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ABSTRACT

We seek to characterize how the change of global rotation rate influences the overall dynamics and
large scale flows arising in the convective envelopes of stars covering stellar spectral types from early
G to late K. We do so through numerical simulations with the ASH code, where we consider stellar
convective envelopes coupled to a radiative interior with various global properties. As solar-like stars
spin down over the course of their main sequence evolution, such change must have a direct impact
on their dynamics and rotation state. We indeed find that three main states of rotation may exist
for a given star: anti-solar-like (fast poles, slow equator), solar-like (fast equator, slow poles), or
a cylindrical rotation profile. Under increasingly strict rotational constraints, the latter profile can
further evolve into a Jupiter-like profile, with alternating prograde and retrograde zonal jets. We have
further assessed how far the convection and meridional flows overshoot into the radiative zone and
investigated the morphology of the established tachocline. Using simple mixing length arguments,
we are able to construct a scaling of the fluid Rossby number Rof = ω̃/2Ω∗ ∼ ṽ/2Ω∗R∗, which
we calibrate based on our 3-D ASH simulations. We can use this scaling to map the behavior of
differential rotation versus the global parameters of stellar mass and rotation rate. Finally, we isolate
a region on this map (Rof & 1.5− 2) where we posit that stars with an anti-solar differential rotation
may exist in order to encourage observers to hunt for such targets.
Subject headings: Stars: rotation; activity; convection

1. INTRODUCTION

Most solar-like stars possess a deep turbulent convec-
tive envelope. Understanding their dynamical and non-
linear properties is fundamental in order to characterize
the transport of heat, energy and angular momentum in
these stars. Of particular importance are the large-scale
flows, like the differential rotation and meridional circu-
lation, that are achieved in these turbulent convective en-
velopes. Indeed, such flows are considered as essential in-
gredients to explain stellar magnetism (Weiss 1994; Saar
& Brandenburg 1999; Jouve et al. 2010). For instance,
the differential rotation can convert poloidal magnetic
fields into toroidal fields via the so-called Ω-effect (Parker
1955a; Moffatt 1978). Such toroidal magnetic fields are
possibly at the origin of star spots (Parker 1955b). Fur-
thermore, the meridional circulation can transport both
the surface poloidal field from low latitudes to the pole
as well as the magnetic field at the base of the convec-
tive envelope in the so-called flux transport solar models
(Wang et al. 1989; Schrijver 2001; Charbonneau 2005;
Dikpati 2011; Brun et al. 2015a), some of which consider
self-consistent dynamo action.
Despite substantial efforts, there are still many un-

knowns related to how the large-scale flows and stellar
convection change with global stellar parameters such
as rotation Ω∗ and mass M∗. Over the years, several
observational campaigns have been pursued using either
ground based or space-born instruments, to derive useful
constraints on rotation of solar like stars (see for instance

the recent studies by Bouvier 2013; Reinhold & Reiners
2013; do Nascimento et al. 2014; Garcia et al. 2014; Rein-
hold & Arlt 2015, and references therein). What is clear
from these observational studies is that young solar-like
stars are fast rotators with rotational periods on the or-
der of days and old stars are slow rotators, with periods
closer to months. This trend of increasing rotation pe-
riod, or decreasing rotation rate Ω∗, is clearly seen on
the main sequence. Indeed, as was first suggested by
Skumanich (1972), it appears that Ω∗ ∝ t−1/2, with t
the stellar age.
We have a relatively good understanding about how

the rotational braking of solar-like stars occurs. It is due
to the continuous action of a stellar wind driven by ther-
mal pressure taking away mass and angular momentum
from the aging star (Parker 1958; Schatzman 1962; We-
ber & Davis 1967; Kawaler 1988; Matt et al. 2012). The
relation between stellar age and rotation has been termed
gyrochronology (Barnes 2003, 2010; Meibom et al. 2015)
and is a useful marker of stellar evolution. Note how-
ever that in their recent asteroseismic study with data
coming from the Kepler satellite, van Saders et al. (2016)
have questioned Skumanich’s law and the accuracy of gy-
rochronology for solar-like stars older than the Sun (e.g.,
t > 4.5Gyr), but these techniques have their own accu-
racy issues (Aigrain et al. 2015). Associated with this
decreasing influence of rotation is a lower level of stellar
activity (Wilson 1978; Noyes et al. 1984; Pizzolato et al.
2003; Reiners 2012), also called magnetochronology (Vi-
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dotto et al. 2014; Folsom et al. 2016). There is thus a
positive feedback loop between rotation, magnetism and
wind in solar-like stars that is also important to char-
acterize (Brown 2014; Meibom et al. 2015; Matt et al.
2015; Réville et al. 2015).
It is to be expected that the global rotation rate of a

star will influence its large-scale mean flows. How those
flows vary with rotation rate is still poorly known. Ob-
servational studies of large-scale flows in solar-like stars
are rare and even less accurate than studies of the stel-
lar rotation rate itself. Most studies have focused on the
surface differential rotation, for the meridional circula-
tion is too weak to be detected. However, several in-
teresting trends for the differential rotation in solar-like
stars have been uncovered (Donahue et al. 1996; Barnes
et al. 2005; Collier Cameron 2007; Saar 2009). First,
the observed differential rotation ∆Ω appears to increase
with stellar mass, or more precisely with a higher effec-
tive temperature. Second, some variations of the surface
differential rotation have been found with rotation rate:
∆Ω ∝ Ωn

∗ , with n a positive exponent. However, ob-
servers currently disagree on the exact value of the expo-
nent n. Donahue et al. (1996), Messina & Guinan (2003),
Saar (2009) advocate for a value close to 0.6-0.7, whereas
Barnes et al. (2005) and Collier Cameron (2007) argue
for a much smaller value around 0.15, implying only a
weak dependence on Ω∗. Studies based on asteroseismic
data have more recently started providing trends that
somewhat lie in between whose values (n ∼ 0.3 in Rein-
hold & Gizon (2015); see also (Reinhold & Reiners 2013;
Garcia et al. 2014; Rauer et al. 2014; Reinhold & Gizon
2015; Balona & Abedigamba 2016)). Actually, Balona
& Abedigamba (2016) even propose that the exponent n
is different for each spectral types, confirming a strong
dependency of the differential rotation amplitude with
effective temperature, massive stars having larger shear.
Theoretical interpretation are thus in order to explain
those seemingly different trends.
Another physical property of key interest in solar-like

stars is the extent and amount of overshooting at the base
of their convective envelope, where surrounding layers of
extra mixing are triggered by convective plumes at the
boundaries of convection zones (Roxburgh 1978; Zahn
1991). It is quite unknown how the overshoot of convec-
tion varies with global stellar parameters such as mass
or rotation rate, yet it has a direct impact on mixing and
transport of chemicals and magnetic fields. The amount
and extent of overshooting is usually chosen to be propor-
tional to the local pressure scale height and to be a small
fraction of the convective heat flux (Maeder & Meynet
1989; Zahn 1991; Browning et al. 2004). Those model pa-
rameters are often calibrated using stellar isochrones to
match observations of surface chemical abundances (see
for instance Meynet et al. (1993)). However, it has been
shown that the overshooting depth can be overestimated
if the stellar models used to compute the isochrones are
neglecting other physical processes such as rotational
mixing (Ekström et al. 2012). Hence, we must find com-
plementary means to constrain stellar overshooting.
It is extremely difficult to observationally infer infor-

mation about the meridional circulation and overshoot-
ing layers in stars, and the observational data for sur-
face differential rotation are often inadequately robust.
Hence, theoretical developments and numerical simula-

tions are useful to help characterize the large-scale mean
flows and to assess the degree of coupling between con-
vection and radiative zones. For instance, multi-cellular
meridional flows, which are now confirmed to exist within
the Sun using local helioseismic analysis (Haber et al.
2002; Mitra-Kraev & Thompson 2007; Zhao et al. 2013),
have been the natural outcome of solar convection 3-D
simulations for many years (Miesch et al. 2000; Brun &
Toomre 2002; Aurnou et al. 2007; Käpylä et al. 2011;
Gastine et al. 2013; Guerrero et al. 2013; Featherstone
& Miesch 2015), long before they became accepted as a
plausible solar flow pattern by the community.
Thus, along side observational campaigns, several

groups have attempted to make progress in understand-
ing rotating convection and the establishment of large-
scale flows in stars through numerical simulations. Many
of these groups have benefited from the pioneering work
of Gilman & Glatzmaier where they modeled the largest
scales in the Sun’s convection zone (see the series of pa-
pers listed in Glatzmaier & Gilman 1982). For such
simulations, a full spherical geometry is required since
we wish here to characterize a star’s global-scale flows.
Such global-scale simulations of stellar convection have
been performed using various numerical codes based on
either finite volumes or on spectral methods (see Brun
et al. 2015b, and references there in for a recent review).
These various anelastic codes, such as ASH (Clune et al.
1999), have been benchmarked internationally (Jones
et al. 2011). They generally agree on the main properties
of global rotating convection when identical setups and
nondimensional numbers are chosen. These codes have
been used to simulate very different type of stars: from
massive ones (Browning et al. 2004; Featherstone et al.
2009; Augustson et al. 2016) to dwarf stars (Dobler et al.
2006; Browning 2008) and of course solar-like ones (Bal-
lot et al. 2007; Brown et al. 2008; Bessolaz & Brun 2011;
Matt et al. 2011; Käpylä et al. 2011; Augustson et al.
2012; Guerrero et al. 2013; Fan & Fang 2014; Karak et al.
2015). It is found that large-scale flows are sensitive to
the intensity of the convective driving and to the rotation
rate of the simulation. Yet almost none of these studies
have systematically taken into account the coupling to a
stably stratified interior (see Miesch et al. 2000; Guerrero
et al. 2016, for counter-examples) and/or looked at the
influence of the aspect ratio of the convection zone on
the resulting convection and its mean flows, as we have
simultaneously done in this work.
Another very important motivation for running global

convection simulations is to understand stellar mag-
netism. This implies the need to compute non-ideal
magnetohydrodynamic (MHD) simulations of magne-
tized convection. In particular, the focus of many of
these simulation has been to find and understand how
convective dynamo solutions can become cyclic and to
further analyze them in terms of mean-field dynamo the-
ory. Recently, significant progress has been made in that
direction with many global MHD solutions now possess-
ing a cyclic behavior. We refer to the following recent
papers for a discussion of stellar magnetism and how it
may arise (see for instance Brun et al. 2004; Browning
et al. 2006; Ghizaru et al. 2010; Brown et al. 2010, 2011;
Racine et al. 2011; Käpylä et al. 2012; Augustson et al.
2013; Käpylä et al. 2013; Nelson et al. 2013; Fan & Fang
2014; Karak et al. 2015; Augustson et al. 2015; Lawson
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et al. 2015; Simitev et al. 2015; Guerrero et al. 2016).
InVarela et al. (2016), we have started computing and
studying the MHD equivalent to the 15 simulations here,
which cover four mass bins and several rotation rates.
In this paper, we report on novel 3–D numerical ex-

periments in spherical geometry designed to investigate
how the complex, nonlinear dynamics occurring in the
convective envelope of solar-like stars changes with stel-
lar parameters such as mass and rotation rate. Our ap-
proach differs from other recent studies listed above by
taking into account the dynamical influence of a deep
and stable radiative interior. It is complementary to the
study of Guerrero et al. (2013), since we further consider
various aspect ratios and stellar spectral types. We also
propose a model that utilizes a simple mixing length the-
ory scaling to identify the possible states of differential
rotation for various stellar spectral types. This model
is then calibrated using the set of 15 models discussed
below.
The paper is organized as follows. In §2, we derive

a scaling relationship for the Rossby number based
on mixing length arguments. In §3 we describe our
equations, numerical models, and the various ingredients
employed to model four stars of differing spectral type
at a selection of rotation rates. In sections 4, 5, and
6, we discuss the properties of convection, penetration,
and the large-scale flows of our models as well as derive
scaling relationships for all key quantities. In §7, we
perform a detailed analysis of angular, energy, and heat
transport in our simulations. Finally, we conclude in §8.

2. HINTS FROM MIXING LENGTH THEORY FOR STATES
OF STELLAR DIFFERENTIAL ROTATION

It is worth noting that one can already guess by using
simple mixing length scaling and 1-D stellar structure
models the outcome of the simulations in terms of the
overall surface differential rotation by distinguishing two
states: fast vs slow equator rotation. Our 3-D numerical
simulations are key as they will help us characterizing the
differential rotation profile as a function of depth (and
latitude) and how the coupling to a radiative interior
may tilt the iso-contour of omega by so-called thermal
wind effect (Miesch et al. 2006).
One can make an educated guess of the differential

rotation state realized in a star, by evaluating the con-
vective velocity from mixing length arguments (Kippen-
hahn & Weigert 1994; Augustson et al. 2012; Brun et al.
2015a):

v = c1

(
L∗

ρbczR2
∗

)1/3

(1)

with the typical values taken for the stellar luminosity,
radius, and density at the base of the convection zone
listed in Table 1 for the stellar spectral range consid-
ered in this study, and with c1 a proportionality fac-
tor. Classical stellar evolution indicates that L∗ ∼ M4

∗

and R∗ ∼ M0.9
∗ (Kippenhahn & Weigert 1994). Assum-

ing that ρbcz ∼ Mn
∗ , with n < 0 but undetermined for

now, one directly sees that v ∼ M
(2.2−n)/3
∗ . Regression

fits to the values listed in Table 2 allow us to obtain a
scaling for ρbcz, and so we can refine the stellar mass
dependence of L∗ and R∗. In particular, we find that

ρbcz ∼ M−6.9
∗ , L∗ ∼ M4.6

∗ , and R∗ ∼ M1.3
∗ . Replacing

these scalings in equation 1, yields v ∼ M3
∗ . As ex-

pected, more massive stars have faster convective flows.
Knowing how v is expected to scale with stellar mass, we
can now compute an approximated fluid Rossby number
Rof = v/2Ω∗R∗ = c1M

1.7
∗ /Ω∗ as a function of the stel-

lar rotation rate Ω∗. We choose to use the fluid Rossby
number instead of the stellar or convective ones. We de-
fer the reader to Appendix B for a further discussion of
the various definitions of Rossby numbers.
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Figure 1. Rossby number as a function of stellar rotation and
mass as deduced from mixing length theory, assuming a constant
c1 = 0.7.

In Figure 1, we display the fluid Rossby number as a
function of stellar rotation rate and mass. One can easily
identify 2 regimes separated by the Rossby equals 1 white
line: small Rossby number (. 0.66) and large Rossby
number (& 1.5). From the various studies published over
the last decade (Ballot et al. 2007; Brown et al. 2008;
Bessolaz & Brun 2011; Augustson et al. 2012; Takehiro
et al. 2013; Gastine et al. 2014b; Käpylä et al. 2014), it is
clear that simulations of rotating convective shells with
small Rossby numbers often possess fast prograde flows
at the equator and slowly rotating poles, possibly ressem-
bling a solar-like differential rotation. In contrast, those
simulations with a large Rossby number typically have
retrograde flows at the equator and fast rotatin polar re-
gions e.g. something like an anti-solar-like differential ro-
tation. With 0.66 . Rof . 1.5, it is more difficult to an-
ticipate the result given the crudeness of our derivation,
but one may expect that for Rof & 1 the simulation will
likely be slowly rotating at the equator. In the remain-
der of the paper we will use the following terminology for
characterizing differential rotation profile: solar-like will
mean fast equator, slow poles, anti-solar like will mean
slow equator and fast poles, cylindrical, will mean that
the iso-contours of Ω(r, θ) are constant along cyclinders
aligned with the rotation axis and Jupiter-like differen-
tial rotation will mean that the profile is cylindrical but
non monotonic, with alternance of prograde and retro-
gade jets. Analyzing this figure further, one might expect
that a 1.1 solar mass star could be anti-solar-like at a ro-
tation rate around the solar rate. Such a state may also
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occur for respectively 0.9, 0.7 and 0.5 solar mass stars at
rotation rates around 0.6, 0.4, and 0.25 times the solar
rate. One also sees that for a solar-mass star the solar
rotation rate corresponds to a Rossby number less than
unity and hence it likely has prograde equatorially, as
observed. In the following, we will characterize further
the profile of differential rotation and compare the out-
come of nonlinear 3-D numerical simulations of rotating
convection with this simple analysis based on the mixing
length. We will in particular show that for low values
of the Rossby number, there is a shift from a conical
to cylindrical profile, where this third state is akin to
Jupiter’s alternating zonal jets.

3. MODELLING STARS IN 3-D WITH ASH

We present the simulation setup used to model the
various spectral type stars considered in our study with
the ASH code.

3.1. Model Equations

We use the ASH code (see Clune et al. 1999; Miesch
et al. 2000; Brun et al. 2004) to model solar-like stars
with mass ranging from 0.5 to 1.1 M⊙. The domain of
each of these simulations is large enough to encompass
both a portion of the deep radiative zone and most of
the overlying convective envelope that is representative
of the targeted star. Hence, we are self-consistently cap-
turing the nonlinear interactions that seamlessly couple
those two zones. ASH solves the full set of 3–D anelastic
equations of motion in a rotating, convective and radia-
tive spherical shell utilizing massively-parallel computing
architectures. These equations are fully nonlinear in the
velocity variable. However, under the anelastic approxi-
mation, the thermodynamic variables are linearized with
respect to a spherically symmetric and evolving mean
state having a density ρ̄, pressure P̄ , temperature T̄
and specific entropy S̄. Fluctuations about this refer-
ence state are denoted by ρ, P , T , and S. The resulting
equations are (Glatzmaier 1984; Clune et al. 1999):

∇ · (ρ̄v)=0, (2)

∂v

∂t
+ (v ·∇)v=−∇̟ − S

cp
g − 2Ω∗ × v (3)

−1

ρ̄
∇ ·D− [∇ ¯̟ + ¯̟∇ ln ρ̄− g],

ρ̄T̄
∂S

∂t
+ ρ̄T̄v ·∇(S̄ + S) = ρ̄ǫ

+∇ · [κrρ̄cp∇(T̄ + T )+κρ̄T̄∇S + κ0ρ̄T̄∇S̄] (4)

+2ρ̄ν
[
eijeij − 1/3(∇ · v)2

]
,

where v = (vr, vθ, vφ) is the local velocity in spherical
coordinates in the frame rotating at constant angular
velocity Ω∗, g is the gravitational acceleration, cp is the
specific heat per unit mass at constant pressure,̟ = P/ρ̄
is the reduced or kinematic pressure, κr is the radiative
diffusivity, and D is the viscous stress tensor. The com-
ponents of D are given by

Dij = −2ρ̄ν[eij − 1/3(∇ · v)δij ] , (5)

where eij is the strain rate tensor, and ν, κ and κ0 are
effective eddy diffusivities. A volumetric heating term ρ̄ǫ

is also taken into account to mimic generation of energy
by nuclear reactions. The nuclear reactions are mod-
elled very simply by assuming that ǫ = ǫ0T̄

nc . By en-
forcing that the integrated luminosity of the star match
its known surface value, we can determine ǫ0 and nc as
listed in Table 7. Note that only M05 and M07 series
of models require that heating source term since their
computational domain include a portion of the nuclear
energy generation core. Here we solve the energy con-
serving anelastic equations, which have a momentum
equation (3) that takes a slightly different form than the
compressible Navier-Stokes equations. These anelastic
equations have been shown to properly conserve energy
in both convection zones and stably-stratified regions like
the tachoclines that we study here (Brown et al. 2012;
Vasil et al. 2013).
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Figure 2. Top panel : Typical radial profile of kinematic viscosity
and thermal diffusivity. Bottom panel : Radiative diffusivity [κr]
profiles of the four models, fitted from stellar models computed
with the CESAM code.

To complete the set of equations, we use the linearized
equation of state

ρ

ρ̄
=

P

P̄
− T

T̄
=

P

γP̄
− S

cp
, (6)

where γ is the adiabatic exponent, and assume the ideal
gas law

P̄ = Rρ̄T̄ , (7)

where R is the gas constant. The reference state
is derived from a 1–D solar structure model (Brun
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et al. 2002, cf. §3.2) and is continuously updated with
the spherically-symmetric components of the thermody-
namic fluctuations as the simulation proceeds. It begins
in hydrostatic balance so the bracketed term on the right-
hand-side of equation (3) initially vanishes. However, as
the simulation evolves, turbulent pressure drives the ref-
erence state slightly away from hydrostatic balance.
Due to limitations in computing resources, no simula-

tion achievable now or in the near future can hope to di-
rectly capture all scales of stellar convection from global
to molecular dissipation scales. The simulations reported
here resolve nonlinear interactions among a large range
of scales both in the convective and radiative zones. The
nonlinear coupling of the two zones plus the use of a
realistic stratification in the radiative interior is what
sets these 3-D global simulations of solar-like stars apart
from previous work. Motions and waves must exist in
the solar-like stars on scales smaller than our grid reso-
lution. In this sense, our models should be regarded as
large-eddy simulations (LES) with parameterizations to
account for subgrid-scale (SGS) motions.
Thus the effective eddy diffusivities ν, κ and κ0 rep-

resent momentum and heat transport by motions which
are not resolved by the simulation. They are allowed
to vary with radius but are independent of latitude and
longitude, and vary only slightly with time for a given
simulation as the reference density evolves. Their am-
plitudes and radial profiles are varied depending on the
resolution and objectives of each simulation. In the sim-
ulations reported on here, the radial profiles of ν and κ
are given by

ν(r) = νbot + νtopfstep(r), (8)

where

fstep(r) = (ρ̄/ρ̄top)
α[1− β]f(r),

f(r)= 0.5(tanh((r − rt)/σt) + 1),

β = νbot/νtop = 10−3,

and with νtop in cm2 s−1 and rt and σt in cm are given in
Table 7 (see Appendix), α is -0.5 for all cases. All mod-
els assumed a Prandtl number of 0.25, such that κ can
be directly obtained from the amplitude and profile of ν.
These tapered profiles are chosen in order to take into ac-
count the much smaller sub-grid scale transport expected
in the convectively stable radiative interior. Their profile
is shown in Figure 2.
To maintain a high degree of supercriticality of the

convective instability in our simulations, we have low-
ered the diffusivities as we increase the rotation rate (see
Table 7). We have chosen to scale νtop ∝ 1/Ω0.5

∗ . This
is a compromise between keeping the diffusivity constant
but making the convective patterns too laminar and the
exact scaling as ∝ 1/Ω2

∗ which would otherwise implies
too wide a parameter range to cover given our computer
resources.
The diffusivity κ0 is set such as to have the unresolved

eddy flux carrying the stellar flux (which depends on the
spectral type considered see Table 1) outward at the top
of the domain (see Figure 6). It drops off exponentially
with depth in order to avoid a large inward heat flux in
the stable zone (see Miesch et al. 2000; Brun et al. 2011;
Alvan et al. 2014). Of course there is some arbitrariness

in choosing the exact shape and amplitude of our diffu-
sivity profiles and we optimize their profiles such as to
limit their influence on the results reported here.
The velocity and thermodynamic variables are ex-

panded in spherical harmonics Yℓm(θ, φ) for their hor-
izontal structure and in Chebyshev polynomials Tn(r)
for their radial structure (see Glatzmaier 1984; Clune
et al. 1999, for more details on the numerical method
and anelastic approximation).
Given that the convective and radiative zones are non-

linearly and dynamically coupled, internal waves can eas-
ily be excited by the pummeling of convective plumes on
top of the radiative interior (Brun et al. 2011; Alvan et al.
2014). The Brunt-Väisälä frequency N of the models
are very close to that deduced from 1–D stellar mod-
els computed with the CESAM code (Morel 1997; Brun
et al. 2002, see Figure 4). The transition at the base of
the convective envelope has just been slightly soften, as
can be seen in the Figure 4 when comparing solid and
dash lines. We are thus expecting the propagation of the
internal waves to be realistic, aside from the shallower
cavity due to our choice of rbot 6= 0 and the enhanced
thermal and viscous diffusion present in the model that
translates into an enhanced damping (Zahn et al. 1997).
While present in the simulations, we will not study in de-
tails the internal waves and their spectra in this paper.
We choose instead to focus our study on convection and
the generation and maintenance of the large-scale mean
flows and how they vary as a function of spectral type.
As shown in Alvan et al. (2014), fully spherical models
are more adequate to realistically model internal waves
and gravity modes, but they are much more expensive
to run, which makes a comprehensive parameter study
impractical.
In order to ensure that the mass flux remains diver-

genceless, we use a toroidal–poloidal decomposition as:

ρ̄v = ∇×∇× (W êr) +∇× (Zêr) . (9)

This system of hydrodynamic equations requires 8
boundary conditions in order to be well-posed. Since
assessing the angular momentum redistribution in our
simulations is one of the main goals of this work, we
have opted for torque-free velocity conditions:

1. impenetrable top and bottom: vr = 0|r=rbot,rtop

2. stress free top and bottom:
∂
∂r

(
vθ
r

)
= ∂

∂r

( vφ
r

)
= 0|r=rbot,rtop

3. constant entropy gradient at top and bottom:
∂S̄
∂r = a|r=rbot and b|r=rtop

the values of a and b depend on the modelled star (see
Table 7).

3.2. Numerical Experiments

Our numerical model is a simplified portrayal of con-
vection and radiative zones in solar like-stars: typical val-
ues deduced from 1-D stellar evolution models are taken
for the heat flux, rotation rate, mass and radius, and a
perfect gas is assumed (Morel 1997). The anelastic ref-
erence state is based on a 1–D standard stellar structure
model discussed in Brun et al. (2002). We list the main
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Figure 3. Radial profile of the mean density, pressure and temperature in the four main class of models. The color correspond to the
stellar mass (0.5 in red, 0.7 in yellow, 0.9 in green and 1.1 M⊙ in blue). Solid lines represent the 1-D structure used in the 3-D model, the
dash lines the profile from the stellar structure model computed with the CESAM code (Morel 1997; Brun et al. 2002).

Figure 4. Typical radial profile of the mean entropy gradient as realized in case M07R1. Solid lines represent the 1-D structure used in
the 3-D model, the dash lines the profile from the stellar structure model computed with the CESAM code (Morel 1997; Brun et al. 2002).
Right: Zoom of the mean entropy gradient at the base of the convective envelope for each main class of models. Color code is the same as
in Figure 3
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Figure 5. Luminosity, effective temperature and depth of the convection zone in 1-D stellar model computed with the CESAM code
(Morel 1997; Brun et al. 2002) used to set up the background state of the 3-D ASH simulations. Left: × marks models chosen and lines
show variation with mass. Right: × marks Rin and Rout for each of the 4 model masses.

stellar parameters in Table 1. We also show in Figures
3 and 4 the density, pressure, temperature and entropy
gradient radial profiles used for the four stellar spectral

types studied. We initialize the reference state of the 3–
D model by specifying the entropy gradient dS̄/dr and
gravitational acceleration g based on the 1–D model. The
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Table 1
Global properties on the main sequence of the 4 stars used in our ASH models

Mass Radius L∗ Teff Sp. T. Mbcz Rbcz T̄bcz ρ̄bcz ∆cz ρ̄ ∆f ρ̄

(M⊙) (R⊙) (L⊙) (K) (M⊙,M∗) (R⊙, R∗) (K) (gcm−3) - -

0.5 0.44 0.046 4030 K7 0.18, 0.36 0.25,0.56 4.3× 106 14.0 42 193
0.7 0.64 0.15 4500 K4/K5 0.079, 0.11 0.42,0.66 3.0× 106 2.1 50 605
0.9 0.85 0.55 5390 G8 0.042, 0.046 0.59,0.69 2.6× 106 0.51 67 1013
1.1 1.23 1.79 6030 G0 0.011, 0.010 0.92,0.75 1.6× 106 0.048 81 830

All the listed values were computed with the CESAM stellar evolution code (Morel 1997). We adopt M⊙ = 1.989 × 1033 g, R⊙ =
6.9599× 1010 cm, and L⊙ = 3.846× 1033 erg · s−1. The density ratios ∆cz ρ̄ and ∆f ρ̄ are evaluated by forming the ratio between the value
of the density respectively at the base of the convection and the top of the domain and at the bottom and the top of the domain.

Table 2
Parameters for the Stellar ASH Models

Mass Rbot Rtop Rcz Name Rotation Ω∗

(M⊙) (R∗) (R∗) (R∗) (Ω⊙)

0.5 0.13 0.95 0.56 M05 S 0.125
M05 R1 1
M05 R3 3
M05 R5 5

0.7 0.32 0.97 0.66 M07 S 0.3
M07 R1 1
M07 R3 3
M07 R5 5

0.9 0.38 0.97 0.69 M09 S 0.5
M09 R1 1
M09 R3 3
M09 R5 5

1.1 0.50 0.97 0.75 M11 R1 1
M11 R3 3
M11 R5 5

Rbot, Rtop and Rcz correspond respectively to the bottom, top and
base of the convection envelope radii.

steep negative entropy gradient near the stellar surface
is artificially suppressed to avoid the driving of small-
scale convective motions that cannot be resolved in this
model. We then solve the equation of hydrostatic bal-
ance for the reference density ρ̄ with a Newton-Raphson
method, assuming an ideal gas equation of state and us-
ing the density profile of the 1–D structure model as an
initial guess to initiate the iterative solve. The result-
ing reference state is close to the stellar structure model,
with slight departures due to the modified entropy pro-
file in the convection zone and the ideal gas equation of
state. Similarly, the radial profile of the radiative dif-
fusivity κr is based on the 1–D stellar structure model,
slightly adjusted to accommodate the small changes be-
tween the reference state and the structure model and
later on to compensate for the inward enthalpy flux at
the base of the convection zone. The radial profiles of κr

are shown in Figure 2 for all four stellar models.
Thus the departure of the reference entropy gradient

from the stellar structure model near the top of the con-
vection zone evident in Figure 4b is largely imposed.
However, the departure near the base of the convection
zone is established by the convection itself, as downflow
plumes deposit low entropy material just before entering
the stable radiative zone. The initial reference state in

this region follows more closely the 1–D structure model.
The computational domain for each of the 4 stellar

masses considered is listed in Table 7 and shown in Figure
5. All models use a numerical resolution of Nr × Nθ ×
Nφ = 770 × 256 × 512. The depth of the convection
zone rbcz is defined by the change of sign of the initial
mean entropy gradient dS̄/dr, and it is listed in Table 2.
This depth is slightly modified by the convective motions
as the simulation evolves and matures. We also list the
density contrasts both in the convective envelope and
over the whole radial extent of the domain. We note
that several scale heights are present in the convective
envelope and that overall the models have large density
contrasts. The resolution at the base of the convection
zone is δr = 1.5× 10−3 R∗.

4. CONVECTION IN SPHERICAL SHELLS OF VARIOUS
ASPECT RATIOS AND ROTATION RATES

Once the 1-D structure of the model is established, a
3-D random perturbation of the entropy field is intro-
duced such as to trigger the convective instability. Our
simulations begin with a Rayleigh number of the order of
∼ 106 to 107, which is substantially larger than the crit-
ical Rayleigh number that is typically about 104 for the
value of the Taylor numbers used here (see Jones et al.
2009). Following a linear phase of exponential growth,
the convective instability non linearly saturates by reduc-
ing the entropy gradient in the bulk of the domain except
for intense thermal boundary layers created near the sur-
face and at the base of the convective envelope. After
several convective overturning times the radial transport
of energy reaches an equilibrium as shown in Figure 6.
As can be seen, the enthalpy flux, due to the correlation
between radial velocity and temperature fluctuations, is
dominant throughout the convective zone. It peaks near
the surface where the negative (radially-inward) kinetic
energy flux forces it to become locally greater than the
stellar luminosity. At the bottom of the convective en-
velope, we note the presence of a negative enthalpy flux
associated with overshooting. This requires some adjust-
ment of the radiative diffusivity near the base of the con-
vective envelope is necessary to ensure the full transport
of the stellar luminosity, as is shown in the right panel
of Figure 6. Such adjustment is done for all models (as
in Brun et al. 2011). We will discuss in more details the
properties of the overshooting layer in section § 4.2.
In the model shown in Figure 6, the luminosity L(r)

increases from the lower boundary until it reaches L∗.
This is due to the presence of a volumetric heating source
that mimics the production of internal energy by nuclear
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Figure 6. Radial flux balance for model M05R1 before and after the adjustment of the radiative diffusivity κrad in order to ease the
thermal relaxation of the simulations and compensate for convective overshooting at the base of the convective envelope.

reactions. Only the stellar models with masses of 0.5 and
0.7 M⊙ have such a heating source term as the models
are deep enough that they include part of the nuclear
core in their radiative zone.

4.1. Convective patterns

The development of the convective instability in the
spherical shells leads to the classical network of downflow
lanes surrounding broad upflows as can be seen in Figure
7. As the rotation rate increases (from top to bottom)
we note that a higher azimutal wavenumber m character-
izes the convection. We clearly see that there are more
downflow lanes near the equator, which are narrower,
and smaller convective patches in the polar caps. At
the fastest rates convection can be longitudinally modu-
lated at low latitude, even exhibiting the so-called active
nests of convection (Brown et al. 2008). Such active nests
dominate the local transport processes and imprint their
motions onto the top of the radiative zone. Except for
the localized convective patterns, their overall behavior is
consistent with models having a Rof < 1, e.g. Reynolds
stresses accelerate the equator (see Sections 5.1 and 7.1).
Notice that the low-latitude downflow lanes are bent

into a banana-like shape, with its retrograde tails occur-
ring at mid-latitudes. This is consistent with the statis-
tical correlation of the radial and longitudinal motions
that produce an efficient angular momentum transport
through Reynolds stresses, as will be discussed in § 5 and
§ 7.1. The slowly rotating cases show a modest deflec-
tion in the opposite direction due to the prograde, high-
latitude shear of the differential rotation that modifies
the structure of the convective motions. At the low ro-
tation rates of cases M05 S, M07 S, M09 S (not shown),
and M11 R1, the convective patterns look more alike
at all latitudes, much like a soccer-ball, and the mean
flows are more randomly oriented. As demonstrated in
Chandrasekhar (1961); Brun & Palacios (2009), at low
rotation rate a dominant ℓ = 1 mode develops, as is
clearly seen in the fluctuating temperature field. It wob-
bles around, making longitudinal averages hardly mean-
ingful.
As anticipated in our introduction of a Rossby num-

ber scaling based on mixing length theory arguments,
our numerical simulations show that for higher mass the

convective rms velocity increases. For instance, going
from about 10 ms−1 in a 0.5M⊙ star to hundreds of
meters per second in a 1.1M⊙ star (see Table 3). The
convective velocity amplitude realized in the 3-D mod-
els are higher than those evaluated using mixing length
theory. This difference (of order 10-20%) in the model
presented in this study is due to the inward kinetic en-
ergy flux found in the models that results in a slightly
overluminous convective enthalpy flux and hence larger
convective velocity (which we recall scales like ∼ 3

√
L∗,

see section 2). This is a well documented physical mech-
anism in 3-D compressible turbulent convection whose
amplitude depends on both turbulence degree and strat-
ification, see for instance discussion in (Cattaneo et al.
1991; Brun & Palacios 2009). We also note that as the
rotation rate is increased the fluctuating rms velocity
decreases due to a slightly decreased super-criticality of
the system, whereas the full rms velocity increases due
to the presence of a differential rotation. When consid-
ering only the fluctuating rms velocity, the flow field is
found to be close to isotropy (ṽ′r, ṽ

′
θ and ṽ′φ of the same

order). Note that for ṽr and ṽθ, the weak meridional cir-
culation does not make much difference between the full
and fluctuating components of the rms velocity. This
is of course not true for ṽφ, which increases due to the
differential rotation.
We also see that as the mass increases (from left to

right in Figure 7), the convective flows are less con-
strained by rotation. This is clearly seen by compar-
ing their respective Rossby number. In Table 4, we list
three different flavors of this important number (see Ap-
pendix), and they each show that, for an identical ro-
tation rate, the more massive stars possess the largest
Rossby number, and thus the lowest level of rotational
influence. Still, for a fixed Rossby number, we found that
models of the more massive stars exhibit smaller con-
vective patterns, which is likely due to their shallower
convective zones.
The time dependence of the convective flow is very rich

with continuous emergence, merging, cleaving of the con-
vective cells and strong vortical downflows at the inter-
stices of the downflow lanes for the low Rossby number
cases. A clear advection to the right at low latitudes and
to the left at high latitudes (e.g., respectively faster and
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Figure 7. Convection patterns near the top of the simulation domain are shown as the radial velocity for four masses in the range 0.5,
0.7, 0.9 and 1.1 (from left to right) and for three rotation rates: one, three, and five times the solar rate (from top to bottom).

slower than the global rotation rate) is evident for the
cases rotating at the intermediate regime that possess a
monotonic differential rotation. For the slowly rotating
ones, convection is more isotropic and less influenced by
mean flows. In the case with the highest rotation rate
(Rossby number ≤ 0.1), the advection by the mean flow
is less systematic due to the alternating prograde and
retrograde jets (see § 5).

Table 3
Representative Velocities

Mid Convective Zone
Case ṽr ṽθ ṽpol ṽmc ṽφ ṽ′

φ
ṽ ṽ′

M05 S 15 14 20 3.3 25 18 32 27
M05 R1 8 8 11 1.1 40 8 41 14
M05 R3 6 7 9 0.5 53 7 54 11
M05R5 5 5 7 0.3 46 5 46 9
M07 S 27 26 37 3.2 43 36 57 50
M07 R1 22 21 30 1.3 77 24 83 39
M07 R3 17 18 25 0.9 116 23 119 34
M07 R5 15 16 22 0.3 131 20 133 30
M09 S 61 47 77 4.7 70 63 105 99
M09 R1 50 46 68 2.5 100 52 121 85
M09 R3 44 44 62 1.4 240 53 248 82
M09 R5 27 38 47 1.9 259 47 263 66
M11 R1 149 133 200 22.2 225 133 300 238
M11 R3 103 96 141 3.6 404 107 428 176
M11 R5 83 82 117 3.0 605 93 616 149

In all cases, temporal averages at mid-layer depth in convection

zone of rms components of velocity ṽr, ṽθ, ṽpol =
√

ṽ2r + ṽ2
θ
, ṽmc =

√

〈vr〉
2
φ + 〈vθ〉

2
φ, ṽφ and of speed ṽ, and of fluctuating velocities

ṽ′
φ

and ṽ′ (with temporal and azimuthal mean subtracted), all

expressed in m s−1.

Table 4
Non-dimensional numbers and Stellar, Convective and Fluid

Rossby numbers

Name Re Ra Ta Pe Rof Roc Ros

(106) (106)

M05 S 107 0.80 0.09 14.8 1.77 1.32 2.44
M05 R1 131 9.98 33.5 18.7 0.35 0.82 0.16
M05 R3 179 54.1 907.7 24.4 0.16 0.64 0.04
M05 R5 189 97.7 4202.5 26.2 0.09 0.51 0.02

M07 S 58 0.12 0.041 7.9 1.23 0.73 1.94
M07 R1 72 0.96 1.66 10.2 0.42 0.62 0.39
M07 R3 109 5.81 44.9 13.6 0.17 0.51 0.10
M07 R5 124 27.0 208.1 15.5 0.11 0.66 0.05

M09 S 60 0.13 0.07 9.3 1.29 0.82 1.79
M09 R1 64 0.43 0.41 9.4 0.67 0.74 0.73
M09 R3 106 2.54 10.9 14.2 0.28 0.60 0.21
M09 R5 110 5.48 50.9 11.2 0.14 0.53 0.08

M11 R1 63 0.18 0.08 9.9 1.40 2.45 1.80
M11 R3 81 1.13 2.1 11.9 0.54 2.05 0.41
M11 R5 89 2.86 9.6 12.4 0.34 1.96 0.20

In all cases the Prandtl number Pr = ν/κ = 0.25. The Taylor num-
ber is defined as Ta = 4Ω2

∗L
4/ν2, where L = rtop − rbcz for each

case. Also listed are the rms Reynolds number Re = ṽ′L/ν, the
Rayleigh number Ra = (−∂ρ/∂S)∆SgL3/ρνκ, the Péclet number
Pe = ṽrL/κ, the fluid Rossby number Rof = ω̃/2Ω∗, the con-

vective Rossby number Roc =
√

Ra/TaPr and the stellar Rossby
number Ros = Prot/τconv (see Appendix). All numbers have been
evaluated at mid depth in the convection zone. A Reynolds number
evaluated with the maximum speed achieved in the domain will be
at least 4 times larger.

4.2. Overshooting in solar-like stars

At the base of the convective envelope of all the mod-
els presented in this work, a shallow region of mixing
develops. These overshooting regions exist because the
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downward plumes do not immediatdiately halt their de-
scending motions as they go through the swift transition
in stratification, which is from unstable to convection
(negative entropy gradient) to the stable radiative in-
terior (positive entropy gradient). Indeed, these vortical
downward-flowing structures require a finite distance be-
fore they overturn, since they have some incoming inertia
as they cross the transition point. This distance depends
upon the stratification, degree of turbulence, the rotation
rate, and the thermal diffusivity (Zahn 1991; Brummell
et al. 2002; Browning et al. 2004; Rempel 2004; Rogers
et al. 2006; Chan et al. 2011; Brun et al. 2011; Masada
et al. 2013). As they decelerate due to the action of
buoyancy breaking, they induce extra mixing and turbu-
lent flows across this finite layer. The superadiabatic to
subadiabatic change in the stratification implies that the
correlation between convective velocity and temperature
fluctuations should reverse. This is illustrated in Figure
6, where the enthalpy flux is clearly negative at the base
of the convective envelope. Since the amount of over-
shooting depends on the stiffness of the stratification of
the radiative interior, this has motivated our choice of us-
ing a realistic stratification that is directly deduced from
1-D stellar evolution models. Theoretical studies have
revealed that the Péclet number (Pe = vl/κ, with l here
a typical size of the plumes) of the individual plumes is
the key quantity to assess the properties of the overshoot-
ing (see for instance Zahn 1991; Brummell et al. 2002).
Flows with a small Pe number tend to overshoot, lead-
ing to a stratification that remains convectively stable.
In contrast, flows with a high Péclet number require that
the stratification become nearly adiabatic, being locally
modified by efficient turbulent mixing, and the convec-
tion extends deeper into the radiative zone. Hence the
use of convective penetration to describe this regime. It
is clear that the degree of turbulence of our convective
zone is mild, and hence our Péclet number small. In real
solar-like stars, the Péclet number of turbulent plumes
is much higher. We can thus expect that our simula-
tions give an upper limit to the amount of penetration
occurring in solar-like stars.
In the upper panels of Figure 8, we display the tem-

porally and longitudinally averaged radial enthalpy flux
profiles for models M07 with different rotation rates. In
these meridional cuts we can see that the enthalpy flux
is mostly concentrated in the convective envelope, and
it is predominantly positive at all latitudes. Some in-
homogeneities are apparent. They are likely due to the
moderate degree of turbulence of the simulations, as dis-
cussed in Miesch et al. (2000). A negative enthalpy flux
is observed at the base of the convection zone (delin-
eated by the dashed black line). As the rotation rate
increases (left to right), the radial enthalpy fluxes max-
ima drifts from the equator to the poles. In the lower
panels, we show radial cuts of the radial enthalpy flux in
the northern hemisphere. On these panels, we identify
the location where the overshoot begins between the con-
vective and radiative regions as the radial position (rc),
which is where the radial enthalpy flux crosses zero. The
radial location where the overshooting ends is the radial
position (r0), which is where the radial enthalpy flux is
only a 10% of its local minima (Brun et al. 2011). The
overshooting motions show a clear dependence upon lati-
tude. This is quantified in Figure 9, where r0 (solid lines)

Figure 8. Upper panels: Temporal and longitudinal average of
the radial enthalpy flux profiles for the model M07 with different
rotation rates. Lower panels: Radial cuts from the equator to the
latitude 75◦ in 15◦ intervals and between the radii 0.64 and 0.72
r/r∗ of the temporally and longitudinally averaged radial enthalpy
flux for the same models.
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Figure 9. Evolution of r0 (solid lines) and rc (dashed lines) be-
tween the equator to the latitude 60o for fast rotators (Ω⋆ = 5Ω⊙

left panel), and slowly rotating models (right panel). The masses
of the models are color-coded as in Figure 5.

and rc (dashed line) are displayed between the equator
to the latitude 60◦ for the fast rotators in our sample
(left panel) and the slow rotators (right panel). The col-
ors label the masses of the models, as in previous figures.
The overshoot region is wider near the poles in the slowly
rotating models than it is in the solar-like cases. The fast
rotating cases exhibit an interesting localized increase of
the overshooting depth at smaller and smaller latitude
when the mass of the star increases. The shape of the
overshooting region is, as a result, sensitive to the rota-
tion rate of the star, with slow rotators favoring a wider
overshooting region near the poles and fast rotators at
mid-to-low latitude.
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models are triangles, Ω⊙ models are diamonds, 3Ω⊙ models are
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We define the average overshooting depth d̄ov by av-
eraging the difference between rc and r0 between the
equator and latitude 55◦. We limit ourselves to these
relatively modest latitudes to avoid any spurious averag-
ing effects associated with the large temporal variations
of the enthalpy flux at high latitudes. We display d̄ov as
a function of stellar mass and Froude number in Figure
10, where the rotation of the modelled star is indicated
by the different symbols, and its mass by their color. The
normalized overshooting depth generally decreases with
mass for a given rotation rate, as is clearly seen on the left
panel. The Froude number is defined as Fr = (2Ω⋆/N)

2
,

where N is the Brunt-Väisälä frequency. When the rota-
tion rate is held constant, increasing the Froude number
corresponds to a decrease of the Brünt-Vaisala frequency
and thus eases the overshooting of convective plumes im-
pacting the stable region. We indeed observe a clear
trend (see left panel in Figure 10) with an overshooting
depth increasing when the Froude number increases in all
of our models. We finally note that some modulation of
the overshooting depth may occur when magnetic fields
are taken into account and will be fully characterized in
a subsequent study (see Varela et al. 2016).

5. VARIOUS STATES OF DIFFERENTIAL ROTATION

We now turn to a discussion regarding how differen-
tial rotation in rotating convection zone is established in
various solar-like stars in order to interpret recent obser-
vational surveys (Saar 2009; Reinhold & Reiners 2013;
do Nascimento et al. 2014; Garcia et al. 2014; Reinhold
& Arlt 2015).

5.1. Differential rotation profiles and amplitudes

As is evident in Figure 11, various states of differen-
tial rotation have been achieved in our parametric study.
Differential rotation profiles and amplitudes are found
to be influenced by both rotation rate and spectral type.
First we see that for each given row (for respectively ’S’
models, one, three, and five times the solar rotation rate
going from the top to the bottom of the figure), the an-
gular velocity patterns change. Moreover, we observe the
existence of three main states of differential rotation for
which the location of prograde and retrograde longitu-
dinal flows differ from one another. For instance, these

three states are found near the solar rotation rate (sec-
ond row), where there is an anti-solar-like profile (slow
equator/fast poles) for the 1.1 M⊙ model, a solar-like
profile (fast equator/slow poles) for the 0.9 and 0.7 M⊙

models, and a Jupiter-like profile (alternating zonal jets
and a cylindrical angular velocity profile) for the 0.5 M⊙

model at 3 times solar (third row). For the 0.5, 0.7 and
0.9 M⊙ models, we also find anti-solar-like profiles when
further reducing the rotation rate below the solar rate
(models ’S’ in the upper row). In particular, the 0.9 M⊙

model shows an anti-solar rotation profile if the rotation
rate is half the solar rotation rate, 0.7 M⊙ for 1/4 so-
lar rotation rate, and 0.5 M⊙ for 1/8 solar rotation rate,
hence for rotation rates smaller than those deduced in § 2
using mixing length. Looking more closely at these sim-
ulations we notice the retrograde flow near the surface
extends up to the tangent cylinder in models M07S and
M09S. At the equator a zone of rapid rotation at the base
of the convection zone is present in these two models. At
high latitudes, the differential rotation exhibits fast flows
akin to polar vortices already described in the literature
(Brown et al. 2008; Featherstone & Miesch 2015). Case
M05S rotates so slowly that the longitudinal average is
not well defined, hence the asymmetric profile observed
in the upper left panel of Figure 11. This is due to a
global dipolar mode of the convective flows which im-
print itself on the overall dynamics.
As discussed in the introduction, the behavior of the

differential rotation can be understood to be a result of
the change in the amplitude of the Rossby number of the
models. These three main states: anti-solar (Rof > 1),
solar-like (0.3 < Rof < 0.9), jupiter-like or cylindrical-
banded (Rof . 0.3) are encountered in our series of mod-
els. For those fastest rotating cases, the cylindrical dif-
ferential rotation expected from Taylor-Proudman con-
traints transits from a monotonic behaviour from equator
to pole into a banded structure of alternating jets. Those
jets are commonly seen in planets like Jupiter and Sat-
urn. Their spacing can be related to the compressible
Rhines scale λg as discussed in details in Gastine et al.
(2014a). In models M05R3 and M05R5, λg/2 is found
to be of the order of 15% to 20% of the stellar radius
which is in qualitative agreement with the banded struc-
ture seen in Figure 11 for these two cases.
These results are also compatible with global 3D MHD

simulations performed by other authors to model differ-
ential rotation and stellar magnetism in the convection
zone (Miesch et al. 2006; Ghizaru et al. 2010; Racine et al.
2011; Käpylä et al. 2011; Augustson et al. 2015; Karak
et al. 2015), particularly for solar like stars (Brun et al.
2004; Brown et al. 2010, 2011; Brun et al. 2011; Varela
et al. 2016). These studies pointed out the large mag-
netic temporal variability and the critical effect of stellar
rotation and mass on magnetic field generation through
dynamo mechanism, which for some parameter regimes
leads to cyclic activity (Gilman & Miller 1981; Gilman
1983; Nelson et al. 2013; Käpylä et al. 2013; Augustson
et al. 2013; Guerrero et al. 2016; Augustson et al. 2015).
The definition of these three main states allows a fast and
straightforward identification of the expected magnetic
temporal variability of the solar like stars, for instance
the stars with anti-solar-like rotation profiles should ex-
hibit smaller magnetic temporal variability than stars
with solar like rotation profile, because the magnetic field
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Figure 11. The differential rotation realized in our simulations for four masses 0.5, 0.7, 0.9 and 1.1M⊙, and for four rotation rates: ’S’
models and one, three, and five times the solar rate.

regeneration via convective motions dominates the regen-
eration via differential rotation, leading to non oscillatory
α2 dynamos instead of oscillatory α − Ω dynamos (see,
e.g., Varela et al. 2016).

5.2. Tachoclines

By considering the coupling between the convective en-
velope and the stable radiative interior for each modelled
stars, we observe the natural development of a transition
layer between the two zones for various physical quan-

tities such as velocity, entropy and temperature fluctua-
tions, and the overall dynamics. Among these variations,
that of the rotation profile is crucial. In the Sun, this
transition has been named tachocline (Spiegel & Zahn
1992), and it is thought to play an important role in
the organization of the eleven years cycle (Charbonneau
2005; Brun et al. 2015a). How such tachoclines evolve in
other solar-like stars with different global parameters is
largely unknown, so we will assess that dependence here.
The overall shape of the tachoclines achieved in our
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simulations is shown in Figure 12, with radial cuts at
several latitudes of the temporal and longitudinal average
of the angular velocity for two representative cases. To
help quantify these shapes, we fit the rotation profile in
the tachocline with

Ω = Ω∗ +Ae−
1
2 [

(x−xc)
w ]

2

, (10)

where parameter A represents the amplitude of the differ-
ential rotation in the tachocline, xc its inward/outward
drift, and w its thickness. The fitted profile for models
M09s and M09R3 are indicated in red in Figure 12.

Figure 12. Radial cuts of the temporal and longitudinal average
of the angular velocity from the equator to the latitude 75◦ each
15◦ and between 0.4 and 1.0 r/r∗. Note that r/r∗ = 0.4 is not
necessarily r = rbcr. The dashed vertical line on each panel shows
the base of the convective layer.

Applying this methodology to all models, we obtain
the following trends, summarized in Figure 13 for mod-
els M09. The amplitude A of the differential rotation
is found to increase with the rotation rate. This effect
is predominantly seen at high latitude beyond the tan-
gent cylinder. It may be due to the smaller lever arm
in this region with respect to the equatorial one. The
location xc of the tachocline shows a drastic change of
behaviour between anti-solar (red circles) and solar-like
cases. Indeed one notices it is closer to the surface at low
latitude and deeper at mid-to-high latitudes whereas it
is the opposite in the solar-like cases. The width w of
the tachocline, in part controlled by our choice of diffu-
sivities, still exhibit a similar clear trend. The anti-solar
cases possess a thicker tachocline at low latitudes com-
pared to higher latitudes. Again, this trend reverses for
the solar-like cases. The overall shape of the tachocline
is summarized in the lower panels of Figure 13.
In order to disentangle the effect of viscous stresses

from dynamical effects linked to rotation, we have fur-
ther analyzed (not shown) a series of models with approx-
imately the same rms Reynolds number (∼ 100) spanning
a fluid Rossby number from 0.28 to 0.84. By consider-
ing a constant Reynolds number for all cases we assume
that the same degree of turbulence and convective ad-
vection with respect to viscouss effect are realized in the
simulations and that we can even better isolate the role
of rotation. The observed trends in shape, location and
amplitude are confirmed with those models, confirming
they originate from dynamical effects rather than being
viscously controlled.

5.3. Scaling laws

Figure 13. Top panels: Fit of the rotation in the region of
the regime change for models M09. Bottom: Schematic of the
tachocline shape in anti-solar-like (oblate shape) and solar-like
(prolate shape) cases.

We define the mean latitudinal contrast of differential
rotation ∆Ω as the difference taken at the top of the do-
main of the azimuthally and temporally averaged profile
of Ω between the equator and latitude 60◦. As a result, a
positive ∆Ω denotes a solar-like differential rotation with
an equator rotating faster than the higher latitudes. The
values of ∆Ω are reported in Table 5 for all our models.
We show them in the upper panel of Figure 14 as function
of the fluid Rossby number Rof , coloured by mass and
labeled by rotation rate. The latitudinal differential ro-
tation generally drops with the fluid Rossby number and
increases with the mass of star, and it possibly undergoes
a transition in the anti-solar cases when Rof > 1. The
normalized differential rotation (middle panel) ∆Ω/Ω∗

tends to show saturation at low Rossby number, and the
anti-solar cases exhibit a transition similar to Feather-
stone & Miesch (2015). Note that due to a slightly dif-
ferent definition of the Rossby number, in Featherstone
& Miesch (2015) the transition occurs around Rof ∼ 0.1
while in our case it occurs around Rof ∼ 1. Finally, this
transition is less clear in the differential rotation kinetic
energy (lower panel), which is defined by

DRKE =
1

2

∫

ρ̄ 〈vφ〉2 r2 sin θdrdθdφ . (11)

Indeed, the kinetic energy of the differential rota-
tion decreases smoothly with the fluid Rossby number,
more simulations with a larger Rossby number would be
needed to confirm this lack of transition in the kinetic
energy.
We use our set of models to fit its dependency upon

mass and fluid Rossy number (as well as mass and rota-
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Figure 14. Variation of the differential rotation amplitude as
a function of mass and fluid Rossby number. Top: Differential
rotation between the equator and 60◦ latitude. The masses are
color-coded (see legend), and the different rotation rate ares re-
spectively labeled by circles (5 Ω⊙), squares (3 Ω⊙), diamonds
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rotation (same layout as the upper panel). Bottom: Kinetic energy
of the differential rotation (same layout as the upper panel)

tion rate) and obtain

|∆Ω|∝
(
M⋆

M⊙

)1.93±0.42

(Rof )
−0.76±0.13

, (12)

∝
(
M⋆

M⊙

)0.73±0.39 (
Ω⋆

Ω⊙

)0.66±0.10

. (13)

If we do not retain the anti-solar cases in our regression
fit, we have:

|∆Ω|∝
(
M⋆

M⊙

)1.78±0.34

(Rof )
−0.44±0.16

. (14)

The observational trends for the differential rotation
rate exhibit either a similar dependency with rotation
rate (∆Ω ∝ Ω0.7

⋆ , see Donahue et al. 1996; Saar 2009)
or a significantly lower one (∆Ω ∝ Ω0.15

⋆ , see Barnes
et al. 2005; Reinhold et al. 2013), making a direct com-
parison difficult. One explaination could be the lack of
dynamo generated magnetic fields in this series of hydro-
dynamic models. Such magnetic field should feedback on
the global balance establishing the large scale differential
rotation pattern (see § 7.1). Indeed, a preliminary study

of the cases presented in this work that also include a
dynamo field finds a lower exponent for the dependency
upon Ω (see Varela et al. 2016), improving the compari-
son of our theoretical models with observational trends.
The trend with mass while retaining the same positive

variation with M∗ also differs somewhat from the obser-
vational trends (∆Ω ∝ M5.6

⋆ in Barnes et al. 2005; Rein-
hold et al. 2013, ∆Ω ∝ M5.4

⋆ in Collier Cameron 2007) .
We attribute these differences in part to the non perfect
relationship between mass and effective temperature in
the observational data and also to a lower upper bound
in stellar mass in our study compared to the observa-
tional data. Indeed in Augustson et al. (2012) we have
simulated more massive F stars up to 1.4 M⊙ and found
a larger dependency of the differential rotation with stel-
lar mass. Hence it is likely that the differential rotation
contrast increases more steadily with mass between 1.1
and 1.4 M⊙ given the shallow convective envelop in these
stars than it does for lower masses (see also the mean
field computations of Küker & Rüdiger 2007; Küker et al.
2011, that confirms the trends found in 3-D simulations).
More recent observations tends to also show a change of
slope around the stellar spectral type F (see for instance
Reinhold & Reiners 2013).

6. MERIDIONAL CIRCULATION

Meridional circulation results from the slight im-
balance between the terms acting predominantly in
geostrophic balance. These are the horizontal pressure
gradients, Reynolds stresses, curvature terms and Corio-
lis force, in a purely hydrodynamical setup. As we change
the aspect ratio and the rotation rates of our convective
shells, we expect the relative amplitude of these terms to
change as well, resulting in different meridional circula-
tion profiles.

6.1. Profiles and Amplitudes

In solar-like star simulations, we expect the merid-
ional circulation in convective envelope to be weak be-
cause geostrophy is mostly satisfied (Pedlosky 1987; Bal-
lot et al. 2007; Brown et al. 2008; Augustson et al. 2012).
In Figure 15 we display the meridional circulations real-
ized in the fifteen models as contours of the meridional
streamfunction Ψ, defined as in Miesch et al. (2000):

r sin θ〈ρ̄vr〉 = −1

r

∂Ψ

∂θ
and r sin θ〈ρ̄vθ〉 =

∂Ψ

∂r
. (15)

We note two main trends: solar-like models have multi-
cellular flow structures, and the anti-solar ones possess
mostly unicellular meridional circulations per meridional
quadrant. As the Rossby number is decreased (from right
to left), the number of cells increases, in particular near
the polar cap. The amplitude of the meridional circu-
lation in the convective envelope is of order of meters
per second (see Table 3), being weaker for the low mass
stars compared to the massive ones (as already discussed
in § 4). In the radiative interior, this flow is extremely
weak, the radial velocity dropping by several orders of
magnitude. This results in a penetration of the merid-
ional circulation of less than 3 to 5% of the stellar radius.
The flow in the anti-solar cases is directed poleward in
both hemispheres at the surface, with a return flow at
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Figure 15. Meridional circulation realized in our 3-D simulations. The layout is the same as in Figure 11, and CW stands for clockwise
meridional circulation while CCW stands for counter-clockwise meridional circulation.

the base of the convection zone. This is also true for the
upper meridional cells in the faster rotating cases.
A more direct way to understand the maintenance of

the meridional circulation is to consider the angular mo-
mentum balance. By splitting the right hand-side term
between a global net torque coming from the difference
between Reynolds and viscous stresses and from the ad-
vection of angular momentum by the meridional circula-

tion (and by assuming stationarity), we get:

〈ρ̄vm〉 ·∇L = T , (16)

where

L = ̟2Ω = ̟ (〈vφ〉+̟Ω∗) , (17)

with T the global net torque (whose expression will be
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made more explicit in section 7.1), and ̟ = r sin θ the
moment arm.
If the global net torque T is zero, then there is no

meridional circulation. In stars, we do not expect the
viscous stresses to play a major role and hence the merid-
ional circulation arises in order to compensate for the an-
gular momentum transport due to convection (Reynolds
stresses), provided that the magnetic effects are negli-
gible. Since we are considering purely hydrodynamical
cases and the viscous stresses necessarily contribute to
the angular momentum transport in our simulations, the
meridional circulation develops as a response to the net
torque exerted by both the Reynolds stresses and the vis-
cous diffusion of the differential rotation. The responding
circulation to an applied torque is due to a physical mech-
anisms called gyroscopic pumping that generalizes Ek-
man pumping (McIntyre 2007; Garaud & Bodenheimer
2010; Brun et al. 2011; Miesch & Hindman 2011; Feath-
erstone & Miesch 2015).

6.2. Scaling laws

We quantify the strength of the meridional circulation
by calculating its associated kinetic energy defined as

MCKE =
1

2

∫

ρ̄
(

〈vr〉2 + 〈vθ〉2
)

r2 sin θdrdθdφ , (18)

where 〈〉 stands for the azimuthal average and MCKE
has been further averaged in time over 100 days towards
the end of each simulations. We display in Figure 16 the
trends of MCKE as a function of fluid Rossby number.
We notice that the energy contained in the meridional
circulation increases with Rossby number, and decreases
with mass. The meridional circulation energy also in-
creases with the Reynolds number (not shown here),
which is naturally expected as the meridional circula-
tion results from the imbalance between the turbulent
Reynolds stresses and the way it advects angular momen-
tum (see Featherstone & Miesch 2015 and §6.1). Finally,
we use our set of models to fit the dependency of MCKE
upon mass and fluid Rossby number and obtain

MCKE∝
(
M⋆

M⊙

)−1.90±0.30

(Rof )
1.05±0.09

. (19)

7. ANALYZING THE DYNAMICS

In order to better understand the various dynamical
states analyzed in the previous sections, we now turn
to a more quantitative analysis of the dynamics. We
will first look at the angular momentum redistribution
in convective shells achieved in our simulations (§ 7.1),
then on the thermal wind balance (§ 7.2), and finally of
the energy exchange and maintenance of the differential
rotation (§ 7.3).
As a preliminary analysis, we turn to Table 5 where

various global quantities characterizing the dynamics
achieved in our simulations are listed. We note that the
kinetic energy contained in the convective shell increases
with the rotation rate due to a global increase in the en-
ergy contained in the differential rotation (DRKE). By
contrast, the energy contained in the convective motion
(CKE=KE-DRKE-MCKE) is found to play a lesser role
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Figure 16. Meridional circulation kinetic energy as a function of
the fluid Rossby number Rof . The layout is the same as in Figure
14.

and decreases in overall amplitude and significantly in
proportion. This is likely due to the propensity of rapidly
rotating convective sphere to predominantly inject en-
ergy into the longitudinal flows. The kinetic energy con-
tained in the meridional circulation is always small, and
it globally decreases in amplitude to become almost neg-
ligible at the fastest rotation rates. In agreement with
the DRKE, and as discussed in § 5, the absolute angu-
lar velocity contrast in latitude from 0 to 60◦ (|∆Ω|) is
found to increase with rotation rate, whereas the relative
contrast decreases (see Figure 14). We will come back to
the temperature and entropy contrasts in § 7.2.

7.1. Angular momentum balance

The differential rotation and meridional circulation
profiles in our simulations are established and maintained
through the transport of momentum and energy by con-
vective motions that are influenced by the rotation, strat-
ification, and spherical shell geometry.
Following Elliott et al. (2000) and Brun & Toomre

(2002, hereafter BT02), an equation for the angular mo-
mentum transport can be deduced from the φ-component
of the momentum equation:

ρ̄
∂L

∂t
= τ (20)

with L = r sin θvφ the specific angular momentum and
τ the net torque applied to the convective envelope. As-
suming a statistically stationary state, applying longitu-
dinal and temporal averages and writing the net torque
as a divergence of a flux one gets (see also Pedlosky 1987):

∇·F = ∇· (Frêr + Fθêθ) = 0 (21)

where Fr(r, θ) and Fθ(r, θ) represent the mean radial and
latitudinal angular momentum fluxes whose expressions
are given by:

Fr = ρ̂r sin θ [Fr,V + Fr,R + Fr,MC ] , (22)

Fθ = ρ̂r sin θ [Fθ,V + Fθ,R + Fθ,MC ] . (23)
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Figure 17. Radial and latitudinal balances of the angular momentum fluxes in models M07R1 and M11R1. Reynolds stresses are shown
in green/dahs dot lines, meridional circulation in cyan/dash lines and the viscous stresses in orange/dash-triple dot lines. The total balance
is show as the solid black line.

Table 5
Kinetic energies normalized by the shell volume, Latitudinal angular velocity, Temperature and Entropy latitudinal contrasts

Name KE DRKE MCKE CKE ∆Ω ∆T ∆S

106erg 106erg 103erg 106erg nHz K 103erg/g/K

M05 S 16.0 3.07 (19.2%) 241.4 (1.5%) 12.7 (79.3%) -24 -1.9 -0.005
M05 R1 31.2 27.9 (89.4%) 24.4 (0.1%) 3.28 (10.5%) 129 2.9 0.2
M05 R3 78.8 74.8 (94.9%) 8.92 (0.01%) 4.01 (5.09%) 85 2.8 0.2
M05 R5 58.4 55.9 (95.7%) 5.80 (0.01%) 2.48 (4.29%) 146 12.9 0.9

M07 S 3.59 0.775 (21.5%) 56.4 (1.6%) 2.76 (76.9%) -32 -2.8 -0.01
M07 R1 8.89 7.17 (80.6%) 13.8 (0.2%) 1.71 (19.2%) 120 2.5 0.2
M07 R3 21.9 20.2 (91.7%) 6.85 (0.1%) 1.81 (8.2%) 187 13.8 1.1
M07 R5 34.9 30.9 (88.7%) 5.05 (0.01%) 3.94 (11.29%) 223 27.8 2.3

M09 S 3.25 0.519 (16.0%) 32.6 (1.0%) 2.69 (83.0%) -25 -2.5 -0.1
M09 R1 4.59 2.58 (56.2%) 16.9 (0.4%) 1.99 (43.4%) 108 8.4 0.9
M09 R3 19.9 18.4 (92.1%) 9.61 (0.05%) 1.57 (7.85%) 288 57.5 5.9
M09 R5 5.49 28.2 (51.5%) 7.31 (0.01%) 26.6 (48.49%) 338 94.9 9.75

M11 R1 3.08 1.22 (39.6%) 25.5 (0.8%) 1.84 (59.6%) -131 -10.2 -1.52
M11 R3 9.96 8.79 (88.3%) 6.89 (0.07%) 1.16 (11.63%) 291 133.5 20.7
M11 R5 22.8 21.7 (94.9%) 4.61 (0.02%) 1.16 (5.08%) 435 328.9 52.1

Fr,V (resp. Fθ,V ) is the flux associated to viscous
transport, Fr,R (resp. Fθ,R) that related to Reynolds
stresses and Fr,MC (resp. Fθ,MC) represents the angu-
lar momentum flux due to meridional circulation. Their
detailed expression can be found in BT02 and in subse-
quent publications. As was done in BT02 we then in-
tegrate respectively each flux over colatitude and radius
to assess the net flux through a sphere of varying radius
and through cones of varying inclination:

Ir(r)=

∫ π

0

Fr(r, θ) r
2 sin θ dθ , (24)

Iθ(θ)=

∫ rtop

rbot

Fθ(r, θ) r sin θ dr , (25)

These integrated fluxes are presented in Figure 17 for
our cases M07R1 and M11R1, and have been averaged
over 5 rotation periods. For cylindrical cases such as
M05R3,R5 the balance is very similar to that shown for
M07R1. For simplicity we drop the letter I when dis-
cussing the individual contribution of the flux. Since
a statistically stationary state is realized in our simula-
tions, the sum of all fluxes must be close to zero as there
are no net torques left.
We start by discussing the angular momentum balance

realized in case M07R1. We note that in the radial direc-
tion the prograde Reynolds stresses act to accelerate the
equator opposed mainly by the viscous stresses and to a
lesser extent by the meridional circulation. As discussed
in Brun et al. (2011) and § 6, the meridional circulation
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is a response to the net torque applied by the sum of the
Reynolds and viscous stresses, it helps reaching a station-
ary state. We see that it is both positive and negative, re-
flecting the presence of multiple cells. Convection is thus
carrying angular momentum such as to accelerate the
equator and slow down the deep layers. Turning to the
latitudinal flux balance, here too the Reynolds stresses
are found to carry angular momentum towards the equa-
tor (positive/negative in northern/southern hemisphere
respectively), with a peak value near 15◦ and a secondary
peak near the latitude of the tangent cylinder. The vis-
cous stresses are poleward as they tend to erase the dif-
ferential rotation in the convective envelope. The role
of the meridional circulation is mostly to transport an-
gular momentum poleward at low latitude, with a small
counter cell higher up. Overall the balance is well real-
ized as shown by the sum being nearly equal to zero in
both radial and latitudinal balances.
Turning now to case M11R1, we see that in the radial

direction the Reynolds stresses are now transporting an-
gular momentum inward, hence slowing down the surface
and speeding up the deep layers. The viscous stresses and
meridional circulation have very similar amplitudes and
profiles and transport angular momentum outward. In
this case, the flux associated with meridional circulation
is positive at all depths and relatively large, reflecting
the mostly unicellular profile of the meridional flow (il-
lustrated in Figure 15). In the radial direction, the an-
gular momentum balances in cases M07R1 and M11R1
are thus of an opposite sign, in agreement with their dif-
ferential rotation being respectively solar-like and anti-
solar-like. In the latitudinal direction, the situation is
not as dissimilar as one could have anticipated. Indeed,
the Reynolds stresses have not changed sign with respect
to case M07R1. What has changed is the amplitude
and profile of the meridional circulation, with the vis-
cous stresses now aiding the Reynolds stresses instead of
opposing them. This is again due to the sign of the differ-
ential rotation. With a fast pole and a slow equator, the
viscous stresses tend to slow down the pole and speed up
the equator. Through gyroscopic pumping, this results
from a meridional circulation profile that transports an-
gular momentum poleward such that a stationary state
is established. These subtle differences between solar-like
and anti-solar-like cases are in agreement with the results
from Featherstone & Miesch (2015), which were obtained
without an underlying stable zone. As can be seen by the
solid curve, the latitudinal angular momentum fluxes are
not strictly balancing one another for case M11R1. This
is in contrast to the three other panels, and it is due to
the slow equilibration of this case.

7.2. Thermal wind balance

We now turn to analyze the role played by thermal
effects and heat redistribution in the dynamical balance
realized in our 3-D stellar models. As published in Brun
et al. (2010), a general meridional force balance equation
can be derived that reveals the subtle role of all pro-
cesses in maintaining a non-cylindrical rotation profile
that differs from the “classical” thermal wind (TW) bal-
ance (Durney 1999; Brun & Toomre 2002; Balbus et al.
2009). It is straightforward to use our numerical simula-
tion to evaluate what are the dominant terms and how
this meridional force balance comes about. Its deriva-

tion is summarized in Appendix C and can be compactly
written as

2Ω∗

∂〈vφ〉
∂z

=S +A+ C + B + V , (26)

where the various right-hand side terms are:

• S describes the stretching and tilting of the vortic-
ity due to velocity gradients;

• A describes the advection of vorticity by the flow;

• C describes the change of vorticity due to compres-
sion;

• B is the so-called baroclinic contribution from the
latitudinal entropy gradient and the product of the
radial background entropy gradient with the lati-
tudinal pressure gradient. The former dominates
when the stratification is nearly adiabatic;

• V accounts for the viscous diffusion of vorticity.

Under the assumption that the convection zone is
nearly adiabatic and hydrostatic, that the fluid Rossby
number Rof is small, and that viscous stresses can be
neglected, Equation (26) simplifies to:

∂〈vφ〉
∂z

=
g

2Ω∗rcp

∂〈S〉
∂θ

. (27)

This is the “classical” thermal wind equation. It states
that baroclinicity can break the Taylor-Proudman con-
straint of ∂〈vφ〉/∂z = 0, implying a cylindrical rotation
profile (Zahn 1992). This is due to the fact that baro-
clinic torques suppress the Coriolis-induced meridional
circulation that would otherwise tend to establish a cylin-
drical state of rotation. It is instructive to use our nu-
merical simulations to evaluate the role played by all the
terms of the zonal vorticity equation identified above and
to discuss the nature of the meridional force balance.
In Figure 18, we display the full thermal wind balance

achieved in two models having respectively a prograde
and retrograde differential rotation profile, e.g. M07R1
and M11R1. For each case the lhs and the various terms
composing the rhs are shown, using the same color ta-
ble and minimum and maximum bounds. The first point
to notice is that for both models rhs = lhs to a high
degree of fidelity, meaning that they have achieved an
equilibrium and a well-relaxed state. Turning to M07R1
(top row of Figure 18), we see that the dominant term
is the baroclinic one. It is mostly negative (positive) in
the northern (southern) hemisphere as is the lhs and pos-
sesses elongated island features in the radiative zone. In
that later zone, the “classical” thermal wind balance is
realized. In the convective envelope, in particular near
the surface, this is less the case. Stretching (S) and ad-
vection (A) terms, and to a lesser extent the viscous term
(V), contribute to the overall balance. The first two of
those terms have the same sign in each hemisphere as
the baroclinicity (B), whereas V has the opposite sign.
This confirms the role played by convective motions in
the meridional balance, and its departure from a strict



On differential rotation and overshooting in solar-like stars 19

Figure 18. Meridional cuts of the temporal and azimuthal average of the full thermal wind balance equation in models M07R1 and
M11R1 shown as contour plots. The mathematical expressions of the various terms can be found in the Appendix.

classical thermal wind balance. This can be easily un-
derstood by the fact that Rof is not very small in that
model (see Table 4).
This departure from a strict TW balance is even more

apparent in model M11R1 shown in the bottom row of
Figure 18. With Rof > 1, the full TW balance must
be considered as most terms are expected to contribute
to the rhs. The baroclinic term shows the largest and
most systematic contribution to the overall balance. In
that case too, it dominates the balance in the radiative
interior and possesses a predominantly positive contribu-
tion from the low to mid-latitudes up to the poles. Case
M07R1 has the opposite response, showing one impor-
tant difference between prograde and retrograde cases.
This is directly linked to the different entropy fluctua-
tion profiles realized in the models, as we will discuss
just after in commenting Figure 19. Nevertheless, S, A,
C and V terms now contribute everywhere in the con-
vective envelope and not only near the surface of the
simulation domain. Note that in that slowly rotating
case, S and A have an opposite sign with respect to B
and contribute a little in the radiative zone due to the
development of turbulence in the overshooting region by
the more vigorous convective downdrafts. In both mod-
els (this is also true for the other cases), S and A have
in the large the same sign. This is consistent with the
analysis of the latitudinal angular momentum transport
performed in the previous section, where their sign was
found to remain the same when transiting from Rof < 1
to Rof > 1. This is an important property of prograde
and retrograde models, and it holds for all the cases con-
sidered here. Such an invariance indicates that the tur-
bulent latitudinal Reynolds stresses do not change sign
as the rotation rate is varied, whereas the entropy and

temperature fluctuations do.
We conclude from this TW balance analysis that for

low Rof the baroclinic term remains the key player in
tilting the iso-contours of Ω with some contribution from
turbulence. However this becomes inefficient if Rof be-
comes too small < 0.1 as is the case for models M05R3
and M05R5 that are mostly cylindrical. This is in part
due to the increased influence of rotation that cannot be
fully compensated by thermal effects as we will see when
commenting upon the trends shown in Figure 19. For
high Rof cases the contribution of all terms composing
the rhs is more balanced, but their cumulative action
also tends to slightly bend the iso-contours of Ω. How-
ever, in such cases, the Taylor-Proudman constraint does
not play as important a role as in the very low Rossby
number cases.
In order to understand further how the baroclinic term

arises, it is useful to look at meridional cuts of the en-
tropy and temperature fluctuations averaged over time
and longitudes as shown in Figure 19 (top row). We
note first that the fluctuations of S and T are symmetric
with respect to the equator for both cases (this is also
true for all models except M05s) and that their latitudi-
nal variations are of opposite sense. In M07R1, the poles
are warm and the equatorial regions cool, whereas it is
the reverse for M11R1. Such a latitudinal gradient of
entropy (and temperature) is consistent with the baro-
clinic term B shown in Figure 18 and discussed earlier.
The amplitude of the variations is also quite different,
with case M11R1 having fluctuations about a factor of 10
larger. In M07R1, ∆T ∼ 10K whereas it is around 100K
in M11R1. Given the value of the background tempera-
ture at the base of the convective envelope of each cases
(∼ 3 − 6MK), these variations can be seen as tiny but
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Figure 19. Top row: Meridional cuts of the temporal and azimuthal average of the temperature and entropy fluctuations shown as contour
plots in models M07R1 (a,b) and M11R1 (c,d). Bottom row: Trends of the absolute temperature and entropy contrasts from equator to
60◦ degrees latitude with respect to fluid Rossby number for the four stellar masses considered. Symbols and colors are the same as in
Figure 14.

there are large enough to drive large baroclinic torques
due to the large heat capacity of stellar plasmas. The
larger variations seen in the M11R1 case is in agreement
with the more vigorous convective flows realized in the
simulation due to the significantly larger stellar luminos-
ity that needs to be carried out in this star with respect
to a 0.7 M⊙ star (see MLT discussion in §2). In the ra-
diative interior we further see that the variations are the
largest where the rotation profile transits from differen-
tial to uniform, e.g. in the tachoclines that possess the
largest radial shear as discussed in Brun et al. (2011).
We can understand how such states are established in
our models by looking at the latitudinal heat balance as
we will discuss soon, after commenting on Figure 20.
However, we first discuss how the latitudinal entropy

and temperature fluctuations contrast vary with mass
and rotation rate by considering the 15 models of this
study. In the bottom row of Figure 19, we show how ∆T
and ∆S vary with Rof for the four masses considered
here. We chose to compute ∆T and ∆S at the surface
and between 0 and 60◦ of latitude and to plot their abso-

lute value to avoid artificial behavior due to their change
of sign as Rof is varied. We note that for faster rotation
rates both entropy and temperature contrasts increase,
reaching amplitudes of several hundredK for the temper-
ature. Likewise, we find that the fluctuations grow with
increasing stellar mass, which is in concordance with the
more increasingly intense convection achieved in those
more massive stars. As seen in (Brown et al. 2008; Au-
gustson et al. 2012), the latitudinal entropy and tem-
perature contrasts have a strong mass dependence and
a weaker one on rotation (or Rossby number). These
trends can be summarized by deriving scaling relation-
ships for ∆T and ∆S, which are obtained through multi-
parameter regression fits to the data shown in Figure 19.
We show the resulting scalings and their uncertainties
for two cases: one including the anti-solar cases and the
other not. We see that those cases influence the expo-
nents of the scalings, but not the overall trends.
With the anti-solar cases:
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Figure 20. Meridional cuts of the temporal and azimuthal average of the latitudinal heat transport in M07R1 (top row) and M11R1
(bottom row) shown as contour plots. The viscous and radiation fluxes have further been multiplied by respectively 1014 and 105 in order
to be visible.

∆S∝
(
M⋆

M⊙

)7.17±0.91

(Rof )
−1.88±0.28

, (28)

∆T ∝
(
M⋆

M⊙

)4.43±0.84

(Rof )
−1.03±0.26

. (29)

Without the anti-solar models:

∆S∝
(
M⋆

M⊙

)6.81±1.02

(Rof )
−1.29±0.47

, (30)

∆T ∝
(
M⋆

M⊙

)5.92±0.90

(Rof )
−1.32±0.41

. (31)

The latitudinal variation of the thermodynamics vari-
ables S and T is established by anisotropic heat trans-
port in the convective envelope. This is an expected be-
havior in a rotating convective envelope, as the Coriolis
force varies with respect to latitude and so does its in-
fluence on the convective motions (see for instance Dur-
ney 1989, 1999; Elliott et al. 2000; Miesch 2005; Brun
& Rempel 2009; Käpylä et al. 2011). Hence, along with
the radial heat transport realized in the convective shell
of our models, as discussed in §4, there is a latitudinal
heat transport that is worth studying in greater detail.
As done in Elliott et al. (2000) and Brun & Palacios
(2009), we can decompose the latitudinal heat trans-
port into various terms involving diffusion and advec-
tion processes. In Figure 20, we display, using the same
color table and minimum and maximum bounds, the five
terms contributing to the latitudinal transport of heat
after having converted and normalized them to the ad-

equate stellar luminosity. We note that the main terms
are the latitudinal enthalpy and entropy fluxes, with a
minor contribution from the kinetic energy flux. In this
context, the viscous and radiative fluxes are negligible.
To see their structure, they have been multiplied by very
large factors (e.g., 1014 and 105 respectively) in Figure
20. Hence, the balance is mainly between the entropy
flux and the enthalpy flux, which are mostly of opposite
sign. The leading contribution comes from the correla-
tion of the fluctuating latitudinal velocity and the tem-
perature fluctuations to yield an enthalpy flux that effi-
ciently transports the heat, hence establishing the fluc-
tuations seen in Figure 19. Once these profiles have been
established, the latitudinal entropy flux develops to es-
tablish a balance. Turning to case M07R1, we see that
the entropy flux tends to cool down the polar regions
and heat the equatorial region, and it is maximum at
the base of the convection zone. For case M11R1 (lower
panels), the balance is such that the entropy flux mostly
warms up the poles. In a small equatorial region, the en-
tropy flux changes sign and tends to warm up this zone
in agreement with Figure 19. In that case, the role of the
enthalpy flux is less clear, but it tends to also balance the
entropy flux even though the system has not yet reached
a complete equilibrium. As a summary, we see that the
heat transfer and the associated thermodynamic pertur-
bations in the solar and anti-solar cases differ, yielding
hot poles and cool equator for the solar-like case, and the
reverse for the anti-solar ones.

7.3. Energy exchange and maintenance of differential
rotation
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It is also useful to understand the energy exchanges
maintaining the differential rotation. Following Rempel
(2005), the kinetic energy balance for the differential ro-
tation can be written

∂t (DRKE) = Qr
C +Ql

C +Qr
R +Ql

R +QA +QV +Qcurv ,
(32)

where the various terms represent the work of the Coriolis
force, Reynolds stresses, DRKE advection and viscous
forces. Their expression is given by (Rempel 2005) and
defined in Appendix D.
The Coriolis force relates to energy transfers be-

tween the differential rotation and meridional circulation.
The non-linear advection is decomposed into Reynolds
stresses associated with the radial (Qr

r) and latitudinal
(Ql

r) profiles of the differential rotation, and the differ-
ential rotation advection QA. Finally, we regroup all the
contributions from the viscous stress tensor into QV and
the geometric terms into Qcurv.
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Figure 21. Differential rotation kinetic energy balance (Equation
32) as a function of stellar mass and rotation, normalized to the
stellar luminosity.

We display in Figure 21 the various contributions to
the kinetic energy balance of the differential rotation
for our 15 models (the numerical values can be found
in Table 6). In all models, the differential rotation is
mainly maintained by a balance between the non-linear
Reynolds stresses and the viscous stress. The Reynolds
stress contribution itself is strongly dominated by the
radial component. It only moderately increases with ro-
tation except for models with M⋆ = 0.9M⊙. In less
massive stars, the convective flows maintaining the dif-
ferential rotation correspond to a higher fraction of the
stellar luminosity than in more massive stars. This be-
haviour can be naively expected from the simple scal-
ing laws derived in Section 2, namely ρbczv

2 ∼ M−0.9
⋆ .

Finally, the advection of the differential rotation QA is
completely negligible in all cases.
It is also instructive to note that for the 4 models pos-

sessing an anti-solar differential rotation (M05s, M07s,
M09s and M11R1), the latitudinal transport of energy
by Reynolds stresses is negative and the differential rota-
tion is mainly sustained by the radial transport of angu-
lar momentum by Reynolds stresses. In these models the
Rossby number is higher than 1 (see Table 4), the con-
vective motion are much less vortical than in the other
cases and this directly impacts how the Reynolds stresses
transfer kinetic energy to the differential rotation.

Following Rempel (2005, 2006), we can finally identify
the amount of energy transfered to the large-scale differ-
ential rotation with |QV |. We note in Table 6 that |QV |
increases with rotation rate and decreases with mass. For
instance the model with M⋆ = 0.5R⋆ and Ω⋆ = 5Ω⊙

converts about 23% of the stellar energy flux into the
large-scale differential rotation. Note that this model is
twenty times less luminous than the Sun, which means
that only 1% of a solar luminosity is converted into differ-
ential rotation (second column in Table 6). Model M11
R5 converts the most energy (in absolute value) into dif-
ferential rotation with |QV | ∼ 21%L⊙. We recall that
|QV | is only a proxy of the converted energy, as the dif-
ferential rotation is maintained due to the angular mo-
mentum transfer by the turbulent Reynolds stress (see
§ 7.1).

Table 6
Kinetic energy exchanges

QV Qr
C Ql

C Qr
R Ql

R

[L⋆] [L⊙] [L⋆] [L⋆] [L⋆] [L⋆]

M05 S -0.053 -0.002 0.065 -0.012 0.096 -0.104
M05 R1 -0.163 -0.007 0.056 -0.021 0.149 0.023
M05 R3 -0.195 -0.009 0.108 -0.094 0.184 0.055
M05 R5 -0.229 -0.011 0.095 -0.074 0.157 0.046

M07 S -0.042 -0.006 0.019 -0.016 0.067 -0.017
M07 R1 -0.129 -0.020 0.002 0.019 0.094 0.024
M07 R3 -0.170 -0.026 0.020 0.010 0.118 0.037
M07 R5 -0.184 -0.028 0.004 -0.023 0.138 0.026

M09 S -0.029 -0.016 0.006 -0.004 0.043 -0.003
M09 R1 -0.063 -0.035 0.001 0.011 0.052 0.016
M09 R3 -0.170 -0.093 0.008 0.026 0.113 0.025
M09 R5 -0.155 -0.085 0.042 0.025 0.056 0.020

M11 R1 -0.035 -0.063 0.033 -0.014 0.040 -0.018
M11 R3 -0.093 -0.166 0.011 0.006 0.077 0.015
M11 R5 -0.119 -0.213 0.039 -0.010 0.098 0.022

8. DISCUSSION AND CONCLUSIONS

In this study we have focused our analysis on the char-
acterization of the angular velocity profiles in the con-
vective envelope of solar-like stars of various masses and
rotation rates. Starting from a mixing length argument,
we have shown that a Rossby number can be derived
based on fundamental stellar parameters such as mass
and rotation rate that gives an important insight into
the expected differential rotation profile. Three main
categories have been identified: anti-solar-like, solar-like
and cyclindrical/Jupiter-like. These categories depend
strongly on the Rossby number of the simulations, being
large for anti-solar cases and smaller than Rof < 0.1 for
Jupiter-like profiles.
Solar-like rotation profiles are found for intermediate

Rof values that are less than unity. Such differential ro-
tation states with conically-tilted isocontours of Ω are
achieved only if the baroclinic term plays a dominant
role in the thermal wind balance, as discussed in §7. As
the rotation rate is increased and the Rossby number
decreases toward 0.1, the angular velocity profile tends
to become more cylindrical, retaining its monotonic be-



On differential rotation and overshooting in solar-like stars 23

havior with fast equator and slow poles. Then for even
lower Rossby numbers, the alternating prograde and ret-
rograde jets become increasingly apparent. Eventually,
they tend toward Jupiter and Saturn’s surface angular
velocity profiles. A good guess of the number of jets in
such cases can be obtained by computing the compress-
ible Rhines scale (see e.g. Gastine et al. 2014a).
Of course the values quoted for the Rossby number

are somewhat dependent on the definition used. Ob-
servers tend to favor the stellar Rossby number, com-
paring the rotation period to the convective overturn-
ing time deduced from stellar evolution models (Landin
et al. 2010). Even in that case, there is some freedom
in choosing the convective over turning time, where one
can consider either the base of the convective envelope,
the mid-depth value, or an averaged value. Another def-
inition of the Rossby number can be used, the so-called
convective Rossby number as discussed in Glatzmaier &
Gilman (1982). This is relevant in analyzing rotating
convection simulations such as the ones presented in this
study, because it uses key nondimensional numbers such
as the Rayleigh, Taylor and Prandtl numbers. It eval-
uates the ratio between the driving buoyancy force and
the rotation constraints, getting rid of diffusion effects.
A third definition that is not employed in this study,
but that is found to be relevant for the study of stel-
lar dynamos, is the scale dependent Rossby number. It
is evaluated by comparing the kinetic energy contained
in the first convective modes to the energy contained in
all the scales. Finally, there is the fluid Rossby num-
ber, which is used in most of this work. It relates the
turbulent vorticity to the planetary vorticity. It is an a
postiori measurement of the effect of the Coriolis force
on the turbulence. We find it useful because it is quite
straightforward to compute, and it gives a robust assess-
ment of the rotating dynamics. The transition values
given above and throughout the paper are based on the
fluid Rossby number.
However, for the sake of completeness, we have also

quoted in table 4 the convective and stellar Rossby num-
bers. What is clear from this table is that those numbers
are indeed different but their relative trends with respect
to global stellar parameters follow a simple quasi-linear
relationship. Hence, what matters more than the magni-
tude of the Rossby number at the point of the the tran-
sition is to distinguish the rotational regimes. For large
Rossby numbers, we expect to have anti-solar behavior,
for intermediate values to be solar-like, and for small
values to have a cylindrical rotation profile that can be
either monotonic with respect to latitude or exhibit alter-
nating zonal jets when the rotational constraint is very
large.
Intrinsically, mixing length theory cannot predict dif-

ferential rotation states. It can only illustrate how the
Rossby number changes with respect to global stellar pa-
rameters as demonstrated in §2 and Figure 1. In con-
trast, the natural outcome of our 3-D numerical simula-
tions of rotating stellar convection is to provide, among
other dynamical properties, the state of rotation achieved
in a model for a given set of stellar parameters. We can
thus assess, with a consistent definition of the Rossby
number, what are the resulting states of differential ro-
tation for the simulations. In doing so, we can calibrate
the nondimensional constant c1 used in plotting Figure 1.

Note that no attempts at fine tuning have been made to
precisely find the transitions, instead a systematic scan
of the stellar parameters has been performed so as to ob-
tain the three differential rotation states identified. With
a multi-parameter regression fit to our set of 15 numer-
ical simulations, we obtain the following scaling relation
between the fluid Rossby, stellar rotation and mass:

Rof = 0.89× Ω−0.82±0.05
∗ M1.53±0.22

∗ . (33)

We note that it is not far from the one we derived in
§2 from back of the envelope arguments using MLT. The
constant c1 ∼ 0.89 and the exponents are very close as
well. To further illustrate this important result, we dis-
play this scaling relation based upon our set of 3-D sim-
ulations of rotating stellar convection in Figure 22 using
color contours. What our study confirms and Figure 22
summarizes is that for a given observation of the stellar
rotation rate or v sin i, the rotation state depends on the
stellar mass of the solar-like star. In particular, for a
given rotation rate, the more massive stars may be more
likely to achieve an anti-solar-like rotational state. This
trend could be observable and a systematic search for
anti-solar stars should be undertaken, as it will greatly
aid in the constraints upon our models. And indeed some
attempts using Kepler data have already been started
(Reinhold & Arlt 2015; Varela et al. 2016).
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Figure 22. Fluid Rossby number of the models.

It is interesting to note that the transition of the
state of differential rotation with Rossby number that
we have indentified could have a direct correspondance
with trends found in stellar X-ray luminosity studies (see,
e.g. Pizzolato et al. 2003; Wright et al. 2011, and refer-
ences therein). Jupiter-like profile could correspond to
the saturated X-ray regime, solar-like profiles to the lin-
ear regime and the anti-solar state to the well less defined
regime found in these studies. Also this modification of
the large differential rotation profile could lead to differ-
ent dynamo regimes and magnetic field topology, impact-
ing directly wind braking and stellar spin-down (Brown
2014; Vidotto et al. 2016; Metcalfe et al. 2016). We in-
tend to verify these relations and changes of regime with
dedicated dynamo simulations.
We also find that ∆Ω varies significantly in amplitude

with stellar mass, its amplitude being larger for more
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luminous stars as observed by Barnes et al. (2005). It
is also possible that the dependency (exponent) vs stel-
lar mass becomes steeper for F-type stars than for G
and K stars (see, e.g. Augustson et al. 2012). The trend
with rotation rate is also to have a larger contrast for
faster rotation rate, but the relative differential rotation
∆Ω/Ω∗ is found to decrease with Ω∗. The scaling rela-
tionships have a larger dependency than is advocated by
Collier Cameron (2007), but they are in close agreement
with the studies of (Donahue et al. 1996; Saar 2009).
Furthermore, we know that in MHD dynamo models the
angular velocity contrast has a weaker dependence on
the rotation rate, as demonstrated in Varela et al. (2016)
which utilizes MHD versions of the 3-D simulations dis-
cussed here. So, the scaling relationships given in these
paper with respect to the rotation rate should be consid-
ered as upper limits.
All our simulations include a stable radiative interior

below the convective envelope. The seamless nonlinear
coupling of these regions greatly improves the realism of
the bottom boundary condition of the convective layer
relative to an impenetrable one. The convective down-
drafts can plumet through the domain without hitting a
solid wall, and so they can be buoyantly braked. A care-
ful analysis of the overshooting layer that results from
the pummeling of the convective motions reveals inter-
esting trends. We find that the amount of overshooting
decreases with mass, when it is characterized by latitu-
dinally averaging the radial extent over which enthalpy
flux is negative at the base of the convective envelope.
We further find that stars with prograde rotation have a
smaller normalized overshooting extent with increasing
Rossby number, whereas it is the reverse for anti-solar-
like stars. The latitudinal variations are interesting too.
We find that solar-like stars have prolate overshooting
layers and that in anti-solar-like stars they are oblate.
As for the overshooting layer, characterizing the shape

and amplitude of stellar tachoclines at the base of con-
vective envelopes is of importance for stellar magnetism
and chemical mixing. We find the following trends in our
study: the prolateness of the tachocline changes with ro-
tation rate. Anti-solar-like star have oblate tachoclines,
thicker at the equator, whereas solar-like star have pro-
late tachoclines. We also find that for faster rotation
rates the overall shear is larger, in agreement with ∆Ω
being larger in the convective envelope. However, our
choices for the radial profile of the thermal and viscous
diffusivities influence the thickness and location of the
tachoclines. Indeed, since the pioneering work of Spiegel
& Zahn (1992), it has been well known that the viscous
and radiative spreading of a tachocline in the radiative
interior of a solar-like star is at work, unless there is some
yet-to-be-identified physical process that acts against it.
Several scenarios have been proposed: anisotropic tur-
bulence, gravity waves, primordial or cyclic dynamo-
generated magnetic field. However, a specific numerical
setup will likely be required to be able to disentangle
their various impacts, which is a task far beyond the
scope of this study. Nevertheless, we believe that the
trends found for the shape of the tachoclines is robust as
all models have been built with the same physical ingre-
dients and numerical accuracy.
Meridional circulation is found to change significantly

with rotational influence. Its shape changes from a

monolithic unicellular poleward flow in the anti-solar
cases, to multi-cellular flows, with the number of cells
increasing both in radius and latitude, for solar-like and
Jupiter like states of differential rotation. This can be
understood by the ability or not of the meridional cells to
extend beyond the latitude corresponding to the tangent
cylinder of each models. With stronger rotational con-
straint, the meridional cells are more and more aligned
with the rotation axis and are confined to lower latitudes
as discussed in Featherstone & Miesch (2015). Our study
also confirms previous findings that the meridional circu-
lation weakens as the rotation rate is increased. This is
linked to the fact that more kinetic energy is being chan-
neled to the longitudinal motions. However, it could be
the case that this decrease in the amplitude of the merid-
ional circulation with respect to the rotation rate is due
to a lower level of supercriticality of the simulations, since
it is difficult to maintain it. Indeed, we know that this
large-scales flow is a direct response to any net longitu-
dinal torque applied to the envelope through the effect of
gyroscopic pumping. As a consequence, if the amplitude
of the Reynolds stresses weakens because of a less intense
degree of turbulence, then the meridional circulation will
be weaker as well. Even taking into account the decrease
of amplitude of the Reynolds stresses, the global trend
of weaker meridional circulation for faster rotation rate
is confirmed. As we clearly see in Table 4, the Reynolds
number does not decrease. On the contrary, it can in-
crease.
Two cases exhibit active nests of convection (M05R3,

M05R5), but they do not impact the conclusions derived
in this study. Their co-existence with an underlying
stably-stratified region in our models warrants further
investigation regarding their formation, which we intend
to explore in the near future with a specific parameter
study.
To summarize, we have seen that many properties of

stellar convection, with its associated mean flows and
transport mechanisms, are influenced by rotation and
stellar mass. We have been able to find useful trends
and to anticipate the rotation regime of candidate stars
thanks to MLT and 3-D numerical simulations. This
study was done with purely hydrodynamical models and
lacks a consideration for the nonlinear feed backs related
to a dynamo generated magnetic field. Preliminary stud-
ies by our group, and published in Varela et al. (2016),
seem to confirm the main trends for the differential ro-
tation states but with a weaker sensitivity to global pa-
rameters. Work by Käpylä et al. (2014); Gastine et al.
(2014b); Karak et al. (2015); Guerrero et al. (2016) also
find some differences arising from magnetic fields, but
they do not change the global trends presented in this
study. For instance we find that the anti-solar cases pre-
sented in this hydrodynamical study remain anti-solar
when magnetic field is taken into account (see Figure
2 of Varela et al. 2016, for a preliminary study of our
MHD antisolar cases). This is likely due to the fact that
their Rossby (Ros or Rof ) remain larger than 1.0 even af-
ter the Lorentz force has influenced the convective flows.
We expect to publish a detailed analysis of the dynamo
counterpart of the 15 hydrodynamical models discussed
in this study in the near future.
Of course the turbulence degree used in the simula-

tions discussed in this work are still limited by the current
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computer resources and one must be extremely careful in
comparing directly numerical results with observations.
Still we find these systematic parameters study useful to
delineate the main trends and identify the key physical
mechanisms and it is reconforting to see that the observa-
tional tendencies are recovered qualitatively. We are also
convinced that anti-solar like differential rotation states
are worth searching for observationaly by selecting stars
with large fluid or stellar Rossby numbers.
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APPENDIX

MODEL INGREDIENT PARAMETERS

In Table 7 we list some of the parameters used in the simulations.

ROSSBY NUMBERS

There are multiple definitions of the Rossby number in the literature that quantify the influence of rotation on the
dynamics of the system. We chose to use the fluid Rossby number Rof , which is a direct comparison of the advection
term and the Coriolis force in the Navier-Stokes equation. It is defined by

Rof =
ω̃

2Ω⋆
∼ ṽ

2Ω⋆R⋆
, (B1)

where ω̃ is the rms vorticity at mid-depth in the convection zone. We choose to evaluate the Rossby number at
mid-depth of the convection zone as it is close to the location of the maximum angular momentum transfers shown in
Figure 17. We also tested a different definition of the Rossby number for which ṽ is averaged over the all convection
zone rather evaluated at mid-depth and did not find any significant difference in the analysis reported in this work.
The stellar Rossby number, which is often used in the literature, corresponds to the ratio of the rotation period of

the star (Prot = 2π/Ω∗), to the convective over-turning time of convection (τconv = dCZ/ṽr, with dCZ the thickness of
the convective envelope). With the definition of the convective over-turning time being different for various authors, it
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Table 7
Diffusivity profile and nuclear heating source parameters

Mass Name νtop rt σt ǫ0 nc a b

(M⊙) (cm2s−1) (cm) (cm)

0.5 M05 S 10.5× 1011 1.65× 1010 4.0× 108 2.20× 10−7 7.3 9.78e-04 -3.57e-09
M05 R1 4.47× 1011

M05 R3 2.58× 1011

M05 R5 2.00× 1011

0.7 M07 S 5.31× 1012 2.67× 1010 1.0× 109 5.56× 10−9 8.8 9.59e-03 -9.56e-09
M07 R1 2.91× 1012

M07 R3 1.68× 1012

M07 R5 1.30× 1012

0.9 M09 S 1.43× 1013 3.94× 1010 7.0× 108 1.37e-02 -3.78e-08
M09 R1 1.01× 1013

M09 R3 5.81× 1012

M09 R5 4.50× 1012

1.1 M11 R1 3.80× 1013 6.20× 1010 8.0× 108 1.09e-02 -3.01e-07
M11 R3 2.20× 1013

M11 R5 1.70× 1013

is generally deduced from stellar structure models using mixing-length at various locations in the convective envelope,
leading to some confusion in its exact definition (Landin et al. 2010). In our simulations, we directly use the mid-depth
value of the radial velocity. It is defined by

Ros =
Prot

τconv
. (B2)

The convective Rossby number Roc, first introduced by Gilman & Glatzmaier (1981), is a combination of the Taylor,
Rayleigh and Prandtl numbers and is defined by

Roc =

√

Ra

TaPr
. (B3)

Finally, a modified Rossby number Rol was introduced by Christensen & Aubert (2006) to take into account the
characteristic length scale of the flow rather than the shell thickness dCZ. It is defined by

Rol =
U

2Ω⋆L

l̄u
π

, (B4)

where U is the rms velocity at mid-depth, L the size of the convective enveloppe, and the characteristic length scale
l̄u is defined as

l̄u =

∑

l l 〈vl · vl〉
∑

l 〈vl · vl〉
, (B5)

where vl is the velocity field at scale l in the spherical harmonics spectral space.

THERMAL WIND BALANCE

The complete thermal wind balance equation can be derived from the vorticity equation

∂ω

∂t
=(ωa ·∇)v − (v ·∇)ωa − ωa(∇ · v) (C1)

+
1

ρ̄2
∇ρ̄×∇P −∇×

(
ρg

ρ̄
êr

)

−∇×(
1

ρ̄
∇ ·D),

with ωa = ∇×v+2Ω∗ the absolute vorticity and ω = ∇×v the vorticity in the rotating frame. Averaging the zonal
component of this vorticity equation over longitude and time and assuming a statistically stationary state yields the
general equation for force balance in the meridional plane:

2Ω∗

∂〈vφ〉
∂z

=−〈(ω ·∇)vφ − ωφvr
r

− ωφvθ cot θ

r
〉

︸ ︷︷ ︸

Stretching S
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+ 〈(v ·∇)ωφ +
vφωr

r
+

vφωθ cot θ

r
〉

︸ ︷︷ ︸

Advection A

− 〈ωφvr〉
d ln ρ̄

dr
︸ ︷︷ ︸

Compressibility C

+
1

r

[
∂

∂r
(r〈Aθ〉)−

∂

∂θ
〈Ar〉

]

︸ ︷︷ ︸

Viscous stresses V

(C2)

+
g

rcp

∂〈S〉
∂θ

+
1

rρ̄cp

dS̄

dr

∂〈P 〉
∂θ

︸ ︷︷ ︸

Baroclinicity B

where
∂

∂z
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
and

〈Ar〉=
1

ρ̄
〈
[
1

r2
∂(r2Drr)

∂r
+

1

r sin θ

∂(sin θDθr)

∂θ
− Dθθ +Dφφ

r

]

〉,

〈Aθ〉=
1

ρ̄
〈
[
1

r2
∂(r2Drθ)

∂r
+

1

r sin θ

∂(sin θDθθ)

∂θ

]

(C3)

+
1

ρ̄

[Dθr − cotθDφφ

r

]

〉.

KINETIC ENERGY BALANCE FOR THE DIFFERENTIAL ROTATION

We recall the evolution equation of the kinetic energy associated with the differential rotation:

∂t (DRKE) = Qr
C +Ql

C +Qr
R +Ql

R +QA +QV +Qcurv . (D1)

The various terms of Equation D1 are defined by

Qr
C =−2 〈Ωρ vrvϕ sin θ〉r,θ , (D2)

Ql
C =−2 〈Ωρ vθvϕ cos θ〉r,θ , (D3)

Qr
R= 〈ρ vrvϕ∂rvϕ〉r,θ , (D4)

Ql
R= 〈ρ vθvϕ∂θvϕ〉r,θ , (D5)

QA=−
〈

1

r2
∂r

[
r2ρ vϕ vrvϕ

]
〉

r,θ

−
〈

1

r sin θ
∂θ [sin θρ vϕ vθvϕ]

〉

r,θ

, (D6)

QV =

〈
1

r2
∂r

(

r3νρ̄ vϕ∂r
vϕ
r

)

+
1

r2 sin θ
∂θ

(

sin2 θνρ̄ vϕ∂θ
vϕ
sin θ

)

−νρ̄

[(

r∂r
vϕ
r

)2

+

(
sin θ

r
∂θ

vϕ
sin θ

)2
]〉

r,θ

, (D7)

Qcurv=−
〈

vϕ
r sin θ

(ρ̄ vrvϕ sin θ + ρ̄ vθvϕ cos θ)

〉

r,θ

, (D8)

where 〈.〉r,θ stands for the average over the meridional plane, and the overbar stands for the azimutal average.
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