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Introduction

A  differential system (or Pfaffian system ) D  on a manifold M  is  a
law  w h ich  assign s to  every  point x E M  a  subspace D (x )  o f a  given
dimension of the tangent space Tx (M )  to  M  a t  x  and which is differen-
tiable in  a suitable sense, or it m ay be sim ply defined as a subbundle

of the tangent bundle T (M ) of M .  Let D  (resp . D ') b e  a  differential
system  on a manifold M (resp . M ') .  T hen a  diffeomorphism ç o  o f M

onto M ' is called an isomorphism o f (M, D ) onto (M', D ') i f  it induces
a  bundle isomorphism of D  onto D', i.e ., ço* D (x )=  D '((o(x )) at each  x
E M.

The geometry o f differential systems may be described as usual as

a  geom etry o f  linear group  structures (G-structures) whose structure

group G  is  o f infinite type and even  no t e llip tic . This fact m akes the

geometry rather difficult to be studied on the basis of the usual theory
o f linear group structures. (B y  the usual theory , w e here m ean  the

local theory as  appears in Singer and Sternberg [ 9 ]  and the global

theory (c f. R uh  [8 1  and O chiai [7 1 )  based on the theory o f  elliptic
differential equations.) For instance, it  se em s to  us th at a direct use

of the usual theory fails to give any finiteness theorem on the automor-

phism groups o f differential system s. The same remark holds for other
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geometries based on the geometry o f  differential systems, e.g., for the

geometry o f pseudo-complex structures (= the geometry o f real submani-

folds o f complex manifolds, see § 10).

In the previous paper [131, we have established a new prolongation

scheme which can be well applied to a  class o f differential systems, to

a  class o f  pseudo-complex structures and generally to a  class o f linear

group structures subordinate to differential systems. As an application,

we have obtained a  finiteness theorem fo r these structures.

The main purpose of the present paper is to give a  further gen-

eralization o f  this prolongation scheme and to make some studies on

graded Lie algebras, pseudo-groups, etc, which are closely related to the

equivalence problem.

Let us now proceed to the description of the various sections and

explain the main results in the present paper.

§1  is concerned which the assumptions to impose on the differential

systems. We first introduce the notion of a regular differential system

(Def. 1.1): A  differential system D  on a manifold M  is called regular

i f  there is a  family (DP)p <0 o f  differential systems on M such that

— D and

DP -= [D P ', D -
1 1+ D P ',

where D r is the sheaf of local cross-sections (local vector fields) of the

vector bundle Dr. I f  D  is regular, then the fam ily (D P) is uniquely

determined and there is an integer p> 0 such that- =Da - 1 ' R • - • D
- 1

= D .  Throughout th e  present paper, we shall be mainly concerned

with regular differential systems D  w ith  D - "=  T  (M ). We next in-

troduce the notion of a fundamental graded (Lie) algebra (Def. 1.3): A

graded Lie algebra nt — i ' ,  the indices p  taking values < 0, is called
p<0

fundamental i f  it satisfies the following conditions :

(1) dim nt < ;

(2) ni is generated by 1, i .e . , L op, çi - i ] _ çlp-1.

Moreover a  fundamental graded algebra is called o f p -th  kind if
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1 0 1  fo r  a l l  p< — ,a and q-
P* { ( } . L e t  D  b e  a  regular differential

system on M .  Then it is show n that the direct sum  m ( x )—  DPW /
p<o

D 1(x )  is endowed with a structure of fundamental graded algebra (of
/e-th k ind ). G iven  a  fundamental graded algebra n t ,  w e say  th a t D  is
of type ut if every m (x ) is isomorphic with m  as graded algebras (Def.
1.4). For example, every homogeneous differential system D  is regular
and of type n i with som e ni.

In  § 2 , w e define the standard differential system s. L et m =  g P
p<0

be a fundamental graded algebra and let M (m ) be the simply connected
Lie group whose Lie algebra is given by m .  Then the subspace g- o f

m  defines a left-invariant differential system D  on M (m ), which is regu-
la r  and  o f type m . Th is differential system D  is  c a lled  the standard

differential system o f typ e  m . F or example, every contact structure is
locally equivalent to a standard differential system . In  § 3 ,  w e  argue

about the "universal" fundamental graded algebras, which leads to the

study o f "generic" differential systems.
In  § 4, we generalize the notion of regular differential system s of

type in  to  g ive  the notion of Gg-structures of type nt. These structures

are the very linear group structures on which we discuss the equivalence
problem . W e here only explain  how  to define the group G . L e t  in
= E ill' be a fundamental graded algebra and let G°

(m ) be the automor-
p<0

4
phism  group o f n t as graded algebra. Let N ° b e  the subgroup o f GL(m)

consisting o f all a  E GL (m )  such  th at aX=--=-- X (m o d  b ." ) fo r  a ll  X E bP
-1

and p< 0 , where b P =  E g r .  Given a  L ie  subgroup G
°
 o f  G

°
(m ) , then

r
the group g

p
is defined to be the product G°•N ° o f G

°
 and N

°
, being a

Lie subgroup of G L ( m ) .  Note that a  regular differential system of type

in  m ay be described  as a  G ( n t ) -structure o f  t y p e  in , w h e re  w i l l )

= G
°
(ni)./V

°
.

§ 5  is concerned w ith  the algebraic prolongations of fundamental
graded algebras, etc. It is shown that every fundamental graded algebra
nt = E  qP  is prolonged to a  graded algebra g ( m ) = E  EqP(m). Note

p<0 .-p < 0
that g°

(urt) is  the Lie algebra of all derivations o f  in  as graded algebra,
i.e ., the L ie  algebra o f  G

°
(i11). In  general, le t !..i

° b e  a  subalgebra of
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te (m ) .  Then the direct sum  E is prolonged to a  graded subalgebra
P SI

g = c iP  of g(m), w h ich  is called  the prolongation of (nt, g°). We say
th at (m, g °)  i s  o f  infinite type (resp. o f finite type) if !II'  /  101 for all
p  0 (resp. if  gP= {0} for some 0).

In  § 6, w e study the infinitesimal automorphisms of the standard

differential system D of type in. W e  p ro v e  th a t the formal algebra of

all form al infinitesim al automorphisms o f (M(in), D ) i s  the completion
(m ) of g (m) (T h . 6.1).

§7 is  p re lim inary to  the subsequent sections. Let In =  q "  b e  a
p<o

fundamental graded algebra and let G
°
 b e  a Lie subgroup of G°(m ). Let

g° b e  the L ie  algebra o f G° w h ich  is  a  subalgebra o f  g°(m ) and let g

Ai' be the prolongation of (m, g°). W e first define the groups Gk

= G/N? (k> 0) by using the prolongation of (In, g°)  and then introduce
the notion of a pseudo-Gk-structure of type nt(Def. 7.2). A  pseudo-Gk-

structure o f typ e  m  on a manifold M  i s  a triple ( p h , D (k ) ,  0(k \) )  as

follows :  P k  i s  a principal fiber bundle over the base space M  with
structure group Gk ; D ( k )  i s  a  fam ily o f differential systems on 13 " ; 0 ( k )

is  a  fam ily o f "pseudo- 1-forms" on P " , th e  "fundamental form " o f this
structure. It should be remarked that a g-structure of type nt, P , on

a manifold M  m ay be described a s  a  pseudo-G°-structure of type nt,
(P o, D o) , 0 (o)) ,

§ 8 is mainly devoted to the description of the prolongation theorem
for pseudo-G°-structures of type m . The prolongation theorem is roughly
stated as follows (Th. 8.3) :

(1) W ith every pseudo-G°-structure of type nt, (P
°
, D m , Om), on

a manifold M, there is associated a  sequence
( p ) :

 ( P ° ,
 D (0 ) ,  0 (0 ) ) 4 _  (p k  D (k ) ,  0 (k ) )

(p k , ( k )o f pseudo-Gk-structures of type nt, where D ,  0 ( h ) )  i s  a  pseudo-
Gk-structure of type nt on p 1 1 .

D(0) , ( )(2) The assignment (p0 , 0 0 )  ( p )  i s  compatible w ith  the

various isomorphisms.
As an immediate corollary, we have the following finiteness theorem

on M(cf. T h . 8.1).
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fo r  q-structures o f typ e  in  (Th . 8.4) : L e t P(1 b e  a  q-structure of

type nt on  a connected manifold M .  I f  (in, g° )  is o f finite type, then

th e  L ie  algebra o f  all infinitesimal automorphisms o f  1 1  is  o f  finite

dimension <  dim q. In  this connection, we remark that the group Gil
is  o f  infinite type and not elliptic unless ni is o f first k ind. Th. 8.4

generalizes the finiteness theorems contained in [1 ], [9 ], [11 ] and [13].

In  § 9, we construct sequence (P) and prove the prolongation theorem.

In  § 10, we first introduce the notion of a pseudo-complex structure.

Let D  be a  differential system on a manifold M  and let I  be a  cross-

section o f th e  vector bundle Hom (D , D ). Then the pa ir (D ,  I )  is
called a  pseudo-complex structure on M  if /x

2 ( Y )= —  Y fo r  a l l  Y
ED ( x )  and if, for any two local cross-sections X ,  Y  o f D,

(1) [IX , IY 1 — [X , Y ] is a local cross-section o f D;

(2) ELY-,  /Y-1-Lx, 17 1=-1(1/x, Yl+EX,

W e then  clearify the close relation between the geometry o f  pseudo-

complex structures and that o f  real submanifolds o f  complex manifolds

and apply our main theorems to the former geometry. Recently Tanaka

[1 4 ] has applied the results in  §10 combined with those in  §§5 and

6 to the determination o f infinitesimal automorphisms of Siegel domains.

Finally in  § 11, we study certain graded modules (over non-com-

mutative rings) and apply the result to some problems on certain graded

Lie algebras. Let nt= E qP be a fundamental graded algebra over a field

K  o f characteristic zero and let E  be a (right) nt-module. Assume that

E is graded: E= E EP(direct sum) ; E P  C E P" ; dim E "< 00. Moreover

assume that

(1) EP= {0 } for all p < —  ,a i f  m is o f fl-th kind;

(2) for each p  0, the condition "a E EP, ag- i =  {0 }"  implies a= 0.

For each p >  0 , le t  HP(E) be the subspace o f EP consisting o f  a ll a

E E" such that aqr= {0} for all r< — 1. Then we prove that EP
for all p  0 if and only i f  HP(E) {0} for all p > 0  (Th . 11.1). Th.

11.1 will be o f some interest relating to the algebraic theory of partial
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differential equations. A s  a n  immediate corollary, we obtain :  L e t  ut

p <o  
qP  be a  fundamental graded algebra a n d  le t g

° b e  a  subalgebra of

e ( r n ) .  L e t  1)
° b e  t h e  ideal o f  g

° consisting o f  a ll X E g
° such that

[X , g r1 = {0}  f o r  all r <  — 1 a n d  identify ft
° w ith  a  subspace o f  Horn

q-1 ) ((by  iden tify ing X E It° w i t h  t h e  endomorphism Y

[X ,  Y] E g
-1

). Then (nt, g
°
) is  o f  infinite t y p e  i f  a n d  on ly if  th e

subspace b° (Rom (g-  1 , g
-1

)  is  o f  infinite ty p e  (C o r . 2  to  T h . 11.1).

T h is  result is o f  much im p o rta n c e  in  connection with t h e  finiteness

theorem stated above a n d  plays a  fundamental role in the classification

of prim itive infinite pseudo-groups (see Morimoto an d  Tanaka [6 1).

Contents

§ 1. Strongly regular differential systems

§ 2. The standard differential system of type nt
§ 3. The universal fundamental graded algebras

§ 4. q-structures of type in
§ 5. The algebraic prolongations

§ 6. Infinitesimal automorphisms of the standard differeatial system of type nt
§ 7. G-structures of type nt and pseudo-G*-structures of type nt
§ 8. The prolongation theorems

§  9 .  Proof of Theorem 8.1, Theorem 8.2 and of Lemma 8.2

§10. Applications to the geometry of real submanifolds of complex manifolds
§11. Some results on certain graded modules

Preliminary remarks

1. D efin ition  1 . L e t g  be a  L ie  algebra over a field K .  Assume

that there is given a  family (gP) p E z  o f  subspaces o f  g  which satisfies

th e  following conditions, where Z  denotes the additive group o f integers:

1) g =  g P  (direct sum);

2) dim gP < 00 ;

3) 
[qP,qs ( qP+ Q .

Under these conditions, we say that th e  system {n, (nP)} o r th e  d irec t

sum g =  nP o r  simply g  is a  graded algebra.
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Moreover we define the notion of homomorphism and of isomorphism

for graded algebras in an obvious manner.

Let q  b e  a  L ie  algebra and assume that there is given a family

(f1b ) k p i  o f subspaces o f g  such that g ,(1P  (d irect sum ). Then we
P=k

shall say that the direct sum g = g P  is  a  graded algebra if g = g i '
p= k p E Z

becomes a  graded algebra by putting g"=-- { 01  for any p (p  <k  or p>1).
Let (3= E g "  be a  graded algebra. A subalgebra f) o f th e  L ie  algebra

g  will be called a  graded subalgebra i f  we have 1)=  E tine.
2. Throughout this paper, we shall always assume the differen-

tiability of class C " unless otherwise stated. Given a manifold M , T (M )
will denote the tangent space to M  at a point x E M.

Definition 2. ( 1 )  A n  n-dimensional differential system D  on a

manifold M  is a  differentiable mapping D  which assigns to every point

x E M  an n-dimensional subspace D (x ) o f  7' x(M)•
( 2 )  L et D (resp . D ')  b e  a  differential system on a manifold M

(resp. M ') .  A  diffeomorphism go o f M  onto M ' is called an isomorphism

o f (M, D ) onto (M', D ')  i f  we have yo* D(x)= D '(yo(x)) at each x E M,

yo* being the differential o f V.

3. As for differential forms defined on differential systems, principal

fiber bundles and G-structures, we shall adopt the definitions and nota-

tions given in [131, §1.

§ 1 .  Strongly regular differential systems

1.1. L e t  M  b e  a m anifold . W e denote  by  T (M )  the tangent

bundle o f M .  Every differential system D  on M  may be identified with

a vector subbundle o f T (M ), and vice versa. Given a differential system

D  on M , we denote by D  the sheaf o f  a ll local cross-sections of the

vector bundle D .  The sheaf T(M) is nothing but the Lie algebra sheaf

o f all local vector fields on M , and the sheaf D  is  a  vector subsheaf

o f  T(M). I n  general, le t  g  b e  a  vector subsheaf o f  T(M). g ( x )
denotes the stalk o f  g  a t a point x E M .  Given a local cross-section

X  of 9  defined o n  a  neighborhood o f  x , X ,  denotes the germ  at x



8 Noboru Tanaka

represented by X, which is an element o f .9(x).

Let D  and D ' be two differential systems on M  such that D CD',
i.e., D (x ) (D '(x )  at each x E M .  Let x  be any point of M . We denote

by 6° ( x )  the vector subspace o f  T(M) ( x )  spanned by all the elements

o f th e form  EX,, 17-
x 1+ Z x  where X x , Z x E  D '(x ) and Yx E D (x ) ,  i.e.,

(x )=ED '(x ), D  (x)1+ D '( x ) .  Moreover we denote by D " (x )  the sub-

space o f  T x (M )  consisting o f  a ll the elements X x ,  where X x E S (x ).

Then we say that the pair (D ', D ) is regular if  dim D "(x )  is constant.

I f  (D ', D ) is regular, then we see that the assignment ME x  D " ( x )

gives a  differential system D " on M  and that the assignment ME x
S (x )  gives the sheaf D "  associated with D " .  W e have D "  /3' D.
For the moment, the differential system D " will be denoted by D U D .
The differential system D O D  is called the derived system o f  D (cf.

[2 1). D  is completely integrable if and  only i f  [D (x ), D (x )1 (D (x )

at each x E M  or equivalently DOD= D.

Definition 1 .1 . W e say that a  differential system D  on  M  is

regular i f  there is a family (D1') < 0  o f  differential systems on M  satisfy-

ing the following conditions :

1) ••• DDP - 1 DDPD•••DD - 1 =D ;

2) F o r  each p < 0, th e  pa ir (D P , D- 1 ) is r e g u la r  and  DP - 1

= D P D D - 1 .

It is clear that the family (D P )p < 0  satisfying the above conditions

1 ) and 2 )  is uniquely determined by D .  Since dim DP <  dim M , there

is an integer p > 0 such that

••• = D - 1 - 1 = D -1 - 01" 1 ••• D - 1 .

Definition 1.2. being just as  above, th e regular differential

system D  is called of ,e -th kind.

We say that a  differential system D  on M  is homogeneous if the

pseudo-group o f  a ll the local automorphisms o f (M , D ) is transitive on

M .  It is obvious that a  homogeneous differential system D  is regular.
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Rem ark. O u r  regularity c o n d itio n  fo r  differential systems is a

general o n e .  I n  f a c t ,  it is easy to see that any differential system D
o n  M  is regular o n  some o p e n  se t  U o f  M.

Proposition 1 .1 . Let D  be  a  regular dif f erential sy stem  of  it-th

k ind on M . T hen  the dif ferential system  D "  the smallest completely

integrable dif ferential system  on M  containing D.

P ro o f. W e  h a v e  ID P (x ) ,  f r  (x ) ]  DP - 1  (x )  at each  x E M .  It

follows that ID r(x ), Ds (x ) ] C D 's ( x ) .  Prop. 1.1 is easy from this fact.

L e t D  be a  regular differential system o f  ,- th  kind o n  M , and  le t

N  b e  a  m a x im a l integral m anifold of  D .  Then each differential

system D P can be restricted to N , which we denote by DP I N .  Then

it is clear that DIN = 1) - 1 I N  is regular and that (DP I N ) p < 0  is just the

family o f  differential systems associated with D I N .  Moreover, we see

that D  N  is o f  ,- th  kind a n d  D - "  N =  T (N ) .  I n  this paper, we shall

be mainly concerned with regular differential systems D  o f  te-th kind

with D =  T (M).

1.2. L e t  D  be a  regular differential system o n  M  a n d  le t  x  be

any p o in t  o f  M .  W e  s e t  gP(x)= DP(x)/DP + 1  (x )  a n d  m (x) =  L ogP(x)

(direct s u m ) .  L e t  u s  define, i n  a  natural manner, a  bracket operation

in  m (x )  so that in (x )  becomes a  graded algebra. F o r this purpose, we

s e t  g P(x) = DP(x)/DP 1 (x )  a n d  nt (x) = E q P (x ) ( d ir e c t  s u m ) .  Since
p<ot

[Dr (x ), Ds ( x ) 1 (  D s ( x ) , t h e  bracket operation I , i n  T(M) ( x )  in-

duces a  bracket operation L,  i n  m (x) i n  such a  way that m (x) be-

comes a  "graded algebra". (N o te  that dim ç (x) =  00 ). Since [DP(x),

(x )1+ DP(x )= DP -
1

- (x ), w e  h a v e  DP(x), i ( x ) i =  gP-  ( x ) .  Let

a "  (resp. a") denote that pro jec tion  o f D P(x ) (resp. DP(x )) onto gP(x)

(resp. gP(x)). T h e  mapping DP(x) D X x  X x  E  D P (x ) induces a  linear

mapping 3P  o f  gP(x) onto gP(x) such that 3/9 (aP(X x ))=  aP(X x )  fo r  any

X , E D P (x ).  T h e  family (9 P ) p < 0  defines a  linear mapping 13 o f  m (x )

onto m (x).

Lemma 1 .1 . Let X x  E  DP(x) and Yx E D' (x).
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(1) I f  X x = 0 , then w e hav e [X , Yl, E D P' " (X).

(2) I f  X x  E DP+1 (x ) , then w e have [X , Y], E Db -"+ I (x).

P ro o f .  (1) Let oi l  =  •  =  =  0  b e  a local equation o f D b " + 1  a t

x .  We have co1 (1X , Y1,) = — dw i (Xx A Yx)+ Xx (01( Y) — Y w i (X ) .  Since

Xx -= 0 and D P  Db q+ 1 , we get où1([X , Y l x = 0 (1 i  k ) ,  which means

[X , Y ], E  Db+ q4 - 1 (x ). (2 ) fo llow s easily  from  (1 ) and the fact that

R P '(x ) , D q (x )]

By Lemma 1.1, we know that there is a unique bracket operation

, in ut (x) such that ut (x) becomes a graded algebra and such that

13 gives a homomorphism of in(x) onto iii (x) as graded algebras. Since

DP(x), A -
1 (x)1=A P -

1 (x ) , we have D P(x ), c 1 ( x ) 1 =e -
1 (x).

Definition 1.3 . (1 ) We say that a  graded algebra in = qb over
p<ò

a field K  is fundamental i f  it satisfies the following two conditions :

1) dim in < 00 ;

2) nt is generated by g - 1 , or more precisely Egb, gb-1(p < 0).

( 2 )  We say that a fundamental graded algebra nt= E gb is of ,a-th
p<o

kind if gb = 101 ( p < —  ,a) and g - ì   \ 

By this definition, we see that the graded algebra ut (x), constructed

as above, is fundamental.

Definition 1 .4 . Let D be a regular differential system on M.
(1) D  is called strongly regular i f  th e  graded algebras in (x)

(x  E M ) are mutually isomorphic ;

(2) Let ut = q b  be a  fundamental graded algebra over the field
p < 0 '

R  of real numbers. Then, D is called of type nt if the graded algebra
ut (x) is isomorphic with the graded algebra in at each x E M.

It is clear that homogeneous differential systems are strongly regu-

lar. In  §3 , we shall see that "generic" differential systems o f  some

kind are also strongly regular.

Examples. (1 ) Let nt g-1 be a fundamental graded algebra

of second kind, where dim ç[ 2 = 1 and dim g - 1  =  n . Let e0 be a base of
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.(:3- 2  a n d  define a n  anti-symmetric bilinear form B  o n  W-1  b y  B (X - 1 ,
y -i) e o  Ex-1 , y -  - I for an y  X - 1 , Y - 1  E n- 1 . Let r  be an  integer with_ _
0<  r 2 .  W e  s a y  th a t  in  is  o f  c lass r  (resp. non-degenerate) if

rank B = 2r (resp. i f  B  is  non -degenerate). It is  c lear th at there  is  a
unique fundamental graded algebra nt o f  c la ss  r  u p  to  isomorphism.
L e t M  b e  a manifold of dimension n + 1, a n d  le t  D  b e  a  differential
system of dimension n on M .  L et nt be a  fundamental graded algebra
of second kind, where dim  (1- 2 = 1  and dim W- 1  =  n . Then we say that
D  i s  o f  c lass r (resp. non-degenerate), i f  in  i s  o f  c lass  r  (resp. non-
degenerate) and if D  is  of type tn. D  is also called a contact structure
if  it is non-degenerate.

-1
(2) (c f. [11, p . 936-938) L et in= E AP be a  fundamental graded

algebra of p-th kind , w here d im  - 1 = 2 and dim  in< 5. Then we have
the following five cases :

1) dim ni = 2 , ,a =1 (n - 1 =2),

2) dim in = 3 , /1=2 (n - 2 =1, 7L- 1  = 2) ,

3) dim n t =4, ,a = 3 (n - 3 = n = 1, n - 1  -= 2),

4) dim m=5, ,e=3 (n 3 =2, n - 2 =1, n - 1 =

5) dim nt = 5, ,a = 4 (n - 4 = n - 3  =  n - 2  =1 , n - 1 =2),

where we put aP = dim q'. I t  c an  b e  e a s ily  sh o w n  th a t , in  each  case,
there exists a  unique fundamental graded algebra lit up to isomorphism.
Let M  be a manifold of dimension 5, and let D  be a  regular differential
system  o n  M , where dim  D = 2 .  T h en  w e  h av e  dim W- 1 (x ) = 2  and
dim 111(x) < 5 a t  e a c h  x E  M .  T herefo re w e know  from  th e  above
argument th at D  is strongly regular.

§ 2 .  The standard differential system o f typ e  ni

2.1. L et I n =  gP b e  a  fundamental graded algebra o f  ,a-th kind
p<0

over R .  L et M (m ) be the simply connected Lie group whose Lie alge-
bra is g iven  by in . (H ence in  m ay be identified  w ith  th e  L ie  algebra
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o f a ll le ft invariant vector fields on the Lie group M ( m ) . )  W e set bP
--1

= E q" and define a differential system DP on M(111) by D P(x )= (bP ),, the
r =

subspace o f  Tx (M (m ))  consisting o f a l l  the vectors X x (XE bP). Since
g - 1 1=gP - 1 , we easily have [DP(x), D - 1 (x )1 + D P (x )= D P 1 ( x ) .  This

shows th at D = D - '  is  a  regular differential system on M (m ) and that
(D P )b<0 is  the family of differential systems associated with D . Moreover
it is c lear that D is strongly regular of type nt. The differential system
D  on M (m ), thus obtained, is called the standard differential system of

type l i t .  L e t  E  b e  the Maurer-Cartan form  o f th e  L ie  group M (m )

which is the ut-valued 1-form on M ( m )  defined by E ( X ) = X  fo r any
X E  in  and x E  M ( m ) . L e t  EP d en o te  the ç"-component o f  E  in the

decomposition n t =  q P .  T h e n  it  is  c le a r  th a t  D P  is  d efin ed  b y  the
p<zo

equations Œr =0 (r< p ).

2.2. Let us now  realize the L ie group M (m ) as a Lie subgroup
o f th e  affine transformation group A F (m )  o f  In. L e t  uP  denote the

projection of ut o n to  qP  in  the decomposition u t =  qP, which may be
p<o

considered as a q"-valued function o n  n t. Then the system  (U P )_ p<0

defines a  linear "coordinate system " of the manifold M .  (Note th at uP

= 0  i f  p<  —  te.) F or each  X E  n t , w e defin e  a n  infinitesimal affine

transformation s (X) of nt by

s (X )( = X+ E q  ruP (X ), u °
( Y)1

P,a<op+ci

for all YE  in . Then it can be easily show n that the mapping X-> s(X )

gives an injective homomorphism s  of the Lie algebra in  into the Lie

algebra ctf (t n) o f  all infinitesim al affine transformations of nt. Further-
m ore we see that s  generates an injective homomorphism S  of the Lie

group M (m ) into the Lie group AF(m ).

2.3. The affine transformation group A F (m ) may be expressed as

the product nt X  G L (M ) ; W e denote by p  the projection of A F (m ) onto
III. Then the mapping f = p  o  S  g ives a diffeomorphism o f M (m )  onto
nt. W e have f ( a x ) = S ( a ) J ( x )  fo r  a l l  a, x  E  M (m ) . It follows that
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the group S (M (m )) is simply transitive on nt and that the differential

system b - ( f - 1 )*D on n i is  invariant by S (M (m )).  Moreover i f  we

put # P=(f - 1 )*E 1', then b  is defined by the equations P = 0  —2).

For the sake o f  simplicity, assume that it <  3, i.e., in = c 3 +g -
2 +g -

1 .

I f  we put

17-1= du - 1 ,

1
—— 2 d u  — 2

2 1u - 1 , du - 1 ] ,

1 2 
[u -

2 ,  du -
1 1— [u -

1 ,  du -
2 13 3

1 
[u - 1 , [u - 1 ,du - 1 11,6

then it can be shown that =vP(p = —3, —2, —1). Thus we know

that the differential system b  is defined by the equations 77- 3 =7/- 2 =0,

which may be adopted as the second definition of the standard differen-

tial system of type m for the case ,u<3 .

E x a m p le s . (1 ) The case where p = 2 , dim g- 2 = 1  and where m
is  o f  class r  (c f. 1.2, Example (1)). L e t e0 b e  a  base o f g- 2 . Then

we can find a  base e l , e „ of fc- such that [e s, e1 1 =e 0 ( 1 < i  < r ,

j= r+ i ) ,  —  e 0 ( i  =  r  j , j and=0 (otherwise). Let x 0 , • • • , x"

denote the coordinate system of D I  corresponding to the base eo, •••,
n

Then we have u - 2 =x ° e0 and u- 1 -= E  x 1 e ,  and we see that the dif-

ferential system b  on nt is defined by the equation

dx °  — ± (x i  dxr+ i — xr+i dx 1) =0 .
z  i=1

Th e Darboux's theorem shows that any regular differential system D'
of dimension n and of class r  on a manifold M ' of dimension n + 1  is
locally isomorphic with the differential system b  on nt.

( 2 )  The case where p=3 , dim g- 3 =2, dim 11- 2 = 1  and dim g-1=2
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(c f. 1.2, Example (2)). There is a base el, •••, es o f  in such that el,

ez (resp. e3 ;  resp. e 4 , e 3 )  forms a base of q- 3  (resp. q - 2 , resp. q - 1 )  and

such that e 1 = [e 3, e 4 1, e 2 =1e 3 , e 5 ]  and e 3 = L e 4 ,  e s1. L e t  x l , •••, x
s

denote the corresponding coordinate system o f nt. Then we have u- 3

=x 1 e i + x 2 e 2 , u - 2  = x 3 e 3 and u - 1 =x 4 e
2 1 

x

3  

X
4  

(X4)2 X 5 a n d  R.2 = X 2  +3 6
see that the differential system b on In

4 ± X 5 es, and if we put X-1 - =  x 1

2 1
x 3 x 5 + x 4 (x 3 ) 2 ,  then we3 6

is defined by the equations

dR 1 —(x 3 —  1   x 4 x 5 )dx 4 =0
2

dR 2 —(x 3 +  1   x 4 x 5 ) dx 5 -=0,
2

1  dx 3 (x4 dx s —  d x 4 ) =0
2

(cf. [1 1  p. 977).

§ 3 .  T h e  universal fundamental graded algebras

3.1. In  this section, vector spaces and L ie algebras to be con-

sidered are those over a fixed field K  of characteristic 0 unless otherwise

specified. Let ( V P )p E A  be a family o f  finite dimensional vector spaces,

where A  is  a  subset o f  Z .  S e t V = E  V P  and consider the second

exterior space A 2 V  o f  V .  Denote by 
V A

 V ' the subspace o f  A 2 V

spanned by all the elements o f th e form X ' A  Y5 , where XrE  V ,  Y

E V ' .  Then we have: V rA  Vr:1Z 2A  ( k-,) ;  v rA  vs_ Vs A V 'O  Vs

(r * s ) ;  A 2 (v)= E vr A V ' (direct sum ). Moreover, for each X E  V, we
rg s

denote by X P the VP-component o f X  in the decomposition V = E  VP.

Let nt=- gP  be a graded algebra which satisfies dim g- ' < co and
p<o

9- 1 1 (p< 0). (W e  d o  not necessarily assume dim m< 00.)

W e set 3"=-Hom(E qr Aqs, gP) and „%-=E g - P ,  which is a  subspace of
r+ s= i;

=Hom(A 2m , m ). Now  the bracket operation o f th e L ie  algebra nt

gives an element B  o f a ' by defining B (X A Y )=E X , Y ]  for all X, Y
E ut. W e  c le a r ly  have B E .F .  The Jacobi identity in the Lie algebra
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nt means B (B (XA Y)AZ).-=  0 fo r all X , Y, ZE in , where stands
(x,y,z) (xx.z)

for the cyclic sum with respect to X, Y, Z .  It follows that

E  E  B P ( B r( rA  Yv)Azs)=0
(X ,Y ,Z )  r  s= p

for all X, Y, ZE in and p <  — 2.

L e t  V  be a  finite dimensional vector space. Assume that dim V
2. By using the vector space V, we shall construct a  graded algebra

b (V )=  E bP(v ).
"Go

Let us define vector spaces bP(V)(p<O) and linear mappings BP :
E  br ( V) A V (V )  b P (V ) ( p . — 2 )  inductively as  follows: First, we

r+s=p
define b-

1 ( V )  to be V  and b - 2 ( V) to be A 2 V. Furthermore we define

B - 2  t o  b e  th e identity transformation of A 2 17 . q  being an  integer

suppose that we have defined vector spaces b"( V ) (q  <p< 0 ) and

linear mappings B": E  br(V) Abs (V)—> bP(V)(q < p —2) in such a way
r+s-p

that B P is  surjective and its kernel AP( V ) is spanned by

(3.1) E  E  B r (X y \  Yv)Azs (X , Y, ZE E br(V )).
(x,Y,z) r+s=p u + v = r r=P+1

Let A°(V) denote the subspace o f  E  br ( V) A b s (V ) spanned by (3.1)
r+s=q 

with p = q .  Then we define b ° (V ) to  b e  the factor space ( E  br  (V) A
r+ s=q

V (V ))/  A q (V ), and B q  to  b e  the projection of E  b r( v ) A b s ( v )  onto
r+s =p

b
°
( V), completing our inductive definition.

W e  put b (V )=  b " (  V )  a n d  define a  bracket operation L, i n
p<o

b(V ) by

[X , Y ] =E B P (x rA  Y s
)

r+s=p

for all X, YE b( V ) .  Then we see from  (3 .1 ) that this bracket opera-

tion in  b( V ) satisfies the Jacobi identity. It is clear that b( V ) is  a

graded algebra. W e have clearly b P (V )=  E  IF (V ), b (V )1 ,  which
r+s=P

means that bP - 1 ( V) = IV( V ), b- 1 ( V ) ] .  If dim V = n , we have dim b- 2(V)
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1 1 
— 2 n (n — 1), dim b- a ( V )—  3 (n + 1) n(n — 1), etc..

Proposition 3 .1 .  L et in= E çe be a graded algebra w hich satisf ies
5<t)

' = D , g- 1 1(p< 0) and dim  n- 1 <d im  V .  T hen ev ery  linear m apping

f  o f  V  onto g- 1  is  ex tended  to  a unique homomorphism  J  o f  th e  graded

algebra b (V ) onto the  graded algebra tn.

This is easy from the construction of b( V ).

We now assert that bP( V) {0 }  fo r  any p < O. Indeed, we can

easily construct a graded algebra nt = E e  such that dim gi' = 1 (p <  — 1)
p<0

and dim g- 1 = 2 and such that ftP- 1  = DP, (3- 1 1(p < 0). Theorefore by

Prop. 3.1, we have dim V' ( V )> . 1 for any p < 0, proving our assertion.

L e t  ,ct b e  an  integer >0. S ince E  b5 ( V )  is  a  graded ideal of

b(V ), we see that the factor space b(V , ,a) =-b(V )/ E b ( V )  becomes a
p<-p

fundamental graded algebra of ,-th kind.

By Prop. 3.1, we get

-1
Proposition 3 .2 .  L e t  I ii=E  f e  be a  f undam ental graded algebra

P=
of  it-th k in d . A ssum e th at dim fr 1 < d im  V .  T hen ev ery  linear m apping

f  o f  V  onto g- 1  is  ex tended  to  a unique homomorphism  J  o f  the  graded

algebra b(V , it)  o n to  the  graded algebra ut.

The graded algebra b ( V,i s  c a l l e d  a universal fundamental graded

algebra o f ,a-th kind.

-1
Corollary 1. L e t 111= E  gfi b e  a  f undam en tal g raded  algebra of

,a-th k in d .  A ssum e that d im  gP =d im  b5(g - 1 ) (—

(1) T he graded  algebra nt is isom orphic  w ith  the  graded algebra

b ( ',  I I ) .

(2) Let G° (m) be the group of  all the autom orphism s of  the graded

algebra TH. T h e n  t h e  m apping G° (nt) D a —> a  g-1  (the restriction of  a

t o  g- 1 ) E GL (g -  1)  g iv e s  a n  isom orphism  o f  th e  g ro u p  G° (i11) on to  the

group GL(g - 1 ).

Corollary 2 .  L e t D  be a  regular dif f erential sy stem  of  dimension
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n  and o f  ii-th k ind o n  a m anifold M . T hen w e have

dim gP(x) <dim  b ( R )  ( — ,a  < p  — 1 , x E M).

C orollary 3 .  D  being as  in  Cor. 3 , assum e that

dim x) =dim b ( R )  ( —,a — 1 , x E M).

T hen the  regular dif ferential sy stem  D  is  of  ty pe b(Ra, ,a).

§4 . G -structu res o f  ty p e  nt

4.1. In  th is section, we shall consider a fixed fundamental graded
a lg eb ra  in  =  ce  o f ,a-th kind over R .  W e put in =dim tn.

p<o.

bP being as in §2 , denote by H °
 th e  subgroup o f GL(m)

consisting o f a ll the elements a such that ab" =b" for any p < O. Denote
b y  S

°
 th e  subgroup o f H

°
 consisting o f a ll  the elements a  such that

agP =gP for any p < 0, and b y N °
 the (normal) subgroup of H

°
 consist-

in g  o f  a l l  the elem ents a  su ch  th a t a X P  X P  (mod bP-" )  fo r  any
XP E gP and p< 0 , w here w e put b° =  1 0 1 . W e have H° -=os No.

Denote by d  *  the subset o f ./ =Rom ( A 2111, in) consisting o f all
the elements B  such that the vector space ut together w ith the family
(e ) p < 0  g iv e s  a fundamental graded algebra with B  as bracket operation.
Let B EG, a E H °,  and express a as al •a" (a' E S °, a" E N °). T h e n  w e
define an element Ba o f a b y  Ba(XA Y )=  at - 1  B((a' X ) A (a ' Y )) for all
X ,  Y E  tn . W e have (B()b =

aB b. Thus the group H ° lin ear ly  ac ts  on

d  to  the right. LW * is clearly an invariant set of

Let (F, co) be a H
°
-structure'  on a m anifold M  of dimension m.

Let 7r denote the projection of F  onto M .  Every element z E F  gives a
linear isomorphism o f  n t  onto T ( M ) ,  w here x  = rc (z ). w  being  an

m-valued 1-form on  F  (the basic form o f F ) ,  w e have 7-c* X =z •w (X )

for any X E T2(F )  and z E F .  W e denote by coP the gP-component o f to

1 )  For the definition of a G-structure, w e refer to  [13], §1.
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in  the decomposition In E gP.
p<ci

L et D  be a  regular differential system on a manifold M  of dimen-

sion m  satisfying the following condition :

(4.1) dim fiP(x) = dim "(p< O, x E M).

Note that D - '̀ .=  T (M ) under this cond ition . A s is easily observed, D

gives rise to a n  H °
-structure (F, w) o n  M  (unique up to equivalence)

such that the differential system n*DP is defined by th e  equations wr
=  0 (r< p ) for any p < 0 .  (W e have only to define F  to be th e  totality

of the linear isomorphisms z  o f n t onto Tx (M )  satisfying oz•bP =DP(x),

where x  runs over M.)

W e have easily

Proposition 4 . 1 .  T h e  assignm ent (M, D)—>(F, c o )  is  compatible

w ith the respective isomorphisms.

Let D  be a  regular differential system on a manifold M  of dimen-

sion In  satisfying condition (4 .1 ) , an d  le t (F, w ) be th e  corresponding

H
°
-structure on M .  Let z E F  and set x = n (z ) .  W e have z•bP =DP(x),

an d  define a  linear isomorphism a (z )  o f  n t  onto m ( x )  b y  a(z).XP
=aP (zX P ) fo r any XP E gP and p< O. L e t a E H

° an d  ex p ress  i t  as
a'• a" (a 1 E ,  a" E N

°
). T h e n  w e  h a v e  clearly a (z a) =ce (z)a' . By

using a ,  we now define a  mapping T  of F  to d *  by

(4.2) T (z)(X A  Y ) =- a (z) - 1  [a (z) X, a (z) Y ]

for any z E F  and X ,  YE nt. W e have

(4.3) T(za)= T(z)a

for any z E F  and a E H
°
. For any p <  — 2, le t  I (p )  denote the subset

of Z x Z  consisting o f a ll the pairs (r, s) such that r + s < p  and p <r,
s< O. If  (r, s) E I (p ) ,  we have r, — 2.

Proposition 4 . 2 .  For any — 2, w e have
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1
S2P = choP E  T w A 0 0 .1 3 2 )

{mod w r ( r  p ) ; (Or  A s ( ( r,  s )  E  I (p))1

P r o o f .  W e m ay assume without loss o f generality that the prin-

cipal fiber bundle F  is trivial. Take a  cross-section g  o f  M  to F ,  and

set = g* co and = g*wP. S in c e  z *D P is defined by the equations

o r= 0 ( r<p ) ,  we see that D P is defined by the equations Œr= 0 (r<p).

L e t x E M  and set z g ( x ) .  W e have U= n *  g * U = z  •  (U )  for any

UE T ( M ) .  Therefore we have Ur= z $P( U) (mod DP+ 1 (x ) )  fo r  any U

E DP(x ), whence

(4.4) aP(U) = a (z)• ÇP(U).

L et UE D r (x )  and VE D s ( x ) .  We assert that

(4.5) (g*2P)(U  A V) =  0  i f  r s >  p .

Indeed, we can find an X x  E Dr(x) (resp. a Y x  E D s (x ))  such that U=X x

(resp. V =  Yx ). W e have

(g* DP) ( UA  V) = U ŒP(Y )— VP(x)— ePOEX, Y ] x )

E  T ( z ) ( r ( u ) A r ( v ) ) .u+v=p

2 )  F o r  th e  notations, w e refer to  [1 3 ] ,  § 1 :  F o r  each p < O ,  ta k e  a base
(ef) i s 1 „2, of gP and let ((o ) be  the corresponding expression of the g"-valued 1-form
( V P  on F . Then we have:

cw. A0,8-=E A w) er, A el,

T(oir A ws) -1 T 5  (ei A a), eVls,

do,P=

where ( T  i i k ( Z ) ) 1 5 k s i s  the expression o f  th e  g  s -va lu ed  function T  (z ) ( e ri A e .))

o n  F  with respect to  the base (eVls). Now let (OT) be the expression of the gP-

valued 2-form Q P  o n  F  w ith  respect t o  th e  base (er). Then  th e  equality " Q P

:-_—_0{mod•••}" in Prop. 4.2 means that
Qf -==0{mod a i ( r  p ,  1  n t ) ;  ( o ti  A(.0",

( ( r ,  s ) E i ( p ) ,  1 j nr, k n)}  (1 nP).
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I f  r + s  > p ,  w e  h a v e  c le a r ly  (g* SP) ( U A  V) = 0. N ow  suppose that
r+  s  = p .  Then by using (4.2) a n d  (4.4), w e have

(g*DP)((- Av)= — $PC-K, T (z ) ( r (U )  A Es( V))

= —a(z) -1 .ceP(EX, Y1x)

a(z) - T a (z )•  ( U), a(z)•$s(V )]

=  — a (z )'• Ia r (U ), as (V )1+  ce (z )' •rce" (U), ( V )]

= 0.

Thus we have proved our a s se r t io n . (4.5) means that

(4.6) g* S2P -= 0 {mod $rA es(r +s <p)}.

Since z  a n d  g o  (z) (z E F )  l ie  in  th e  same fiber o f  F , we can find
a n  element a(z) E H

° su ch  th a t z = go 7r(z)•a(z) - 1 . Moreover a (z ) can
be expressed as a'(z)•a"(z)(a' (z) E S°, a"(z) E N °). Setting E=n*E"-, then
w e have  co=a•E, whence

(4.7) (oP--=-cil•EP{mod E r(r<p )},

and

(4.7') EPL—_-a'-1.(DP {mod tor(r<p)} .

B y  (4.7), w e have

choP=---7-  a' • a l  lmod E r (r< p ); d E r (r< p )} ,

an d  b y  (4.6),

dEr.---- 0 { m o d E " A r (u + v r ) } .

It follows from (4 .7 ') that

(4.8) &DP a' d EP {mod co" (r p); A  (r + s < p))-
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S ince T(z )a'
(
'
)
=T ( g o r( z ) ) ,  it follows from (4.7') that

(4.9) a' • — 
 1   E ( c o r

A (O s ) {mod cor Acos(r- - s<p)}2 r+s=p

From (4.8) and (4.9), w e  g e t the desired equalities. W e have thereby
proved Prop. 4.2.

Remark. W e set , 3 = H o m ( E  grAW, ,qP), and ..°7-* =  E
(r,  )E1(p)

w h ich  is  a  subspace .1. By Prop. 4.2, we can find, fo r each p <  —2,
a unique m a p p in g  T  o f  F  to satisfying the following equality:

da)
1

P+  E TW A 1(os)+  E  n (w r
Aws)----=-02 r+s=p 2 (r,  )Œpp)

{ m o d  r ( r < p ) }

W e set T* = E  T .  T h e n  the su m  T  T * m ay be considered as the

structure function of the H °-structure (F, co).

W e now  state  the following proposition without proof, which is a
converse of Prop. 4.2.

Proposition 4.3 . L et (F, co) be a H
°
-structure o n  a  m anifold M.

A ssum e that there  is  a  m apping T  o f  F  to .1 * satisf y ing th e  equalities

in  Prop. 4.2. (It is  c lear that T  is  un iqu ley  de term ined  by  th is con-

dition.) T h e n  t h e re  i s  a u n iq u e  regular dif f erential sy stem  D  o n  M

satisfy ing condition (4.1) su c h  th at  th e  giv en (F, co) is equiv alent to

the H
°
-structure associated w ith D.

W e have thus characterized regular differential systems satisfying
condition (4.1) in term s o f Tr-structures.

4.2. The group H
°
 a c te d  on M*  t o  the right. W e  d en o te  th is

transformation group H ° on a* b y  (d * , H
°
) .  The bracket operation in

the fundamental graded algebra nt determines an elem ent B o i n  a* .
Let q (m ) denote the isotropy group of (d*, H

°
)  a t  the point B0 E .1* .

W e  set G°(m)=G(nt)(1 S
°. T h e n  w e  have N °CG'?$(tn ) and G3(m)

=Go(in).No. The group G°(tn) is nothing but the group o f a ll the auto-
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morphisms o f  th e  graded algebra in.

We shall characterize regular differential systems o f  t y p e  in  in

terms o f G (m ) -structures.

L e t D  be a  regular differential system o n  a  manifold M  o f  dimen-

sion m  satisfying c o n d itio n  (4 .1 ) , a n d  le t (F , co) be t h e  corresponding

H
°
-structure on M .  Consider the  im age  T (F)  o f  F  by th e  mapping T:

F—,-a * . By (4 .3), we see that T (F )  is H
°
- in v a ria n t. L e t LBO denote

th e  orbit through th e  p o in t B , E a > ,  o f  ( g >„ H ) . Then by using (4.3),

we can easily sh o w  that T(F)=-[B4O1  i f  a n d  only i f  t h e  regular dif-

ferential system D  o n  M  is o f ty p e  in.

Assum e that D  is o f  ty p e  n t .  L e t  13 4 b e  t h e  subset o f  F  consist-

ing o f  all th e  elements z  with T (z )=B 0 . Since T (F)=
-
1B 01, we see

from (4 .3 ) that P  is  a  q (n t)-su b b u n d le  o f  F .  Thus we get a  q ( n t ) -

structure (Po  w )  o n  M .  T h e  equalities i n  Prop. 4 .2  restricted to Po

yield th e  following equalities:

(4.10)
1  cloP+  E  t o r ,  (.0'1=-0
2  r+ s -P

{mod cor(r < p ) ;  w r  A cos ((r, s) E I (p ))1 (p  <  — 2).

Thus we h a v e  shown that to every regular differential system D
of type  u t on  a  m anifo ld  M  of dimension n i there is associated a  q ( n t ) -

structure (P o  w )  o n  M  satisfying equalities ( 4 .1 0 ) .  By Prop. 4 .1 ,  it

is clear that t h e  assignment (M, D)—> (P o  w )  is compatible with the

respective isomorphisms. Conversely, l e t  (P o  co) be a  G ( u t ) -structure

o n  a  m a n ifo ld  M  satisfying equalities ( 4 .1 0 ) .  Then it is clear from

Prop. 4 .3  that there is a  u n iq u e  regular differential system D  of type

in on  M  such that th e  given (Po  o )  is equivalent to the  q (n t)-struc tu re

associated with D.

4.3. We shall now generalize th e  n o t io n  o f  a  regular differential

system o f  ty p e  in  on  a  m anifo ld  o f d im ension  i n .  L e t G
°
 b e  a  L ie

subgroup o f  t h e  group G
°
(m )  o f  a ll th e  au to m o rph ism s o f th e  graded

algebra tn. Then t h e  product q  =G
°
•N

°
 is  c learly  a  L ie  subgroup of
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From (4.6), we get

a '• d e = 2 1  E  a '•(7t
*

g
* T )(r A Es) -Cmod er/qs(r+s<p)} .r  + p  

the group 0(11 )=0020.N °.

Definition 4 . 1 .  We say that a  0 $-structure (Po , a)) on a manifold

M  is of type in  i f  it satisfies equalities (4.10).

The above argument shows that giving a 0(m)-structure of type

in  on a manifold M  of dimension in is nothing but giving a regular

differential system of type nt on M .  Moreover, g  being a Lie subgroup

o f  0 (m ),  we know that every 0-structure (P o, (n) of type n t on  a

manifold M  gives rise to a  0(m)-structure of type nt on M  in such a

way that the given .1') is a  0-subbund1e of the 0-bundle.

4.4. Finally we shall generalize the notion of the standard differ-

ential system of type in to give the notion of the standard 0-structure

of type nt.

Let D  be the standard differential system of type nt on the manifold

M(m), and let (F, w ) be the corresponding H °-structure on M (m ). At

each xE M ( E ),  we define a  linear isomorphism o f  nt onto Tx(M( 11))
by g(x ).X =X x fo r  all X E in . It  is  c lea r  th a t the mapping x —> g(x)

gives a  cross-section g  of the principal fiber bundle F. Moreover we

have clearly T (g(x ))=
-
 B o . Let Po b e  the 0(m)-subbundle of F  defined

b y  T =B o . Then it follows that g  gives a  cross-section of P .  N o w

le t G
°
 a n d  g  be as above. W e denote by P # th e  subset o f  P o con-

sisting o f all the elements of the form g(x)•a(x  E Xrit), a E g ), which

is a  0-subbundle of P .  T h u s  w e  g e t  a  0-structure (Po  co) of type

in on M (m ). The 0-structure (Pit , to) of type In on M(m), thus defined,

is called the standard 0-structure of type in.

§ 5. Th e algebraic prolongations

5.1. Let n i =  qP be a fundamental graded algebra over a field K
p<o

o f characteristic 0. We shall construct a graded algebra g(m)=E gP(m)
p e Z
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over K  satisfying the following conditions :

1) T h e  graded subalgebra ç ( i i i )  o f  n( l i t )  coincides with the
p<o

given fundamental graded algebra ni ;

2) L et p  be any integer O. I f  XP E gP(m) a n d  if  [XP, n - 1 1

= 101, then XP= 0 ;

3 )  g  (m )  is maximum among graded algebras satisfying condition
1 )  an d  2 ) above. M ore precisely, le t  1).= 1)P be any graded algebra

satisfying 1) and 2 ) .  Then 1) is imbedded in gm) as graded subalgebra.

W e  s e t  (1P = ( i n )  ( p <  0). L e t  u s  define vector spaces  ç ( m )

( p  0 )  an d  bilinear mappings 01" : qP(111)xçir (XP, EXPI Y r i

G r  / 11 •0 ) ( p r<  0 )  inductively a s  follows :

First Am ) is defined to be th e  L ie  algebra o f all the derivations X
°

of the graded algebra m , and 0 ° ' r is defined by [X
°
,  Yr1=- X

°
 Y r for

any x° E g° (m ) an d  Yr . E gr. k  being a n  integer >0, suppose that we

have defined vector spaces gP(m) (0 <  k ) an d  bilinear mappings r

(O p<k , r<  0 )  in  such a  way that

(5.1)Y - 1 ] ,  Z  r l — E[XP , Z r i , 1 7 - 1 1 —  [XP , 17 - 1 , Z r ] ]  = 0

for any XP E gP(m), Y- 1  E q - 1  a n d  Zr E gr(0 r<  0 ) .  Then we put
q (m )  =  H o m

0 r + k ( 1 1
1

)
)

, 
which may be identified with a  subspace

r<0
of Horn (1n, E  gP (m )). This being said, gh (m ) is defined to be the sub-

p<k
space of q 0 (ni) consisting of all the elements A - 0  satisfying the following

equalities :

[X 0 ( Y -
1 ), Zr1 — [V (Z r ), 1 7

-
11— X 0 0EY-

1
- , Z ] ) = 0

fo r  any Y 'E ç r 1 a n d  Zr E gr(r<  0 ) , an d  Ok ' is defined by IX ', Y r ]

= X -k (Y r )  for any Yr E gr. T h en  w e  have clearly equalities (5.1) with

p = k .  W e have thus completed our inductive definition.

By using the fact that qr - 1  = [gr, g - 1 1(r < 0), we can easily prove

property 2 )  for g (m) and the following equalities :

(5.2)[ [ X P ,  Y r ], Z s ] — [EX P , Z s ] ,  Y r ]  E X P ,  Y r , r ] ]
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for any XP E A n t ) ,  Y r  E gr, ZS E 0, r, s< 0).

W e  s e t  D r  r Y Y r ]  fo r  a n y  X" E g P ( in )  an d  Yr E g r

0, r<  0). L et u s now define bilinear mappings

0 " :x  qq(m) D (X " YQ) —> [X ", Y q] E  e 'q (m )(p , 0)

inductively a s  follows :  F irst, 0 "  is defined to be the bracket operation
in  the L ie  algebra çlo( li ) , i . e . ,  F r , y oi = xo y o y o -‘713A  for any X

°
, Y

°

E q° (11). k  being an  integer >0, suppose that w e have defined bilinear
mappings q ( p ,  q >  0 , p  q <k ) in  such a  way that

(5.3) [Ex", Y q], Z r 1 — E-X ", Z r ], Y q i — EX P , 2 '11 =0

fo r  a n y  XP E  gP(m ), 
Y E ( m )  a n d  Z r  E n r ( p ,   p ± q < k ,  r  0).

Let p , q  be any integers w ith p , q>  0  and pd-q-=k , an d  take any XP

E gP(m) an d  Yq E WOO. Define an  elem ent W k  o f  qk (m ) by

ryk(zr)=EixP, zrl, Yql+ExP, Z rii

for any Zr E  g r(r<  0 ). Then we can easily show th a t W k  E g k ( m ) .  This
be ing  sa id , w e p u t EXP,

 y 1 =
 Ir .  T h e  bilinear m apping 0 " ,  thus

defined, clearly satisfies ( 5 .3 ) .  T h us w e have completed our inductive
definition.

W e have c learly  E X ", Y q l= — IY I , X P] fo r a n y  XP E gP(m) and
Y" E gq(m)(p, q>  0). Moreover we can prove the equalities:

zr1+ CC Y g  Z r ], X P 1+11Z r , , XP ], Y "]=0

for an y  X" E gP(m), yg E gq(m), Z r  E gr(m)(p, q ,  r >  0).

Finally w e put g (in) = -  g P (m ) .  T hen  w e know  that the  bilinear
mappings 0 "  together with th e  bracket operation in  n i define a  struc-
ture of graded algebra in  q (m ) so that g (m ) has the desired properties.
The graded algebra q (m ) is called the prolongation of the fundamental
graded algebra m.

5.2. L et nt and q ( i i i )  b e  a s  ab o v e . Suppose that w e are  g iven  a
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sequence g
o
, g

k  
which satisfies the following conditions:

(5.4) 1 )  g P  is a  subspace of gP(m)(0 < p  < k ) ;

2 )  The family (gP) < p , k satisfies D r , n s i  c g r+s( r  s < k ) .  Then

we define a  sequence ffik +1, fi le+ 25 inductively as follows :  1  being an

integer > k, suppose that we have defined
/•-•1g as subspaces of

n k  1  ( 111) ,n 1 - 1  
(

n )

(k< p< 1,r<  0 ) .  Then we define gl to be the subspace of gl (m ) consisting

o f a ll the elements x '  such that [X I , n 1]  E ft " - o r  equivalently EX 1,

g r l  g l± r(r < 0). I f  we put n=EgP, then we can easily prove q  to be
p E Z

a  graded subalgebra of g (nt). The graded algebra g  is called the pro-

longation o f  (m , q ° , • • • , g k ). W e  put (11=  E  Hom  ( g r ,  fir+1), being a
r<0

subspace o f q/(m ) .  Then w e have gi g i n g /(m )  fo r  any 1. Moreover

we have gl =g i n g l (m )  for any 1>k.
Let g° b e  a  subalgebra o f g° (11). Then we have clearly [gr, gs1

c g r+s( r  s <  0 ) .  Therefore we m ay talk about the prolongation of

(in, g° ).

Definition 5 .1 . Let n t  be a fundamental graded algebra.

(1) n t  is called o f  finite type (resp. o f infinite type) if dim q (m )

<  (resp. = o•cD ).

(2) Let g° , • • • , q
k

be a  sequence satisfying condition (5 .4 ) and let

g  be the prolongation of (nt, p ° , • • • , gk). Then (nt, g ° , • • g h)  is called

o f finite type (resp . o f infinite type) if dim n<00(resp.-=00).

5.3. Examples. Let ni= E gP be a fundamental graded algebra of
p<o

/1-th kind over R .  We shall investigate, for several special cases of nt,

the prolongation g (m) e rn ) as well as the group G° (111) of a ll the

automorphisms o f th e  graded algebra nt. First we make some general

remarks on q ( m )  and G° ( m ) .  i )  For each AER, define a  linear auto-

morphism s (A ) o f  in  by e (2)X P = AP x P  fo r any XP E  g P (p <  0 ) . Then

e (A ) is  in  the center o f  G° (m ) . ii)  ,q ° ( m ) , being the L ie  algebra of

G°(m), contains a (unique) element E  in  its center such that [E , x - P1
-=TXP for any XP E gP (p  <  0 ) .  i i i )  Let t)P(p::>_— 1 )  denote the subspace

respectively, in  such a  w ay that DP, p r i C e '
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of gP(m) consisting o f all the elements XP such that [XP, gr1= { 0} for

any r<  — 1. T h e n  w e  have [le , g -1 1C_ t)P - 1 ( p >  0). Moreover, b° may

be identified with a  subalgebra o f nI (q- ' ) ,  and from the construction of

O nt), we know that bP(p >0) may be identified with the p-th  prolonga-

tion (V ) ( P
)  o f  I)° in  th e  usual sense.

( 1 )  The case where ,a = 2 and dim fr 2 1  (c f. 1.2 , Example (1);

2.3, Example ( 1 )  ;  [1 3 1  § 7 ) .  W e put n =dim n-1 . L e t  e 0 b e  a base

o f n- - 2 ,  and let B  b e  the anti-symmetric bilinear form on 0-1  defined

by [X - 1 , Y - '1= B (X - 1 ,1 7 - 1 ) e o (X 1 , E q '). Considering a base el,

e „  of fr 1 a s  was explained in 2.3 , Example (1 ), we define a  matrix

/= (ii i )  o f degree n by = B(e i , es). Then the group G° (i11) may be

represented, with respect to  the base e o, e „  o f in , by  matrices of

degree n + 1 of the form :

(sa 20 \

where a > 0, b E G L(n, R), 2 = 1 and t b l b = e I .  Let us now study the

graded algebra (3 (In). Let OP denote the linear mapping g P (m ) X " —>
[X ", eol EgP -

2 (m ) .  Then the subspace bi) o f  gP(m) clearly coincides

with the kernel o f  aP(1 .1---- — 1). We assert that the subalgebra b° of

gI (C 1)  is  involutive. Indeed, let in  be o f  class r. Then we see that

qO may be represented by matrices of degree t i  of the form :

(b i0 \

b2 1)3

where b2, b 3 a r e  arbitrary and b1 E (r, R ) .  Since (r, R ) is involu-
tive , it follows that the same holds for t)° ,  proving our assertion.

Proposition 5 .1 . O P is surjective for any  p. T herefore i v e  have

9P - 2 ( 110 -174- gP  On) /01'

Proof. OP is clearly surjective for any p < O. 6 ° in surjective,

because 6
°
(E )= — 2e 0 . L e t  u s  prove 61 t o  b e  surjective. Let X-1 b e

0 ab / ,
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any e lem en t of Define an element u E Hom (9 - 2 , V 1)  b y  u ( e 0)
=X - 1 ,  and an element b E H om (r 1, 9f ( 9 - 1 ) )  by

1 1b(Y - 1 ) Z - 1 = B (X - 1 , Z - 1 ) Y- 1 + B (Y - 1 , Z - 1 ) X - 1

2 2

for any Y - 1 , Z - 1  E g - 1 . This being said, define an element w E Hom (g - 1 ,

fl° (m)) by

w ( Y- 1 ) -= —  2
1  B (X - 1 , Y - 1 ) Ed-b(Y - 1 )

fo r  a n y  Y - 1  E R [ ',  and  set X1 =  u  w ,  be ing  a n  e lem en t o f  q1 (m)
=Hom (g - 2 , g - 1 (m)) Hom (g - 1 , ce(m)). T h en  w e can  eas ily  show X 1

E g l ( m ) .  W e  have c le a r ly  6 1 (X 1 ) =u (e 0 ) = X - 1 . T herefore w e have

proved 0 1 t o  b e  surjective. (W e here explain the Spencer cohomology
groups associated w ith  th e subalgebra 1) ° o f  gf (g - 1 ), w h ich  w ill be
needed from now on. Set =t)P-10 A a(g - 1 )* (p , q > 0 ) ,  and define
an operator 0 : CP• CP 1 1 b y

(0c)(X 1 A•• • A X q + 1 )  = 11( 1 )i [C (Xl A •  •  •  A  A  •  •  •  A X, + 1 ) ,  Xi]

fo r  a n y  c E CI'' q and X i , • • •, X „  E ' .  T h e n  w e  have 02 = O .  The

cohomology groups I l i " ( p ,  q > 0 )  associated w ith the complex { C "}

with operator 0  are called the Spencer cohomology groups. Since b ° i s
involutive, w e have H "  = 101 for any p > 0 and q -,? 0  ( [ 9 1 . )  Now, /
being an integer > 0, suppose that 6 1 i s  surjective. Let X 1

)
- 1

 b y  t t ( ebe any)
element o f g1 -1 ( m ) .  Define an element u E Hom (g-2 01-1011-‘
= X '.  S in c e  d i i s  surjective, w e can  find  an element re; E Hom (g - 1 ,
9 '(m )) such that ru(e 0 ), Z - 1 - 1=17-o eu] for any Z - 1  E Define

g i- io n ) A  2(01-1 )*  b yan element c E

c(Y - 1 AZ - 1 ) Z-11-117)(Z-1), u([Y -1, Z - 1 1)

fo r  any z-i E T h en  w e  see  ea s ily  th a t c ( Y-
1 A  z - 1 ) E  b 1 - 1 ,
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whence c E C1'2 =  - 1 ® A 2 (r 1) * .  Moreover we have ac = O . Since I I "

= 101, it  fo llo w s th a t th e re  is  an element b E C1 1 ' 1 = bi 0(9 - 1 ) *  such
that c = — a b .  Set w = b, being an element o f Hom (g- 1 , gt(m)), and

s e t  X 1+1 =  u  w , b e in g  a n  e lem en t o f  g' + 1 (11) =Hom (g-
2 ,  ( 1 / - 1 (

+ Horn (g - 1 , g/(in)). T h e n  w e  c a n  e a s i ly  show X' + ' E g1+1 (m ). We
have clearly 61+1 (X i ' 1) — u(e 0)=  V - 1 . W e have thus proved 61 t o  b e
surjective. B y induction, w e have thereby completed the proof of Prop.
5.1.

(1') Let nt be as in (1 ) .  From the proof o f Prop. 5.1, we know
th a t th e re  is  a (unique) injective linear m apping 0 ' o f  r "  to  O n )
satisfying the following equalities :

[ 0 1 (X - 1 ), eo] =X - 4 ,

E 0 1(X - - 1 ), 17 - 1 1, Z - 1 1— 2
1 B  (X - 1 ,

1 1 
B(X - 1 , Z - 1 ) B (Y - 1 , Z - 1 )X - 1

2 2

for any X - 1 , Y - 1 , Z - 1  E g- 1 . Then it can be proved that [X°, 01(x-1)1

= 0 1(Exo , x - 1 j )  fo r  a n y  X ° E g° (11) and E q 1 .  I f  w e  put g°

\=g°0It) and g' =0"(g - 1 ), then it follows that the sequence g
°
, g1 satisfies

condition (5 .4 ). W e denote by g -= g P  the prolongation of (nt, g
°
, g1).

Now, assume that ni is non-degenerate. Then it can be shown that gP
= 101 (p> 2) and dim q 2 = 1 .

 M o r e  precisely, g 2 h a s  a base X 2 defined
b y  [X 2 , eo l= — E  and EX2 , Y - 1 1=0 1( Y- ' )  fo r  a n y  y-1 E Fur-
th e rm o re  w e  see  th a t g  is isom orph ic w ith  the sim ple L ie algebra

(k +1, R ), w here k —
11
2  .  The graded algebra g  is  kn o w n  as the

projective contact algebra (c f. [91).

( 2 )  The case where a =3, dim g- 3  =2, dim g- 2 = 1  and dim g- 1 =2,
i.e., m b (Ie, 3) as graded algebras (cf. 1.2, Example (2); 2.3, Example
(2) ; [11). Consider a base e l, • • • , e 5 o f  ni as w as explained in  § 2,
Example (2). Then the group G° (m ) may be represented, with respect
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to  th is base, b y  matrices of degree 5 of the form :

Act L c 0 0 0

Ab A d 0 0 0

0 0 A 0 0

0 0 0 a

, o o o b d , ,

w h e re  A =ad—bc 0. W e  h av e  gP(m) = {0} (p> 3 ), a n d  w e  have
th e  n atu ra l identifications as follows : g ° (m) =g -1 0(ç -1 ) *  an d  gP(m)

=(0 - P )*(0<p  <  3 ). Moreover g (m) is isomorphic with th e  exceptional
simple Lie algebra of dimension 14.

A s for other examples, see the previous paper [131.

§ 6. In fin itesim al automorphisms o f  th e  standard differential

system of type ni

6.1. Throughout this section, we shall consider a  fixed fundamental
graded algebra m =  q P  o f  it-th k ind  over R .  L e t g  (m ) =  ç (m )

p<0p z

denote the pro longation  of n t, and  M (m ) th e  simply connected Lie
group whose L ie algebra is given by tn.

L e t D  b e  the standard  differential system o f  ty p e  nt o n  M(m).

W e denote by d  the sheaf o f a l l  the local infinitesimal automorphisms

of (M(nt), D ), w hich is a transitive L A S  on M(m). (For the definition
o f  a n  L A S , see [9 11.) L e t (P ,  to )  b e  th e  q(m)-structure o n  M(m)
corresponding to D .  T hen  d  is no th ing but the sheaf o f a l l  the local
infinitesimal automorphisms o f  (Po,  w ).  T h e  sh eaf .sze is  c a l le d  the
standard Lie algebra sheaf of type tn. N o w  let be the Maurer-Cartan

1 form of the L ie group  M O O . S ince dŒ+[ E ,  $1=0, then w e have2
the following equalities :

1 
(6.1) d eP+ E  [Er, Es] = 0  (p< 0),

r+s=1,
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eP b e ing  the e-component of $ in  the decomposition n t =  gP.
p<o

Lemma 6 . 1 .  L et X  be a  vector f ield o n  an  open s e t  U of  M(m).
T hen X  gives a local cross-section of  d  i f  and only  if  there is a family

(fP) 0 of  functions satisfy ing the following conditions:

1) fP  i s  a  ent)-valued function o n  U 0);

2) f P =E P (X )(p<O);

-1 r r

3) df , E CfP , {mod r (r< p )} (p 0).
r=P

Moreover the f am ily  (f  P )p c ) as  above is uniquely determined.

P ro o f. Let A(m)(resp. 11°)  denote the L ie algebra of q t(in) (resp.

N
°
). T h en  w e have g(m )=.4(irt)+11 ° (d irec t su m ) an d  w e see that

no is  eq u a l to  the subalgebra of gf (ni) consisting of a l l  the elements A
such that AIDP C bP 1 fo r  any p< O. L et us consider the cross-section g
of P s defined in  § 4 .  T h en  w e have $-= ?c o . I t  fo llo w s  th a t  X  is  a
local cross-section o f  s i  (or induces a  lo c a l infinitesimal automorphism

of (P s , w)) if and only if  there is a  g(m)-valued function B  on U such
that Lx6=B E  o r  equ ivalen tly there is a  g°(m)-valued function f ° on
U such that

Lx$P=-1t, Ç"} (mod e r (r< p )}  (p < 0 ).

Now put fP=$P (X )=X J  P  (p < O ) ,  w hich  is a  e-valued function on
U .  Then we have Lx EP=d(XJ ŒP)+XJ d$

-
P. From (6 .1 ), it follows

that

-1
(6.2) Lx e P =  d f P E  Cf P r5 eni  ( p<

r= p+ 1

Lemma 6.1 is immediate from these arguments.

Lemma 6 .2 .  L e t X  b e  a local cross-section o f  se  de f ined  on an

open s e t  U of  M (m ).  T hen there is a unique f am ily  (fP)p, z  o f  func-

tions satisfy ing the follow ing conditions:
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1) f P  is  a  nP(m)-valued function o n  U  ( p E Z ) ;

2) f  P =e P (X )  (p <O );

3) df P Er f P -  r  E r l  ( p  E Z ).
r<0 •

P ro o f, k  being an integer 1, suppose th a t  th e re  is  a  family
( f  P )p< k o f functions satisfying the following conditions :

1') fP  is  a g1'(m)-valued function on  U  ( p < k ) ;

2') f  P e P ( X )  (p<O );

-1
3') dfP—= [ f P r ,  Er l { g lO d  Er(r p — k )}  (p <k ) .

r=p-k+1

(Note that, in the case w hen k = 1, the fam ily ( f  1') <  in  Lemma 6.1
satisfies these conditions.) T h en  b y  3 '), w e can  fin d  a  nk (trt)-valued

function f k  on U  such that

(6.3) E r i + f k  (OE" )
r=p-k+1

{mod r ( r — k  — 1)}  (p<k ).

B y app lying the exterior differentiation d  to  the both sides o f (6.3),

we get

E  E d f P — , r1 +f k ( d $ P - - k ) .0

{ m o d  r(r —  k ) ; dEr(r4p— k)} .

W e have

dfP - r= f k (EP- r- k ) {mod $ s ( s  *p— r— k ))-,

d  —= 0 {mod es A e t (s t  = r)} ,

doP - k +  2
1

-1
E  r E r ,

r=p-k+1
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It follows that

—1
E  [ f le( e p—r—le ), en_  E  f k ( iE r ,

2r=p - k+1 r=13-k+1

{mod er(r<p— k); Er  A E s ( r + S * p — k )} .

" =  0 "  in  this last equalities clearly reduces to "  =  0 " .  Therefore we

get

Cf k (r), e s1+ If k ( E s ) ,  $ r l — f k (Ir, es]) = 0  (r, s<0),

whence

Ef k (xr), 17 .'1 — I f k ( Ys), xri—f k (rxr, Ysi) =0

for any X r E gr, Y s E  s(r, s< 0). This means that f k  is  a  gk (m)-valued

function o n  U, and by (6.3), we have

-1
df E [ f E.r1 imod — 1)1  (p<k±1 ).

r=p-k

Thus th e  family ( f 1') < k , 1 satisfies conditions 1'), 2 ')  and 3 ')  with k
replaced by k  1. B y  induction, w e  h ave  thereby obtained a  family

( f ) p z  of functions which satisfies conditions 1 ) , 2 )  an d  3 ')  fo r all

k >  1. Let p  be any integer and take an  integer k >  0  with p <k —
Then by 3 ) ,  w e  h a v e  (if P = Z̀:r1, because Er =  0  i f  r<  —

r<0
Thus we have proved existence of a family ( f )

s a t is f y in g  conditions
1), 2 )  and 3 ). Uniqueness is clear.

We shall denote by  ( f ) p z  the family (fP ),,Ez in  Lemma 6.2.

Lemma 6 .3 . L e t x  be any  point of M (m ) a n d  le t a= E aP be
p k

any  elem ent of  g (in ), w here aP EgP(ut). T hen there is a unique cross-

section X  of d  such that

f ( x ) = a "  ( p

f =  0 ( p > k).
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P ro o f. Let k  be any in teger >  O. Set nt h =  q P (m ) and denote
P=4 ,

b y  uP the projection of at k o n to  (31'(m ) .  Then the system  (uP )_ p k
defines a  "linear coordinate system" of the manifold utk . Consider the

product M(nt) x  nt h . T h e n  $P (resp. uP) may be confounded with a form
(resp. a function) on M(ut) X u t .  L e t  u s  consider a  system  o f pfaffian

equations as follows:

-1
(6.4) du1'— E ruP - r, Er 1 = 0  ( -  p < p < k ) .

r=p- k

W e assert that system  (6.4) is com pletely integrable. By applying the

exterior differentiation d  to  the both sides o f (6.4), w e have

daP[ d u " ,  et1 - 1  [ u 1 ' ,  d Œr l•
t=p-k r-P-k

B y  (6.1) and (6.4), it follows easily that

-1
daP = — E Ca", etl,

t= p -k

which proves our assertion. Now denote by S ik  the vector subsheaf of

d  which consists of a ll the elements X x  such that f  13(  =0 for any p> k.
From Lemmas 6.1 and 6.2 and from the fact that system  (6.4) is com-
p lete ly  in tegrab le , w e see  th at, a t each  xE M O , the linear mapping

f ( x )  m aps the s ta lk  .sd k ( x )  isomorphically onto the vector
space Ill " . S in ce  M O O  is  s im p ly  co n n ec ted , the standard argument

shows th a t ev e ry  local cross-section X  o f  d  h  defined on  a  connected
open set U  o f  M(m) is un iquely extended to  a global cross-section it
of d k .  Therefore we get Lemma 6.3,

Lemma 6.4. L et X  an d  Y  be tw o cross-sections of .21 defined on

a  common open set U  of  M (m ) .  T hen w e have

x ,y ]-= —  E If rx f (p E Z ).
r+ s=p
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P r o o f .  B y  (6.1), w e have

f =  x ff, — YfPx+ E [ frx , (p< 0 ),r ,s -p

and by Lemma 6.2,

x f f , = — E  [ f , Y fPx=E Cfrx, f §oel (p <0).
r+s=P r+s=P

s<0 r<0

I f  w e  put gP= — E  [ f i ,  f p ] ,  then it follows that f f x ,y ] -= gP(p< 0).
r+s=p

W e have

dg" = — E C dfrx , f E Cfrx, df (pE Z ),
r+s—P r+s=1,

and by using Lemma 6.2, w e  g e t e a s ily  d gP = E Etj. There-
t<o

fore w e have shown that the fam ily (gP) p „ z  satisfies the conditions in

Lemma 6.2. T hus w e get g P = ff x ,y i  (p E Z ) .

Let X  and Y be two local cross-sections of sle defined on a common
open set U  o f M (m ). Let (çai )  be a local one parameter group of local

transformations w hich  is generated  by the vector field X .  Then the

vector fields P t *  Y  a lso  g ive  local cross-sections of s f .  W e set as fol-
lows: f  = (at( f Px )  and gi; = 4 ( f

Lemma 5.6. The notation being as above, we have

4 r 1 ; LY f + E ft ' ,  8. 1 (13 _ 13).o t r+ s= P

OEP P ro o f .  Pu t el = ç°'Itc EP . T h en  w e  have L x  e == = get' (Lx eP)Ot
and L y  el; = e P ). Therefore from Lemma 6.2 and equalities (6.2)
follow the following equalities :

Lx  er- 1  =If 7 , e i ' l , 2),

Ly E-11, L y  ef; 0 ( p  — 2),
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d p ;  i f  1; -I-1,  $ -td  x i; e + 1  
$7 1-1 ( p > 0 ) ,

where " A  B " means that A  B {mod Vt*(r — 2)} . Lemma 6.5 can be

proved by induction and by the  use  o f these equalities. T h e  details are

left to th e  readers.

6.2. We shall now make a  general consideration o n  a  sheaf of

L ie  algebras which is subordinate to a  differential system. L e t D be a

regular differential system o f ty p e  nt on a  m anifo ld  M  of dim ension m,

where in =dim ni. Let 2  b e  a  sheaf o f  L ie  algebras o f  lo c a l vector

fields on M .  W e assum e that 2  is  transitive  on  M  a n d  that it leaves

invarian t the  differential system D.

W e fix a  p o in t e of M  and denote by (e) ° t h e  isotropy subalgebra

o f  2 ( e ) .  Starting from th e  p a ir  (.99 (e), )(e) ° ) ,  le t  u s  define a  family

(2 (e ))p E z  of subspaces of (e ) inductively a s  follows (cf. EC): First,

we define 2 ( e ) / (p <  0 ) as ( e )  and (e)  as 2 (e ) ° . p  being an

integer >0, su p p o se  that w e h a v e  defined ..r (e ) - 1 . Then (e)i;i,  is

defined to be th e  subspace of 1 I (e) - 1  consisting o f  all th e  elements X e

such that [ X ,  2 (e ) 11 ( .r (e ) 1 , completing our inductive definition.

W e have (e ) 1 )...r(e)  and [ 2 ( e ) ,  ( e g ]  _ 2 9 (e)V s

Denote by (e) - 1  t h e  subspace o f  2 ( e )  consisting o f  a ll the

elements X e such  that X , E D ( e ) .  Starting from t h e  tripple (e),
2 (e) 1, ( e ° ) ,  l e t  u s  now define a  family (2 (e ) P )i,Ez of subspaces of

(e ) inductively a s  follows : p  being a n  integer <—  1, suppose that we

h a v e  defined 2 (e ) '. T h e n  2 '(e )  is  defined  a s  [2 (e )P + 1 , (e) - 1 1
( op p  being a n  integer >0, suppose  now that we have  defined

2 (e)P - 1 . Then 2 (e )  is defined to be t h e  subspace o f  2(e)P - 1  con-
p -sistng o f  a ll t h e  elements X e such that [ X  9 (e) c 2  ( o- con,-

pleting our inductive definition. We have _12c(e)P - 1 D .r(e )P  and  [. 2 9 (e)r ,
2 (0 '1 ( .2  (e )"

L e t  ( Y ) p < 0  be t h e  family o f  differential systems associated with

th e  regular differential system D .  Then we have

Lemma 6.6. For any p< 0, 2 (e ) "  consists o f  a ll  th e  elements
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X e E  (e )  such that X e E D ( e ) .  In  particular, we have (e) - /' =..29 (e).

Proof o f th is lem m a is left to  the readers.

Remark 1. W e  se t gi) ( e )=Y (e )P /Y (e )P “ and  fi ( e )  =E  l( e ) .
p e Z

Since [..99 (e) r , Y (e) s 1C.29 ( e ) " ',  w e  s e e  t h a t  ( e )  is endow ed w ith a
structure of graded  a lgeb ra . T h en  the graded  algebra g ( e )  m ay be
naturally identified w ith a  graded subalgebra o f g (m) in  such a  way
that in =  E e (e ) .

p<o
By using Lemma 6.6, w e have easily

Lemma 6.7.

Y (e)PD D  ( e ) " P ( p  0 ) .

W e set L =lim ..99 (e)/.99 ( e ) ,  which is called the formal algebra of

..r(e )  or 2 ' OE91). The projections of ..r ( e )  onto . r( e ) / 29 ( e ) .  give rise
to  a homomorphism 0  o f th e  L ie  algebra .29 ( e )  to  the Lie algebra L.
W e  se t L  £ ° ( e ) /  2 ( e ) .  T h en  g ,  m ay b e  id en tified  w ith  a

subspace o f  L , and w e  have L L '  • • • D  L  1 D  D  •  •  and

= IC  W e  sh a ll co n s id e r  a  topology in  L  such  th at the f a m ily  ( a )
forms a  fundamental system o f  neighborhoods o f 0 ( = the zero vector
in L).

6.3. Let us now  return to the study of the Lie algebra sheaf af

on  M (m ). W e sh a ll ap p ly  the above argument t o  2 ' =  s i and the

identity elem ent e  o f th e  L ie  group M (m ).  W e d en o te  b y  A  the

formal algebra of d ( e ) .

Lemma 6 .8 . Fo r an y  p , d ( e ) P consists  o f  all th e  elem ents X ,

E d ( e )  s u c h  th a t  f ( e ) =O  f o r any  r<p .

This follows easily from Lemmas 6.4 and 6.6.

W e set g (m) = fl gP(m) gP(m) (direct product). Then the struc-
pEZ p › - P

ture of L ie algebra in g (ut) yields that in g (m ).  The Lie algebra g (m)
is  c a lled  the form al algebra associated w ith the graded algebra g(m).
Now let a  be any elem ent o f  ( n). B y  L e m m a  6.3, there  is  a unique
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cross-section X  o f  d  such that fPx (e)=aP(p <  k ) a n d  f Px  = 0 (p >k).
Then it follows from  Lem m a 6.4 that t h e  mapping a —> — X , gives an

injective homomorphism c o f  g (m) to  d  (e ) .  By lem m as 6.7 an d  6.8,

it  is  c lea r th a t c g ives rise  to  a  homeomorphic isomorphism e  o f  g (m)

onto A , where g (m) should be equipped with the  standard  topology.

W e have  thereby proved th e  following.

Theorem 6.1. The f orm al algebra A  of  the standard L ie algebra

sheaf  d  of  type n t on  M (m ) m ay be naturally  identif ied w ith the formal

algebra g (m) associated w ith the prolongation g (m) o f  ni.

Remark 2. L e t u s  try to describe th e  subspaces 4  o f  A =  (m )

in  terms o f  t h e  graded algebra g( in). P u t  A P= II gr(m), being a  sub-

space o f  g (m ). T h en  w e h a v e  AP A "(p-_--- 0 ) by L em m as 6.7

a n d  6 .8 . Since g (m) =m+ (d ire c t su m ), 4 (p > 0 )  consists o f  all
t h e  elements X E  4 - 1  su ch  th a t [X , i n ]  4 - 1 . Now suppose that ,a
= 2  a n d  d im  _ 2 = 1 ,

 a n d  u s e  th e  n o ta t io n s  in  5.3, Example. (1). By
Prop. 5.1, w e can  f in d  a  lin ear endomorphism 0  o f  g (m) such that

(sP 2 (m)) C gP(m) a n d  such  that E0 (XP - 2 ), e o] =XP - 2  f o r  a n y  XP - 2

E gP- 2 (m ) .  T h e n  w e  h a v e  gP(m)= 0 (gP- 2 (m )) hP (d irec t su m ), an d

E0  (X
p-2) ,  y - 0 (Ex p-25 Y '1 )  (mod bP- 1 ) f o r  a n y  X "  E gP- 2 (m)

a n d  Y - 1  E 1. B y  u s in g  th e s e  f a c t s ,  w e  c a n  v e r if y  t h e  following
equalities :

A?i, =  ,

4=w+  A 2 ,

/4 = 1)2 + + o  (b1)} + A 4 ,

4 = 3  + +  
(

2 )1 + {if + (1) 3 + 0 (W))} + A 6 , etc.

If w e p u t g, = A i:W .4 +1 , then it follows that

g° (m) + 0 (g -  1 ) ,
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1)1 + o (g°( 1  )) + 02
(q

- 1 ),

,02 + 0 (1) + 02 ( q001.0)+ 0 3(g -1) , e t c .

Note that g ,  is equal to  the p-th prolongation of g, and th at fa  is  in -
volutive (cf. [91).

6.4. Suppose th a t w e  a re  g iv e n  a  sequence g°, • • • , gk satisfying
condition (5.4), and let g = CV' b e  the prolongation of (nt, g °, • • • , g").

p e Z '

W e set fl qP, w hich  is a  closed subalgebra o f g  (m ). W e shall show
p e Z

th a t t m ay  b e  ch arac te r ized  as the fo rm al a lgebra L  o f  a  suitable
transitive Lie a lgeb ra  sh eaf 2  on M(m).

W e d en o te  b y  2  the vector subsheaf o f  s i  consisting o f a l l  the

elem ents X , such that, for any p(0 .p.. k), the gP(m)-valued function
f P

x  becom es a q"-valued function . For each  p >  0 , choose a  comple-
mentary subspace (gP)' of gP in gP(nt), and denote by T  the projection

of gb(m) onto (gP)'. Then it is clear that 2 is com posed o f a ll  Xx E a t
satisfying the following equalities :

(6.5) /71 =  0  (0

It shou ld  be rem arked  that (6 .5 ) m ay be considered a s  a  system  of

differential equations with X  as unknown.

Lemma 6 .9 . (1 ) L e t X  be a local cross-section o f  2 .  Then

becomes a q"-v alued f unction f o r  an y  p o r equivalently  T f Ik=0
(p >  0).

(2) L e t x E M (m ) an d  a -= a P ,  w here aP E gP. T hen  there  is  a

unique cross-section X  of 2  su c h  th at

A ' = 0  (p > l) .

(3) L et X  a n d  Y  be  tw o local cross-sections of  2  d e f in e d  on  a

com m on o p e n  se t U  o f  M(m), an d  le t  (yot )  b e  a lo c al o n e  parameter
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g ro u p  g e n e rate d  b y  X . T h e n  th e  v ector f ields 40t ,,Y  also  g iv e  local

cross-sections o f  2.

P r o o f .  ( 1 )  a n d  ( 2 )  a r e  e a s y .  L e t  u s  prove ( 3 )  an d  u se  th e
notations in Lemma 6.5. L et p  be any in teger .-1•>_ 0, and suppose that

F f ç 'otaY = 0 ( 0  r  < p ).  W e have Tf = rg 'i =0 (0  ._r<p ) and IC , gs
l

(f ir '. T h e re fo re  b y  a p p ly in g  T  to  the both sides of the equality in
Lemma 6 .5 , w e have

a ( re)
at —  [ f  Fe].

Since T81=TP;=0, w e  g e t  Fe = 0  b y  th e  uniqueness theorem for
systems of ordinary differential equations, whence P P , -= 0. W e  have
thereby proved (3 )  b y induction.

By Lemma 6 .9 , w e kn o w  th at 2  i s  a  tran s itiv e  L A S  on M(m),

w hich  is ca lled  the standard  L ie algebra sheaf o f type (nt, q
°
, • • ,  n

k
).

L et L  denote the formal algebra of 2 (e ), w hich is a  closed subalgebra

of A .  Then we see from Lemma 6 .9  that th e  isomorphism c of g(m)

onto A  gives an  isomorphism of g onto L.
W e have thus proved the following

T h eorem  6 .2 . The form al algebra L  of  the standard L ie  algebra

sh e af  2  o f  ty pe (in, q°
, • ,  q

k
)  may be identif ied w ith the form al algebra

n associated w ith the prolongation n o f  (111, no, . . . ,  nk).

Let G
°
 b e  a  L ie  subgroup of G°

(m ) and let (Pd , co) be the standard
G -stru c tu re  o f typ e  m  o n  M ( m ) .  L et q° b e  th e  L ie  algebra of G

°
.

Then we notice th a t  th e  standard L ie a lgeb ra  sh eaf 2  of type (in, 00 )

is noth ing b u t th e  sheaf o f a ll the local vector fields on M (m ) which
induce infinitesimal automorphism of (Pd , w).

§ 7. G il-structures of type In and pseudo-G k -structures of type m

7.1. In th is an d  th e  subsequent two sections, we shall consider a
fixed fundamental graded algebra in =  q

1
'  of / /- th  kind over R  and a

p<0
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fixed Lie subgroup G ° o f  G° (i11). W e shall denote by it °  th e  L ie  algebra

of G° a n d  b y  q  =  C1P the prolongation of (nt, g ° ).
p e i

F irs t  o f  a l l ,  w e  sh a ll d e f in e  four se rie s  o f L ie  groups H k , 111',

and Gk (k >  0 )  to g e th e r w ith  o p e ra to rs  0 : :Sk - >
( k - 1 ) (k > - ‘,u )  which will

play important ro les for o u r  la te r  arguments.

W e se t In k =  q 1). L e t k  b e  a n y  in te g e r  >  O . W e  s e t  bik
) =

p k r=p
(p< 0). T h e n  w e  have b: = in k ( p  —  tz ) and

in k  =b;;A flk

For each p < k ,  w e define  a  qP-valued linear form  s : on hth'
- k  b y  E:(X)

=X '  fo r  any X  E b: - k. I t  i s  c l e a r  t h a t (p< — ti)  v a n is h  and  that

p — k < — ,u) are  defined on the whole in k .

T h e  g ro u p s  H k a n d  N k (k >  0 ) .  F ir s t  w e  d e f in e  H k  t o  b e  the
subgroup of G L  (In k - 1 )  w h ic h  c o n sis ts  o f a l l  th e  elem ents a  satisfying

the following conditions :

i) (p< 0)

ii) a X h - 1 =X k - 1  fo r  a n y  X k  - 1  E 0k - 1 ,

a ( p < k — 2).

L et a E GL (in k - 1 ). T h e n  i t  is  e a s y  to  s e e  th a t  a  E  H k  i f  and  on ly  if

(7.1) (a• X Pr =6 p , r XP

for any X  E nt k  - 1  a n d  fo r  a n y  pair (p , r)  s u c h  th a t  r —  k + 1 < p <—  2

o r  —  1<p k— 2 , r <k —  2  or p -= k — 1, r k  —  1 , w here  (Op , r ) denotes

th e  K ronecker's sym b o l. W e  n o w  d e f in e  N k  t o  b e  th e  subgroup of
GL (In k  - 1 )  w h ich  co n sis ts  o f a ll  the elem ents a  sa tisfy ing  (7 .1) for any

X E in k - 1  an d  fo r a n y  pair ( p ,  r)  s u c h  th a t  r — k < p < — 2  o r  —1 < p

<k  — 1 , r < — 1 . N k i s  a normal subgroup of H k .

The group H k  c o n s is ts  of a ll  the matrices a  of the form :
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o ' o-2 g k -1

g- "

Bk- "

g k -1

The subgroup N k  o f  H k  consists of all the m atrices a with *  replaced

by O.

L et u s  o b se rv e  th e  L ie  algebra o f  I l k  a n d  o f  N .  W e  set as
follows: /e/'=Hom (gP - ", g P )  (p<k —1),.,..,,1e k -1 = Hom (b k--12 ,  g k-i) , r t kp

= E Hom (gr, gP)(p <  k ), 
,.kk _ E  ,,,,,kp ,  i l k  _  E  i tk p  an d  il k ..e + r t k. w e

r<p-k p<k p<k
have mk - l =

p<k
subspace of gi(in k - 1 ). Then we see that bk (resp. nk )  is the L ie algebra

o f  H k (resp. N k ). Now define a  mapping t k  o f  f)k t o  GL ( n k-i)

t k (u )Y  Y  u , (Y )  fo r  any u E 1 k an d  Y E n I k 1 .  I t  is  c le a r  th a t  t k

gives an injective mapping of bk (resp. n k )  onto H k (resp. N k ). We have
H k  =rk (e)./y k  an d  t k (u) t k ( u 9 = t h ( u  ut )(mod N k )  fo r  any u, u' E .
If  k > i t ,  then we have t k (u ) t k (u 1) = t k ( u  a ')  for any u, u' E .

The operators 0 : e e - 1 )  (k> 0). W e set =Hom (bk
- l

i A g" ,
“P ) (p<k —1), &CI- =Hom (bil l A 41 1 ,  g ' 1 )  and  W k ) E  WI". For each

p<k
E  e and p<k  — 2, define an  element (au) P of 03_ 1 by

(6u)P(X AZ)=1u(X), Z1—Iu(Z), X - 1 1— u(IX - 1 , Z1)(p<k — 2),

(aa) P (X A  Y ) =[a ( X ) ,  17 - 1 1—  La( Y), X - 1 1—  u(EX- 1 , Y - 1 1 )(p=k —  2)

for any a E e, X , YE b-
k

-12 a n d  ZE gP - k +1 . Thus we get a  linear map-

gP=(E gP)+ b 17-1 2 + g k  - 1 ,  and  we may identify bk w ith  a
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ping 0 : e  u - +O u =E  ( 0 u ) P
E E ( k - 1 ) .  

W e  have g k  E g k  =  E Hom (gr,
r<0w' +1?) cc,k and we see that the kernel of a: —>V ?- 1 )  is equal to ç .

T h e groups G il  and  Gk (k >  0 ) .  First w e define G  to be the sub-

group t k( i k it k)  t k(g k)..N k  o f  H k .  Let Of denote the L ie  algebra

Then we have 4 +iik

G / N k . We see that G k i s  a n  abelian group and  that its L ie  algebra
x kis given by = 4 / i t

k• N o t e  that th e  mapping gk tk(Xk)

induces the exponential mapping exp o f g h t o  G k . M oreover, note that

if  k:.>t h e n  G k  may be identified with the subgroup tk (q k )  of G .

Finally, le t u s observe the L ie  group G?t=Go 
.N o .

 W e denote  by

g
(
#
)
 (resp . tt

°
)  the L ie algebra o f q  (resp. N ° ). Then  w e have a  =q

°

+ n
°
, and we see that n°

,  being a  subalgebra of pi (tn), may be expressed

a s  E it " ,  where 11"  =  H o m  ( q r ,  e ) .  W e denote by t ° the injective
p<o r<p

mapping of n ° onto N ° defined by e (u ) Y+ u( Y) for all u E n
° and

YE nt.
7.2. L e t k  be any integer O. F o r each p  <k  — 2, we denote

b y  /(k, p )  th e  subset o f Z  X Z  consisting o f  a ll th e  p a irs  (r, s )  such

that —1 <  r , s_<-_-„p  or p — k < r , s < k , r + s < p .  If (r, s) E I (k , p ), we have
r, s <  k— 2. W e have /(0 , p ) =  / ( p ) ( p  — 2).

S in ce  G  is  a  L ie  subgroup of GL (in k - 1 ), w e have the notion of
Gy s tru c tu re s . W e s e t  in h - 1  =dim in k -1 . L e t M k - 1  b e  a manifold of
dimension ink  1 , a n d  le t  (PL co

(k)
)  b e  a  Gf'r structure  o n  M k - 1 . o) (k )

being an  ink -  1 -valued 1-form on P L  we denote by w the e-component

o f  (.0( k )  i n  t h e  decomposition : ink =  qP. T h e  following definition
p<k

generalizes Def. 4.1.

Definition 7 .1 . We say that the GI-structure (P it  w( k ) )  is of type
n t if  it satisfies the following equalities

1
sg,=d4+  9 E 0 4 ,  0 4 8. 1 A

r-ts=p

{mod oirk (r < p  — k); w I", A oi,e' ((r , s) E I(k , p))1 (p_<L:_k — 2)

Now we define Gk t o  b e  the factor group

7 .3 . Definition 7 .2 . L et M k -1 b e  a  manifold of dimension ntk-1
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(k>  0), and let P k  b e  a principal fiber bundle over the base space M k - 1

w ith  structure group Gk . Let D ( k ) .-=- (DPk )p < 0  b e  a fam ily o f differential

system s on P le and let O( k ) =(60 )
k )p < k  b e  a  fam ily o f  fo rm s su c h  th a t 01;

i s  a e-valued 1-form 3 ) on  (Pie , Dpk -kN.) Assume the following conditions

for the system  (pie , D ue), 0(k )) :

1) dim M  =dim b//, (p<  0 ) , and

• • • Dbk D k

w h ere  D I?  denotes the differential system  on  P k  c o n s is t in g  o f  a ll the

vertical vectors on P k .

2) For each p<  0, / 4  i s  invariant under the action of G k  on  P k .

3) For each p < 0, 14, is defined by the equations Ork = 0  (r<p),

and D2 is defined by the equations Ork = 0 (r< k).

4) Let a E Gk  , and express i t  as exp X k (X k  E g k )  w hen  k >O.

If k= 0,

R ( a) *  a - 1  Ot ( p <O ) ,

an d  if  k> 0,

1?(a)*Ot-=0 11,—[X m, k kl(p < k),

w here  R (a) denotes the righ t transla tion  o f P k  in d u c e d  b y  a.

U nder these conditions, w e  sa y  th a t  the system  ( p i e  D(k) , 0(k )) • s a

pseudo-G k -structure on M k - '.

Remark 1. L e t  ( P k  D (k ), 0 ( k )

) b e  a  pseudo-G 1 - s tru c tu re . Then

w e  have: i )  0Pk = 0(p<  —  ,a), ii) DPk -
= T(Pe) (p< —  i t ) ,  and h e n c e  4,

(p—k —,a) are usual form s defined on P k .

Definition 7.3. L e t (P k , D ( k ) ,  0 ( k ) ) {resp . (P' 1 , D' ( k ) , 0' ( k ) )} b e  a

3 )  Let D  be a  differential system  o n  a  manifold M .  As for the definition of
differential forms defined on (M, D), see  [13], §1.
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pseudo-Gk -structure on a m anifold M k - 1  (resp. M k - 1 ). We say that a
bundle isomorphism ço o f  P k  on to P' k i s  a n  isomorphism of (P k , D ( k ) ,

60 ) )  onto (P ', D ' ( k ) , O( k ) )  if  we have the equalities:

ço*DP=Dik) (p  < 0 ),

ça*OV)-=01
1: (p < k ) .

Definition 7.4. L et (P k , D ( k ) , 8 ( k ) )  be a  pseudo-Gk -structure on a
manifold M k - 1 . W e say that a n  mk - l -valued 1-form e 4 - 1  o n  P k  i s

compatible with O( k )  i f  we have the equalities:

$t k (p<k),

k-1where e , denotes th e  e-component of C t h e  decomposition

E gP •
p<k

R em ark  2 . L e t C( k ) b e  a  1-form compatible w ith  O .  B y  con -

dition 3) in  Def. 7.2, we see that D t is defined by th e  equations e- rk

=0 ( r < p ) .  Let V( k )  b e  a second 1-form compatible with O .  T h e n  it

follows that

4,-=e,{mod el. (r < p ) }  (p < k ).

Definition 7.5. We say that a  pseudo-Gk -structure (P k , D ( k ) , 0 ( k ) )

o n  a  manifold M k - 1  i s  o f  ty p e  n t  if  there is a n  Ink - I . -valued 1-form

E( k )  o n  P k  which is compatible with O( k )  a n d  which satisfies the equali-

ties:

1
7 P —  de l '   E  Le ,k k 2 74s=t,

{mod $rk (r __p — k); VI; A WI', s) E p))) - ( p k  — 2).

Rem ark  3 . L e t (ph ,  D (k) , 0 (k).)  b e  a  pseudo-Gk -structure of type
m .  Then we see from Remark 2  that every 1-form 77( h ) compatible
with 0( k )  satisfies the equalities in  Def. 7.5.
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§ 8. T h e  prolongation theorems

8.1. L e t (Pfi, to ( k ) )  b e  a  G4-structure on  a  m an ifo ld  M k - 1 . For
each p<  0, we denote by 14 h th e  differential system on 13 ' ,  defined by
the equations a 4 = 0 ( r < p ) .  Then we have

( 8 . 1 ) • • • D D I / k p • • • D

w here 14 k  denotes th e  differential system on 1J/if  consisting o f a ll the
vertical vectors in P . W e  h a v e  d im  14 k =dirn bi;--E dim Il k ( p <  0).

Theorem  8 .1 . (1 ) To every  g - s t r u c t u r e  (Pt, w ( k ) )  o n  a  manifold

u ) there is associated, in  a  natural w ay , a pseudo-G k -structure
(ph , D(k) ,  o ck)) on  M ' '  hav ing  the following properties:

1) T he principal f iber bundle P k  i s  e q u a l  t o  the quotient PV N k

o f  .P't b y  th e  norm al subgroup N k o f  Gk w h ic h  i s  a principal fiber

bundle over the  base space M k - 1  w ith structure group Gk =-G4/
2) Denote by  8  the projection of  P II onto P b  = P / N .. Then we

have

8* M - =  k (p <0),

9*6 = wP,I Dit)„T k (p  <  k).

(2) I f  (Pt, w ( k ) )  i s  of  type in , so  is  (p 1e D (k ) , 0 (0 ) .

(3) T he assignm ent (11 ,  o (k)) _ ,( p k , D(k ), 0 ( k )

)  i s  compatible with
(k) D(k),the respective isom orphism s. N am ely 0 1 ,  co ) ( p  1 e0 (k)) and

(N(k) ,  w t(k)) _ , ( p k , Dr(k) , 0 1 ( h ) )  th e n  w e  have:

i) Ev ery  isom orphism  çoi  o f  ( P  o ) ( k ) )  onto  (Pik , co' ( k ) )  induces a
r D/ (k) ,unique isom orphism  ço  o f  (P

k ,  D ( k ) ,  0 ( k )

)  onto ( p ) ,0 1 ( 1 0 ) •

ii) Ev ery  isom orphism  ç o  of  (P1e D (k ) , 0(1e) ,

)  onto  (P a ,  Di(k), 
0 ( b ) )

is induced by  a unique isomorphism ç o it o f  (11, (10 ) )  onto (Pik,

Theorem  8 .2 . A ssum e th at G°  is connected and , f or each k >  1,
a e ,choose a  complementary subspace Ctk-1) of in (1-1) •

(pk-1 , D (k-i) , 0 - 1 ) )  o f  t y p e  n i(1) To every pseudo-G k - 1  -structure
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o n  a manifold M k - 2 ( k > 1 ) ,  there is associated, in  a  canonical manner,

a  G lf-stru ctu re (P L  o) ( k ) )  o f  ty pe in  on  P k - 1  having the  following pro-

perties: Denote by a the projection of  P If on to  P k - 1 . T h e n  w e  have

a*D 11,_1 -=Di; le ( p < O ) ,

a * ° 11:-1 = M k - 4 + 1  ( p < k  —2).

(2) T he assignment ( p l ,
 D ( k - 1 ) ,

 U
,■(k- 1) ) —> (Pikt, 

w ( k ) )  i s  compatible

with the respective isomorphisms. Namely if
(pk œ i ,  D (k-i) ,  0 (k-1) ) ( p i , 0)(k) )  a n d

D , ( k - i ) ,  0 (k-1))_ ),(p ;t k, ( 0 , ( k ) ) ,

then we have:

1) Every isomorphism go o f  (P
k - 1 ,  D ( k  - 1 ) ,  0 ( k - 1 )

) o n to  (P " ',

01 ( k - 1 ) )  is induced by a u n iq u e  isomorphism ÇOst o f  (P li, a) (k ) )
onto ( P k , 0 0 ) ) .

2) Every isomorphism go o o f  (P
k  C O ( k )

)  onto (Pr , co '') induces a

unique isomorphism ço of (P
k - 1 ,  D ( k - 1 ) ,  0 ( k - 1 )

)  onto ( p / 1-1 , D i(k -1) , 0/(k -1)) .

T h . 8.1 and T h . 8.2 will be proved in the next section.

Theorem 8 .3 . A ssum e that G
°
 is connected an d , f o r each k>  1,

o -choose a  complementary subspace E r n  o f  k  i n  E (k 1) •

(1) To every pseudo-G ° - s tru c tu r e  (P ° ,  D o)  O m\)  o f  ty p e  In  o n  a

manifold M - 1 ,  there is associated, i n  a  canonical manner, a  sequence
( p ) : ( p 0 , D ( 0 ) ( P k ,  D ( k - 1 ) ,  0 ( k - 1)or k D ( k ) ,  0 ( k ) )

as follow s: 1 )  Fo r each k >
1 ,  ( p k  D ( k ) ,  0 ( k )

)  is  a  pseudo-G k -s tru ctu re
of  type in  on  P

2 )  For each k > l ,  we have

m k * I 1 =1311, ( p < O ) ,

.07 k*01,o P  D P - k - 1 - 1  ( p 2).k -1 —  k  I k

(2) T h e  assignment (P ° , D ( ° ) , 0 ( ° ) ) -->  (P ) is  com patible with the

various isomorphisms.

k - 1 ,  and  V i k i s  the projection of  P k  onto

P r o o f .  This follows immediately from Th. 8.1 and T h . 8.2. In-
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deed, let (pk D(k -1) , 0(k -1)\)  be a pseudo-G'-structure of type nt on a

manifold M k - 2 . By Th. 8.2, there is attached to (P k  1 - , D ( k - 1 ) , 0( k - 1 ) )

a G ikr structure (Û(k)) o f  type in  on  P k  - I - . B y Th . 8 .1 , (11, w ( k ) )

gives rise to a pseudo-G k -structure ( P ' ,  0 ( k ) )  of type in on P k - j . Let

a k (resp. 13k resp. m k )  denote the projection of P il(resp. P , resp. P k )

onto P"(resp.  P k
, resp. p  ) T h e n  w e  have vi k ol3k =a k . Therefore,k-1\ .

fo r any p< 0 , w e  g e t  j3k *(v7 k *D:_ i ) = a k *D:_ i  =i4 k = (3k * D :, whence

urk *D:_ i = D :.  Moreover, f o r  a n y  p<k —  2 , w e  g e t 1 3 k * m k * 0:_,
=a k * co:1 D 1

14-  k =  ( 8 k* ziDi 8k* D:-k+1 = 8k* (0:1D:-k+1\) whence

M k *  4 _ 1 = D  k  + 1 . T h e  iterative applications of the assignments
D (k-i) , 0(k -1)) (p k  D (k ) , 0(k

T h e  sequence ( P )  is called  the prolongation of the  pseudo-G °

-structure (Po, Do),  O m ) .

Remark 1. I t  is  easy to  see that the assignment (PL co ( k ) ) —>.
(ph  D (k ), 0 ( h )

)  in Th. 8.1 has a local property: More precisely, le t  U

be an onen set of M k - 1 . Then the pseudo-Gk -structure corresponding

to the restriction of (PL 00 ) )  to  U is just the restriction of (P k , D ( k ) ,

64 ( k ) )  t o  U .  From the proof o f  Th. 8.2, we shall find that the as-

signment (P k-1 3 D (k-i) , 0(k-1)) t o ( k ) )  in Th. 8.2 also has a local

property: More precisely, le t  U  be an  open  set of M k - 2 . Then the

GLstructure corresponding to the restriction of (pk-i , D (k--1) , ock-i.)) to

U is just the restriction of (PL co ( k ) )  to VT- 1 ( U ) ,  -67* being the projection

o f P k - 1  onto M k-2 . It fo llow s that the assignment (P°, D ( ' ) , O( °)) — >(P)
in Th. 8.3 has a local property in a suitable sense.

8.2. Theorem 8 .4 . A ssum e that the p air (nt, g ° )  is  of f inite type,

an d  le t (Ptt , zo) be  a  q - structure of  type m o n  a connected m anifold M.

T h en  the  L ie algebra o f  a ll  the  inf initesim al azitomorphisins o f  (13
4 , w)

is f in ite  d im ensional and  of  dim ension <  dim g.

Corollary. L et m  be a f undam ental graded algebra of  fin ite type,

an d  le t  D  b e  a  regular d if f eren tial sy stem  o f  ty pe  n t  o n  a  connected

m anifold M  of  dim ension in =dim nt. T hen  th e  L ie  algebra o f  all  the

in f in itesim al automorphisms o f  (M , D )  is  f in ite  d im e n s io n al an d  o f

) )  yield the required sequence (P).
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dimension <  dim g(m).

Proof o f Th. 8.4. L e t (P o,  D o:0, O m\)  b e  th e  pseudo-G°-structure

of type nt on M  which corresponds to the q-structure ( P  w )  .  Let us
consider the sequence (P)  in  T h . 8.3. L et 1 denote the largest p >  —1

such that (.1P \ {O} . Setting k = i+ i i ,  then w e have P l = P k ,  where we
p u t P -1

 = M .  I t  is  c le a r  th a t  th e  form s O t(p<—  it o r p > 1 )  vanish
and that the forms O ( —  / t<p <l)  a re  usual forms defined on 13 '. We

have dim P i = E dim gP -=dim q, and w e know  that the forms O(—/t
P= - 1 4

p l )  d e f in e  a n  absolute parallelism o n  P ',  i .e . ,  th e  m apping T7 (P 1)

X — > O(X) E g gives a linear isomorphism at each z E P I . Therefore,
P=-/4

T h . 8.4 follows from Th. 8.1 (applied for k = 0 )  and T h . 8.3.

8.3. W e shall introduce the notion of the structure functions of a
pseudo-G°-structure of type nt.

F o r an y  in teger p .>.-1 1 , w e d en o te  b y  A ( p )  (resp. B (p ))  the
subset Z x Z  which consists o f a l l  th e  elem ents ( r, s )  such  that r+s

=p, —  s  (resp. — 1<r, s p o r  r+s < p , —  /1 <r, s<p +1 1 ). Let
(po , Do), 0( 0 ))  be a  pseudo-G°-structure of type nt on a manifold M  and
le t u s  consider its prolongation (P).

Lemma 8.1 . L e t (k , p ) b e  an y  p air o f  integers w ith  /

<p<k  — 211 , and consider the pseudo-G k -structure, (P k , D ( k ) , 60 ) ) ,  of

type nt On P k - 1 .

(1) T he f orm s O il, and  Ors , 0 ; ( (r, s )  E A (p )U  B  (p ))  a re  usual

form s def ined on P k .

1 (2) E 0  {mod Ork A 0;', ((r, E  B(p))}
z  (r.  )e.A(p)

P ro o f .  (1 ) is  c lear. L et u s prove ( 2 ) .  Let e ( k )  b e  an m 0 ' -valued

1-form o n  P k  com patib le  w ith  O .  T h e n  w e  h av e  Vie =O t a n d  Erk

=O rk, Ele =6 11, fo r  a n y  (r, s) E A (p )U  B (p ) . Furtherm ore we find that
B (p )  consists o f  a l l  (r, s)E  I(k , p ) w ith r, s / 1 .  Therefore (2 ) fol-
lows from the equality in  Def. 7.5.
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W e put SIP =  E  Hom (gr A gs, gP) — du). Let k  be any integer
(r,  )e13(p)

B y L em m a 8.1, w e kn o w  th at, fo r each  p(— 2,a),

there is a  unique Sr-valued function K  on P P sa tisfy in g  the following
equality :

(8.1) (4+   1 E  K ( O rk A 0 )  =O.n 
(r,k)e13(p)

k-21,

W e shall say that the sum K (k ) K  i s  th e  k-th structure function
o f  (130 ,  D (0 ), 0 ( 0 )

)  and th a t the system of equations (8.1) for a ll p(—
D(0) ,< p < k - 2 / 1 )  is  the k-th structure equation of (PO ,0 ( 0 ) ) .

Do),Theorem 8 .5 . Suppose that the pseudo-G°-structure (), On

is associated w ith the  standard  q -s tru c tu re  (1 1 , tom )  o f  type u t on  M

= M ( m ) .  T hen the structure functions K ( k )  v an ish  f o r all. k >

This theorem will follow from Lemma 8.2 which we shall explain
from now o n . L e t  a =  a P  be any elem ent of g , where aP E We

p l

denote by 6- 1 (a ) the vector field X  on M(m) defined by the equalities
in  Lemma 6.3. T h en  w e  see  th a t th e  mapping a —> 6- 1 (a )  is linear
and th a t 1 6 - 1 ( a ) ,  0

- 1 (b )1 = — 1 , 1 )  (Lem m a 6.4). Moreover we
know  that 0- 1 ( a )  induces a n  infinitesimal automorphism 01(a) of (P il,

tom ) (S ee  6.4). Therefore it induces, for each  k >  0 , a n  infinitesimal
automorphism O- k  (a)  o f 

( P k ,
 O ) P h .  8.1, applied for k = 0, and

T h . 8.3).

Lemma 8 .2 . Fo r each 0, w e  hav e  the  follow ing proposition

(S  k ) :  T h e re  are  a po in t e k E P k an d  an  1it k - 1 -v alued 1-form E( k )  o n  P k ,

compatible w ith 0 ( k ) ,  w hich satisfy  the follow ing conditions:

1) Vi:(6 k (a 1'),k)—- r p aP

f o r any  aP E gP(p< k )  and  any  r<k .

2) 0"k  (ak ) e r a k ( k ) ek

f o r  an y  a k Eg k , w here  r(a k )  denotes the  v ertical v ector f ield of  the

principal f iber bundle 
P k ( p k - 1 , )

 induced by  ak.
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3) ak (a P )ek 0

f or any  aP E gP(p > k).

This lemma will be proved in the next section.

P ro o f o f  T h . 8 .5 . W e  have re (a), 6k  (b)1= — 6 k  ( L a , la  and

L,k ( a )  =  O. It fo llo w s th at 0 11,(6k (a )A 6 k (b))= —  eno - k(Ea, b 1 ) ) +  E(r, ).B(p)
DP(ak(0), 0 (6

k
(b))1. Therefore we have 6 (6 k (a) e i A e (b ) ,k )= 0  by

Lem m a 8.2. S in ce  th e  mapping a — > 6k (a) e k m ap s g  o n to  T e k(P k )

(Lemma 8.2), w e  have (0 ) e =  O. M oreover it fo llow s that  c9 =O0 on

a  neighborhood o f  e k , because L,A (a) =  O. S in c e  P k  and ()Pk a re  real
an a ly tic  and s in ce  P k  is connected , w e get O il, = O. T h u s  w e  have

proved K = O.

A converse of T h . 8.5 is  a lso  tru e  (a t le a s t) in  the case where
(In, g°)  is  o f finite ty p e . Indeed, le t (Ps , co) be a  q-structure of type

ni and let (P °
, Om) b e  the corresponding pseudo-G°-structure. Let

I  be the largest p >  — 1 such that g P * {O } and put k = / 2 / ./ . If the

k-th structure function K (k ) o f ( P o, Do), 00) )  vanishes, then the given
q-structure (P s , (o) is locally isomorphic to the standard (4-structure of

type In. For the proof o f th is fact, w e note that the fam ily (0 11,)_ ps1

gives an absolute parallelism on P ' = P '  and that (4 = 0 (— <  p  < l).

8.4. Remark 2 .  Let us define a  decreasing sequence (G4,)k> 0  o f

Lie subgroups of q = G
°
•N

° a s  follows :  Put q/!. = E Horn (gr - P, q7") and
r<0

= E  Hom(qr_P gr ) (p >  0). Then we have qP q ,  and we denote
b y  A  the projection of CIP  o n to  qi!_ w ith  respect to this decomposition.
Noting that gP is  a  subspace o f qP, w e put rt4, = E  2 ( 0  E qP_. Then

o<is k k<t,
we find that 4 , is  a subalgebra of n

=  E qP_ and that n° n ; -
Kn V

p>0

= •• • •  Denote by N‘ev th e  connected Lie subgroup o f N ° generated
b y  the subalgebra u .  o f  n°,  i.e., t ° ( i4 ) .  T hen  the product G•

=G
°
•A r, is proved to be a (closed) subgroup of G .  ( T h e  proof uses the

fact that every a E G° is un iquely extended to  an automorphism of the

graded algebra g). W e c le a r ly  have G  D  D  •  •  •  D  =G'4,= • • . It
should be rem arked that the L ie algebra o f  G14,-1 m ay be regarded  as
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the linear isotropy algebra of the standard Lie algebra sheaf of type

(m, q° ).

N o w  w e have proved "th e  first reduction theorem " which m ay
rough ly be stated  as follows : Under a  suitable condition (C1 )  o n  the

p air ( n, G'), every q-structure (Po, (o) o f  ty pe ut on a m anifold  M  is

reduced, in  a  canonical m anner, to a G,-structure  (P4„ co) on M  in  such

a  w ay  th at th e  assignm ent (Po  co)--). (P4, co) is com patible w ith the

respective isomorphisms.

Note that condition (C1)  is satisfied if G ° is  co n n ected  and if the

representation of G
°
 o n  ,q-1 is  co m p le te ly  red u c ib le . I t is  n a tu ra l to

expect that one can  continue analogous reductions under further suitable
conditions on the pair (rn, G ')  to obtain a  decreasing sequence o f GI,-
subbundles o f 1 1 : .1 1 ) P ;) • • • D P ; - 1 =FTI,-=•••.

For example, consider the case w here /t= 3 , dim q-3 =2 , dim g- 2

= 1  and dim g-1 = 2  and w here G° =G ° (m ). (c f .  5.3, Example (2)).
Then it can be shown that the pair (in, G° )  satisfies condition (C1)  and

hence that every g-structure (Po  w) on M  is reduced to a G-structure

(14, w) on  M  in  the canonical m anner. M oreover, we can show that
the G,-structure (P;-0  co) on M  is reduced to a  C r structure ( P "  to) on

M  in  a  canonical m anner. In  h is paper 111, p. 965-971, E . Cartan

has rea lly  carried  out such reductions in  a  "m essy and complicated"
m anner. F inally , w e mention th a t the L ie algebra et (resp. ek)  o f g

(resp. o f G )  is equal to  the Lie algebra g 12 (resp. g7 )  in [101, p. 326-

327, and that the first prolongation (g ) (1) o f  OK in  the usual sense may
be identified w ith f  and the second van ish es . (Note that e =  {0 }  for

any p>3.)

§ 9 . Proo f o f  Theorem 8.1, Theorem 8.2 a n d  o f  Lemma 8.2
Proof o f Theorem 8.1

9.1. Let (P:, w ( k ) )  be a  Gil-structure on a manifold M k - 1  (k  > 0).

a  denotes the projection of .11  onto M k - 1 . W e put P k =Pli/N k. Then
PI4 i s  a principal fiber bundle over the base space P k w i th  structure

kgroup N k . 9  deno tes the projection of P ikt on to  P " .  Moreover P  is  a
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principal fiber bundle over the base space Mk - 1  w i t h  structure group

Gk -=G /N k .  VT denotes the projection of P k  o n to  m k - 1 .  W e have a
=m 0,3. F o r an y  a  E G;'$ (resp. a E Gk ) ,  R o (a)(resp. R ( a) )  denotes the
righ t translation of P 1:t

( m k - 1 ,  

(resp. pk(mk--15 Gk ) )  induced by a.

L e t a E Gtif. If k = 0 , th e re  is  a  L E G  such  that a==b (mod N ° ),

and if  k > 0 , th e re  is  an k E gk s u c h  th a t  a ---- =t k (X k ) (mod N k ). We

have Ro(a)
* 0 ) ( k )  a - 1 ( h )  

and hence, according a s  k  0 o r k> 0,

(9.1) 1-?4(a)*(4=b-1 (o16' {mod w '( r< p ) }  (p < 0),

R it (a)* (4= 4, — PO , (or klImod coire (r<p —k)} ( p <  k ) .

B y  (9.1), w e  have R(a)* Mk = Mk  f o r  an y  a  E q  and p < 0 .  In
particular it follows that there is a unique differential system  D  on P k

such that 8 * D t = D f " .  W e assert that the family D = ( D ) < 0  satisfies
conditions 1 ) an d  2 ) i n  D ef. 7.2. In  fa c t , th e  kernel o f  th e  linear
mapping D ( z )  X  i3* X  E M(43(z)) consists of a l l  the vertical vectors
i n  p l ( p k ,  N k ) a t  z. T herefore w e h av e  dim Dt=dim M k  —dim bt.

From (8.1) and the fac t th a t i3*./A = M k , w e  g e t : • • • D D •••DDVD
D°

L et a E Gt and let a be the im age of a by projection of Gi;$ onto Gk .

Then we have 3. R 4 (a) = R(ri)0 d3 and hence 3*(R(d)*Dt)= R (a)* d*
= R it (a) *

 k  = M k = g*D t, w hence R (d)*D t -= IX . W e  h a v e  thereby
proved our assetion.

Let a E N k . By (9.1), we have R it (a)* (04 Imod w (r <p—  k)}  ,

whence 1? t; (a)* (41 k) = (41 k
M oreover w e see that co t M k

- k vanishes fo r v e rtica l vectors in
m (p k , N k ) . Therefore we h ave : F o r an y  p<k, there  is  a unique gP-
valued 1-form Ot on (P k , VI») s u c h  th a t  '1̀0.t=a)iij D i4 k .  W e must
show that the fam ily 0 ( k ) =(0 t) 5 < k  together with D ( k )  satisfies conditions
3) and 4) in  Def. 7.2. Condition 3) is clear from the fact that, for any
p<O, M k  is  d e f in e d  b y  th e  equations 04=0 (r <p) an d  th a t  Mtk i s
defined  by th e  equations cork  = 0  ( r <k ) . L e t  u s  v e r ify  condition 4).
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First suppose k= O. Let a  E  G°  C q . T h e n  w e  have /? (d) 0 = 0 R is (a)

and

[3* (R(a)* t) = R. (a)* /3* =  R it (a)* (cot DO

= ( a  tot)i Dt= /3*(a - 1  0),

whence R ( a) *  =a - 1  Ot'. Now suppose k> O. L e t  a  Gil  and let X k

be as before. T h e n  w e  have d =exp  X k  an d  R (d )0 ,3 =d 0 R (a) . By

using (9.1), we have

'1̀ (R(E1)* Ot)= R(a)* d*Ot= R o (a)*(colk) M O )

(141 Mk—  — EX k  W ile— k  D i#0 1

= 13*(0t-Ixk , I D » J ) ,

whence R(d)*Ot =4, — [X k ,  61— k  I D'kk— k l .

W e have thereby proved that the system (P k , D ( k ) , 19( k ) ) is  a pseudo-

Gk -structure on M k - 1 .

Assume that the Ger structure (o(k)) is of type m. Since N k is

homeomorphic with a Euclidean space, P4(P k , N k)  admits a cross-section

g .  Putting $ ( k )  g* (10 ) , then we have g*Dt(y )C M k(g(y )) and Et(X)

tot(g*  X ) = 6 3 *  (  X ) = Ot(X ) fo r any yE P k  , XE Dt - k (y ) and p

< O .  This shows that e ( k ) is  compatible with O .  Moreover it is clear

from the equalities in Def. 7.1 that e ( h ) satisfies the equalities in  Def.

7.5. T h u s  w e  have proved that the pseudo-G k -structure (pie D(k) ,  0(k))

is of type m.
(k) ___> , ,9.2. We shall show that the assignment (0 )( p h  D (k) 0(k))

is  compatible w ith  the respective isomorphisms. Let (PL co ( k ) )  (resp.

(P  '( k ) ) )  be a 4structure on a manifold M k - 1  (resp. )  and

let (P k , D ( k ) , 0( k ) )  (resp. (P' k  IY ( k ) ,  0 " ) ) )  be the corresponding pseudo-

M ' ' ) .Gk -structure on Mk y r 1— 1 (resp. ) W e sh a ll w rite  as A ' the quantity

in  (.1: ) ; k  (.0 ' ( k ) )  or (I (Pk)) which corresponds to a  quantity A  in

(PL  0 ( b ) )  or (11 1 k  D ( k ) , 0(k)).
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Every isomorphism v o o f  (PL oi k ) )  onto (P;t, cd( k ) ) induces a bundle

isomorphism v  o f  P k (111
k - 1 , , , k ‘

)  onto P' k (m i k - 1
5 G ' ) . W e  have vo ie

= 8' v o . Since d ( k ) =o) ( k ) , we see that v * D =D t( p < 0) and v*O'k P

=O t( p <k ) .  Thus v  gives an isomorphism o f
(p k ,  D ,  0( k ) )  onto ( P i k ,(k) 

D i ( k ) ,  0 4 ) ).

Conversely, we assume that there is given an  isomorphism v  of
(pk , D (k),  0 (0)

First, suppose that there is a  mapping o f P : to  P i't k  such that

vole =  /3 '0 0 . Since v*D'kP =/4 (p < 0) and v*O'k P=Ot(p< k ), we have

(9.2) 0*DV 1,= D I;$1, ( p < O ) ,

(0*o) — D =O

Next, suppose that there are two mappings 0 1 an d  0 2  o f  P :  to  P k

such that vo3 =3 / 0 = 8 / 0 02. Then there is a unique mapping 6  of

Pf! t o  N k  such that 0 2 (z)= 0 1 (z). 6(z) - 1  fo r  any z E P .  Furthermore

there is a unique mapping u  of P  t o  uk such that 6(z )= t k (u(z )) for

any z E P .  L e t  uP denote the uk P-component o f u  in the decomposition

it". These being said, we have 6. 0o) / ( k ) = 0'2 0 ( k )  and hence
p<k

(9.3) Sbico;P=Ot uP(E Ø  w 'kr) ( p < k ) .
r<p-k

By using these facts, we shall prove that there exists a unique iso-

morphism v o o f  (PL  (DM )  onto (P i't k, cd ( k ) )  which induces the given v.

First of all, let us prove uniqueness o f v o . Suppose that there are

two isomorphisms 0 1 a n d  0 2  o f  (PL  cow )  onto (13 ;t h, co" ) )  such that

V°3 = 8 t ° 01 = /3'002. Since O t d(k ) 
= Ø o

 0)
( k )

,  it follows from (9.3)

that uP(E wrk ) = 0 , whence uP = O. Therefore w e get 6 ( z ) = e  fo r any
r<p-k

z E P .  Thus 0 1 and  0 2  must coincide.

L e t  u s  now  prove existence of v o . By uniqueness o f  v o just

proved, we may assume without loss o f  generality that both .N (M

Gil )  and 1:  Y ( 3 4  lit  -1 ,  Gb ) are trivial. It follows that there is a  mapping

onto (13/ k Dt(k) , 01(k)) .

k-1 ,
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0  o f  P :  t o  P :k  su c h  th a t  voi3=i3'00. B y  (9 .2 ), w e  have 0 *  0); r

= cork (r < k — p  being an integer < k , suppose that there is a mapping

O p-i o f  P :  to  P/ok su ch  th a t 0 0 8 = 8 / 00p_i and su ch  th a t 4-1 wki r

•=04(r<p). Then by (9.2), we have 0'1;_ l co'kP—o)Pk 7=- 0 {mod wrk (r<p—k)}.
Therefore we can find a  unique mapping a l  o f 13 1' to  it"  satisfy ing  the

equality:

(9.4) (0/,,P + u P ( z , , , p _ k 0 4 ) .

Define a  m apping ô o f  P :  to  N k  b y  6 (z)= t k (u (z ) )  fo r  an y  z E P:,
and a mapping Ø p  o f  P :  to  P :k  b y  *4=0 p_1(Z )•6(Z ) - 1  f o r  a n y  z
E P .  T h e n  w e  c le a r ly  have vog=8'00 p . From (9 .3 ) and (9 .4), we
g e t Opo i7=-(ork (r _ p ) .  Therefore by induction we know that there is a
mapping v o o f  P :  to  P :k  such that ça o g = t r o ço ,  and 

4 0 ) , ( k ) . _ _ _ 0 ) ( k ) .  I t
can  be easily show n that v o g iv e s  a  bundle isomorphism o f P :(m k

GO onto P;k(yrk-i ,  G t.‘ .i) Thus v o i s  an isomorphism o f (PL  co ) onto
(P which induces the given v.

W e have thereby proved Th. 8.1.

Proof of Theorem 8.2

9.3. L e t  (pk -i ,  D (k-i) , 0 -1 )\) b e  a  pseudo-G"-structure on a

manifold M k - 2 (k >  1 ) . v i  denotes the projection of P k - 1  o n to  M k - 2 .
For an y a  E Gk - 1  ( r e s p .  X E q " ) ,  R (a ) (resp. r (X )) denotes the right
translation (resp. the vertical vector field) of P k - 1  induced  by a  (resp.

X).
W e have d im  P k - 1 =dim  Ink - 1 . C onsidering the Lie subgroup H k

in k-i\ ,o f GL( ) let us define a H 1 -structure ( F k w ( k ) )  on P k - 1  as follows:
F irst of all, by using the vector space ni" ,  we define the frame bundle
P o f  P k - 1  as in  [131 , §1 . L e t  it b e  the projection of P  onto P k - 1 .
Then w e define F k  t o  b e  the subset o f P  which consists o f a l l  the

elements z  satisfying the following conditions:

1) -= D_,(fr(z)) ( p < 0) ;

2) z•Z k - 1 =--r(V - 1 ) ( z )  fo r  an y  z h - 1 clE  k _ i ;
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3) q _ 1 (z Z )= 1 ( Z )  for any Z E  b t i r  1—  2 ) .

It can be easily show n that F k i s  a H ' -subbundle of P .  Thus we have
obtained a  H k-structure ( F ' , 0 )(k ))  o n  p k - 1 ,  0 )(k )  being the basic form of
P .  71. denotes the projection of F k on to  P k - 1 . For an y  a  E H k , .17? ( a)
denotes the righ t translation o f F k induced by a. Moreover, denote by
o.)//, the nt-component of w(k ) in  th e  decomposition in k - 1  = gP and, for

p< k
each p <  0 ,  denote by MI;  the differential system on F k defined by the
equations ()i rk =  0 ( r p ) .  We have • • M, • • • D IV  D2, where D2 denotes
the differential system o n  F k  consisting  o f a l l  th e  vertica l vectors in
F k ( p k - 1 ,  H k ) .

L em m a  9.1. 7r* _ = 13 11,(p <0),

* O _ D P - k + 1
k (p<  k  1 ).

P r o o f .  Let z E F k an d  Z E T z (P ) .  Then we have Tc* Z =z •w ( k ) (Z)

= E z •0 4 (z ). It f o l lo w s  t h a t  Z E  (7r* D_ 1) ( z )  if a n d  o n ly  if Z
p<k

E M (z ), whence 7r*D 1 = Let Z E  /4 - k +1 (z). Then we have 7r*  Z
k - 1 k-1

=  E  z• tOrk  (Z ). T h e re fo re  w e  g e t  (7r * )  (Z )  =  E  4_1(Wk. (Z ))
r=p-k +1 r= p- k+1

=  ( Z ) ,  whence 7r*  Of = 041 k ' I  .

A ssum e for a m om ent th a t k = 1 .  Every element a  o f G
°
 is  ex -

tended to a unique autom orphism , denoted by the sam e letter a, of the
graded L ie  a lgebra n. In  particular, it fo llo w s th a t th e  group G

°
 i s

represented on the vector space ni
°
. For a n y  z E F 1 a n d  a E G ° ,  define

an  element z a of P  b y  (z a)• Z  R (a) * (z • (aZ)) for an y  Z E nt ° .

Lemma 9 .2 . L et z E F 1 a n d  a ,  b E  .

(1) z a E F l .

(2) (za) b = z(ab).

(3) T c(z a)= (z )a.

(4) 11(a)*(o (1 ) =a - 1  a) ( 1 ) , w h e re  Ê ( a)  d e n o te s  the transformation
z z a  E F1 .

W e have dim Mk' = dim bl
i; + dim tik (p < 0).
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P ro o f. (2 )  a n d  (3 )  a r e  c le a r .  (1 ) (za)•bt = R(a) * (z•bt)= R(a) *

D(n(z )) = M(71. (za)). L e t  Z ° E q° . (z a) Z ' =R  (a) * (z • (aV ) )  =R (a) *

r(aZ ° ) , (z ) =r(a - 1  aZ); (z a) = r (Z ° ); (, a) . L et ZE 1%. 01
0' ((za) • Z) -= ct - 1 0t (z •

a Z ))=  a-1 at (aZ) =  act (Z)=6. 1
0
) ( Z ) .  T hus w e get za E P.

( 4 )  L et Z E T z (F1 ). 7r* .k(a) *  Z = (z a)• (f? (a)* a)(1) )  (Z ) .  7r* f?(a) * Z
= R(a) * T * Z = R(a) * (z • a)(1) (Z)) = (z a)• (a-1 w(1) (Z )).

Hence, Ê (a)*(1)( 1 ) = a -
1 a)( 1 ) .

For any X ° E q° , le t i-(r )  denote th e  vector field on P  which is
in d u c e d  b y  t h e  o n e  p aram eter g ro up  o f  transformations o f  P ,

(exp tX ° ).

Lemma 9.3. L et X ° E g° .

(1) 7- t >J-(20) z r ( X ° ) , (z ) at each  z E

(2) 04(i(X ° ) ) =  p,o ( p  0).

(3) /1. ( xo)  +  EX ° , win =  0  (p 0).

P ro o f. (1 ) and (3 ) follow immediately from Lemma 9.2, (3) and
(4). ( 2 )  7r* i- (X °), =

.z  t o w  ( x o‘)  )  a n d  7r*i- (X ° ) z  =  r (r ) „ (z ) = z • X ° .
Therefore we get a») ( ?

(x o ))_  x o

N ow , assum e for a m om ent th a t k > 1 .  For any a E Gk - 1  a n d  Z
E Ink - 1 , define an  element aZ of 111 ' b y

a Z = Z +  E Z'1,p<o

w here X k - 1  i s  a  u n iq u e  element of gk -1  such  th at a  = exp X k - 1 . We
clearly have e Z = Z .  L e t  a , b E 0 -1  and  express them respectively as
exp e x p  Y k -1 , where X ' , y k - 1  E I f  1 < k < ,ct then there
is  a unique element w o f nk s u c h  th a t  a (b Z) =- (ab) t k (w)Z for a n y  Z
E m ' .

- 1 .
 I f  k >  then w e have a (b Z)= (ab) Z for an y  ZE ink-1 , i.e .,

the group Gk -1  is  rep resen ted  o n  ink-1 . For an y  z E F k a n d  a E Gk - 1 ,

define an  element z a  of P b y  (za)•Z = R(a) * (z • (aZ)) for a l l  Z E

Lemma 9.4. L et zE.F k an d  a, b E .
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(1) za E F k .

(2) (z a) b = z(ab) t k (w ) (1 <

(z a) b z (a b )  (a <  k ) .

(3) 7r (z a) = 7r(z) a

(4) a (h(a)* w ( k ) ) = o ( k ) ,  w here  h (a)  d en o te s  the transform ation
Fk  z  z a E  F k .

P r o o f .  (2 )-(4 ) are just analogous to (2 )-(4 ) in  Lemma 9.2. Let

us prove (1 ). (za) 44_ 1 = R (a) * (z _ 1 ) = R (a) * DPk  1 (7r (z)) =- 1:4_1 (fr (z a)).
Let Zk- 1 E  e -1  . (za)•Z h ' =  R(a) * (z • 1 ) = R(a)*r(Z k - 1 )(z )=  r(Z k  - 1 ); (z a).
This la s t eq u a lity  is  the case, because G' 1 i s  an abelian group. Let

ZE

q _ i ((za). Z) (R(a)*61_,) (z • (aZ))

=  ( q - 1  EX k  0 1 ‘ 1 "  Drgl 1 ])(z *(Z + Erx k - 1 , zgl))
g <0

(z + , a ; _ t + 1 ( z +
q<0 g<0

= z p k zp— k +11_ k zp— k + 1 1  Exle — k z  — 2 k + 211.

Since p — 2k + 2 < p —  k  1, w e have ZP - 2 k + 2  = 0 and hence ((za)•Z )

= Z =  1 ( Z ) .  Thus w e have proved z a E F k

Let X k  - 1  E gk  - 1  and put f t =  (e x p  t x k -1\) T hen w e see that f t

is  a one parameter family of transformations of  F ?  and th at f o i s  the

identity transformation. W e denote b y î ( x ' )  th e  vector field on F k

Oft (z)
at t= o.

L em m a 9 .5 . Let X ' E 1 .

(1) ) r (X k - 1 )„ ( , ) at each z E F k .

(2) o4,("i(2 0 - 1 ))  = p ,k _i  r  - 1 ( p  k  —  1).

( 3 )  L;.̂ (x k-1) 4,-+D Y k - 1 , co kfhIl r

induced by the fam ily f t ,  i .e . ,  j .( .1,-k-1)
2
 =
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4.(xk-i)cor — 0.

P ro o f . This follows from Lemma 9.4. The proof is just analogous

to that o f Lemma 9.3.

Let us return to the general case. By using the basic form co( k )

= E ore, we define e-valued 2-forms flik) on  F k  as  in  Def. 7.1. i.e.,
p<k

do)P,+  E  [(eh, w J p — 2).2  r+s-p

Lemma 9 .6 . For any  p  k  —2, w e have

,S2t 0  {mod cork (r p  —  k ) ; cork  A  (14( p—k < r, s< k))-

P ro o f . This is easy from  existence of a connection in F
k ( p k - 1 ,

H k).

9.4. In  what follows, we assume that the pseudo-G k - 1 -structure
(pk-1 5 D (k-i) , 0 (k-iy‘)  is of type pt.

Lemma 9 .7 . For any  p k-3 ,  w e  have

0 {mod cork (r • p  —  k  1); cork  A to g (r  s ) E I (k — 1, p)))- .

P ro o f . By the assumption, there is an m ' 2 -valued 1-form p--1)

on P k - 1  which is compatible with 0 ( k - 1 )  and which satisfies the equalities

(with k  replaced by k —1) in Def. 7.5. Therefore i f  we put = x * g ,

then we have

( 9 .5 ) Ca
1

P+ 9 E  Fe, ve l --13

r+s=1,

{m od  '. (r p— k -k  1); r  A s ( ( r ,  )E  I(k—  1, p))). ( p  k

Moreover by Lemma 9.1. we have (V— coDiDt - k+ 1 = 0 (p <  k— 2) and

hence

(9.6) E wii,{mod cork  (r p —  k)} ,
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=.EP {m od r(r <p  — k )}  (p < k —  2).

Lemma 9.7 follows easily from (9.5) and (9.6).

Lemma 9.8. For any  p<k—  2, w e have

S2 Olmod < p— k); oirk A (4,((r, s) E 1(k, p)))-(p<k — 2).

P ro o f. Let V -1  E  Ç ; 1? -1. By Lemmas 9.3 and 9.5, w e  have

(9.7) t o t _ o p , k  i x k - 1 < k  1 ) .

Moreover we have

(9.8) D t= 0  (p — 2),

because

—-k +1:11 0 (Lemmas 9.3 and 9.5).L1,(x k -1) tot + k  - 1 , P 

4. ( x k-1) (oPk =is.(r - 1 )_1 duiPk + d(i-(2V - 1 ) _I cot),

d w t + E  g ( X
k_ i )  j  r k  041

r+.9=1,

Let p  b e an y  in teger <  k — 3. From Lemmas 9.6 and 9.7, it follows
that

(9.9) S2P
k O lm od wrk (r k) ; cù

A  
0.) ; Lek A (0 ( ( r ,  s) E I(k ,p ))} .

Then by (9.7), (9.8) and (9.9), w e  g e t the equality  in  Lemma 9.8 for
p k — 3. From Lemma 9.6, it follows that

(9.10) ..S2r 2 =- 0 {mod o r < — 2) ; or. A ù ( —  1< r  k - 1 ) ;

cork A colgr, E 1(k, k — 2))1

Then by (9.7), (9.8) and (9.10), w e ge t the equality in  Lemma 9.8 for
p=k— 2.
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Let p  be any integer 3. L et J(p ) be the sebset of I(k, p)

consisting of a l l  the pairs (r,  ) E Z x Z  such that r=p— k +1,

— 2  o r  — 1  ,r <k  —2, s < p— k + 1. W e  p u t  I * (k , p )=I(k , p )

— J(p ) . B y Lem m a 9 .8 , then  w e see that there is a unique mapping
CP of F k  to C.s3... 1 sa tisfy ing  the equality

(9.11) S4, + CP (a A  tuP
k

-  k+ 1 )=---0

k-2
where a= E wrk  a n d  w here, in  general, A -- B  means that {mod

r=-1
ork (r <p—  k); cork  A (14((r, s) I * (k, p))}. Moreover by Lemma 9.8, there
is  a unique mapping Ck - 2  o f  F k  to C-rti_T. sa tisfy ing  the equality:

(9.12) S211,-2 + 2
1 C k

-
2 (a A a )=- =- 0,

where, in  general, A B  m eans that A  B {mod w ( r  < - 2 ) } .  W e  put
k-2

C = E  CP, which gives a  mapping of F k  t o  ( 7( k - 1 ) •

Lemma 9.9. L et a E H k an d  le t  u E se be such that a= t k (u)(mod
N k ). T hen w e have

R (a)*C=C+Ou.

P ro o f. Since R(a)*(o ( k ) = a - 1  w( k ) ,  w e have

(9.13) R(a)* (.14.= coPk  — u(coP, —  k) {mod (ù(r <p—  k )}  ( p k  —  2).

R(a)* cur l  W 1 — u(a) {mod cork (r < - 2 ) } .

By Lem m a 9.8, we have

(9.14) do
1

4 +  9 E  [cork, (0 0
r+sr0
n s ‹ .0

{mod curk (r p ) ; tu rk A cole ((r, s)E 1(0, p)))- (p 2).

Let p  be any integer k — 3. F rom  (9 .11), (9 .13) and (9 .14), we
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get the following equalities:

R(a)*(S2Pk C (a  A to: -  k+1-)) = 0 ,

R(a)* &DI; u(D 171 o4 - " I I),

1 1 P–k+12 R(a) * (E DOrk, wiel)
=.

2  (E 104, wsa — Iti(a), wk
r+s=p p r+s=p

C i t  ( 0 4 – k + 1 ),

R(a)* (C (a A  coPk-
k  + 1 ) )  _ = _ -

A (
a

) * C ) ( a A
p

wPk-k+1).

Therefore we have

— C (a A k+1 ) (R(a)* C) (a A co: -  ')

u c c o 1 ,k  +1 1 s  _ L u ( a ) ,  4 - k÷ i ]

— 1U(04 – k + 1 ), (O 11 - 0.

" =- P" in  th is last equality clearly reduces to " = 0 " .  Thus we get

(9.15) —C(XA Y) -F (R(a)* C) (X A  Y ) u ( [X - 1 , Y .])

—[u(X), Y -1+ [u(Y), X - 1 1=0

for any XE41 2  and Y E '.

From (9.12), (9.13) and (9.14), w e ge t the following equalities:

R(a)*(S2r 2 + 2
1 C (aAa)) k-7. 2 0.

1R(a)* &a/1, - 2  = do4 -2+ -
2  

u(Icok
- 1 , toi-1 1).

k-2

R (a) * 1 (4 - 1 5 04- 1 1  CA', to; 11—Eu(a), (0/711.
k - 2
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1 _ 1 _
2 R (a )*(C (a  A a ))=---  (R(a)*C)(ce Aa).

k -2

Therefore we have

1 1 _
— 2  C  (a A a)H - 2  (R (a )*C )(a A a )

1 
+ u(Do k

- 1 , cû '1)- 1 - 1) —  ru (a ) , (ok
- 1 ]  O.2 k - 2

"—=0" in th is last equality  c learly reduces to  "= 0". T hus w e get
k -2

(9.16) — C(XA Y) + (R (a)*C)(X A  Y)H- u(LX - 1 , Y - 1 1)

— [u (X ), Y- 1 1+1u(Y), X - 1 1=0

f o r  a n y  X, YE bi-12 . I t fo llo w s  fro m  (9.15) and (9.16) th a t  — C
+ R (a )*C — a u = 0 . W e have thereby proved Lemma 9.9.

9.5. In  w hat fo llow s, w e shall consider a  fixed complementary
subspace qk - 1 )  o f  F1 in  0:( k - 1 ) • M o re o v e r  w e  assume th a t the Lie

group G
°
 is connected.

Let P  d e n o t e  the subset o f F k  consisting o f  a l l  the elements z
such that C(z)E q k - 1 ) .  W e  show that P :  is  a GLsubbundle of F k ( p k - 1 ,

H k ). F irst, w e have r (P ft )=  kp -1. Indeed, let z E F k . Then there is
a  u E e  su ch  th a t C (z )+ O u E 1 r 1 ) . I f  w e  put a = t k (u ) ,  then we
have C (za )=C (z)+O u E q4k- 1 )  (L e m m a  9.9), which means za E P .

Therefore w e must have 7 r( 1 3 ) = kp -1. N ow , let z E l l  and a E H k .
Let u E e  be such that a=tk(u) (mod N k ). By Lemma 9.9, then we see
th a t za E P I  if and  o n ly  i f  Ou =0 , i .e . ,  u E (3k . Therefore z a E P : if
and only i f  a E GL W e have thereby proved our assertion. By Lemma
9.8, w e fin d  th at the GLstructure (PL w( k ) )  on P k - 1 ,  thus obtained, is
o f ty p e  m . L e t  a  b e  the projection of P :  onto P k - 1 ,  which is just
the restriction of rc to P L  W e clearly have M k (z)=-M(z)r\ Tz (P ilf) for

an y z E P II  and p < 0 .  Therefore, from (9.2) follows that DL---=a*Dt_i
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(p < O ) and (oi
k'i M k- k  -=0 0 11,_1( p < k —1).

W e  h av e  thus shown that to every pseudo-Gk-l-structure (pk-i,

0( h - 1 ) )  o f typ e  in  on a  manifold M" 2 , there is associated, in a
canonical manner, a  q-structure (P it  0.0 ) )  of type in  o n  P k - 1 .

9.6. W e  m ust show  that th e  assignment (pk-i , y k - i ) ,  0 (k-i) ) _÷

( 4  w( k ) )  is compatible with the respective isomorphisms.

Let yk-i), 6 (h-1
) )  ( r e s p .  ( P

,k-15 o k -1 ) ) )  be a  pseudo-

Gk - 1 -structure on a manifold 114k - 2  (resp. 1147 k - 2 )  and  le t (Pf't , 0 0 ) )  (resp.

(Pd, co' ( " ) ) )  b e  th e  corresponding ql-structure o n  P k - 1  (resp . po,k -1).

Furthermore, let (F " ,  w ( k ) )  (resp. ( F / k ,  co' ( ") ) )  be th e  corresponding H"-
structure on P k - 1  (resp. p r k 1N .) W e  sh a ll w r ite  a s  A ' the quantity in-

(p tk -1 , D / ( k - 1 ) ,0 ,( k - 1 ) )  o r (P i' k, cd ( k ) )  or (F / k , in' ( ") )  which corresponds to
a  quantity A  in  ( p k - 1 , D (k -1 ) , 0 (k - 1 ) )  o r (Pt, (o ( k ) )  o r  (F k , co ).

L e t  ço b e  a n  isomorphism o f  (pk-i , D (V -1) , 0 ( 1 e - 1 ) )  onto (p /k -1 ,

D , (k-1) , o /(k -1 )\) From the definition of ( F k ,  OP ) ) ,  we see that ço yields

a n  isomorphism o  o f  (F k ,  w( k ) ) onto ( F / k ,
 ( o' ( k ) ). W e c learly  have

Ci (o ( z ) )=C (z )  for any z  E  . Therefore o  yields an  isomorphism ÇO4

of (PL  w ( k ) )  onto (FV, co' ( k ) ). Conversely, let ço b e  an  isomorphism of
cù") onto (P i't k , (1)' ( k) ). Let ç i b e  the diffeomorphism o f P k - 1  onto

P k - 1  induced by go 4 . S in c e  v oa=ceogo o a n d  
4 ( 1 ) , ( k ) _ ( 0 ( k ) ,

 w e  have
ço*D I =D 1 (p <O )  and ço*6L i  = 4 ,  i (p <  k — 2 ).  Take any z  E P4 and
set Z=§9 0 (z), =a ( z )  and x' =c,e 1 (z ')=- go(x). Then we have r' (X

z /x k - l

_Ç O *(Z •X k - 1 ) = Ç O * r ( X ') x  f o r  any 10-1E 9k -1. Since the
group G k - 1  is connected, it follows that go(xa)=--ç o (x )a fo r  a n y  x

E P k - 1  a n d  a E 1 .  W e  have thereby proved t o  b e  an  isomophism
o f  (Pk  -1 , D (k -1 ) ,  e (k  - 1 )

)  onto (p rk -1 , D t(k -1 ) ,  Of(k--1)) .

W e have thus completed proof of Th. 8.2.

P ro o f  o f  Lem m a 8.2.

9.7. Hereafter we shall use the notations in Lemma 8.2. Let us
consider the q-structure w(k)) on P k - 1  corresponding to the pseudo-
W - 1 - s t ru c t u re  (p k -i , D (k -1 ) , 0 ( k - 1 ) )  (Th . 8 .2 .). Then  th e  infinitesimal
transformation a h - 1 ( a )  o f  (p k - i ,o ( k - i ) , )  induces a n  infinitesimal

k -1 ) ,/
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transformation C ( a )  o f (PL w ( k ) )  (T h . 8.2.). Now consider the follow-
in g  proposition ( S )  (k > 0) : T here is a po in t z k  E l l  such that

(9.17) co'f,(01(aP),k)-= rp aP

f o r an y  aP E gP(p arbitrary ) and any  r< k .

Lemma 8.2. follows immediately from the following

Lemma 9 .1 0 .  ( 1 )  ( S P  is  true.

(2) I f  ( S )  i s  true , so  is  (S k )  (k 0).

(3) I f  (S k - 1 )  i s  true , s o  i s  ( S )  (k > 0 ).

Before proving Lemma 9.10, we first prove the following

Lemma 9 .1 1 .  Suppose th at (S P is  tru e  ( k _ 0 ) .  T hen w e have:

(1) crik,(ak ),k = r it (a k ),k

f o r any  ak E gk ,  w here, in  general, ro (a ) denotes the v ertical vector field
k-of  the principal f iber bundle 11( p i ,  GP induced by  a E g = nk

(2) o (aP ),k -=0  (mod r (n 4 )k )

f o r any  aP E gP (p > k ).

P ro o f. Let aP E gP (p k). B y  (S4), w e  se e  th a t  61
4 (aP) 2 /, i s  a

vertical vecto r in  /1(P kG ) .  T h e r e f o r e  w e  c a n  f in d  a n  eiP E

su ch  th a t 6 1 (a P ) 2 k r o (etP),k. W e  have r ( ã )  d w ( k ) -F d i ) * 00 ) 0  and

L .: ( a p) w( k ) -= olf(aP) do) ( k ) -F d ( 6 ( a " )  (o( k ) ) = 0 . Let b4 E gQ(q < 0). Then
w e have L 4 ( b g) to( k ) = 0 and rol(aP), C il(b 4 )1= —01CaP, b4 1). By using
these equalities, we get

(9.18) (0(k)(61(1c1P, bg i)zk) - FdP •ba = 0.

From (9.18) and (S4), it fo llow s that 1 4  b 4 1=d k  •ba, whence a k =

Moreover it follows that ã 'b 1 = 0 fo r  any p > k ,  whence CiP E nk . We
have thereby proved Lemma 9.11.

Proof o f Lemma 9 .1 0 .  Let cek (resp. i@k )  be the projection of P t



On dif ferential system s, graded Lie algebras and pseudo-groups 67

onto P k - 1 (re sp . P k ).

(1) L et e  be the Maurer-Cartan form of the L ie group M (m ) and
le t  g  be the cross-section o f  P?s(M (m ), q )  which was observed in  4.4.

Put z °  = g (e )  and  le t aP E  gP . Then we have (14(611(a )),o) =E r (6 -
1 (aP),)

=P;--, ( a p) (e)=O r pa P . Therefore we have proposition ( S )  for the point
zo.

(2) P ut e k  = 8 k (Z k )  and take a  cross-section h of P il(P k , N k )  such
that h(e k ) = z k . Then e ( k ) =h*o) ( k )  i s  compatible w ith  O .  L e t  aP E gP.

T h en  w e have erk (a k (aP),,)=04(01(aP) )(Tzk ,-rpa P . M oreover by ( S )  and
Lemma 9 . 1 1 , it  is  c lea r th a t 6 k (a k ) e k -=r( a k ),A  and 6 k (aP),A = -0 for any
p > k .  Thus w e have proposition ( S b )  fo r  th e  p a ir  (e, E ( k ) ).

( 3 )  L et (P, ca ( k ) ) b e  th e  I l k -structure o n  P k - 1  corresponding to
, D (k-i) ,\the  pseudo-Gk (pk -i o(k-1))- 1 -structure a n d  le t  u s  u se  th e  nota-

tions in  9 .3 - 9 .6 .  L e t e ( a )  denote th e  infinitesimal transformation of
(F k,  (0 (k),)  induced by 0-k -1(a \) First o f a ll, w e shall show that there is
a point Zk  E  P  such that

(9 .19) 04( 6 (aP )zk)-= S r paP

fo r a n y  aP E gP(r< k, p arb itrary). Indeed  i f  w e put EP= 7r* e,_„ then
w e  have w { m o d <  p —  k )}  fo r  a n y  p < k — 2. T ak e  a point
yE F k such that 7t(y )=e k - 1 . Then it follows from this fact and (S k - 1 )

that there is a  r E H k  su ch  th at co( k ) (d(a) y ) = ra for any a E  - 2 . Put
z k = y r .  Since R r * et(a) y =d (a),k  and R 1 ( 0 ) ( k )

_ Z " - 1 0 ) ( k ) ,  

we get

(9.20) uo (o- (a) 2 k) = a.

Let ak - 1  E T hen by (S k - i )  and Lemmas 9 .3  and 9 .5 , w e have

(9.21) t0(k)(6.(ak-1)20 ,= 6 0 (k)(i . (a k-1) z o _ a k-1 .

Let aP E gP(p k). T hen by (S k - 1 ) ,  w e have

(9.22) co(k)(e (aP )zk)= 0.
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(9.3) now follows from (9.20), (9.21) and (9.22), proving our assertion.

Let us prove z k  E P. For this purpose, it suffices to show that (24),k
0 {mod (W ) z (r p — k)} fo r  any p k —  2. But, this is easy from

(9.19) and the following facts :

rit(a), d ( a ) = — ( L a ,
 b1); L,;_ (, ) (o(k ) = 0 ; f (u ) i S2I

k' 0

{mod co(r < p  — k)} for any u E bk . F inally it is clear from  (9.19) that

we have proposition ( S )  for the point z k .
W e have thus completed the proof o f Lemma 8.2.

§ 1 0 .  A p p lic a tio n s  t o  t h e  geom etry  o f  r e a l  su b m a n ifo ld s  o f

complex m anifolds

1 0 .1 .  In  this section, we shall always assume the differentiability

o f class C'.

Let f  be an imbedding o f a  real manifold M  to a complex manifold

frI. Let x  be any point of M .  Then the tangent space Tf( x ) (M )  is a

complex vector space and the image f * Tx (M )  of the tangent space

T ,(M) by the differential f *  o f  f  is a  real subspace o f  Tf ( x ) (iff). We

denote by D  (f, x ) the maximum complex subspace o f  Tf (x )(M )  con-

tained in f * Tx (M ), i.e.,

D  (f, x )=  f * Tx (M)n\ I —1 f* Tx (M ),

and, throughout this section, assume that dim c D ( f ,  x )  is constant.

The notations being as above, we now define a  subspace D (x) of

T x (M ) by f * D (x) = D (f ,  x )  and a complex structure I x on the vector

space D (x ) by .f * X = s 1  —1 f* X  for all X E D (x ) .  Then we see that

the assignment x  D (x) gives a  differential system D  on M  and the

assignment x  I x g iv e s  a  cross-section I  o f th e  vector bundle Horn

(D ,  D ).  Denotes by D °
'
1 t h e  subbundle o f th e  complexified tangent

bundle T e (M ) o f  M  which consists o f  a ll the vectors X+ V— 1  IX

(X E D ) .  Then we have .f * D'' 1 (x) = ( f ( x ) ) n f *  T ( M ) ,  where T ° ' 1

denotes the bundle of tangent vectors of type (0, 1) associated with the
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almost complex structure on ST. Since the almost complex structure is
integrable, we have [7 0 1  T o,ii E  T o , i .  It fo llow s that [D°'1, Do,11

(  D " ,  which is equivalent to th e  following two statements: F or any

two local cross-sections X  and  Y  o f D,

( 1 0 .1 )  1) [IX , IY 1— [X , Y ]  is a lo ca l cross-section of D,

2) [IX , 1Y ]— [X , Y ]= I([1X , Yi + [X , 1 Y1).

Definition 10.1. (1 ) Let D be a  differential system on a manifold
M  a n d  le t  I  be a  cross-section of Horn (D, D ) .  Then th e  p a ir (D , I)
is called an  almost pseudo-complex structure on M  i f  I x  i s  a  complex

structure on D (x )  a n d  if  I  satisfies (1 0 .1 ) ,  1 ) .  Moreover a n  almost

pseudo-complex structure (D , I) is called integrable o r  a  pseudo-complex

structure if it also satisfies (10.1), 2).
( 2 )  L et (D , I ) (resp. (D ', I ') )  be an  almost pseudo-complex struc-

ture on a m anifo ld  M (resp . M ') .  Then a n  isomorphism ço  of (M, D)
onto (M ', D ')  is called a n  isomorphism of (M, D , I )  onto (M ', D', I')

if ço*  IX =T(i) * X (X E D).
By the above argum ent, we know that with every imbedding f  of

a  real manifold M  t o  a  complex manifold fa  there is associated a
pseudo-complex structure (D , I ) on M  in  a  natural manner. Note that

a  pseudo-complex structure (resp. an  almost pseudo-complex structure) is
essentially the same thing a s  a n  integrable H-structure (F, co) (resp. a
H-structure (F, co) satisfying condition (C)) in E131, §8.

1 0 .2 .  L et (D , I )  be a  pseudo-complex structure on a manifold M
an d  le t u s  consider the subbundle o f  T c ( M ) .  L et M c be a  (suf-

ficiently small) complexification o f  th e  real analytic manifold M  (cf.

E151), which is a  complex manifold of complex dimension nt--=-dim M
such that M  is imbedded in  M c a s  a  real p art, i.e., Tx(M 9=Tx(M )
+ V  — 1 T (M )= T (M ) at each x E M .  Then the subbundle D° '1 o f
Tc(M ) is extended to a holomorphic subbundle E  o f T (M c) just as in the
case of an  almost complex m anifo ld . Since ED", 

D o .1 1 C D o , i5
 we find

that E  is completely integrable, considered as a holomorphic differential
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system on MC.

Proposition 10.1. (cf. [1 3 ] , R em ark  2 ). L et f  be an  imbedding

o f  a real m anifold M  to a  com plex  m anifold Ill (such that dim c D (f, x )
=constant), and  le t (D , I)  be the corresponding pseudo-complex structure

o n  M .  T hen there is a  complex submanifold Mo o f  117 such that f (M )
CA-10 an d  such that

dim M=dim c/17/0-1-- dim e D (f ,  x )  (x  E M).

Moreover, f a 0  is uniquely  determ ined as a germ .

P ro o f. The notations being as above, f  is extended  to  a  holo-
morphic mapping f  o f M C  to  R .  A t each x E M , the differential A x

o f  f c  a t  x  i s  a  complex extention o f th e  differential f* x  o f  f  a t  x.
Since f* /Y-= V -1 f *  Y( YE D (x )), it follows that the kernel of A  is
equal to D ° '1 (x ) -= E (x ).  Since E  i s  a  holomorphic extention o f  D'' 1 ,
w e see that the kernel of A y  is  equal to  E (y ) at each  yE  MC. T h e re -
fore the image Mo o f  AP by

 f C
 i s  a  complex submanifold o f SI whose

dimension is equal to dim  M—dim c E (x)= dim  M—dim c D (f , x ) .  We
clearly have f  (M ) C Mo. Let M  b e  a second submanifold o f la satisfy-
ing  the condition in Prop. 10.1. Then (D, / ) coincides with the pseudo-
complex structure corresponding to the imbedding f : M .  Therefore
it  is  c le a r  f ro m  the above argument th a t M0 EM  as a  germ . Since
dim cf4-

0 =dim c f 4  w e must have M0 =S21,Ç as a germ.

Proposition 10.2. (c f .  [ 1 3 ] ,  R e m a rk  5 ) . L e t  (D, I )  be any

pseudo-complex s tru c tu re  o n  a m anifold M .  T hen there are  a complex

m anifold R . an d  an  imbedding f  of  M  to  la such  that the  imbedding f
satisfies

(10.2) dim M=dim c M +dim e D (f, , x) ( x  E M )

and  such that the giv en (D , I )  is  ju s t  th e  pseudo-complex structure on

M  corresponding to th e  imbedding f.

Proof. A f t e r  a  suitab le arrangement of M C ,  w e  have only to
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define M as the manifold M c /E  o f  a l l  the leaves o f th e  completely
integrable differential system E  and f  as the natural mapping from M
to M C/E.

Proposition 10.3. (c f.  [ 1 3 ] ,  L em m a  8 .2 ) . L e t  f  ( re s p .  f ')  be

a n  im bedding o f  a  real m anif o ld  M (resp . M ') to  a  complex manifold

.M (resp. S T ) satisf y ing (1 0 .2 ) an d  le t  ( D , I )  ( re s p . ( D ',  I ') )  b e  the

corresopnding pseudo-complex structure o n  M (re s p . M ') . L e t  9  b e  a

homeomorphism o f  M  o n to  M '. T h e n  ç  is  an  isomorphism of  (M , D, I)

onto  (M ', D ', I')  i f  an d  only  i f  there  is  a holomorphic homeomorphism

0- o f  a  neighborhood o f  f  (M )  onto a  neighborhood o f  f '(M ')  such that

oof = .11  ogo. M oreov er, is  u n iq u e ly  d e te rm in e d  b y  ç  as a germ .

P ro o f ,  yo is extended to a holomorphic homeomorphism v c  of Mc

onto M 'c  assum ing that M c and M 'c are suitably chosen. Then go is
an isomorphism o f (M , D , I )  onto ( M ', D ', I ')  if and  o n ly  i f  ç o c  is  an

isomorphism of (MC, E) onto (M C , E ') . This last statement is equivalent
to  the existence of a holomorphic homeomorphism (9 o f  a  neighborhood
of f  ( M )  onto a  neighborhood of P M ')  such  that o fc  = flC o ç C.  P ro p .
10.3 is clear from  these arguments.

Analogously we have

Proposition 10.4. (c f. [ 1 1 ] ,  P ro p . 1 ) . L e t  f  b e  a n  imbedding

o f  a  real m an if o ld  M  to  a  com plex  m anifold S I satisfy ing (10 .2) and

le t (D , I )  b e  th e  corresponding pseudo-complex struc ture  on  M . L e t X

be a  v ector f ield o n  M .  T h e n  X  is  a n  inf initesim al autom orphism  of

(M , D , I )  i f  and  only  i f  th e re  is  a holom orphic vector field d e f i n e d

o n  a  neighborhood o f  f  (M )

f * X x =X f ( , ) at  e ac h  x  E M.

1 0 .3 . L e t  ( D ,  I )  b e  an  almost

s u c h  th at  X  an d  iC  are  f -re late d , i.e.,

pseudo-complex structure on a

manifold M  and assume that the differential system D  is  r e g u la r . Let

us consider the fundamental graded algebra m (x )= E gP(x) at any point
p<o

x E M .  Then we have g ( x ) = D ( x )  and, b y (10 .1 ), 1),

[ l X X, = [X , Y ]  ( i n  nt (x))
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for all X, Y E  ' ( x ) .  For each a E g-2(x )* , define a  bilinear form H "

on g  1(x )  by H a(X , Y )= a ( [/ x X, Y ]) fo r all X, YE r i ( x ) .  Then H "

is a  hermitian form on r ' -(x )  and is called the Levi-form of (D , I )  at

x  with respect to a.
L et l i i - E g P  be a  fundamental graded algebra over R  and  le t I  be

p<o

a  complex structure on r ' .  Then the pair (nt, /) is called a  pseudo-

complex fundamental graded algebra if  it satisfies the equality

[IX , / Y ]= [X ,  Y]

fo r  a ll X , YE r  1. L e t  (nt, /) (resp. (nt', 1')) b e  a  pseudo-complex

fundamental graded algebra. An isomorphism go of ut onto m' (as graded

algebras) is called an  isomorphism of (nt, /) onto (in', /') i f  Ity.X -- - ç9IX

for all X  E

L et (nt, /) be a  pseudo-complex fundamental graded algebra. Then

we say that a n  almost pseudo-complex structure (D , I )  on a manifold
M  is  o f typ e  (nt, /) i f  D  is regular a n d  if  (nt / x )  is isomorphic

with (n t , I )  at every x E M .  We denote by G°(nt, /) the group of all

th e  automorphisms o f  (nt, /), being a  subgroup o f  G° (m ), and put
G (rt, / )=G ° (itt, / ) N ° . Furthermore, we denote by p°(m, I )  the Lie
algebra of G°(m, /), and by g(ni, / )  the prolongation of (nt, g°(r11, /)).

Proposition 10.5. (n i, I )  being a s  above, le t  M  b e  a  manifold

o f  dim ension in= dim tri. T h e n  a n  alm ost pseudo-com plex  structure

(D , I)  o n  M  o f  ty pe (m, I )  is characteriz ed as  a  W it, I)-s truc tu re  o f

ty pe nt on M .

This is easy from the arguments in  §4.

By Th. 8.4 and Prop. 10.5, we have

Proposition 10.6. (cf. [3 ]; [1 1 ]; [1 2 ]; [1 3 ], Prop. 8.1). (nt, I)

being as  above, le t  (D , I )  be an  almost pseudo-complex structure of  type

(ni, I )  o n  a  connected m anifold M  of  dim ension m=dim M .  I f  (nt,

g°(m , /)) is of  f inite type, then the L ie algebra o f  a l l  the  infinitesimal

autom orphism s of  (M , D ,  I )  is  f in ite  d im ensional an d  o f  dimension
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< dim l ) .
In § 11, we shall see that (in, q ° (n ,  I ) )  i s  o f  finite type if and

only if  m  is non-degenerate, i.e., the condition ".X E 1 , [X , g -11= 0"

implies X = 0.

10 .4 . Let (in, I )  be a  pseudo-complex fundamental graded algebra.

Let us observe the standard differential system D  o f type in on the Lie

group M ( n). T h e n  the complex structure I  on 1 defines a  cross-

section of Hom (D , D ), denoted by the same letter 1, which is invariant

under the le ft translations of M (m ).  I t  is  c le a r  th a t  the pair (D, /)

is a  pseudo-complex structure of type (1n, I )  on M (m ), which is called

the standard pseudo-complex structure o f type (in, /). It can be shown

that the standard q(ni, /)-structure of type in on MOO just corresponds

to  the standard pseudo-complex structure (D ,  I ) .  Therefore the Lie

algebra sheaf 58 o f all local infinitesimal automorphisms of (D , I )  coin-

cides with the standard Lie algebra sheaf of type (111, d'(n, I)).

By Th. 6.2, we have

Proposition 1 0 . 7 .  T h e  f o rm al alg e b ra o f  5 8  m ay  b e  id e n tif ie d

w ith  th e  f o rm al alg e b ra asso c iate d  w ith  th e  prolongation o (m, I )  o f

(nt, (3°On, I)).

§ 1 1 .  Some results o n  certain graded modules

11.1. In  this section, K  will denote any field of characteristic

zero.

L e t  m  =  fir be a  fundamental graded (Lie) algebra over K .  A
r< 0

vector space E  over K  is called a  right in-module if the Lie algebra m

is represented on the vector space E  in the right, i.e., i f  there is given

a  bilinear mapping Ex iit D (a, x) —› ax EE as follows :

(a x) y— (a y -)x = a [ , ,  A

for all a E E and x, y E m . Analogously we have the notion of a left

m-module.

Let E  be a  right iii-module. A  direct sum E = E E P , the indices p
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taking any integers, is called a  right graded n i -module i f  it satisfies the
following conditions :

1) dim EP< CXD

2) EPqr C EP'.

Furthermore a d irect sum E = E E P  is called a  right graded n i -module
P=k

if the d irect sum E = E E P, where EP= 0  (p <k  or p > /), gives a  right

graded m-module.

We say that a  (right) graded m-module E = E EP satisfies condition
(C) if  it satisfies the following conditions :

1) EP= 101 for all p< — , if  in is of ,a-th kind ;

2) For any
 p O,

 the condition "a E EP, a 1 = 101" implies a =- 0.

Let E= E EP be a  graded in-module satisfying condition (C ) .  Then

E  is called o f infinite typ e  (resp. o f  finite ty p e )  if  EP  I  101 fo r all

p ( r e s p .  i f  EP° -= 101 fo r some p o 0 ) .  I f  Eh= -(0)- f o r  some po
0 , it is clear that EP= {0} for all p>po•

Exam ples. (1). L e t n  and  F -1 be two finite dimensional vector

spaces. Let F ° b e  a  subspace o f Hom (n, F -1 )  an d  le t P P )  (p> 0) be

the p-th prolongation of the subspace F ° (Hom  (n, F - '). Then we have
natural bilinear mappings F (P) X u D (a , x) ax E F" 1  f o r  a ll p >  0,

where F ( - 1 ) = F -1  a n d  F
(°)

= F
°
,  an d  th e  following equalities : (ax) y

= (a y )x  for all a E F
(
P
)
(p > 0) and x , y E  n .  Suppose now that we are

given subspaces FP C F
(
P
)
(p> 0) a s  follows : FPn C FP - 1 . If we consider

th e  vector space n  a s  a n  abelian L ie  algebra and further a s  a  funda-

mental graded algebra o f first kind, then we see that the d irect sum

F= E F P  is endowed with a  structu re  o f graded n-module and that it
p= -1

satisfies condition (C ) .  Such a  graded module has been investigated in
-

[5 ]  and EC. Conversely, let F= E FP be any graded n-module satisfy-
p - - 1

ing  condition (C ), where n  is  a  fundamental graded algebra o f  first
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kind. Then F ° may be identified with a  subspace o f Horn (rt, F - 1 ) and

FP ( p >0 )  with a  subspace of the p-th prolongation F (P) o f  F ° .

( 2 )  Let g= E (1" be a  graded (Lie) algebra over K  satisfying the
P

following conditions:

(11.1) 1) m =  E gr is a  fundamental graded algebra;
r< 0 ‘

2 )  For each 0, the condition "a E gP, [a, g- 1 1= 0" implies

a=- O.

Then g= E (11) becomes a  graded nt-module with respect to the bilinear

mapping g x nt ( a ,  x) —> ax  =L a,x 1 E g and satisfies condition (C).

R em ark  1. Let E 0 = E E l' b e  a  graded in-module such that the

condition "aE E ° , a n  1 = 0 "  implies a = 0 .  In the same way as in  §5,

then it can be shown that the graded nt-module E 0 is prolonged to a
-

graded nt-module E =  E P  which satisfies condition (C )  and which is
P = - 14

maximal in an appropriate sense.

11.2. Let E = E EP be a graded nt-module satisfying condition (C).

Put E -1 =11 -1 ( E )  and denote by H P(E)(p th e subspace o f  EP

consisting o f  a ll a E E P  such that agr-= 10} fo r all r < - 1 .  Then we

have HP(E)g -1 (H P -1 ( E )  fo r  a ll p  0  and (ax )y -= (a y )x  fo r  a ll a-
E HP (E )(p> 0) and x, yE g ' .  Therefore the direct sum H (E )= E flP (E )

p = - 1

is endowed with a structure of graded g- 1 -module, where g- 1  should be

considered a s  a  fundamental graded algebra o f  first kind. It clearly

satisfies condition ( C ) .  If n t is of first kind, then H (E )  and E  coincide.

The main purpose of the present section is to prove the following

T heorem  11.1. L e t nt= E gr b e  a  f undam ental graded  algebra
r< 0

o v er K  and let E =E  E P  b e  a  graded  In -m odule  satisf y ing  condition

( C ) .  I f  th e  graded In-m odule E  i s  o f  in f in ite  type, s o  i s  the graded

C I -m odule H (E).

C o ro lla ry  1. Let n= E gP b e  a  graded algebra ov er K  satisfy ing

(11.1),1) and 2). Let liP(p i> 0) be the subspace of  gP consisting o f  all
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aEfl s u c h  t h a t  [a ,  gr1= {0} f o r  a l l  r< — 1, i.e., OP =H P(p ) . If  the

L ie  algebra (3 is in f in ite  d im ensional, then  w e hav e  fil)  I  {0} f o r all

O.

T h is  is c lear from  T h . 11.1.

Corollary 2 .  L et i n =  n r  be a fundam ental graded algebra over
r<0

K  and  let n° be a  subalgebra of  the  L ie algebra g° (m) of  all derivations

of  the graded algebra nt. L e t fi° b e  th e  ideal o f  g° consisting  o f  all

aEn ° s u c h  t h a t  [a ,  q r]=0  f o r  a l l  r < - 1 .  W e identif y  fi° w i t h  a

subspace of  Horn (ci
r  1 Dx — F a , x i E g-1 ). T hen the  pair (nt, g °)  is  o f  inf inite type if  and

only  if  the  subspace fi° H orn ( f1-1, fr i )  i s  o f  inf inite type.

Indeed, let
 q =

b e  t h e  prolongation of (nt, n°). It is  easy  to
see  th at V=H P(p)(p>0) coincides with th e  p -th  prolongation I)(P) o f

0 _ H o q f) Therefore C or. 2  is immediate from C or. 1.
W e  s a y  t h a t  a  fundamental graded algebra  n i =  c  i r  is non-

r<0'
degenerate if  the  cond ition  "x  E  ' ,  Ex, g- 1] = 0" implies x -= 0.

Corollary 3 .  L et n t =  q r  be a fundam ental graded algebra over
r<0 . -

R  and  suppose that there is giv en a  complex structure I  on  the  vector

space C l su c h  th at [Ix , I  y 1 =Ix , y l f o r a ll  x ,  y E r l . L et g° b e  the

subalgebra of  ft° (m) consisting of  all  a E(3° (m ) su ch  th at aIx = lax  f o r

a ll  x E  1,  i.e., çi° is  e q u al to  the  subalgebra e (n t, I )  o f  g° (1t) defined

in  § 10. T hen the p air (nt, 0 0 )  is  of  f inite type i f  and  only  if  the fun-

dam ental graded algebra n t  is non-degenerate.

In d eed , it  is  e a sy  to  see  th a t (nt, (3
0

)  i s  o f  infinite t y p e  i f  n t  is
degenerate. Suppose th a t  n t  is non-degenerate a n d  le t  çi=-EnP b e  the

pro longation  o f (nt, 0 0). T h e  n o ta tio n s  being a s  above, le t  u s  sh o w

that 1)1 = [0 ) v an ish e s . In fact, put  < X ,  y > = I I x ,  y ] fo r a ll x , y E  1.

Then we have  < x , y> -= < y , x >  and the condition " x  E (3-1 , < x, g - 1 >

={ 0} " implies x = O . T h u s <  ,  >  is , so  to  sp eak , a  g-1 -valued inner
product o n  th e  vector space g- 1 . W e h a v e  <ax , y >+ <x , ay > = 0

f o r  all a E a n d  (bx) y = (b  y )x  f o r  all b E '01. It fo llo w s th a t

q- 1 ) (by identifying a E V w ith the  linear m apping
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< (bx) y, z >  = 0  f o r  a l l  b E 01 ,  x , y ,  z E r l ( c f .  th e  p roof o f  t h e  fact

th a t  th e  f irs t prolongation o(n , R )" )  o f  th e  o rth o g on a l a lgeb ra  o R)

van ishes), w hence  b =  0 . W e  h a v e  th e reb y  p ro v ed  b1 =  0 . Therefore

b y  C or. 2, w e  k n o w  th a t (a t, n°) i s  o f  finite  type.

Remark 2 .  C o r . 2  is fundam enta l in  th e  classification of infinite

prim itive pseudo-groups (See Morimoto a n d  T a n a k a  E C ) . I t  h a s  b e e n

announced i n  t h e  p re p r in t o f  t h e  present paper ;  O u r  in it ia l p roo f of

C or. 2 m ade  use  o f L em m a 2  in  G uillem in, Quillen a n d  Sternberg [4 ]

w hich  w as proved  by  a n  an a ly tica l m e th o d . C or. 3 i s  im portant in  the

geom etry o f  re a l submanifolds o f  complex manifolds (S ee  § 10).

1 1 .3 .  T h e  p roof o f  T h .  11.1 is  p re c e d e d  b y  se v e ra l le m m a s. In

th is  paragraph, n w ill denote  any  fin ite  d im ensional vector space  over

K , identified w ith a  fundam ental graded algebra o f  first kind.
-

L e t F= E FP b e  a  graded it-module satisfying condition (C ) .  Given
p--1

a base u 1 , •  , u „ o f  n, denote  by  n p >  0, 0 < <  a )  t h e  subspace of

FP consisting o f  a ll a  E F P  su c h  th a t ae i  = • • • = ae i = O. T h e n  w e  have

= FP, = {0 } a n d  F i;it (F 1 ; 11 + 1  c a n  b e  c h a r a c te r iz e d  a s  th e

kernel o f  th e  linear m apping F a -± au 1 1 E F .
-

W e  sa y  th a t a  g raded  n-module F = E F P  sa tisfy ing  condition (C)
p=-1

i s  in  invo lu tion  if it sa tisfies th e  following conditions :

1) FP is  eq ua l to  the  p-th prolongation F (P)
 o f  F °

 f o r  every p >0 ;

2) n adm its a  regu lar base  fo r F , i .e . ,  th e r e  is  a  base  u 1 , •• • , u„

o f  It s u c h  th a t  t h e  linear m app ings F i ;  a -> au i E (0 < i < n, p
> 0 ) are surjective.

00

L e t  F = E F P  b e  a n y  g ra d e d  it-m o d u le  sa tis fy in g  condition  (C).
P= - 1

L e t q  b e  a n y  in te g e r  > 0 .  T h e n  th e  graded it-module F ( q ) = F / E  F P
p<q -1-

= E Fq+P clearly satisfies condition ( C ) .  It is  kn o w n  th a t F(q ) becomes
p=-1

in  involution for any sufficiently la rge  q  0 1 ) .

-
Lemma 1 1 .1 .  L et F ( , ) = E  M (0  a < p )  b e  it g rad ed  n-modules

P= - 1
satisfy ing condition (C ) .  L et V  and  W  be tw o f inite dim ensional v ector
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spaces an d  le t  yo b e  a  bilinear m apping o f  V  x  tV  to r i su c h  th at the

vector space n  is generated by  th e  vectors o f  th e  f o rm  yo(v, w) (y E V,

w E  W ). I f  n o t =  F (
P„-)

1 f o r  a l l  a  and  p > 0 , th en  th e re  are  a v E  V

an d  a w E  W  su c h  th at th e  lin e ar m ap p in g s  n o  a  ayo(v, w)E

are surjectiv e for all  a  an d  p > O.
-

In general, let F = E  F P  b e  an y  g rad ed  n-module which satisfies
P=- 1

condition (C )  and w h ich  is  su ch  th at FPn=FP - 1  f o r  a ll  p > 0 .  I t is
know n that there are proper subspaces Pi, • • •, 130 o f  it having the fol-
lowing property ([5 1, Appendix, Lemma 1 ) :  I f  x  E it a n d  i f  c

U • • • U P , then x  is regu lar for F , i.e ., the linear mappings FP D a - a x

EFP -1  are surjective for a ll p > 0 .  Therefore we can find a  finite set
of non-zero linear forms on u  su ch  th at x E n is  regu la r for every

F ( a )  provided o )(x )  =0  fo r  all co E 4 .  Lem m a 11.1 is easy from  th is
fact.

Lemma 11.2. L et F ( a ) ,  V , W  an d  yo b e  a s  in  Lem m a 11.1. I f

F ( a )  i s  in  inv olu tion  f or every  a ,  th e n  th e re  a re  v, E V  an d  w i E W

(1 < i < n )  su c h  th at th e  n  vectors ui=y o(v i, w ,) f o rm  a  regular base

f o r every F ( a ) .

This lemma follows from Lemma 11.1. and the theory of modules

in involution ([5 1 o r  EC).
-1

11.4 Let in= E gr b e  a  fundamental graded algebra o f te-th kind
r =

over 10,u> 1) and let U  be the universal enveloping algebra of it. L e t

M  be a  left nt-module, w hich  is a lso  a  le f t  U-module. Assume th a t M
is  g rad ed : M = E AP, the indices p  tak ing values > 0 ;  dim M P <  ;

P-1 ,0

gr  MP E M P - r  . For each  x  E U , denote by x ( P) th e  linear mapping MP

D a  ax  E M .  W hen x  E gr, x (P) m aps M P into MP - r•

Lemma 11.3. L et v E ,q- 1  and  w E r " -1  an d  p u t u =Iv , tv1( E VP).
I f  u (") : M " :- M -" ' are  in jec tiv e  f or all  p >  0 , then, f o r every 0,

there  is  a  t E K  such  that (vP- ' t w ) (P) : MP -> MP+/-̀ - '  i s  injective.

P ro o f. It  is  su ffic ien t to  p rove that there  is  a  t E K  such that
( e -1 - t w ) ( ° ) i s  injective. Suppose th a t  (vP - 1  t w ) ( ° ) a re  not injective
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for a l l  t  E  K . As is easily observed, then there is a polynomial mapping
f  o f K  to  M ° su ch  th a t (e - 1 t w ) f ( t ) =  0 for a ll  t E K  and such that

k
f(0 ) O. Let us express f ( t )  a s  E t' a i ,  w here ai E M ° . Then we

= o
have a, -=f(0) 0  and

(11.2) 0  (0 i k + 1 ),

where we put a_i -= ak _i= O. S in c e  vw— wv = u and vu = uv, w e have

(11.3) viw =w vi+

B y  (11.2) and (11.3), w e have

v iu)v" 1 - 1  ai _ i = O.

Since a_ = 0, it follows that

(11.4) e ( i + 1 ) - l a1= 0  (0 i

W e have ak+ i = 0 and assert that ak = O. In d e e d , w e  have e ( k ÷ 1 ) -  1  ak
=wak = 0 b y  (11.2) and (11.4). i  being an in teger w ith  0 i < ,a(k +1)

—1, suppose th at vi ' l ak = O. B y  (11.3), then w e have

v1+1 wak = wv i + l ak + (i + 1) uv i ak,

w hence uv i ak = um v i ak = O. S i n c e  u( i )  i s  injective, th is  g iv e s  vi ak

= O. T h u s  w e  g e t  vi ak= 0 (0 i , a ( k  + 1)— 1), proving our assertion.

Therefore by induction, w e  g e t  a1 = 0 ( 0 < i < k ) ,  w hich is a  contradic-
tion.

Lemma 11.4. Let 1), w and u  be as in Lemma 11.3. I f  u ( P) are

isomorphisms fo r  all 0, then w e have M = {O}.

P ro o f. B y L em m a 11.3, w e easily  find  d im  MP -= constant. W e
have vw— wv = u, vu = uv and wu = uw, whence
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v (» l) w (») u p+1) 
V

(P) 
=  I t

( »)

,

v (1, ! ,i (P) = u (P-1-1) v (
,),

[- /.0  
a

(n) 
=

-1) w (P)

L e t  u s  identify MP ' " w ith  M P  b y  th e  isomorphism u (P) f o r  every p
(0 _ <p <,a)  and  denote by 1» th e  identity transformation of M P .  Then
w e have v(P± '̀ ) = v (P) (0 p < p  — 1 ) and w(") -=w ( ° ) a n d  hence

(11.5) v w(°) — w(1) v(° ) = 10,

v (P-1 ) tv(P) — iv(P ' 1) v (P) = 1» ( 0  <p< p —  1),

v ( '‘- 2 )  w (P- 1 ) — w(0) 1)( /̀ - 1 ) =

Since dim MP= constant, we m ay further identify M P  w ith  M ° (b y  an
arbitrary isomorphism) for every p ( 0 < p < p ) .  By (11.5), then we have

(V (/' - 1 ) 1VM - W( ° ) 12(1`- 1 ) ) +  E ( v ( P ) i v ( P + ) - 1 v ( P + 1 ) v ( P ) ) - 1 0 •
p=0

If follows that i t  dim M ° =  T r l o =0, whence M ° = {0}. W e have thus
proved MP= {01 and hence M= {0}  .

-1
1 1 .5 .  P r o o f  o f  T h e o re m  11 .1 . L et m= E  qr be a  fundamental

r -
graded algebra o f p-th kind over K  and let E = E  E P  b e  a  graded u t -
module satisfying condition (C ) .  W e shall prove Th. 11.1 b y induction
o n  th e  integer p .  I f  p = 1 ,  then H ( E ) = E  and T h . 11.1 i s  the case.
Therefore we m ay assum e th a t p> 1. f.1- '̀  being a  graded ideal of in,

-1
th e  fac to r space in* =m/g - P= gr is  endow ed  w ith  a structure of

r P-1-1

graded  a lgeb ra , w h ich  is a  fundam ental graded algebra o f  Ca —1)-th

k in d . P u t E P=E t,(p < 0) and denote by E t;(p > 0 )  the  subspace o f EP

consisting o f  a ll a  E E P  su ch  th at an - i' = {0 )-. T h en  w e have
= 101 and  E ô  CE 1

0' + '  for a l l  p  and a ll r< 0 . T herefo re  w e see  th at-
the direct sum E * = E E  is endowed with a  structure o f  graded 111* -

p=- ik -F 1



On dif ferential system s, graded Lie algebras and pseudo-groups 81

module, which satisfies condition (C ) .  W e have H (E )= H (E ) .  Con-

sequently to prove Th. 11.1, it is sufficient to prove that th e  graded

m-module E  is  o f  finite typ e , assuming th e  same fo r the graded m* -
module E .

Assum e that E* i s  o f  finite typ e  an d  hence that Ef)°= {0}  fo r
some go >  O. T h e n  w e  have E g = 0 }  for all go, i.e., the condition
"a E Eq, an - ì = {0} " implies a = O. L et a  an d  q  be such that 0 a < ,tt
an d  q>  g o . W e h ave E a  '7 + 1 4  C E "  ' " ( P- 1 )  a n d  hence the direct
sum E Ea -  q+ 0

)  is  a  graded n- "-module, where th e  abelian subalgebra

C I' of n t should be considered a s  a  fundamental graded algebra o f first
-

k ind. It fo llow s that th e  d ire c t sum E (a , q) E " I  P  is  a lso  a
p=-1

graded n- l'-module ( c f .  t h e  graded u-module F  (q )  i n  11.3). Since

Eq F"P =  {0 } fo r  a ll p  0, th e  graded g- /‘-module E ( a ,  q )  satisfies

condition (C ).

Therefore f o r  a  sufficiently la rg e  q ,  th e  , a  graded r-modules
E (a , q )(0 a < p )  become in involution simultaneously. Fix such a  q
from  now on. Since CI' = En- 1 , n- "' 11, it follows from  Lem m a 11.2
that there a re  vi E n- 1  an d  w, E n - "' 1 (1  <  i <  n) such that the n vectors

u 1 = [v 1,[v„ w i ]  form a  regular base for every E (c e ,  q ) .  Let El(0 < i < n),
k >  q )  denote th e  subspace o f E k consisting o f  a ll aE E k such that

a a i  = • • • =au , = O . T h e n  w e  h a v e  Eln r CEl + r (0 < i <  n, r< O , k+  r
>  q ) .  Since th e  p  graded n- l̀-modules E (a , q )  are in involution, the
linear mappings El D a -> aui + i E El - ì are  su rjec tive  fo r all k q + e .
Let j  be the smallest i (0 < i < n) such that Et,. 1 =- {0} . Since Eil„
CE, -

+ 1, then  w e find El + 1 = {0 }  f o r  a ll k >  q .  It fo llow s that the

linear mappings El D a -a u + i EE a r e  isomorphisms for all k

L e t  u s  now prove E, =- {0} fo r all k q . D en o te  b y  MP(p > 0)
th e  dual space o f  Elp - g a n d  p u t  M =  M P  (direct s u m ) . F o r  any

pa o
in E M k and x E nr, define an  element xm of MP -  r by (xm ) (a) = m(ax)
fo r a ll a E E . T h e n  th e  bilinear mappings nr X MP D (x, in) xm
E MP - r(p  > 0, r<  0) give rise to  a  stru c tu re  o f left graded m-module
on M .  The notations being a s  in  11.4, th e  linear mappings u 1 a re
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isomorphisms fo r a l l  p  O. S in c e  u, , I = Iv ,, i , u),, 11 , Lemma 11.4 can
be applied to th e  graded m-module M  and w e  have = {0} f o r  all
p > O. H e n c e  E, = {0} f o r  a ll k> q.

Therefore we have j= 0  on  account o f th e  w a y  o f  choosing the

integer j. Hence E le=Ef;= 101 fo r  a ll k > q . W e have thereby proved
that the graded m-module E  i s  o f  fin ite type and have completed the

proof o f T h . 11.1.
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