

∇f(s)

∇x(s)
, Mxf(s) =

1

2

(
Δf(s)

Δx(s)
+
∇f(s)

∇x(s)

)
, (54)

for they share the property of transforming any polynomial in the variable x(s) into a polynomial of
lower degree but in the same variable x(s). This property is similar to the one of the usual derivative.

2.3.1 The product and quotient rules

Theorem 4 The following properties hold:

1. If Pn(x(s)) is a polynomial of degree n in the variable x(s), then Fx(Pn(x(s))) and Mx(Pn(x(s)))
are polynomials of degree n− 2 and n− 1 respectively in x(s).

2. Fx and Mx obey the product rules

FxMxf(s) = (2�2 − 1)MxFxf(s) + 2�U1(s)FxFxf(s); (55)
MxMxf(s) = �Fxf(s) + 2�U1(s)MxFxf(s) + (2�2 − 1)U2(s)FxFxf(s), (56)

where the expression FxMxf(s) refers to Fx (Mxf(s)) and

U1(s) = (� + 1) [(�− 1)x(s) + �], U2(s) = (�2 − 1)x2(s) + 2 � (� + 1)x(s) + �. (57)

Proof: From the definition of Dx, Sx, Fx and Mx (see (11) and (54)) we have

Fx(f(x(s)) =
Δ

Δx(s− 1
2
)

∇f(x(s))

∇x(s)
= Dx−1Dx−2f(x−2(s)), (58)

Mx(f(x(s)) =
1

2

(
Δf(x(s))

Δx(s)
+
∇f(x(s))

∇x(s)

)
= Sx−1Dx−2f(x−2(s)). (59)

The previous relations are equivalent to

Fx = Dx−1 Dx−2 T−2, Mx = Sx−1 Dx−2 T−2. (60)

Let Pn(x(s)) be a polynomial of degree n in x(s). From (58) and Proposition 1, we deduce that
Dx−2 transforms Pn(x−2(s)) into a polynomial of degree n − 1 in x−1(s) and Dx−1 transforms
Dx−2Pn(x−2(s)) into a polynomial of degree n − 2 in x0(s) = x(s). Therefore, FxPn(x(s)) is a
polynomial of degree n− 2 in x(s). Similarly, we deduce that MxPn(x(s)) is a polynomial of degree
n− 1 in x(s).

Before starting the proof of the second statement, one should keep in mind the relations

T�Dx = Dx� , T�Sx = Sx� . (61)

In the first step, we combine (60) with (61) to get

FxMx = Dx−1 Dx−2 T−2

[
Sx−1 Dx−2 T−2

]
= Dx−1 Dx−2

[
Sx−3 Dx−4 T−4

]
= Dx−1

[
Dx−2 Sx−3

]
Dx−4 T−4.

= Dx−1

[
Dx−2 Sx−3 T−3

]
T3

[
Dx−4 T−4]

]
.

12



Use of (50) (and later on (27)) transform the previous equation into

FxMx = Dx−1

[
� Sx−2 Dx−3T−3 + U1(x−1(s))Dx−2 Dx−3T−3

]
T3 Dx−4 T−4

= �Dx−1 Sx−2 Dx−3 Dx−4 T−4 + Dx−1

[
U1(x−1(s))Dx−2 Dx−3T−3

]
T3 Dx−4 T−4

= �
[
� Sx−1 Dx−2T−2 + U1(x(s))Dx−1 Dx−2T−2

]
T2 Dx−3 Dx−4 T−4

+Dx−1

[
U1(x−1(s))Dx−2 Dx−3T−3

]
T3 Dx−4 T−4

=
(
2�2 − 1

)
Mx Fx + 2�U1(x(s))Fx Fx,

taking into account that

Dx−1 [U1(x−1(s))] = �2 − 1 and Sx−1 [U1(x−1(s))] = �U1(x(s).

Relation (56) is obtained in the same way using (28), (50) and (51). □

Theorem 5 The following product and quotient rules hold:

Fx (fg) = Fx(f) g + f Fx(g) + 2�Mx(f)Mx(g) (62)

+ 2U1 [Fx(f)Mx(g) + Mx(f)Fx(g)] + 2�U2 Fx(f)Fx(g);

Mx (fg) = Mx(f) g + fMx(g) + 2U1 Mx(f)Mx(g) (63)

+ 2�U2 [Fx(f)Mx(g) + Mx(f)Fx(g)] + 2U1 U2 Fx(f)Fx(g);

Fx
(
f

g

)
=

{
2� f [Mx(g)]2 − 2�Mx(f)Mx(g) g + Fx(f) g2 − f g Fx(g)

+ 2�U2 Fx(f)Fx(g) g − 2�U2 f [Fx(g)]2 (64)

+ 2U1 Fx(f)Mx(g) g − 2U1 Mx(f)Fx(g) g } /{
U2 [U1 Fx(g) + �Mx(g)]2 − [g + 2U1 Mx(g) + 2�U2 Fx(g)]2

}
g;

Mx

(
f

g

)
=

{
2U1 U2 f [Fx(g)]2 − 2U1 U2 Fx(f)Fx(g) g + Mx(f) g2 − f gMx(g)

+ 2�U2 Mx(f)Fx(g) g − 2�U2 Fx(f)Mx(g) g (65)

+ 2U1 Mx(f)Mx(g) g − 2U1 f [Mx(g)]2
}
/{

U2 [U1 Fx(g) + �Mx(g)]2 − [g + 2U1 Mx(g) + 2�U2 Fx(g)]2
}
g,

with
f ≡ f(s), Uj ≡ Uj(s) and g ≡ g(s) ∕= 0, ∀s ∈ (a, b).

Proof: Use of (60) gives the equation

Fx (f(x(s)) g(x(s))) = Dx−1 Dx−2 (f(x−2(s)) g(x−2(s)))

13



which using (27) and (28) is transformed into

Fx (f(x(s)) g(x(s))) =

Dx−1

[
Dx−2 f(x−2(s))Sx−2 g(x−2(s)) + Sx−2 f(x−2(s))Dx−2 g(x−2(s))

]
= Dx−1 Dx−2 f(x−2(s))Sx−1 Sx−2 g(x−2(s)) + Sx−1 Dx−2 f(x−2(s))Dx−1 Sx−2 g(x−2(s))

+ Dx−1 Sx−2 f(x−2(s))Sx−1 Dx−2 g(x−2(s)) + Sx−1 Sx−2 f(x−2(s))Dx−1 Dx−2 g(x−2(s)).

Elimination of the products of the form Sx−1 Sx−2f(x−2(s)) and Dx−1 Sx−2f(x−2(s)) in the previous
equation using (50) and (51) produces

Fx (f(x(s)) g(x(s))) = Fx(f) [U1(s)Mx(g) + �U2(s)Fx(g) + g] + Mx(f) [�Mx(g) + U1(s)Fx(g)]

+ Fx(g) [U1(s)Mx(f) + �U2(s)Fx(f) + f ] + Mx(g) [�Mx(f) + U1(s)Fx(f)]

= Fx(f) g + f Fx(g) + 2�Mx(f)Mx(g)

+ 2U1 [Fx(f)Mx(g) + Mx(f)Fx(g)] + 2�U2 Fx(f)Fx(g).

Relation (63) is derived in the same way.
The quotient rules (64) and (65) are derived by applying the product rules (62) and (63) to

f(s) × 1
g(s)

. In fact, we first express Fx
(

1
g(s)

)
and Mx

(
1
g(s)

)
for g(s) ∕= 0, ∀s ∈ (a, b), in terms of

g(s), Fxg(s) and Mxg(s). For this purpose, we take f(s) = 1
g(s)

in (62) and (63) and get the linear

system in Fx
(

1
g

)
and Mx

(
1
g

)
[g + 2U1 Mx(g) + 2�U2 Fx(g)]Fx

(
1

g

)
+ 2 [U1 Fx(g) + �Mx(g)]Mx

(
1

g

)
= −1

g
Fx(g)

2U2 [U1 Fx(g) + �Mx(g)]Fx
(

1

g

)
+ [g + 2U1 Mx(g) + 2�U2 Fx(g)]Mx

(
1

g

)
= −1

g
Mx(g)

whose determinant is

[g + 2U1 Mx(g) + 2�U2 Fx(g)]2 − 4U2 [U1 Fx(g) + �Mx(g)]2 = g(s− 1) g(s+ 1)

∕= 0, ∀s ∈ (a, b).

Therefore, Fx
(

1
g

)
and Mx

(
1
g

)
are uniquely determined from the previous linear system, and quo-

tient rules Fx
(
f
g

)
and Mx

(
f
g

)
are deduced by application of the product rules (62) and (63) to

f(s) × 1
g(s)

. □

2.3.2 Consequences of the product and quotient rules

The product rules provide the recurrence relation for the coefficients Fn,k and Mn,k of the expansion

Fxxn(s) =
n−2∑
k=0

Fn,k x
k(s), Mxx

n(s) =
n−1∑
k=0

Mn,k x
k(s). (66)
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Proposition 3 The coefficients Fn,k and Mn,k satisfy

Fn+1,k − 2�Mn,k − 2 � (� + 1)Fn,k + (1− 2�2)Fn,k−1 = 0, 0 ≤ k ≤ n− 1, (67)
Mn+1,k − 2 � (� + 1)Mn,k − 2� (�2 − 1)Fn,k−2 − 2� � Fn,k

−4�� (� + 1)Fn,k−1 + (1− 2�2)Mn,k−1 − �n,k = 0, 0 ≤ k ≤ n, (68)

where �n,k is the Kronecker symbol, with the convention

Fn+1,n = Fn,n+1 = Mn,n+1 = Fn,n = Mn,n = Fn,−1 = Fn,−2 = Mn,−1 = 0, n ≥ 0.

Proof: The proof is obtained using (66) and the product rules (62) and (63) for f(s) = xn(s), g(s) =
x(s). □

The previous proposition allows to compute recurrently the coefficients Fn,k and Mn,k. Further-
more, these coefficients can also be computed via the following relations in terms of the coefficients
Dn,k and Sn,k.

Proposition 4 The coefficients Dn,k and Sn,k of the expansions (26) are related to the coefficients
Fn,k and Mn,k of the expansions (66) by

Fn,k =
n−1∑
j=k+1

Dn,j Dj,k, 0 ≤ k ≤ n− 2, (69)

Mn,k =
n−1∑
j=k

Dn,j Sj,k, 0 ≤ k ≤ n− 1. (70)

Proof: The proof follows from Equations (26), (58), (59) and (66). Notice that the coefficients
Fn,n−2−k, Mn,n−1−k, 0 ≤ k ≤ 2 are computed explicitly in (97) and (98). □

As another consequence of the product rule, we state the following:

Proposition 5 For any nonnegative integer n, the following relations hold

Fx xn(s) =
n−1∑
k=0

xk(s)

2
√
U2(s)

[(
V1(s) + 2�

√
U2(s)

)n−1−k
−
(
V1(s)− 2�

√
U2(s)

)n−1−k
]

; (71)

Mx x
n(s) =

n−1∑
k=0

xk(s)

2

[(
V1(s) + 2�

√
U2(s)

)n−1−k
+
(
V1(s)− 2�

√
U2(s)

)n−1−k
]

; (72)

Fx
1

xn(s)
= −

n∑
k=1

x−k(s)

2
√
U2(s)

[(
V1(s) + 2�

√
U2(s)

)k−n−1
−
(
V1(s)− 2�

√
U2(s)

)k−n−1
]

; (73)

Mx
1

xn(s)
= −

n∑
k=1

x−k(s)

2

[(
V1(s) + 2�

√
U2(s)

)k−n−1
+
(
V1(s)− 2�

√
U2(s)

)k−n−1
]
, (74)

with V1(s) = x(s) + 2U1(s) where U1(s) and U2(s) are given by (57).

Proof: Using the product rules (62), (63) for f(x(s)) = xn(s), g(x(s)) = x(s) (respectively f(x(s)) =
1

xn(s) , g(x(s)) = x(s)), we obtain⎡⎣ Fxxn(s)

Mxx
n(s)

⎤⎦ =

⎡⎣ V1(x(s)) 2�

2�U2(x(s)) V1(x(s))

⎤⎦ ⎡⎣ Fxxn−1(s)

Mxx
n−1(s)

⎤⎦+

⎡⎣ 0

xn−1(s)

⎤⎦
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and ⎡⎢⎣ Fx 1
xn−1(s)

Mx
1

xn−1(s)

⎤⎥⎦ =

⎡⎣ V1(x(s)) 2�

2�U2(x(s)) V1(x(s))

⎤⎦
⎡⎢⎣ Fx 1

xn(s)

Mx
1

xn(s)

⎤⎥⎦+

⎡⎣ 0

1
xn(s)

⎤⎦
respectively.

The changes of variables

−→
Wn =

⎡⎣ Fxxn(s)

Mxx
n(s)

⎤⎦ , −→Xn =

⎡⎣ 0

xn(s)

⎤⎦ , −→Yn =

⎡⎢⎣ Fx 1
xn(s)

Mx
1

xn(s)

⎤⎥⎦ , −→Zn =

⎡⎣ 0

1
xn(s)

⎤⎦ , A =

⎡⎣ V1 2�

2�U2 V1

⎤⎦
transform the previous two equations into relations

−→
Wn = A

−−−→
Wn−1 +

−−−→
Xn−1,

−−→
Yn−1 = A

−→
Yn +

−→
Zn,

whose iteration taking into account that the matrix A is invertible gives

−→
Wn =

n−1∑
k=0

An+1−k−→Xk,
−→
Yn = −

n∑
k=1

Ak−n−1−→Zk.

Equations (71)-(74) are obtained from the previous ones by computing the kth power of the matrix A
in terms of its eigenvalues V1(s) + 2�

√
U2(s) and V1(s)− 2�

√
U2(s). □

As a fourth consequence of the product rules, we shall prove another important result concern-
ing the linear divided-difference equation of higher order satisfied by products of functions each of
them satisfying a linear divided-difference equation. For this purpose, we start with the following
preliminaries.

Lemma 1 Let f(s) be a function of the variable x(s) satisfying a second-order divided-difference
equation

Fxf(s) + a1(s)Mxf(s) + a0(s) f(s) = 0, (75)

where a0 and a1 are given functions of x(s).
Then the expressions FxFxf(s), MxFxf(s), FxMxf(s), MxMxf(s) and Fxf(s) can be written

uniquely in the form
c1(s) f(s) + c2(s)Mxf(s),

where c1(s) and c2(s) are functions of a0(s) and a1(s).

Proof: Assuming that x(s+ 1) ∕= x(s) for s ∈ (a , b), Equation (75) is equivalent to

(∇x1(s) a1(s) + 2) f(s+ 1) + C0(s) f(s) + (∇x1(s) a1(s)− 2) f(s− 1) = 0, (76)

where C0(s) is a function of a1(s), a0(s) and x(s).

1. If a1(s) = ± 2
∇x1(s)

, then the previous equation is equivalent to f(s+1)
f(s)

= C1(s); therefore,
f(s+ j), j = 1 . . . is proportional to f(s).
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2. If a1(s) ∕= ± 2
∇x1(s)

, then from (76), we get

f(s− 2) =

([−4 + 2 a1 (s)∇x1 (s)− 2 a1 (s− 1)∇x1 (s− 1) + a1 (s− 1)∇x1 (s− 1) a1 (s)∇x1 (s)] f (s)

(−2 + a1 (s)∇x1 (s)) (−2 + a1 (s− 1)∇x1 (s− 1))

+
(C0 (s− 1)C0 (s)) f (s)

(−2 + a1 (s)∇x1 (s)) (−2 + a1 (s− 1)∇x1 (s− 1))
(77)

+
C0 (s− 1) (2 + a1 (s)∇x1 (s)) f (s+ 1)

(−2 + a1 (s)∇x1 (s)) (−2 + a1 (s− 1)∇x1 (s− 1))

f(s− 1) =
(∇x1(s) a1(s) + 2) f(s+ 1) + C0(s) f(s)

∇x1(s) a1(s)− 2
;

f(s+ 2) =
(Δx1(s) a1(s+ 1)− 2) f(s)− C0(s+ 1) f(s+ 1)

Δx1(s) a1(s+ 1) + 2
.

Then, we use the definition of the operators Fx and Mx of (54) to write FxFxf(s), MxFxf(s),
FxMxf(s) and MxMxf(s) as linear combination of f(s+ j), −2 ≤ j ≤ 2.

Next, we use the previous equations to write the expressions FxFxf(s), MxFxf(s), FxMxf(s)
and MxMxf(s) as linear combination of f(s) and f(s + 1) only. Finally we use (75) and the
following equation linking the operators Dx, Fx and Mx

f(s+ 1) = f(s) + Δx(s)Mxf(s) +
1

2
∇x1(s) Δx(s)Fxf(s)

to convert the expressions FxFxf(s), MxFxf(s), FxMxf(s) and MxMxf(s) from the linear
combination of f(s) and f(s+ 1) to the linear combination of f(s) and Mxf(s).

□

Theorem 6 Let f(s) and g(s) be two functions of the variable x(s) satisfying respectively

Fxf(s) + a1(s)Mxf(s) + a0(s) f(s) = 0, Fxg(s) + b1(s)Mxg(s) + b0(s) g(s) = 0, (78)

where aj and bj are given functions of x(s).
Then, the product f(s) g(s) is a solution of a fourth-order divided-difference equation of the form

I4(s)FxFxy(s) + I3(s)MxFxy(s) + I2(s)Fxy(s) + I1(s)Mxy(s) + I0(s) y(s) = 0

where Ij are functions of aj and bj . If the aj(s), j = 0, 1 and the bj(s), j = 0, 1 are rational
functions in x(s), then the coefficients Ij(s), j = 0 . . . 4 can be chosen to be polynomials in the
variable x(s).

Proof: We apply the identity operator as well as the operators FxFx, MxFx, Fx and Mx to the
equation

y(s) = f(s) g(s),

and use the product rules (62) and (63) to get five equations whose right-hand sides are linear combi-
nations of expressions of the form p1(s) p2(s) with

pj(s) ∈ {FxFxℎj(s), MxFxℎj(s), FxMxℎj(s), MxMxℎj(s), Fxℎj(s)} , j = 1, 2,
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with ℎ1 = f, ℎ2 = g. These right-hand sides are transformed by means of the previous lemma into
linear combinations of

f(s) g(s), f(s)Mxg(s), [Mxf(s)] g(s) and [Mxf(s)]Mxg(s).

Thus, these five equations can be written as

X0,0 = y(s),

c2,1(s)X0,0(s) + c2,2(s)X0,1(s) + c2,3(s)X1,0(s) + c2,4(s)X1,1(s) = Mxy(s),

c3,1(s)X0,0(s) + c3,2(s)X0,1(s) + c3,3(s)X1,0(s) + c3,4(s)X1,1(s) = Fxy(s), (79)
c4,1(s)X0,0(s) + c4,2(s)X0,1(s) + c4,3(s)X1,0(s) + c4,4(s)X1,1(s) = MxFxy(s),

c5,1(s)X0,0(s) + c5,2(s)X0,1(s) + c5,3(s)X1,0(s) + c5,4(s)X1,1(s) = FxFxy(s),

with the notations

X0,0 = f(s) g(s), X0,1 = f(s)Mxg(s), X1,0 = [Mxf(s)] g(s), X1,1 = [Mxf(s)] Mxg(s)

where cj,k are functions of aj and bj . The system (79) contains 5 linear equations for 4 unknowns,
namely Xj,k(s), j, k = 0, 1. For the solutions of this system to exist, it is necessary for y(s) to satisfy
the equation ∣∣∣∣∣∣∣∣∣∣

1 0 0 0 y(s)
c2,1(s) c2,2(s) c2,3(s) c2,4(s) Mxy(s)
c3,1(s) c3,2(s) c3,3(s) c3,4(s) Fxy(s)
c4,1(s) c4,2(s) c4,3(s) c4,4(s) MxFxy(s)
c5,1(s) c5,2(s) c5,3(s) c5,4(s) FxFxy(s)

∣∣∣∣∣∣∣∣∣∣
= 0, (80)

which is the fourth-order divided-difference equation desired. □

As consequence of this theorem, we claim the following:

Corollary 2 If fj, j = 1, . . . n are functions of the variable x(s) such that any fj satisfies a linear
divided-difference equation of order rj involving only the operators Fx and Mx, then the product

f =
n∏
j=1

fj satisfies a divided-difference equation of order r =
n∏
j=1

rj involving only (at most) the

operators

Mj
x Fkx, j = 0, 1, and 0 ≤ 2 k + j ≤ r =

n∏
j=0

rj.

3 Recurrence coefficients for classical orthogonal polynomials

3.1 From orthogonality to second-order difference equation
The definition of classical orthogonal polynomials given in [5] is not similar to those of the very
classical orthogonal polynomials, because, according to this definition, for a family of polynomials
to be classical, it should be orthogonal with respect to a weight function satisfying a Pearson-type
equation; and, should in addition, satisfy a second-order difference equation. The requirement for
Pn to satisfy a second-order difference equation, which in the case of the very classical orthogonal
polynomials is a consequence of the orthogonality, is redundant. This condition can be omitted.

Let us remind that Atakishiyev, Rahman and Suslov [5], using the second-order difference equa-
tion (1) satisfied by an orthogonal family (Pn), the Pearson-type equation (8) satisfied by the orthog-
onality weight and the border conditions (10), obtained the orthogonality relation (5). Here, we prove
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the converse: The orthogonality relation plus the Pearson-type equation and the border conditions (all
provided in Definition 1) lead to the second-order divided-difference equation of form (1).

Theorem 7 Let (Pn) be a sequence of polynomials orthogonal with respect to a weight function �
(see (5)) satisfying (8) and (10). Then, each Pn satisfies

�(x(s))FxPn(x(s)) +  (x(s))MxPn(x(s)) + �n Pn(x(s)) = 0, (81)

where �n is a constant term given by

�n = −Dn,n−1 (�2Dn−1,n−2 +  1 Sn−1,n−1), (82)

with
�(x(s)) = �2 x

2(s) + �1 x(s) + �0,  (x(s)) =  1 x(s) +  0. (83)

In order to simplify the proof, we state and prove the following lemma

Lemma 2 Under the hypothesis of the previous theorem, the following identities hold:

Δ

[
�(s) �(s)

∇Pn(x(s))

∇x(s))

]
Pm(x(s))−Δ

[
�(s) �(s)

∇Pm(x(s))

∇x(s))

]
Pn(x(s))

= Δ {�(s) �(s)W (Pn(x(s)), Pm(x(s)))} ; (84)

Δ

[
�(s) �(s)

∇Pm(x(s))

∇x(s))

]
= [�(x(s)FxPm(x(s)) +  (x(s))MxPm(x(s)] �(s)∇x1(s), (85)

where

W (Pn(x(s)), Pm(x(s))) = Pn(x(s))
∇Pm(x(s))

∇x(s))
− Pm(x(s))

∇Pn(x(s))

∇x(s))
(86)

is the discrete analog of the Wronskian.
The WronskianW (Pn(x(s)), Pm(x(s))) is a polynomial of degree at most n+m−1 in the variable

x−1(s) = x(s− 1
2
).

Proof: First, we observe that the Pearson-type equation (8) is equivalent to

�(s+ 1)

�(s)
=
�(s) + �(s)∇x1(s)

�(s+ 1)
, with �(x(s)) ≡ �(s). (87)

Using the relation

Δ(f(s) g(s)) = f(s) Δg(s) + g(s+ 1) Δf(s) = f(s+ 1) Δg(s) + g(s) Δf(s), (88)

we obtain for given n, m ∈ ℕ,

Δ

[
�(s) �(s)

∇Pn(x(s))

∇x(s))

]
Pm(x(s))−Δ

[
�(s) �(s)

∇Pm(x(s))

∇x(s))

]
Pn(x(s))

= Δ [�(s) �(s)W (Pn(x(s)), Pm(x(s)))] ,

where

W (Pn(x(s)), Pm(x(s))) = Pn(x(s))
∇Pm(x(s))

∇x(s))
− Pm(x(s))

∇Pn(x(s))

∇x(s))
. (89)
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The Wronskian W (Pn(x(s)), Pm(x(s))) thanks to (88) can also be written as

W (Pn(x(s)), Pm(x(s))) = (90)
Sx−2Pn(x−2(s))Dx−2Pm(x−2(s))− Sx−2Pm(x−2(s))Dx−2Pn(x−2(s)).

Therefore, from (25), we remark that W (Pn(x(s)), Pm(x(s))) is a polynomial of degree at most
n+m− 1 in the variable x−1(s) = x(s− 1

2
).

For the second identity, we use again (88), then (8) together with (87) and finally the identity (easy
to obtain)

1

2

[
Δy(s)

Δx(s)
+
∇y(s)

∇x(s)

]
=
∇y(s)

∇x(s)
+

1

2
∇
[
∇y(s)

∇x(s)

]
,

to get

Δ

[
�(s) �(s)

∇Pm(x(s))

∇x(s))

]
= Δ [�(s) �(s)]

∇Pm(x(s))

∇x(s))
+ �(s+ 1) �(s+ 1)Δ

∇Pm(x(s))

Δx(s))

=  (s)∇x1(s) �(s)
∇Pm(x(s))

∇x(s))
+ (�(s) +  (s)∇x1(s))�(s)Δ

∇Pm(x(s))

∇x(s))

=  (s)∇x1(s) �(s)

[
MxPm(x(s))− 1

2
Δ
∇Pm(x(s))

∇x(s))

]
+(�(s) +  (s)∇x1(s))�(s)Δ

∇Pm(x(s))

∇x(s))

= [�(x(s)FxPm(x(s)) +  (x(s))MxPm(x(s)] �(s)∇x1(s),

with � given by (9). □

Next we give the proof of Theorem 7.
Proof: We set n, m ∈ ℕ and write

Vn(x(s)) = �(x(s))FxPn(x(s)) +  (x(s))MxPn(x(s), n ≥ 1, V0(x(s)) = 1.

We shall prove that the family (Vn) is also orthogonal with respect to the weight �(s). First we prove
that degree(Vn) = n, n ≥ 1. To do this, we assume that (Pn) is monic and use the expansions (66)
of Fxxn(s) and Mxx

n(s) to obtain that the leading coefficient of Vn, which we denote by ℎn, is

ℎn = �2 Fn,n−2 +  1Mn,n−1 (91)
= Dn,n−1 (�2Dn−1,n−2 +  1 Sn−1,n−1), n ≥ 1, ℎ0 = 1,

with the latter identity obtained thanks to Proposition 4.
Following [5], page 204, if we define the moments of the weight function � by

Mn =
b−1∑
s=a

[x(s)− x(a+ n− 1)](n) �(s)∇x1(s)

or
Mn =

1

2�i

∫
C

[x(s)− x(a+ n− 1)](n) �(s)∇x1(s) ds

for the discrete or the continuous orthogonality respectively, with �(a) = 0 and the generalized power
of the lattice x(s) defined as

[xr(z)− xr(s)](k) =
k−1∏
j=0

[xr(z)− xr(s− j)],
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it turns out that Mn satisfies (see [5], Eqn. (6.8))

(�2Dn,n−1 +  1 Sn,n)Mn+1 = − n(a)Mn, n ≥ 0.

For all the moments Mn, n ≥ 0 to exist, it is necessary to have

�2Dn,n−1 +  1 Sn,n ∕= 0, n ≥ 0.

Since Dn,n−1 ∕= 0, n ≥ 1, we deduce that ℎn ∕= 0, n ≥ 1 and degree(Vn) = n, n ≥ 1.
Next, we assume without any loss of generality that m ≤ n. Then, using (84) and (85), we get

N∑
i=0

Vn(x(si))Pm(x(si)) �(si)∇x1(si)

=

N∑
i=0

Pn(x(si))Vm(x(si)) �(si)∇x1(si) + �(sj) �(sj)W (Pn(x(sj)), Pm(x(sj)))∣N+1
j=0 .

Finally, use of the previous relation, the orthogonality relation for (Pn) (5) and the border conditions
(10) together with the fact thatW (Pn(x(s)), Pm(x(s))) is a polynomial in the variable x(s− 1

2
), gives

N∑
i=0

Vn(x(si))Pm(x(si)) �(si)∇x1(si) =
N∑
i=0

Pn(x(si))Vm(x(si)) �(si)∇x1(si) = ℎn kn �n,m.

The latter relation, combined with the fact that Vn is of degree n assures that the family (Vn) is
orthogonal with respect to the weight function �. Hence, (Pn) and (Vn) are proportional since they
are orthogonal with respect to the same weight; therefore there exists a constant term �n such that

Vn(x(s)) = −�n Pn(x(s)), n ≥ 0.

Comparison of the leading terms in both members of the previous equation yields

�n = −Dn,n−1 (�2Dn−1,n−2 +  1 Sn−1,n−1).

The proof using the continuous orthogonality is obtained in the same way. □

Definition 2 We therefore propose as definition of classical orthogonal polynomials Definition 1
without the second condition.

3.2 Parameters �, �, �, �,  
Let x(s) be a lattice of the form (4). It satisfies (17) and (18), and therefore, x(s) depends only on the
parameters �, � and � with the latter given by (30).

The classical orthogonal polynomials (Pn(x(s))), solution of

�(x(s))FxPn(x(s)) +  (x(s))MxPn(x(s)) + �n Pn(x(s)) = 0, (92)

depend only on the parameters �, �, � and the five coefficients of the polynomials � and  . Equation
(92) is the most general second-order difference equation satisfied by classical orthogonal polynomi-
als. It contains the very classical orthogonal polynomials (special and limiting cases) as well as the
classical orthogonal polynomials of quadratic and q-quadratic lattices.
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In the following, we shall discuss special values of the parameters �, �, � and the corresponding
polynomial families.

First, computations using relations (17) and (18) show that x(s) satisfies a second-order difference
equation of the form [5]

x(s+ 1)− 2 (2�2 − 1)x(s) + x(x− 1) = 4 � (� + 1),

whose solution is

x(s) =

{
C1 q

s + C2 q
−s + �

1−� , � ∕= 1,

4� s2 + C3 s+ C4, � = 1.
(93)

3.2.1 Case I: � = 1

When � = 1, the lattice x(s) = 4� s2 + C3 s+ C4 is quadratic.

Case I.1: � = 1, � = C3 = 0

In this case, the lattice x(s) = C4 is constant and from (30), �x = 0. Therefore,

Dxf(x(s)) = lim
x(s+1)→x(s)

f(x(s+ 1))− f(x(s))

x(s+ 1)− x(s)
≡ d

dx
f(x),

and Fx, Mx correspond to

Fx ≡
d2

dx2
, Mx ≡

d

dx
.

Equation (92) reads
�(x)P ′′n (x) +  (x)P ′n(x) + �n Pn(x) = 0.

Therefore, the case � = 1, � = � = 0 corresponds to the classical orthogonal polynomials of a
continuous variable [19] (Jacobi, Hermite, Laguerre and Bessel).

Case I.2: � = 1, C3 = 1, � = C4 = 0

The lattice reads x(s) = s from which one gets �x = 1
4
. Equation (92) reduces to

�̃(s)Δ∇Pn(s) +  (s) ΔPn(s) + �n Pn(s) = 0,

with �̃(s) = �(s) − 1
2
 (s). Thus the case � = 1, � = 0, �x = 1

4
corresponds to the classical

orthogonal polynomials of a discrete variable on a linear lattice [19] (Hahn, Meixner, Charlier and
Krawtchouk).

Case I.3: � = 1, � ∕= 0

Here, the lattice x(s) = 4 � s2 + C3 s + C4 is quadratic and the corresponding polynomials are
called classical orthogonal polynomials of a discrete variable on a quadratic lattice [19] (Wilson, the
continuous dual Hahn, the continuous Hahn, the Meixner-Pollaczek, the Racah and the dual Hahn
polynomials).

3.3 Case II: � = q
1
2 + q−

1
2 , q ∕= 0, q ∕= 1

In this case, it can be seen from (93) that the coefficient � is involved only in the constant term of the
lattice. This constant can therefore be omitted without any loss of generality.
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Case II.1: � = 0, � = 0

For � = C2 = 0 and C1 = 1, then x(s) = qs and one gets from (30) � = 0. The operators Dx, Fx and
Mx in this case read

Dx = Dq, Fx = DqD 1
q
, Mx =

1

2

[
Dq +D 1

q

]
,

where Dq is the Hahn operator [17] (also called Jackson derivative [18])

Dqf(x) =
f(q x)− f(x)

(q − 1)x
.

Equation (92) is therefore equivalent to

�̃(x)DqD 1
q
Pn(x) +  (x)DqPn(x) + �n Pn(x) = 0, x = qs,

with �̃(x) = q2 �(x) − 1
2
(q − 1)x (x). Thus the case � = q

1
2 + q−

1
2 , � = � = 0 corresponds to

the q-classical orthogonal polynomials [19, 26]: The Big q-Jacobi, Big q-Laguerre, Little q-Jacobi,
Little q-Laguerre (Wall), q-Laguerre, Alternative q-Charlier, Al-Salam-Carlitz I, Al-Salam-Carlitz
II, Stieltjes-Wigert, Discrete q-Hermite, Discrete q−1-Hermite II, q-Hahn, q-Meixner, Quantum q-
Krawtchouk, q-Krawtchouk, Affine q-Krawtchouk, and q-Charlier polynomials).

Case II.2: � = 0, � ∕= 0

When C1C2 ∕= 0, then from (30), � ∕= 0. The lattice x(s) = C1 q
s + C2 q

−s is q-quadratic and the
corresponding orthogonal polynomials are the classical orthogonal polynomials of a discrete vari-
able on q-quadratic lattices [19] (The Askey-Wilson, the q-Racah, the continuous dual q-Hahn, the
continuous q-Hahn, the dual q-Hahn, the Al-Salam Chihara, the q-Meixner-Pollaczek, the continu-
ous q-Jacobi, the the continuous dual q-Krawtchouk, the continuous big q-Hermite, the continuous
q-Laguerre, the continuous q-Hermite, the Wilson, the continuous dual Hahn, the continuous Hahn
and the Meixner-Pollaczek polynomials).

To conclude this section, we give the parameters �, �, � as well as the polynomials � and  for
14 families of classical orthogonal polynomials on nonuniform lattices out of 18 listed above. The
four remaining families, namely, the Wilson, the continuous dual Hahn, the continuous Hahn and the
Meixner-Pollaczek polynomials deal with the complex difference-derivative which is not included in
this work and will be treated later separately. However, these families can be reached by limiting pro-
cedures from the Askey-Wilson polynomials for which we illustrate in the following lines the method
we have used to obtain the parameters �, �, �.

Part I: Cases of the q-quadratic lattices
1. Askey-Wilson polynomials

2nan(abcd qn−1; q)n
(ab, ac, ad; q)n

p̃n(x; a, b, c, d∣q) = 4�3

(
q−n, abcdqn−1, aei�, ae−i�

ab, ac, ad

∣∣∣∣∣ q; q
)
, x = cos �.

�(x) := �(x; a, b, c, d∣q) =
1√

1− x2

∣∣∣∣ (e2i�; q)∞
(aei�, bei�, cei�, dei�; q)∞

∣∣∣∣2 , x = cos �.

If a, b, c and d are real, or occur in complex conjugate pairs if complex, and if

max(∣a∣, ∣b∣, ∣c∣, ∣d∣) < 1,
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then we have the following orthogonality relation

1

2�

∫ 1

−1

�(x) p̃n(x; a, b, c, d∣q) p̃m(x; a, b, c, d∣q) dx = ℎn �n,m,

where

ℎn =
[2n (abcdqn−1; q)n]

−2
(abcdqn−1; q)n (abcdq2n; q)∞

(qn+1, abqn, acqn, adqn, bcqn, bdqn, cdqn; q)∞
.

For the lattice we write

x = cos � =
ei� + e−i�

2
=
qs + q−s

2
:= x(s), qs := ei�.

It follows from (18) that �x = q
1
2 +q−

1
2

2
, �x = 0, C5 = C6 = 1

2
and �x = − (q−1)2

4q
by (30).

The Askey-Wilson operator

Dqf(x) :=
�qf(x)

�qx
, x = cos �,

with
�qf(ei�) = f(q

1
2 ei�)− f(q−

1
2 ei�),

can be written in terms of Dx as

Dqf(x) = Dx−1f(x−1(s)), x := x(s) =
qs + q−s

2
. (94)

More details about the Askey-Wilson operator are given in Subsection 5.1.4.
In order to compute the polynomials � and  , we write the Pearson-type equation (8) in its equiv-

alent form (using (9))
�(s+ 1)

�(s)
=

�(s) + 1
2
 (s)∇x1(s)

�(s+ 1)− 1
2
 (s+ 1)Δx1(s)

and use the previous expression of the Askey-Wilson weight �(x) ≡ �(x(s)) ≡ �(s) to get

(−1 + aqs) q2 (−1 + bqs) (−1 + cqs) (−1 + dqs)

(qsq − d) (qsq − c) (qsq − b) (qsq − a)
.

Then we combine the last two equations and use the expansion (83) with x(s) = qs+q−s

2
to obtain

a polynomial equation in qs with coefficients depending linearly on those of the polynomials � and
 . Collection of different coefficients of the powers of qs leads to a system of linear equations in the
variables �2, �1, �0,  1 and  0. Solving this system, we obtain the polynomials � and  :

� (s) = 2 (dcba+ 1)x2 (s)− (a+ b+ c+ d+ abc+ abd+ acd+ bcd)x (s)

+ ab+ ac+ ad+ bc+ bd+ cd− abcd− 1,

 (s) =
4 (abcd− 1) q

1
2 x (s)

q − 1
+

2 (a+ b+ c+ d− abc− abd− acd− bcd) q
1
2

q − 1
.

By using the relations (24), (27), (58), (59) and (94), we have checked that the difference equation
(Equation (3.1.6) in [19])

(1− q)2Dq
[
�(x; aq

1
2 , bq

1
2 , cq

1
2 , dq

1
2 , ∣q)Dqp̃n(x)

]
+ �n �(x; a, b, c, d∣q) p̃n(x) = 0, x = cos �,
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with p̃n(x; a, b, c, d∣q) ≡ p̃n(x), is equivalent to

�(x)D2
q p̃n(x) +  (x)SqDqp̃n(x) + �n p̃n(x) = 0,

where the operator Sq is given in the next section by (130) and the constant �n by (104) with the
polynomials �(s) and  (s) given as above.

The coefficients �, �, � (relabelled �x, �x, �x in order to avoid confusion with the parameters
bearing the same names involved in the definition) as well as the polynomials � and  given below
for the remaining families are obtained in the same way using the notations from [19]:

2. q-Racah polynomials

The lattice x(s) and the coefficients �x, �x and �x are:

x(s) = q−s + 
�qs+1, �x =
q

1
2 + q−

1
2

2
, �x = 0, �x = −(q − 1)2
�.

Polynomials � and  are:

� (x(s)) =
(
q2�� + 1

)
x2 (s)− (q�� 
 + q� 
 + q� �� + �� q + �+ �� + 
� + 
) q x (s)

−2
(
q2�
� � − q�� 
 − q� �� − q
2� − q� 
 � − q� 
 − q
 �2� + 
�

)
q,

 (x(s)) =
2
(
q2�� − 1

)
q

1
2x (s)

q − 1
− 2q (q�� 
 + q� 
 + q� �� + �� q − �− �� − 
� − 
) q

1
2

q − 1
.

3. Continuous dual q-Hahn polynomials

The lattice x(s) and the coefficients �x, �x and �x are:

x(s) =
qs + q−s

2
, �x =

q
1
2 + q−

1
2

2
, �x = 0, �x = −(q − 1)2

4q

Polynomials � and  are:

� (x(s)) = 2x2 (s)− (a+ b+ c+ abc)x (s) + ab+ ac+ bc− 1,

 (x(s)) = −4 q
1
2 x (s)

q − 1
+

2 (a+ b+ c− abc) q
1
2

q − 1
.

4. Continuous q-Hahn polynomials

The lattice x(s) and the coefficients �x, �x and �x are:

x(s) =
ei' qs + e−i' q−s

2
, �x =

q
1
2 + q−

1
2

2
, �x = 0, �x = −(q − 1)2

4q
, ei� := qs.

Polynomials � and  are:

� (x(s)) = 2 (dcba+ 1)x2 (s)−
(
d+ dcb+ at2 + bt2ad+ cbat2 + c+ cda+ bt2

)
x (s)

t

+
cat2 + bt2d− t2cbad+ cbt2 + cd+ t2 + bt4a+ t2ad

t2
,

 (x(s)) =
4 (−1 + dcba) q

1
2x (s)

q − 1
−

2q
1
2

(
−c− d+ cda− bt2 − at2 + dcb+ cbat2 + bt2ad

)
(q − 1) t

,
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with the notation t = ei'.

5. Dual q-Hahn polynomials

The lattice x(s) and the coefficients �x, �x and �x are:

x(s) = q−s + 
�qs+1, �x =
q

1
2 + q−

1
2

2
, �x = 0, �x = −(q − 1)2
�.

Polynomials � and  are :

� (x(s)) = x2 (s)−
(

 q + qNq
 � + 
 qNq + 1

)
x (s)

2qN
+


(
qNq
 � − � qN + � + 1

)
q

2qN
,

 (x(s)) = −2q
1
2 x (s)

q − 1
+

(
qNq
 � + 
 qNq − 
 q + 1

)
q

1
2

(q − 1) qN
.

6. Al-Salam-Chihara polynomials

The lattice x(s) and the coefficients �x, �x and �x are:

x(s) =
qs + q−s

2
, �x =

q
1
2 + q−

1
2

2
, �x = 0, �x = −(q − 1)2

4q
.

Polynomials � and  :

� (x(s)) = 2x2 (s)− (a+ b)x (s) + ab− 1,  (x(s)) = −4q
1
2 x (s)

q − 1
+

2 (a+ b) q
1
2

q − 1
.

7. q-Meixner-Pollaczek polynomials

The lattice x(s) and the coefficients �x, �x and �x are:

x(s) =
ei' qs + e−i' q−s

2
, �x =

q
1
2 + q−

1
2

2
, �x = 0, �x = −(q − 1)2

4q
, ei� := qs.

Polynomials � and  are:

� (x(s)) = 2x2 (s)− 2 a cos'x (s) + a2 − 1,  (x(s)) = − 4 q
1
2 x (s)

q − 1
+

4 a q
1
2 cos'

q − 1
.

8. Continuous q-Jacobi polynomials

The lattice x(s) and the coefficients �x, �x and �x are:

x(s) =
qs + q−s

2
, �x =

q
1
2 + q−

1
2

2
, �x = 0, �x = −(q − 1)2

4q

The coefficients of the polynomials � and  are:

�2 = p2�+2�+4 + 1, �1 =
1

2
(p+ 1) p

1
2

(
p2�+�+2 − p� − p�+2�+2 + p�

)
,

�0 = −1

2
p2�+2�+4 − 1

2
p�+�+3 +

1

2
p2�+2 − p�+�+2 +

1

2
p2�+2 − 1

2
p1+�+� − 1

2
,

 1 =
2 p
(
p2�+2�+4 − 1

)
(p− 1) (p+ 1)

,  0 = −
p

3
2

(
−p2�+�+2 − p� + p�+2�+2 + p�

)
p− 1

,
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with q = p2.

9. Continuous Dual q-Krawtchouk polynomials

The lattice x(s) and the coefficients �x, �x and �x are:

x(s) = q−s + cqs−N , �x =
q

1
2 + q−

1
2

2
, �x = 0, �x = −c(q − 1)2 q−1−N .

Polynomials � and  are:

�(x(s)) = x2(s)− (c+ 1) q−N x(s)− 2 c (q−N − q−2N),  (x(s)) = − 2 q
1
2

q − 1
x(s) +

2(c+ 1) q
1
2

(q − 1)qN
.

10. Continuous big q-Hermite polynomials

The lattice x(s) and the coefficients �x, �x and �x are:

x(s) =
qs + q−s

2
, �x =

q
1
2 + q−

1
2

2
, �x = 0, �x = −(q − 1)2

4q
.

Polynomials � and  are:

�(x(s)) = 2 x2(s)− a x(s)− 1,  (x(s)) = − 4 q
1
2

q − 1
x(s) +

2 a q
1
2

q − 1
.

11. Continuous q-Laguerre polynomials

The lattice x(s) and the coefficients �x, �x and �x are:

x(s) =
qs + q−s

2
, �x =

q
1
2 + q−

1
2

2
, �x = 0, �x = −(q − 1)2

4q
.

Polynomials � and  are:

�(x(s)) = 2x2 (s)− p�+ 1
2 (p+ 1)x (s) + p2�+2 − 1,  (x(s)) = − 4p

p2 − 1
x (s) +

2p�+ 3
2

p− 1
.

12. Continuous q-Hermite polynomials

The lattice x(s) and the coefficients �x, �x and �x are:

x(s) =
qs + q−s

2
, �x =

q
1
2 + q−

1
2

2
, �x = 0, �x = −(q − 1)2

4q
.

Polynomials � and  are:

�(x(s)) = 2x2(s)− 1,  (x(s)) = − 4 q
1
2

q − 1
x(s).

Part II: Cases of quadratic lattices
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13. Racah polynomials

The lattice x(s) and the coefficients �x, �x and �x are:

x(s) = s (s+ 
 + � + 1), �x = 1, �x =
1

4
, �x =

(
 + � + 1)2

4
.

Polynomials � and  are:

� (x(s)) = 2x2 (s) + [−� � + � 
 + 2 
 + �
 + 2 
 � + 4 + � �

+ 3�+ 3� + 2� �+ 2 �]x (s) + (1 + 
) (1 + � + 
) (� + � + 1) (�+ 1) ,

 (x(s)) = (2�+ 2� + 4)x (s) + 2 (1 + 
) (� + � + 1) (�+ 1) .

14. Dual Hahn polynomials

The lattice x(s) and the coefficients �x, �x and �x are:

x(s) = s (s+ 
 + � + 1), �x = 1, �x =
1

4
, �x =

(
 + � + 1)2

4
.

Polynomials � and  are:

� (x(s)) = (−1 + 2N + � − 
)x (s) +N (1 + 
) (1 + � + 
) ,  (x(s)) = −2x (s) + 2N (1 + 
) .

3.4 Three-term recurrence coefficients
The method we will use here to compute the recurrence coefficients is the same used for the very classical
orthogonal polynomials, see e. g. [20].

We assume that (Pn) is a system of monic classical orthogonal polynomials such that each Pn satisfies
the equation (1). Because of the orthogonality, (Pn) satisfies the three-term recurrence relation (13) which we
recall here:

Pn+1(x) = (x− �n)Pn(x)− 
n Pn−1(x), n ≥ 1, P−1 = 0, P0(x) = 1.

First, we write

Pn(x(s)) =
n∑
j=0

Tn,n−j x
j(s), Tn,0 = 1, (95)

and substitute this expression into equation (1) (or (92)), then use the expansions (66) to get

[
�2 x

2(s) + �1 x(s) + �0

] n−2∑
k=0

⎛⎝ n∑
j=k+2

Tn,n−j Fj,k

⎞⎠ xk(s) +

[ 1 x(s) +  0]

n−1∑
k=0

⎛⎝ n∑
j=k+1

Tn,n−jMj,k

⎞⎠ xk(s) + �n

n∑
k=0

Tn,n−k x
k(s) = 0.

Then we look for the coefficients of the monomials xn(s) in the previous equation and obtain

�n = −�2 Fn,n−2 −  1Mn,n−1. (96)
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Next, we collect the coefficients of the monomials xj(s), j = n − 1, n − 2 to get the following linear system
with respect to the unknowns Tn,1, Tn,2

(�n + �2Fn−1,n−3 +  1Mn−1,n−2)Tn,1 + �2Fn,n−3 + �1Fn,n−2 +  1Mn,n−2 +  0Mn,n−1 = 0,

( 0Mn−1,n−2 +  1Mn−1,n−3 + �1Fn−1,n−3 + �2Fn−1,n−4)Tn,1

+ (�2Fn−2,n−4 +  1Mn−2,n−3 + �n)Tn,2

+ 0Mn,n−2 +  1Mn,n−3 + �1Fn,n−3 + �2Fn,n−4 + �0Fn,n−2 = 0.

Solving this system produces the coefficients Tn,1 and Tn,2.
Computations taking into account (42)-(47) and the relations

Mn,n−1 = Dn,n−1Sn−1,n−1,

Mn,n−2 = Dn,n−1Sn−1,n−2 +Dn,n−2Sn−2,n−2,

Mn,n−3 = Dn,n−1Sn−1,n−3 +Dn,n−2Sn−2,n−3 +Dn,n−3Sn−3,n−3,

Fn,n−2 = Dn,n−1Dn−1,n−2,

Fn,n−3 = Dn,n−1Dn−1,n−3 +Dn,n−2Dn−2,n−3,

Fn,n−4 = Dn,n−1Dn−1,n−4 +Dn,n−2Dn−2,n−4 +Dn,n−3Dn−3,n−4,

obtained from (69) and (70), give the following expressions for the coefficients Fn,k−1 and Mn,k for k =
n, n− 1 and n− 3.
First case: �x = 1:

Fn,n−2 = n (n− 1) , Fn,n−3 =
4

3
�x n (n− 2) (n− 1)2 ,

Fn,n−4 =
1

45
n (n− 1) (n− 2) (n− 3)

(
32�x

2n2 − 96�x
2n+ 52�x

2 + 15 �x
)
,

Mn,n−1 = n,

Mn,n−2 =
2

3
�x n (n− 1) (4n− 5) , (97)

Mn,n−3 =
2

15
n (n− 1) (n− 2)

(
16�x

2n2 − 52�x
2n+ 32�x

2 + 5 �x
)
.

Second case: �x = q
1
2 +q−

1
2

2 , �x = 0:

Fn,n−2 =
(qn − 1)(qn − q)q

1
2

(q − 1)2 qn
,

Fn,n−3 = 0,

Fn,n−4 =

(
(q + 1)(q2n − q3)n

(q − 1)3 qn+ 1
2

− (qn − 1)(3qn+1 + qn − q3 − 3q2)q
1
2

(q − 1)4 qn

)
�x,

Mn,n−1 =
(qn − 1)(qn + q)

2 (q − 1)qn
, (98)

Mn,n−2 = 0,

Mn,n−3 =
�x
2

(
(q + 1)(q2n + q3)n

(q − 1)2 qn+1
− (q + 1)(qn − 1)(qn + q2)

(q − 1)3 qn

)
.

The coefficients �n and 
n are deduced from Tn,1 and Tn,2 using the following relations between �n, 
n and
the Tn,i [8, 9]

Tn+1,1 = Tn,1 − �n, Tn+1,2 = Tn,2 − �n Tn,1 − 
n,
and the previous expressions of Fn,k and Mn,k. We can now state the following explicit results obtained with
the help of Maple [27]:
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Theorem 8 The coefficients �n and 
n of the recurrence coefficients (13) of the classical orthogonal polyno-
mials satisfying (92) are given explicitly by:
Case 1: �x = 1:

�n = −
4n
(
2 1n−  1 − 2�2n+ 2�2n

2
)

( 1 + �2n− �2)

(2�2n+  1) (2�2(n− 1) +  1)
�x (99)

−−2 0�2 +  1 0 − 2�1n�2 + 2�1 1n+ 2�1n
2�2

(2�2n+  1) (2�2(n− 1) +  1)
;


n = −n (n− 1) ( 1 + �2n− �2) ( 1 + �2n− 2�2)

(2�2n− �2 +  1) (2�2n− 3�2 +  1)
�x

+
16 (n− 1)3 ( 1 + �2n− 2�2) ( 1 + �2n− �2)3 n

(2�2n− 3�2 +  1) (2�2n− �2 +  1) (2�2n− 2�2 +  1)2�
2
x

+
(
2�1n

2�2 − 4�1n�2 + 2�1 1n+ 2�2�1 − 2�1 1 +  1 0

)
× (100)

4 (n− 1) ( 1 + �2n− �2) ( 1 + �2n− 2�2)n

(2�2n− 3�2 +  1) (2�2n− �2 +  1) (2�2n− 2�2 +  1)2�x

− ( 1 + �2n− 2�2)n

(2�2n− 3�2 +  1) (2�2n− �2 +  1) (2�2n− 2�2 +  1)2 ×(
4�0�2

2n2 − 8�0�2
2n+ 4�0�2

2 − �1
2n2�2 + 2�1

2n�2 + 4�0�2n 1 +  0
2�2

−4�0�2 1 − �1
2�2 − �1

2n 1 + �1
2 1 + �0 1

2 −  0�1 1

)
,

Case 2: For �x = p+p−1

2 and �x = 0, with the notations

p = q
1
2 , q ∕= 0, 1, and � = pn,

�n =
[(
−2�1p

3 +  0p
4 − 2 0p

2 +  0 − 2 p�1

) (
 1p

2 + 2�2p−  1

)
�6

−
(
p2 + 1

) (
p6 1 0 + 2 p5�1 1 − 2 p5 0�2 − 4 p4�2�1 − p4 1 0

+4 p3 0�2 − 4 p3 1�1 − 4 p2�1�2 − p2 1 0 + 2 p�1 1 − 2 0�2p+  1 0

)
�4

− p2
(
−2�1p

3 +  0p
4 − 2 0p

2 +  0 − 2 p�1

) (
 1p

2 − 2�2p−  1

)
�2
]
/ (101){((

 1p
2 + 2�2p−  1

)
�4 +  1p

2 − 2�2p−  1

)
×((

 1p
2 + 2�2p−  1

)
�4 + p4

(
 1p

2 − 2�2p−  1

))}
,


n =
{
−2

(
− 1p

4 −  1�
2 +  1p

6 +  1p
2�2 + 2�2p �

2 − 2�2p
5
)
×(

�2 − 1
)
p3�2

(
p2 − 1

)2 (− 1p
4 −  1�

4 +  1p
6 +  1�

4p2 + 2�2p �
4 − 2�2p

5
)2
�0

+
(
− 1p

4 −  1�
2 +  1p

6 +  1p
2�2 + 2�2p �

2 − 2�2p
5
) (
�2 − 1

)
p2
(
p2 − �2

)
×(

−2�2p
3 + 2�2p �

2 −  1p
2 +  1p

4 −  1�
2 +  1p

2�2
)
×(

− 1p
4 −  1�

4 +  1p
6 +  1�

4p2 + 2�2p �
4 − 2�2p

5
)2
�x (102)

+
(
− 1p

4 −  1�
2 +  1p

6 +  1p
2�2 + 2�2p �

2 − 2�2p
5
)
×(

�2 − 1
)
p4�4

(
p2 − 1

)2 (
 0p

4 − 2�1p
3 −  0p

2 + �2 0p
2 + 2�1�

2p− �2 0

)
×(

p6 1 0 − 2 p5 0�2 + 2 p5�1 1 − p4 1�
2 0 − 2 p4 1 0 − 4 p4�2�1 − 2 p3�2�2 0 + 2 p3�2�1 1

+2 p3 0�2 − 2 p3 1�1 + 2 p2 1�
2 0

+4 p2�2�1�2 + p2 1 0 +2 p �2�2 0 − 2 p �2�1 1 −  1�
2 0

)}
/
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{
(p2 − 1)2

((
 1p

2 + 2�2p−  1

)
�4 + p6

(
 1p

2 − 2�2p−  1

))
×((

 1p
2 + 2�2p−  1

)
�4 + p2

(
 1p

2 − 2�2p−  1

))
×((

 1p
2 + 2�2p−  1

)
�4 + p4

(
 1p

2 − 2�2p−  1

))2}
.

The coefficient �n of (92) is given by

�n = −n ( 1 + (n− 1)�2) , (103)

for �x = 1 and

�n =

(
− 1p

2 − 2�2p+  1

)
�4 +

(
2 1p

2 + 2�2p−  1 + 2�2p
3 −  1p

4
)
�2 + p2

(
 1p

2 − 2�2p−  1

)
2 (p2 − 1)2 �2

(104)
for �x = p+p−1

2 , with p = q
1
2 and � = pn.

Remark 4 1. By selecting specific values of the parameters �x, �x and �x (as indicated in Subsection 3.2)
in the previous theorem, we recover after appropriate changes in � and  the coefficients �n and 
n of
the very classical orthogonal polynomials. The coefficients �n and 
n of the very classical orthogonal
polynomials were given explicitly by W. Koepf and D. Schmersau [20, 21] using a similar approach.

2. The relations (99)-(102) are important tools for computer algebra since they provide in 4 relations the
recurrence coefficients of all classical orthogonal polynomials [19].

4 Fourth-order divided-difference equations for O.P.

4.1 Functions of the second kind
In connection with the classical orthogonal polynomials (Pn), there is an important function called function of
second kind denoted Qn and connected to Pn in the following way [31]

Qn(x(z)) =
1

�(z)

b−1∑
s=a

Pn(x(s)) �(s)∇x1(s)

x(s)− x(z)
, z ∕= a, a+ 1, . . . , b− 1. (105)

Also, the first associated P (1)
n of Pn, defined by the recurrence relation (14) for r = 1 is related to Pn by

P (1)
n (x(z)) =

b−1∑
s=a

[Pn+1(x(s))− Pn+1(x(z))] �(s)∇x1(s)

x(s)− x(z)
, z ∕= a, a+ 1, . . . , b− 1, (106)

for the discrete orthogonality.
The following properties [31] will be used in the next subsection.

Theorem 9 The function Qn obeys:

1. ∀n ∈ ℕ0, Pn and Qn are two linearly independent solutions of (92).

2. Pn and Qn are the two linearly independent solutions of the recurrence relation

Xn+1(x(s)) = (x(s)− �n)Xn(x(s))− 
nXn−1(x(s)), n ≥ 1.

3. Pn and Qn and the first associated P (1)
n are related from (105) and (106) by

Qn(x(s)) = Pn(x(s))Q0(x(s)) +

0

�(s)
P

(1)
n−1(x(s)), n ≥ 1, s ∕= a, a+ 1, . . . , b− 1. (107)
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4. Qn fulfils the following asymptotic property

Qn(x(s)) = −

n∏
i=0


i

�(s)xn+1(s)

[
1 +O

(
1

x(s)

)]
, x(s)→∞, (108)

with


0 =
N∑
s=0

�(s)∇x1(s) or 
0 =

∫
C
�(s)∇x1(s) ds,

for the discrete and the continuous orthogonality respectively (see definition 1).

4.2 Intermediate relations
To derive the fourth-order difference equations for the modifications of the classical orthogonal polynomials,
we shall start with the following intermediate result.

Theorem 10 Let (Pn) be a sequence of classical orthogonal polynomials satisfying the second-order difference
equation (92) with the corresponding orthogonality weight satisfying the Pearson-type equation (8) and the
border conditions (10) where the functions �(s) and the polynomials �(s) and  (s) are related by (9). Then,
the first associated (P

(1)
n ) of (Pn) satisfies

�(s) [A1(s)Fx +B1(s)Mx + C1(n)]P
(1)
n−1(x(s)) = 2 � [D1(s)Mx + E1(s, n)]Pn(s), (109)

with

A1(s) = −�(s)− 2�2 U2(s)�′′ + 2�U1(s) (s)− 2U1(s)Mx�(s)

+4�U2
1 (s) ′ + 2� (2�2 − 1)U2(s) ′,

B1(s) = (2�2 − 1) (s)− 2�Mx�(s) + 2 (4�2 − 1)U1(s) ′ − 2�U1(s)�′′, (110)

C1(n) = (2�2 − 1) ′ − ��′′ − �n,
D1(s) = ��(s)− U1(s) (s),

E1(s, n) = −�n U1(s),

where the polynomials U1 and U2 are defined by (57),

� =

(
�x  

′ − �′′

2

)

0 = (�x  1 − �2) 
0, (111)

and


0 =

N∑
s=0

�(s)∇x1(s) or 
0 =

∫
C
�(s)∇x1(s) ds (112)

for discrete and continuous orthogonality respectively.

The proof of the theorem will use the following lemma.

Lemma 3 The function of second kind Qn(x(s)) defined by (105) satisfies:

(�(s)− 1

2
 (s)∇x1(s)) �(s)

∇Q0(x(s))

∇x(s)
= �, ∀s ∈ (a, b), s ∕= a, a+ 1, . . . , b− 1; (113)

�(s)MxQ0(x(s) =
� �(s)

�2(s)− U2(s) 2(s)
, (114)

where � is given by (111).
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Proof: Since Qn is a solution of (92), taking into account the fact that �0 = 0 from (96), we have

�(s)FxQ0(x(s)) + �(s)MxQ0(x(s)) = 0⇔ Δ

[
(�(s)− 1

2
 (s)∇x1(s)) �(s)

∇Q0(x(s))

∇x(s)

]
= 0.

Therefore, the left-hand side of (113) is a periodic function of period 1. This combined with the asymptotic
behavior obtained using (108)

(�(s)− 1

2
 (s)∇x1(s)) �(s)

∇Q0(x(s))

∇x(s)
= �

[
1 +O

(
1

x(s)

)]
, x(s)→∞,

allows to deduce that the left-hand side of the previous equation is the constant �.
To derive Equation (114), we use an equivalent form of (113)

∇Q0(x(s))

∇x(s)
=

�

�(s) (�(s)− 1
2 (s)∇x1(s))

and obtain

�(s)MxQ0(x(s)) =
�(s)

2

(
ΔQ0(x(s))

Δx(s)
+
∇Q0(x(s))

∇x(s)

)
=

1

2

(
� �(s)

�(s+ 1) [�(s+ 1)− 1
2 (s+ 1) Δx1(s)]

+
�

�(s)− 1
2 (s)∇x1(s)

)
.

Next, we use an equivalent form of the Pearson-type equation (8)

�(s+ 1)

�(s)
=

�(s) + 1
2 (s)∇x1(s)

�(s+ 1)− 1
2 (s+ 1) Δx1(s)

(115)

to get

�(s)MxQ0(x(s)) =
1

2

(
�

�(s) + 1
2 (s)∇x1(s)

+
�

�(s)− 1
2 (s)∇x1(s)

)

=
� �(s)

�2(s)− 1
4 [ (s)∇x1(s)]2

=
� �(s)

�2(s)−  2(s)U2(s)
,

since from Equation (34),
[∇x1(s)]2

4
= Q(x(s)) = U2(s).

□

Let us now give the proof of Theorem 10.
Proof: In the first step, we use relation (107) and the fact that Qn is a solution of (92) to get

(�(s)Fx +  (s)Mx + �n)

[
Pn(x(s))Q0(x(s)) +

1

�(s)
P

(1)
n−1(x(s))

]
= 0. (116)

Using the product rules (62) and (63) for Fx and Mx and Equation (92) in order to eliminate all occurrences
of FxPn(x(s)) and FxQ0(x(s)) we transform the previous equation into an equation whose left-hand side is a
linear combination of

FxP
(1)
n−1(x(s)), MxP

(1)
n−1(x(s)), P

(1)
n−1(x(s)), MxPn(x(s)) and Pn(x(s)).
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The coefficients of this linear combination are functions of

x(s), �(s),  (s), U1(s), U2(s), MxQ0(x(s)), Fx�(s), Mx�(s), and �(s).

The expression MxQ0(x(s)) is eliminated thanks to (114). It remains now to express Fx�(s) and Mx�(s) in
terms of �(s) times rational functions of x(s).

For this aim, we use (115) to eliminate all occurrences of �(s− 1) and �(s+ 1) in the equations

Fx�(s) =
Δ

Δx(s− 1
2)

∇�(s)

∇x(s)
,

Mx�(s) =
1

2

(
Δ�(s)

Δx(s)
+
∇�(s)

∇x(s)

)
,

and obtain
Fx�(s)

�(s)
and

Mx�(s)

�(s)

as rational functions of the two variables x(s) and x(s + 1) whose coefficients depend only on those of the
polynomials �(s) and  (s) ((22) and (23) have been used as well). Then, assuming � ∕= 1, we combine (57)
and the relation (which is easily deduced from (34) using (22))

U2(s) =

[
x(s+ 1) + (1− 2�2)x(s)− 2�(�+ 1)

]2
4�2

= (�2 − 1)x2(s) + 2� (�+ 1)x(s) + �,

to get the system

U1(s) = (�+ 1)[(�− 1)x(s) + �],

2u�
√
U2(s) = x(s+ 1) + (1− 2�2)x(s)− 2�(�+ 1),

where u = ±1. Solving this system in terms of the unknowns x(s) and x(s+ 1) yields⎧⎨⎩
x (s) = U1 (s)

(�−1)(1+�) −
�

�−1 ,

x (s+ 1) =
(2�2−1)U1 (s)

(�−1)(1+�) + 2u�
√
U2 (s)− �

�−1 .

(117)

Computations with Maple 9 [27] using the previous equation allow to express

Fx�(s)

�(s)
and

Mx�(s)

�(s)
,

as rational functions of the variable x(s) depending only on integer powers of the functions

U1(s), U2(s), Fx�(s), Mx�(s), �(s), Mx (s) and  (s).

Summing up, we obtain Equation (109).
Notice that if � = 1, the result obtained is still valid since the singularity 1

�−1 appearing in (117) will be
automatically cancelled in the expressions of

Fx�(s)

�(s)
and

Mx�(s)

�(s)

after the computations.
□
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4.3 Fourth-order difference equations for modifications of the classical or-
thogonal polynomials

Theorem 10 is the key to the following fundamental result.

Theorem 11 Let (Pn) be a classical orthogonal polynomial system satisfying (92) and (P̃n) the orthogonal
polynomial system related to (Pn) by

P̃n(x(s)) = In,r,k(s)Pn+r(x(s)) + Jn,r,k(s)P
(1)
n+r−1(x(s)), (118)

where r and k are nonnegative integers, In,r,k(s) and Jn,r,k(s) are polynomials in the variable x(s) but not
depending on n for n ≥ k, i.e.

In,r,k(s) := Ir,k(s), Jn,r,k(s) := Jr,k(s) ∕= 0 for n ≥ k. (119)

Then, each P̃n satisfies a fourth-order difference equation of the factorized form

Gn,r,k(y(x(s)) =
[
Ãn,r,k(s)Fx + B̃n,r,k(s)Mx + C̃n,r,k(s)

]
× (120)

[Ar,k(s)Fx +Br,k(s)Mx + Cn,r,k(s)] y(s) = 0, n ≥ k,

where Ar,k(s), Br,k(s), Cn,r,k(s), Ãn,r,k(s), B̃n,r,k(s) and C̃n,r,k(s) are polynomials in the variable x(s)
whose degree does not depend on n.

This fourth-order difference equation can also be written as

Gn,r,k(y(x(s)) = [G4(s;n, r, k)FxFx +G3(s;n, r, k)MxFx +G2(s;n, r, k)Fx
+ G1(s;n, r, k)Mx +G0(s;n, r, k)] y(s) = 0, n ≥ k, (121)

where Gj(s;n, r, k), j = 0 . . . 4 are polynomials in the variable x(s) whose degree does not depend on n.

Proof: First, we use Equation (109) for n = n+ r and (118) to get

�(s) [A1(s)Fx +B1(s)Mx + C1(n+ r)]×[
P̃n(x(s))

Jr,k(s)
−
Ir,k(s)

Jr,k(s)
Pn+r(x(s))

]
(122)

= 2 � [D1(s)Mx + E1(s, n+ r)]Pn+r(s), n ≥ k.

Next, we combine the previous equation, the quotient rules (64)-(65) and Equation (92) (in order to eliminate
FxPn+r(x(s))) to obtain

[Ar,k(s)Fx +Br,k(s)Mx + Cn,r,k(s)] P̃n(x(s)) (123)

= [Dn,r,k(s)Mx + En,r,k(s)]Pn+r(x(s)), n ≥ k,

where the coefficients Ar,k(s), Br,k(s), Cn,r,k(s), Dn,r,k(s) and En,r,k(s) are polynomials, and functions of
the polynomials Ir,k(s), Jr,k(s), A1(s), B1(s), C1(n), D1(s) and E1(s, n+ r).

If we write
Q̃n+r(x(s)) = [Dn,r,k(s)Mx + En,r,k(s)]Pn+r(x(s)), n ≥ k, (124)

then using the result of Lemma 1 and the fact that Pn+r satisfies (109) for n = n+ r, we get

MxQ̃n+r(x(s)) = [Gn,r,k(s)Mx +Hn,r,k(s)] Pn+r(x(s)), n ≥ k, (125)

FxQ̃n+r(x(s)) =
[
G̃n,r,k(s)Mx + H̃n,r,k(s)

]
Pn+r(x(s)), n ≥ k, (126)
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where Gn,r,k(s), Gn,r,k(s), G̃n,r,k(s) and H̃n,r,k(s) are rational functions of the variable x(s). Equations
(124)-(126) which can be seen as a system of three linear equations with respect to the unknowns MxPn+r(x(s))
and Pn+r(x(s)) produce the second-order difference equation for Q̃n+r(x(s))∣∣∣∣∣∣∣∣∣∣

Dn,r,k(s) En,r,k(s) Q̃n+r(x(s))

Gn,r,k(s) Hn,r,k(s) MxQ̃n+r(x(s))

G̃n,r,k(s) H̃n,r,k(s) FxQ̃n+r(x(s))

∣∣∣∣∣∣∣∣∣∣
= 0, n ≥ k.

The previous equation after cancellation of the common denominator can be brought into the form[
Ãn,r,k(s)Fx + B̃n,r,k(s)Mx + C̃n,r,k(s)

]
Q̃n+r(x(s)) = 0, n ≥ k,

where Ãn,r,k(s), B̃n,r,k(s) and C̃n,r,k(s) are polynomials in the variable x(s) whose degree does not depend
on n. Combination of (123) and the previous equation produces Equation (120). Finally, (121) is derived from
(120) by simultaneous application of the product rules (55)-(56) and (62)-(63). □

4.4 Solutions of the fourth-order difference equations
In the following, we solve the fourth-order difference equation satisfied by the modifications of classical or-
thogonal polynomials in terms of the polynomials Pn and its corresponding function of second kind Qn.

Theorem 12 Under the hypothesis of Theorem 11, we have: The four linearly independent solutions of the
difference equation (120)

Gn,r,k(y(s) = 0, n ≥ k,

are

S1(s;n, r, k) = �(s) Jr,k(s)Pn+r(x(s)),

S2(s;n, r, k) = �(s) Jr,k(s)Qn+r(x(s)),

S3(s;n, r, k) =
[
Ir,k(s)− 
−1

0 �(s)Q0(x(s)) Jr,k(s)
]
Pn+r(x(s)),

S4(s;n, r, k) =
[
Ir,k(s)− 
−1

0 �(s)Q0(x(s)) Jr,k(s)
]
Qn+r(x(s)).

Proof: In the first step, we observe that because of the factorization in Equation (120), any solution of the
equation

[Ar,k(s)Fx +Br,k(s)Mx + Cn,r,k(s)] y(s) = 0, n ≥ k (127)

is also solution of (120).
In the second step, we also observe from the procedure we have used to construct Equation (120) that (using

(116) and (122))

[Ar,k(s)Fx +Br,k(s)Mx + Cn,r,k(s)] y(s) = 0

⇕

[A1(s)Fx +B1(s)Mx + C1(n+ r)]

{
y(s)

Jr,k(s)

}
= 0, n ≥ k

⇕

[�(s)Fx +  (s)Mx + �n+r]

{
y(s)

�(s) Jr,k(s)

}
= 0, n ≥ k.

Therefore, S1(s;n, r, k) and S2(s;n, r, k) are solutions of (127) and therefore of (120).
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In the third step, we use (118) and the relation

P (r)
n (x(s)) =

�(s)[Pr−1(x(s))Qn+r(x(s))−Qr−1(x(s))Pn+r(x(s))]


0 Γr−1

obtained from the fact that Pn+r, Qn+r and P (r)
n satisfy the second-order recurrence relation (see Theorem 9

and also [12]) to get
P̃n(x(s)) = S3(s;n, r, k) + 
−1

0 S2(s;n, r, k).

Here, Γr−1 and 
0 are given respectively by (16) and (112). Then, since P̃n(x(s)) and S2(s;n, r, k) are both
solutions of (120), it turns out from the previous equation that S3(s;n, r, k) is also solution of (120). Also,
S4(s;n, r, k) is another solution of (120) because it is obtained by replacing Pn+r by Qn+r in the expression
of S3(s;n, r, k) and the functions Pn+r and Qn+r satisfy the same second-order difference equation, namely
(92) for n = n+ r. We complete the proof by observing that the four solutions are linearly independent since
by means of (108), they enjoy different asymptotic behavior. □

For any modification of the classical orthogonal polynomials leading to a relation of type (12), we get
explicit expressions of the functions Sj(s;n, r, k), j = 1 . . . 4 in terms of �(s), Pn(x(s)) and Qn(x(s)). As
can be seen from the previous theorem, these solutions have the same structure for the difference equations
satisfied by modifications of all classical orthogonal polynomials. These solutions were given explicitly in our
previous works for the modifications of the very classical orthogonal polynomials. We therefore refer to these
three papers [11, 12, 13].

It should be mentioned that the fourth-order difference equation satisfied by the Laguerre-Hahn polynomi-
als orthogonal on special nonuniform lattices was derived in [7]. This result which is based on the properties
of the formal Stieltjes function of the corresponding functional [23] covers the modifications of the classical
orthogonal polynomials. However, it does not deal with factorization nor with the solutions of the difference
equation derived. Our approach, which uses the operators Fx, Mx, the Pearson-type equation for the orthogo-
nality weight and the second-order divided difference equation satisfied by the initial polynomials allows us to
factorize and solve the difference equations obtained and constitute a natural extension of the results obtained
for the very classical orthogonal polynomials [11, 12, 13].

Corollary 3 The four linearly independent solutions of the fourth-order divided-difference equations satisfied
by the rth associated classical orthogonal polynomials are

S1(s;n, r, 0) = �(s)Pr−1(x(s)Pn+r(x(s));

S2(s;n, r, 0) = �(s)Qr−1(x(s)Pn+r(x(s));

S3(s;n, r, 0) = �(s)Pr−1(x(s)Qn+r(x(s));

S4(s;n, r, 0) = �(s)Qr−1(x(s)Qn+r(x(s)).

This is obtained by combining the previous theorem, (15), (16) and (107).

Remark 5 The fourth-order divided-difference equation for the rth associated classical orthogonal polynomi-
als of a discrete variable on a nonuniform lattice given in Theorem 11 for nonnegative integer r is valid if r is
a positive real number. The four linearly independent solutions given in the previous corollary are still valid
but one should keep in mind that Pr and Qr in this cases represent the two linearly independent solutions of

�(x(s))Fxy(x(s)) +  (x(s))Mxy(x(s)) + �r y(x(s)) = 0

for the real number r [31]. This extension can be deduced following the method used for the rth associated
classical orthogonal polynomials of a continuous variable (see [12], Theorem 8).
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5 Specializations and applications
In this section, we mainly investigate the results obtained for specific values of the parameters �x, �x and �x
of the lattice x(s), namely those leading to the very classical orthogonal polynomials as already mentioned in
Subsection 3.2. We also give some applications.

5.1 Specializations
5.1.1 The classical orthogonal polynomials of a continuous variable

For
�x = 1, �x = 0 and �x = 0,

we have

Mx =
d

dx
, Fx =

d2

dx2
and U1(s) = U2(s) = 0.

Therefore, Relation (109) reads[
�(x)

d2

dx2
+ (2�′(x)−  (s))

d

dx
+ �n + �′′ −  ′

]
P

(1)
n−1(x) = (�′′ − 2 ′)P ′n(x).

This relation, which was first derived by Ronveaux [29], is the key to the derivation and solutions of the fourth-
order differential equations satisfied by modifications of the classical orthogonal polynomials of a continuous
variable. For more details, we refer to the paper [12] which appears now to be a particular case of the results
obtained in the framework of this work.

5.1.2 The classical orthogonal polynomials of a discrete variable on a linear lattice

For
�x = 1, �x = 0 and �x =

1

4
,

we have
x(s) = s, Mx =

1

2
(Δ +∇), U1(s) = 0, Fx = Δ∇, and U2(s) =

1

4
.

Therefore, Relation (109) reads{
(2�(s) + �′′ −  ′)Δ∇ + ( (s) + [Δ +∇]�(s))[Δ +∇] + �n + �′′ +  ′

}
P

(1)
n−1(x)

= (�′′ − 2 ′) Δ∇Pn(x).

The previous relation, due to Atakishiyev, Ronveaux and Wolf [6], has been used to derive the fourth-order
difference equations satisfied by the modifications of classical orthogonal polynomials of a discrete variable on
a linear lattice. We refer to the paper [11] for details about these equations as well as their solutions.

5.1.3 The q-classical orthogonal polynomials

For

�x =
q

1
2 + q

−1
2

2
, �x = �x = 0, with q ∕= 0, 1,

we have

x(s) = q±s, Fx = q2DqD 1
q
, Mx =

1

2
(Dq +D 1

q
), U1(s) = (�2

x − 1)x(s), and U2(s) = (�2
x − 1)x2(s)

and the corresponding families are the q-classical orthogonal polynomials.
For x(s) = qs, the relation (109) is equivalent to Equation (16) in [13] with the polynomial � replaced by

q2 �(x(s))− 1

2
(q − 1)x(s) (x(s)).

This relation which is due to Foupouagnigni, Ronveaux and Koepf [10] allowed in [13] to derive and solve the
fourth-order q-difference equation satisfied by the modifications of the q-classical orthogonal polynomials.
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5.1.4 The Askey-Wilson operator

Relations between Dx, Sx and the Askey-Wilson operator Dq
We establish relations between the operators Dx, Sx and the Askey-Wilson operator Dq and then use these
relations to state Theorems 1, 2 and 3 for the special case of the Askey-Wilson operator.

The Askey-Wilson operator Dq is defined as [4]

Dqf(x) =
�qf(x)

�qx
, x = cos �,

with
�qf

(
ei �
)

= f
(
q

1
2 ei �

)
− f

(
q−

1
2 ei �

)
.

The relation with Dx and Sx
For x = cos � = ei �+e−i �

2 , we set ei � = qs and obtain x := x(s) = qs+q−s

2 . The coefficients �, � and �
corresponding to this lattice are

� =
q

1
2 + q−

1
2

2
, � = 0, � = −(q − 1)2

4 q
. (128)

The operators Dx and Dq are related by

Dqf(x) =
f(x(s+ 1

2))− f(x(s− 1
2))

x(s+ 1
2)− (x(s− 1

2)
= Dx−1f(x−1(s)). (129)

As was the case for Dx and Sx, there is a need to define the companion operator forDq, namely the operator
Sq

Sqf(x) =
ℰ+
q f(x) + ℰ−q f(x)

2
, x = cos �, (130)

with
ℰ+
q f
(
ei �
)

= f
(
q

1
2 ei �

)
, ℰ−q f

(
ei �
)

= f
(
q−

1
2 ei �

)
.

This operator is related to Sx in the following way

Sqf(x) = Sx−1f(x−1(s)). (131)

The operators equivalent to Fx and Mx in this case are

ℱq = D2
q , ℳq = Sq Dq. (132)

Iteration of (129) and (131) give

D2
qf(x) = Dx−1Dx−2f(x−2(s));

S2
q f(x) = Sx−1Sx−2f(x−2(s)); (133)

SqDqf(x) = Sx−1Dx−2f(x−2(s));

DqSqf(x) = Dx−1Sx−2f(x−2(s)).

Using (129) and (131), one remarks that the operator Dq (respectively Sq) transforms a polynomial of degree n
in the variable x into a polynomial of degree n− 1 in x (respectively of degree n in x). Moreover, we have the
following theorems.

Theorem 13 The following statements hold.
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1. The operators Dq and Sq obey the following product rules:

Dq(f(x) g(x)) = Sqf(x)Dqg(x) +Dqf(x)Sqg(x); (134)

Sq(f(x) g(x)) = Sqf(x)Sqg(x) + V2(x)Dqf(x)Dqg(x), (135)

where

V2(x) =
(q − 1)2

4 q
(x2 − 1). (136)

2. The operators Dq and Sq also satisfy the quotient rules:

Dq
(
f(x)

g(x)

)
=
Sqf(x)Dqg(x)−Dqf(x)Sqg(x)

V2(x) [Dqg(x)]2 − [Sqg(x)]2
; (137)

Sq
(
f(x)

g(x)

)
=
V2(x)Dqf(x)Dqg(x)− Sqf(x)Sqg(x)

V2(x) [Dqg(x)]2 − [Sqg(x)]2
. (138)

Remark 6 For any integer n, the following relations hold

Dqxn =

(
�x+

√
(�2 − 1)(x2 − 1)

)n
−
(
�x−

√
(�2 − 1)(x2 − 1)

)n
2
√

(�2 − 1)(x2 − 1)
; (139)

Sqxn =

(
�x+

√
(�2 − 1)(x2 − 1)

)n
+
(
�x−

√
(�2 − 1)(x2 − 1)

)n
2

, (140)

where � is given by (128).

Theorem 14 The following relations hold:

Dq Sq = �Sq Dq + �xDq Dq; (141)

Sq Sq = �xSq Dq + � (�2 − 1) (x2 − 1)Dq Dq + I; (142)

ℱqℳq = (2�2 − 1)ℳq ℱq + 2� (�2 − 1)xℱq ℱq; (143)

ℳqℳq = �ℱq + 2� (�2 − 1)xℳq ℱq + (2�2 − 1)V2(x)ℱq ℱq, (144)

where � and V2(x) given by (128) and (135) respectively.

Remark 7 Theorem 13 and Proposition 6 for the operators ℱq andℳq (see (132)) are deduced from Theorem

5 and Proposition 5 by taking x(s) = x, � = 0, � = q
1
2 +q−

1
2

2 , with the operators Fx, Mx replaced respectively
by ℱq andℳq.

Theorem 15 Let f(x) and g(x) be two functions of the variable x satisfying respectively

D2
qf(x) + a1(x)SqDqf(x) + a0(x) f(x) = 0, D2

qf(x) + b1(x)SqDqf(x) + b0(x) g(x) = 0, (145)

where aj and bj are given functions of x.
Then, the product f(x) g(x) is a solution of a fourth-order divided-difference equation of the form

I4(x)D4
qy(x) + I3(x)Sq D3

qy(x) + I2(x)D2
qy(x) + I1(x)Sq Dqy(x) + I0(x) y(x) = 0

where Ij are functions of aj and bj . If the aj(x), j = 0, 1 and the bj(x), j = 0, 1 are rational functions of x,
then the coefficients Ij(x), j = 0 . . . 4 can be chosen to be polynomials in the variable x.

More generally, if fj , j = 1, . . . n are functions of the variable x such that any fj satisfies a linear divided-

difference equation of order rj involving only the operatorsD2
q and SqDq, then the product f =

n∏
j=1

fj satisfies

a divided-difference equation of order r =
n∏
j=1

rj involving only (at most) the operators

D2i
q and Sq D2j−1

q , with 0 ≤ 2 i ≤ r, and 0 ≤ 2 j − 1 ≤ 2 j ≤ r =

n∏
k=1

rk.
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As consequence of the previous theorem we state the following.

Corollary 4 If Pn(x) is a solution of a second-order divided-difference equation of hypergeometric form

�(x)D2
q y(x) +  (x)Sq Dq y(x) + �n y(x) = 0,

where � and  are polynomials of degree at most 2 and one respectively, then the product Pn(x)Pr(x) satisfies
a fourth-order divided-difference equation

I4(n, r, x)D4
qy(x)+I3(n, r, x)Sq D3

qy(x)+I2(n, r, x)D2
qy(x)+I1(n, r, x)Sq Dqy(x)+I0(n, r, x) y(x) = 0,

where the Ij(n, r, x) are polynomials whose degree doesn’t depend on n. Computations using computer
algebra software can allow to find explicitly the coefficients Ij(n, r, x) in terms of �,  and �n.

5.2 Applications
5.2.1 Special cases of classical orthogonal polynomials

The relation (109) allows to observe that when � = 0, the first associated P (1)
n−1 satisfies the second-order

difference equation
[A1(s)Fx +B1(s)Mx + C1(n)] y(s) = 0,

where the coefficients A1, B1 and C1 are those of (109). It turns out that the previous equation is of hyperge-
ometric type. Under certain conditions (on the parameters involved in the definition), the first associated of the
Askey-Wilson, the q-Racah and the Racah polynomials, remains classical. This property is not true in general
because the first associated of classical orthogonal polynomials is in general not classical but belongs rather to
the so-called Laguerre-Hahn class [22]-[24]. Similar results exist for the very classical orthogonal polynomials
[10, 29, 30]

Theorem 16 We have the following.

1. For a b c d = q, the first associated of the Askey-Wilson polynomials remains classical and is related to
the Askey-Wilson polynomials by

p̃(1)
n

(
x(s); a, b, c,

q

a b c
∣q
)

= un p̃n

(
ux(s);

u q

a
,
u q

b
,
u q

c
, u a b c∣q

)
, (146)

with u = ±1.

2. For �� q = 1, the first associated of the q-Racah polynomials remains classical and is related to the
q-Racah polynomials by

R̃(1)
n

(
x(s);�,

1

q �
, 
, �∣q

)
= (
 �)n R̃n

(
x(s)


 �
;

1

�
, � q,

1



,
1

�
∣q
)
. (147)

3. For � + � = −1, the first associated of the Racah polynomials remains classical and is related to the
Racah polynomials by

R̃(1)
n (x(s);�,−1− �, 
, �) = R̃n (x(s) + 
(�+ 1); � − �, 1 + �− �,−
, �) . (148)

Proof: For the Askey-Wilson polynomials, one obtains by direct computation using (111) and the data given
in Section 3.2.3 that

� =

(
�x  

′ − �′′

2

)
=

4(q − abcd)

1− q

with �x = q
1
2 +q−

1
2

2 and


n+1

(
a, b, c,

q

a b c
∣q
)

= 
n

(u q
a
,
u q

b
,
u q

c
, u a b c∣q

)
;

�n+1

(
a, b, c,

q

a b c
∣q
)

= u�n

(u q
a
,
u q

b
,
u q

c
, u a b c∣q

)
.
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The Relation (146) is obtained using the last two relations and the fact that p̃n+1 and p̃(1)
n satisfy the same

three-term recurrence relation. The proof of the identities (147) and (148) is obtained in the same way since

� =
2q(1− ��q

1− q
, �x =

q
1
2 + q−

1
2

2
;


n+1

(
�,

1

q �
, 
, �

)
= 
2 �2 
n

(
1

�
, �q,

1



,
1

�
∣q
)

;

�n+1

(
�,

1

q �
, 
, �

)
= 
 � �n

(
1

�
, �q,

1



,
1

�
∣q
)

and

� = 2(�+ � + 1), �x = 1;


n+1(�,−1− �, 
, �) = 
n(� − �, 1 + �− �,−
, �);
�n+1(�,−1− �, 
, �) = 
n(� − �, 1 + �− �,−
, �)− 
(�+ 1)

for the q-Racah and the Racah polynomials, respectively. □
Notice that relations such as (146)-(148) exist for very classical orthogonal polynomials. They were given in
references [15, 16], [3], [10] for Jacobi, Hahn and Big-q-Jacobi (and also Little-q-Jacobi) respectively.

5.2.2 Polynomial solutions of some difference equations

The product rules (55)-(56) and (62)-(63) can be used to look for polynomial solutions of difference equations
with polynomial coefficients involving only the operators Fx and Mx. For example, if A(s), B(s), C(s) and
D(s) are polynomials in the variable x(s), then the polynomial solution of the equation (if it exists)

A(s)Fxy(s) +B(s)Mxy(s) + C(s) y(s) = D(s)

can be found by writing

y(s) =
n∑
k=0

an,k x
k(s),

and solving the linear system obtained with respect to the unknowns an,k in terms of the coefficients of the
polynomials A(s), B(s), C(s) and D(s). This in the same way as for the usual differential equation since the
operators Fx and Mx transform a polynomial in the variable x(s) into a polynomial of the same variable. Using
the quotient rules, one can look for rational solutions of some difference equations with polynomial coefficients
in the same way. This approach can be used to look in general for analytic solutions (here we mean solutions
which can be expanded in power series in terms of the variable x(s)) of difference equations with polynomial
coefficients.

5.2.3 Steps forward towards the characterization of some classes of OP

In this work, we have derived diverse results for classical orthogonal polynomials in the same line as for those
of the very classical orthogonal polynomials. In the sequel, we have obtained many intermediate results such
as the product and quotient rules, the coefficients Dn,k, Sn,k, Fn,k, Mn,k, �n, Tn,1, Tn,2, �n and 
n. These
coefficients can be used for the implementation of codes in computer algebra relative to the classical orthogonal
polynomials on quadratic and q-quadratic lattices. They could also be used for the complete characterization
of the classical orthogonal polynomials. As illustration, for the very classical orthogonal polynomials, the ratio
Tn,k
Tn,k−1

is a rational function of n or qn depending on whether the variable is continuous, linear or q-linear
respectively. This is an equivalent characterization property for the very classical orthogonal polynomials
[1, 17]. But from the results obtained here, we observe that the ratio Tn,2

Tn,1
is a rational function of n and

qn (at the same time) for the q-quadratic lattice and for the basis (xn(s)). This is an indication for the
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complexity for the formulation of the characterization theorems for the classical (not very classical) orthogonal
polynomials. Summing up, we can conclude that the results obtained in this work constitute some important
steps forward towards the complete characterization of the classical orthogonal polynomials as well as that of
the semi-classical and the Laguerre-Hahn orthogonal polynomials of a discrete variable on nonuniform lattices
[24, 23].
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