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ON DIFFERENTIATING
E'TGENVALUES AND
EIGENVECTORS

JAN R. MIAGNUS

London School of Economics

Let X', be a square matrix (complex or otherwise) and u, a (normalized) eigen-
vector associated with an eigenvalue 4, ol X,. so that the triple (X,.u,. /)
satisfies the equations Xu = 2u, ufu = 1. We investigate the conditions under
which unique dillerentiable functions 4(X) and u(X) exist in a neighborhood
ol X, satislying A(X ) = £g, (X ) = uy, Xu = Ju, and ufu = 1. We obtain the
first and second derivatives of 4(X') and the first derivative of w(X). Two alter-
native expressions for the first derivative ol £(X) are also presented.

|. INTRODUCTION

The purpose of this paper 1s to provide explicit formulas (and simple proofs
thereof) for the derivatives of eigenvalues and eigenvectors. These formulas
arc uscful in the analysis of systems of dynamic equations and in many other
applications. The somewhat obscure literature in this field (Lancaster | 2],
Neudecker [5]. Sugiura | 7], Bargmann and Nel [ 1]. Phillips [6]) concen-
trates almost cxclusively on the first derivative of an eigenvalue. Here we
also obtain the dernivative of the eigenvector and the second derivative of the
cigenvalue.

The paper 1s organized as follows. In Section IT we discuss two problems
encountered in differentiating eigenvalues and eigenvectors, namely, the pos-
sible occurrence of complex or multiple cigenvalues. In Section ITI we obtain
the first derivatives of eigenvalues and eigenvectors in the real symmetric
case assuming simplicity of the eigenvalue. Section I'V contains the complex
analog. In Section V we obtain two alternative expressions for the first
derivative of the eigenvalue function. and in Section VI we obtain the second
derivative.

The following notation 1s used. Matrices are denoted by capital letters
(A, X, A), vectors by lower-case roman letters (u,v), and scalars by lower-
case Greek letters (£, &). An m x n matrix 1s one having m rows and n col-
umns; A" denotes the transpose of 4, A" its Moore—Penrose inverse, and
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180 JAN R. MAGNUS

r(A) its rank; if 4 is square, tr 4 denotes its trace, |A| its determinant, and
A~ ! its inverse (when A is nonsingular); vec 4 denotes the column vector
that stacks the columns of 4 one underneath the other, and 4 ® B = (a;;B)
denotes the Kronecker product of 4 and B; R™"" 1s the class of real m x n
matrices and R" the class of real n x 1 vectors, so R"=R""'. The n x n
identity matrix 1s denoted I,. The class of complex m x n matrices 1s denoted
Cm*" For Ze C™ " Z denotes the complex conjugate of Z (i.e., the m x n
matrix whose clements are the complex conjugates of the corresponding
elements of Z), and Z* denotes the n x m transpose of Z.

II. TWO PROBLEMS

There are two problems involved in differentiating eigenvalues and eigen-
vectors. The first problem i1s that the eigenvalues of a real matrix 4 need
not, in general, be real numbers—they may be complex. The second problem
1s the possible occurrence of multiple eigenvalues.

To appreciate the first point, consider the real 2 x 2 matrix function

A(e) = ) . e £ (0.

The matrix 4 1s not symmetric, and 1ts eigenvalues are 1 + ie. Since both
eigenvalues are complex, the corresponding two eigenvectors must be com-
plex as well; in fact, they are

and

We know, however, that il 4 1s a real symmetric matrix, then its eigenvalues
are real and 1ts eigenvectors can always be taken to be real. Since the deri-
vations in the real symmetric case are somewhat simpler, we begin our dis-
cussion by considering real symmetric matrices.

Thus, let X, be a real symmetric n x n matrix, and let u, be a (normal-
1zed) ergenvector assoctated with an eigenvalue £, of X, so that the triple
(X o, Uy, o) Satisfies the equations

XU = dii, i = 1, (1)

Since the n + 1 equations 1 (1) are implicit relations rather than explicit
functions, we must first show that there exist explicit unique functions A(x)
and u(x) satisfying (1) in a neighborhood of X, and such that A(X,) = 4,
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and u(X,) = u,. Here the second (and more serious) problem arises—the
possible occurrence of multiple eigenvalues.

We shall see that the implicit function theorem implies the existence of
a neighborhood N(X,) < R""" of X, where the functions 4 and u both exist
and are oo times (continuously) differentiable, provided /4, is a simple eigen-
value of X . If, however, 4, 1s a multiple eigenvalue of X, then the conditions
of the implicit function theorem are not satisfied. The difficulty 1s illustrated
by the following example. Consider the real 2 x 2 matrix function

. 1 4+ )
Ale,0) = 3 o
( — £

= 4 —

The matrix 4 1s symmetric for every value of ¢ and 0; its eigenvalues are
/=14 (4 0°)" and 7, =1 — (2 + 57)''2. Both eigenvalue functions
are continuous in ¢ and o, but clearly not differentiable at (0,0). (Strictly
speaking we should also prove that ~, and 2, are the only two continuous
eigenvalue functions.) The conical surface formed by the eigenvalues of
A(e.0) has a singularity at ¢ = 0 = 0 (see Figure 1). For fixed ratio £/0, how-
ever, we can pass from one side of the surface to another going through (0, 0)
without noticing the singularity. This phenomenon i1s quite general and in-
dicates the need of restricting the study of differentiability of multiple eigen-
values to one-dimensional perturbations only.’
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IIl. THE REAL SYMMETRIC CASE

Let us now demonstrate the following theorem.

THEOREM 1. Let X, be a real symmetric n x n matrix. Let u, be a
normalized eigenvector associated with a simple eigenvalue /. of X,. Then a
real-valued function +~ and a vector function u are defined for all X in
some neighborhood N(X,) < R""" of X, such that

X ) = 4, (X o) = Uy, (2)
and
Xu = Au, uw =1, X e N(X,). (3)

Moreover, the functions 4 and u are o times differentiable on N(X,), and the
differentials at X, are

d/. = uy(dX)u, (4)
and
du = (4ol, — Xo) (dX)u,. (5)

Equivalently, the derivatives at X, are given by

o~

oy

= Uy ® g (6)

d(vec X))
(or ¢4/CX = uguy), and

-

(U

=uy, ® (A, — Xo)*. 7
dvee X)) ol o ()

Note. In order for 4 (and u) to be diflerentiable at X, we require that £,
1s simple, but this does not, of course, exclude the possibility of multiplicities
among the remaining n — 1 eigenvalues of X .

Proof. Consider the vector function [ R""! x R"*" — R""! defined by
the equation

g ——  —

(11 ] Al — X
f(H., A }(J _— ( :: )
| wu — |
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and obscrve that /" is oo times differentiable on R"*! x R"*" The point
(g, 4g: Xp) In R"T! x R"*" satisfies

f‘(”{]-./‘f.o; Arﬂ) — 0
and

/{.UI” T ..}( 0 “'0

0.
2 0 . (8)

We note that the determinant in (8) is nonsingular if and only if the eigen-
value 4, is simple (in which case it takes the value of — 2 times the product
of the n — 1 nonzero eigenvalues of i,/ — Xo).

The conditions of the implicit function theorem thus being satisfied, there
exists a neighborhood N(X,) = R"*" of X, a unique real-valued function

£:N(Xy) = R, and a unique (apart from its sign) vector function u: N(X ) —
R" such that

a. + and u are « times differentiable on N(X
b. A(Xg) = Ag, U(X ) = g,
C. Xu=/u,u'u=1"forevery X e N(X,).

0 )?

['his completes the first part of our proof.
Let us now derive an explicit expression for d4. From Xu = Ju we obtain

dX)ug + Xodu = (diug + /., du (9)

vhere the differentials du and d/ are defined at X . Premultiplying by uj,
1VeS

odX)ug + upyX o du = (di)uyu, + Zoul, du.
ince X 1s symmetric we have u, X, = /,u,. Hence
4= ug(dX)u,,
ccause the eigenvector u, is normalized by UgUg = 1.
Next we derive an explicit expression for du. Let Yo = Aol — X, and rewrite
J) as

remultiplying by Y, we obtain

o Yodu= Yq (dX)ug,
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because Yo uy, = 0. (We use the fact that, for symmetric A, Ab = 01ff 4 =
0.) To complete the proof we need only show that

Yo Y, du = du. (10)

To prove (10) we note that Yju,=0 and uydu =0 (because of the
normalization v'u = 1). Hence

us(Ye : dit) = 0. (11)

Since gy # 0, (11) implies that r(Yg i du) <n— 1. Also, n(Yq) =nr(Yy) =
n — 1. It follows that

HYs & duy=uxlYd);

which is equivalent to (10).7
Finally, to obtain the derivatives, we rewrite (4) and (5) as

d/ = (ug @ up)vec dX
and
du = [uy ® (Lol — Xo)" ] vec dX,

from which (6) and (7) follow. El

Note 1. We have chosen to normalize the eigenvector u by u'u = 1, which
means that v is a point on the unit ball. This is, however, not the only pos-
sibility. Another normalization,

o = 1. (12)

though less common, is in many ways more appropriate. The reason for this
will become clear when we discuss the complex case in the next section. If
the eigenvectors are normalized according to (12), then u is a point In the
hyperplane tangent (at u,) to the unit ball. In either case we obtain u'du =
0 at X = X, which is all that is needed in the proot.

Note 2. It is important to note that, while X 1s symmetric, the per-
turbations are not assumed to be symmetric. For symmetric perturbations,
application of the chain rule immediately yields

di = (up ® uy)D do(X), du = [ug ® (Aol — X,)™ |D dv(X), (13)
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and

04 U

5[1?()()]’ — (“{‘J ® ”{J_)Dw E[I?(X):I:

= [uo ® (4ol — X )" ]D, (14)

using the duplication matrix D and the o(-)notation.’

IV. THE GENERAL COMPLEX CASE

Precisely the same techniques as were used in establishing Theorem 1 enable
us to establish Theorem 2.

THEOREM 2. Let 4, be a simple eigenvalue of a matrix Z, € C"*", and
let u, be an associated eigenvector, so that Zyu, = /ou,. Then a (complex)
function 4 and a (complex) vector function u are defined for all Z in some
neighborhood N(Z,) € C"*" of Z,, such that

MZs) = Az, & n) == Uos (15)
and
L = A0, ot = 1, Z e N(Zy). (16)

Moreover, the functions 4 and u are > times differentiable on N(Z,), and the
differentials at Z, are

dA = v§(dZ)us/vEu, (17)
and
du = (Aol — Zo)" (I — ugvg/vEu ) dZ)ug (18)

where v is the eigenvector associated with the eigenvalue /o Of ZE, so that
OV
Lo = 2glg.

Note. It seems natural to normalize u by v¥u =1 instead of u*u = 1.
Such a normalization does not, however, lead to a Moore—Penrose inverse
in (18). Another possible normalization, u*u = 1, also leads to trouble as the
proof shows.

Proof. The facts that the functions /4 and u exist and are o times dif-
ferentiable (i.e., analytic) in a neighborhood of Z, are proved in the same
way as in Theorem 1. To find d/ we differentiate both sides of Zu = Ju. and
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obtain
(dZ)uy + Zodu = (dA)uy + Ao du, (19)

where du and d/ are defined at Z,. We now premultiply by vg, and since
vEZ o = LovE and vfu, # 0, we obtain

di = v¥(dZ)uy/vguy,.
To find du we define again Y, = Al — Z,, and rewrite (19) as

Y, du = (dZ)uy — (d4)ug
= (dZ)uy — (vE(dZ)ug/v5ug)ug

= (I — ugvd/vius)dZ)u,.
Premultiplying by Y, we obtain
Yo Yodu =Yg (I — ugvg/vue)dZ)uy. (20)

(Note that Y u, # 0 in general.) To complete the proof we must again show
that

¥o ¥, du = du. (21)
From Ysu, =0 we have ufY¥ =0 and hence ug Yy = 0. Also, since u
is normalized by u¥*u = 1. we have uf du = 0. (Note that v*u =1 does not
imply u du = 0.) Hence

(Y, duj = 0.,

As in the proof of Theorem 1, it follows that

(Yo o du)=r(Yq),

which implies (21).* From (20) and (21), (18) follows. @

V. TWO ALTERNATIVE EXPRESSIONS FOR d/

As we have seen. the differential of the eigenvalue function associated with
a simple eigenvalue /7, of a (complex) matrix Z, can be expressed as

di = tr PydZ; P = ot/ g ila (22)
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where u, and v, are (right and left) eigenvectors of Z, associated with Ao
Lollg = Aglig, Dodip: = AU, Ugliy = Divg = 1. (23)

The matrix P, is idempotent with r(P,) = 1.
Let us now express P, in two other ways, first as a product of n — 1
matrices, then as a weighted sum of the matrices I, Z,, ..., Z" !,

THEOREM 3. Let /,,/5,..., 4, be the eigenvalues of a matrix Z, e
U and assume that 7; is simple. Then a scalar function Ly exists, defined
in a neighborhood N(Z,) = C""" of Z,, such that riNlo) = 4y and 4,)(Z) is a
(simple) eigenvalue of Z for every Z e N(Z,). Moreover. Aiy 1S o0 times dif-
ferentiable on N(Z,), and

& [ /:t..[ - Z i g
dig=tr || [ 2——=1]dz | (24)
L R
JF1

==l =l

[f we assume, in addition, that all eigenvalues of Z, are simple, we may express
d/; also as

ddy = tr ( ¥ wiEL dZ), (i=1,....n). (25)
Pe=g)

where vV is the (1,]) element of the inverse of the Vandermonde matrix

l l 1
r /] /:".?. ”'H
V= |

):'.,1,_1 "‘g_ I 5 == /‘:* |

Note. In expression (24) it is not demanded that the eigenvalues all be
distinct, neither that they are all nonzero. In (25), however. the eigenvalues
are assumed to be distinct. Still, one (but only one) eigenvalue may be zero.

Proof. Consider the following two matrices of order n x n:

JE
The Cayley—Hamilton theorem asserts that

AB = BA = 0. (26)
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Further, since /; is a simple eigenvalue of Z,, the rank of 4 is n — 1. This,
together with (26), implies

B = puqyvg (27)
where u, and v are defined in (23), and g is an arbitrary scalar.

To determine the scalar p. we use Schur’s decomposition theorem and
write

S$Z[]S — A -+ R‘ S*S — ]

Where A is a diagonal matrix containing 4,, 4,, ..., 4, on its diagonal, and
R 1s strictly upper triangular. Then

tr B=tr || (4] — Zy)=tr [ | (4] — A —R)

JF1 JF1
=tr [|(A4 ] —A)=]](4;— 4
JFI JFEi

From (27) we also have
i B = j{vstis,

and since viu, is nonzero, we find

[](4;—24)

__J¥F1

1
VU

Hence

/:.. I T ZO LIOL‘?;

[~
jEI My T A

j i Uolg

which. together with (22), proves (24).

Let us next prove (25). Since all eigenvalues of Z, are now assumed to be
distinct, there exists a nonsingular matrix T such that

T- IZ(}T —_— A

Therefore

oz = (g ow)r o
j J
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I[f we denote by E;; the n x n matrix with 1 in 1its ith diagonal position
and zeros elsewhere, and by 0, the Kronecker delta, then

) AT =) "U(Z T Ekk) =) (Z v 24 1) E
J j k ko \ J

= duEw = Eii, (29)
k

because the scalar expression ) ; v/, ' is the inner product of the ith row
of V™! and the kth column of V: that is,

S A = 5,
J
Inserting (29) 1n (28) yields

Y WZEY = TE, T~ =(Te)eT™Y),
J.

where ¢; 1s the ith unit vector. Since /; 1s a simple eigenvalue of Z,, we have
Te. = Y, and T~ ' = ovk
for some scalars y and 0. Further,

= Sk
] — €IT TE’I — ‘,(.)l'.-{]“{j,.

Hence
Lizil— 1 r— 1 N % “0{%:
Z vZE T = (Te)(e:T 7)) = yougvgy = o
J U0
This, together with (22), proves (25). 0

VI. THE SECOND DIFFERENTIAL OF
THE EIGENVALUE FUNCTION

As an application of the differential of the cigenvector du, let us now obtain
d*/, the second differential of the eigenvalue function. We consider first the
case 1n which X 1s a real symmetric matrix.

THEOREM 4. Under the same conditions as in Theorem [. we have

d*} = 2u.(dX)Yq (dX)u, (30)
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where Y, = Aol, — Xy, and the Hessian matrix is

84

3 vee X d(vee X) = K (Ye ® ugtty + gy @ Yy) (31)

where K is the n? x n? “commutation matrix.”>

Proof. Twice differentiating both sides of Xu = Au, we obtain
2dX)(du) + X od*u = (d*M)ugy + 2(dA)du) + A du
where all differentials are at X,. Premultiplying by u; gives
d?/ = 2up(dX)(du), (32)
since upug = 1, up du =0, and uoX, = Agty. From Theorem 1 we have
du = (Aol — X )" (dX)u,. Inserting this in (32) gives (30).

To prove (31), we rewrite (30) as

d*A = 2(vec dX') (Yqg ® uguy) vec dX
= 2(vec dX) K, (Yy ® uptp)vec dX,

so that the (symmetric!) Hessian matrix 1s

0%

5 vee X d(vee X) = K (Yg ® ugup) + (Yo ® ugup)K,

= K (Y§ ® uguy + ugo ® Yq ). &

As in Note 2 of Section IIT we remark here that, while X, 1s symmetric,
dX need not be symmetric. If we restrict X to be symmetric, we obtain for
the Hessian matrix

ﬁ

'_l -
0° A

ov(X)o[ v(X)]

= 2D'(uguy ® Yq)D, (33)

using the fact that KD = D (see Lemma 3.6 of [4]).

If 1, is the largest eigenvalue of X, then Y, is positive definite, and
hence the Hessian matrix (33) is positive semidefinite. This corresponds to
the fact that the largest eigenvalue is convex on the space of real symmetric
matrices. Similarly, if A, is the smallest eigenvalue of X, then the Hessian
matrix is negative semidefinite, which corresponds to the fact that the smallest
eigenvalue is concave on the space of real symmetric matrices.
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T'he case in which Z, is a complex n x n matrix is proved in a similar
way.

THEOREM 5. Under the same conditions as in Theorem 2. we have

125 _ 208AZ)K o(Aol — Zo)* K o(dZ)ug

vEu, 1 54)
where
Ko =1— uyvd/viu,. (35)
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NOTES

[. Lancaster [2] has an interesting collection of results about the multiple-eigenvalue
case with one-dimensional perturbations.

2. A more geometric proof of (10) would use the fact that the column space of Y is
orthogonal to the null space of Y.

3. For a definition and properties of the duplication matrix and the v(-) notation, see [4].

4. The remark of note 2 applies here as well.

J. For a definition and properties of the commutation matrix, see [3].
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