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Abstract. We introduce the notion of a differentiation function of a
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Introduction

In biology, differentiation means the evolution of a variety of organisms which
are modifications of the species from which they originate. The differentiation
function gives the numerical size of the variety at a certain moment.

Lindenmayer systems form a description of the development of (lower) organ-
isms on the basis of formal language theory. The differentiation function of a
Lindenmayer system introduced in [2] corresponds to the above biological term
and gives the number of words (representing organisms) which can be obtained
in a certain number of derivation steps (representing steps of the development, as
division of cells or changes of the state of cells etc.) from an axiom (representing
the basic organism).

Analogously, the differentiation function of an evolutionary grammar – which
describes an evolutionary process on the basis of formal language theory – gives
the number of words (representing DNA sequences) which can be obtained in a
certain number of derivation steps (representing mutations) from a set of axioms
[3].

Surprisingly, the corresponding notion for “classical” Chomsky grammars – the
function giving the number of (terminal) words derivable in a certain number of
derivation steps – has not been studied yet and is the subject of this paper. Be-
sides its analogy to the well motivated functions in formal language approaches to
biological processes, there is a further reason to study the differentiation function
of context-free grammars. This function is nearly related to the structure function
of context-free languages which gives the number of words of a certain length in
the language. The latter concept is well investigated (e.g. see [1, 10–12,17]).

We call a grammar narrow iff its differentiation function is bounded by a con-
stant. This concept is the counterpart of semi-discreet or slender languages, where
the structure function is bounded by a constant. Slender languages were inten-
sively studied in the last years (see [8,9,13–16]). In particular, context-free slender
languages are finite unions of sets of the form {uvnwxny | n ≥ 0}.

The paper is organized as follows. In Section 1, we present the formal definitions
and give some examples. Section 2 contains the basic results on the differentiation
function, such as upper bounds, closure properties and relations to the structure
function. In Section 3, we discuss some languages over a two letter alphabet which
are derived from the differentiation function and the structure function and deter-
mine their places with respect to the Chomsky hierarchy. In Section 4, we present
the undecidability of the equivalence problem for differentiation (or structure)
functions and the decidability of k-narrowness for context-free grammars.

1. Definitions and examples

Throughout the paper we assume that the reader is familiar with the basic
concepts of formal language theory. For the notions of context-free matrix and
valence grammars and languages, we refer to [4].
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For a language L, we define its structure function sL by

sL : N → N and sL(n) = card ({w | w ∈ L, |w| = n}) .

A language L is said to be k-slender, for k ≥ 1, if sL(n) ≤ k for all n ≥ 0. A
language is slender if it is k-slender for some k ≥ 1.

For a grammar G = (N, T, P, S) (with the set N of nonterminals, the set T of
terminals, the set P of productions and the axiom S) and n ≥ 0, we set

Ln(G) =
{
w | w ∈ T ∗, S n=⇒

G
w

}
,

where x
n=⇒

G
y means that x derives y in exactly n derivation steps, and define

the differentiation function dG of G by

dG : N → N and dG(n) = card(Ln(G)).

For k ≥ 1, a grammar G is said to be k-narrow, if dG(n) ≤ k for all n ≥ 1. A
grammar is narrow if it is k-narrow for some k ≥ 1.

We define the structural language associated with a language L by

σ(L) =
{
anbsL(n) | n ≥ 0

}
,

and with a grammar G we associate the derivational language

δ(G) =
{

anbdG(n) | n ≥ 1
}
·

The languages σ(L) and δ(G) characterize the graphs of the mappings sL, dG,
respectively. Because these languages are bounded by a∗b∗, their context-freeness
implies their linearity (see [6]).

Example 1.1. For the grammar G1 = ({S}, {a}, {S → aS, S → a}, S) and n ≥ 1,
we obtain

Ln(G1) = {an} and dG1(n) = 1.

Thus G1 is 1-narrow. Moreover,

δ(G1) = {anb | n ≥ 1} ·

Example 1.2. Let G2 = ({S}, {a}, {S → S, S → aS, S → a}, S). Then

Ln(G2) =
{
a, a2, . . . an

}
and dG2(n) = n

for n ≥ 1 and
δ(G2) = {anbn | n ≥ 1}·
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Example 1.3. For the grammar H1 = ({S, B}, {a, b}, {S → aS, S → bB, S →
b, B → bB, B → b}, S) we get

Ln(H1) = {aibn−i : 0 ≤ i < n} and dG2(n) = n for n ≥ 1,

and δ(H1) = σ(L(H1)) = {anbn | n ≥ 1}.
By a product construction, one can find, for any k ≥ 2, a regular grammar

Hk with terminal alphabet {a, b}k, where Ln(Hk) contains all words whose i-th
projections are in Ln(H1), and thus dHk

(n) = sL(Hk)(n) = nk.

2. Remarks on the differentiation function

The structure function of a language over an alphabet X has the trivial upper
bound f(n) = card(X)n, which is sharp for the language X∗. A similar result
holds for the differentiation function.

Theorem 2.1.
(i) For any grammar G, there is a constant c such that dG(n) ≤ cn for n ≥ 1.
(ii) For any natural number c ≥ 1, there is a regular grammar G such that

dG(n) = cn for n ≥ 1.

Proof.
(i) Let G = (N, T, P, S) be a grammar, card(T ) = k, and let r be the greatest

length of a right side of a rule in P . A word derived in n steps has at most length
r · n. Hence, the number of terminal words generated in n steps is bounded by
kr·n+1. Choosing c = kr+1, the assertion follows.

(ii) Let T = {a1, a2, . . . , ac} be a set consisting of c elements. Then the regular
grammar

G = ({S}, T, {S → aiS | 1 ≤ i ≤ c} ∪ {S → ai | 1 ≤ i ≤ c}, S)

satisfies Ln(G) = T n for n ≥ 1, and therefore dG(n) = cn holds. �
Let us now turn to closure properties.

Theorem 2.2. Let f and g be differentiation functions of context-free grammars
and k ∈ N+. Then the functions

(i) f + g defined by (f + g)(n) = f(n) + g(n), for n ≥ 0;
(ii) k · f defined by (k · f)(n) = k · f(n), for n ≥ 0;
(iii) f∗ defined by f∗(n) =

∑n
i=1 f(i), for n ≥ 0;

(iv) f[k] defined by f[k](n) = f(�n
k �), for n ≥ 0;

(v) f[1/k] defined by f[1/k](n) = f(k · n), for n ≥ 0,
are differentiation functions of context-free grammars, too.

Proof.
(i) Let f = dG and g = dH , for two context-free grammars G = (NG, TG, PG, SG)

and H = (NH , TH , PH , SH). Without loss of generality, we can assume that
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NG ∩ NH = ∅ and TG ∩ TH = ∅. Consider the context-free grammar G′ with the
nonterminal S /∈ NG ∪ NH and the rules PG ∪ PH ∪ P , where

P = {S → α | SG → α ∈ PG or SH → α ∈ PH}·

Clearly, dG′(k) = dG(k) + dH(k) = f(k) + g(k), for k ≥ 1.
(ii) Follows by repeated application of the previous construction.
(iii) Let f = dG, for a context-free grammar G = (N, T, P, S). Set G′ =

(N ∪ {S′}, T ∪ {a}, P ′, S′) with S′, a /∈ N ∪ T and

P ′ = P ∪ {S′ → α | S → α ∈ P} ∪ {S′ → aS′}·

Then, we have Ln(G′) =
⋃n

i=1 an−iLi(G) and dn(G′) =
∑n

i=1 di(G), as a /∈ T .
(iv) Consider a context-free grammar G = (N, T, P, S0). One can easily con-

struct a grammar G′ = (N ′, T, P ′, S0), where one derivation step in G is simulated
by k derivation steps in G. Hence, fG′(k · n) = f(n) and fG′(k · n + i) = 0, for
n ≥ 0, 1 ≤ i < k. Finally, a grammar H is obtained from G′ by adding the
nonterminal symbols {S1, . . . , Sk−1} and the set of rules

{Si−1 → Si : 1 ≤ i < k} ∪ {Si → α : S0 → α ∈ P ′}·

Obviously, fH(m) =
∑k−1

i=0 fG′(m− i), i.e., fH(k ·n+ i) = fG′(k ·n), for 0 ≤ i < k.
(v) Let G = (N, T, P, S) be a context-free grammar. We construct a grammar H

whose nonterminal alphabet is N × {−k, . . . , k} with start symbol (S, 0).
Consider a derivation A

�=⇒
G

α in G, whose tree has a height between (k + 1)
and 2k. Let � = (k · m + i), 0 ≤ i ≤ k, Clearly, � ≥ k + 1.

We replace this derivation with the derivations,

(A, j) m=⇒
H

α′ and (A,−j) m+1=⇒
H

α′′,

where the nonterminals in α are replaced with nonterminals whose second compo-
nents add up to j − i in α′ and to k − i − j in α′′.

It is easily shown by induction that (A, j) n=⇒
H

w ∈ T ∗ holds iff A
kn+j
=⇒

G
w holds,

for some derivation whose tree has height at least k+1. In particular, (S, 0) n=⇒
H

w

holds iff S
kn=⇒
G

w. Finally, one introduces derivations (S, 0) n=⇒
H

w ∈ T ∗, for any

derivation S
kn=⇒
G

w. �

Note that the proofs of parts (iv) and (v) imply a “linear slow-down/speed-
up theorem” for context-free grammars. For any context-free grammar G, we can
construct context-free grammars G′ and G′′, generating in k ·n steps (in n/k steps)
the same terminal words as G generates in n steps.

Now we give relations between the structure function and the differentiation
function.
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Theorem 2.3. For any (unambiguous) context-free language L, there is a context-
free (unambiguous) grammar G such that dG = sL.

Proof. Let G be a context-free grammar in Greibach normal form with L(G) = L.
If L is unambiguous, then we can assume that G is an unambiguous grammar in
Greibach normal form. The normal form in which exactly one terminal is produced
in each derivation step. Hence, any word w with length n is derived in exactly n
steps. Therefore,

{w | w ∈ L(G), |w| = n} = {w | S
n=⇒w, w ∈ T ∗}, for any n ≥ 1,

from which the statement follows. �

Theorem 2.4. For any unambiguous context-free grammar G, there is an unam-
biguous context-free language L such that sL = dG.

Proof. Let G = (N, T, P, S) be an unambiguous context-free grammar. Let P =
{p1, p2, . . . , pn}. We define the morphism h : (N ∪ T )∗ → N∗ by h(a) = λ, for
a ∈ T , and h(A) = A, for A ∈ N , and set

G′ = (N, {[i] | 1 ≤ i ≤ n}, {A → [i]h(α) | pi = A → α}, S).

Obviously, G′ is unambiguous.
It is easily shown by induction on n that there is a leftmost derivation

S
n=⇒

G′ [i1] · · · [in]β, β ∈ N∗,

iff there is a leftmost derivation in G, using the sequence of rules pi1 , . . . , pin and
generating some word α ∈ h−1(β). In particular, [i1] · · · [in] ∈ L(G′) holds iff the
leftmost derivation using the sequence of rules pi1 , . . . , pin is possible in G and
terminating. As G is unambiguous, the number of words of length n in L(G′) is
equal to the number of words derivable in G in n steps. �

Essentially, we have shown that, for unambiguous grammars, the sets of struc-
ture functions and of differentiation functions coincide. We do not know whether
an analogous result holds in the general context-free case. At least, we can show:

Theorem 2.5.

(i) For any context-free grammar G, there is a context-free additive valence
language L such that sL = dG.

(ii) For any context-sensitive grammar G, there is a context-sensitive lan-
guage L such that sL = dG.

(iii) For any regular grammar G, there is a linear language L such that sL =
dG.



ON DIFFERENTIATION FUNCTIONS OF CONTEXT-FREE GRAMMARS 263

Proof.
(i) Let G = (N, T, P, S) and let r be the maximum over the lengths of the right

hand sides in P . We construct the additive valence grammar G′ = (N ′, T ′, P ′, S′)
with N ′ = N ∪ {S′, X}, T ′ = T ∪ {x}, and

P ′ = {(S′ → SX,−1)} ∪ {(A → α, r + 1 − |α|) | A → α ∈ P} ∪
{(X → xX,−1), (X → λ, 0)}·

It is easily seen that (S,−1) n=⇒
G′ (α, z) iff S

n=⇒
G

α and z + |α| = r · n. Hence,

a word w′ = wxz , w ∈ T ∗, can be generated by G′ iff |w′| = r · n and S
n=⇒

G
w.

Finally, as the family of context-free additive valence languages is closed under
inverse morphisms, one can construct an additive valence grammar H such that
sL(H)(n) = sL(G′)(r · n).

(ii) Essentially the same construction can be used to find a context-sensitive
additive valence language L such that dG = sL. As context-sensitive grammars
with and without valences are equivalent, the claim holds.

(iii) If G is regular, construct the linear grammar G′ = (N, T ′, P ′, S) with
T ′ = T ∪ {x}, and

P ′ = {A → wBxr+1−|α| | A → wB ∈ P, A, B ∈ N, w ∈ T ∗} ∪
{A → wxr−|α| | A → w ∈ P, A ∈ N, w ∈ T ∗}·

Again, a word w′ = wxz , w ∈ T ∗ can be generated by G′ iff |w′| = r · n + 1
and S

n=⇒
G

w. We can construct a linear grammar H such that sL(H)(n) =
sL(G′)(r · n) using the effective closure of the family of linear languages under
inverse homomorphisms. �

Theorem 2.6. If a context-free grammar G is narrow, then L(G) is slender.

By Example 1.2, the converse implication does not hold.

Proof. Let G = (N, T, P, S) be a context-free grammar such that L(G) ⊆ V ∗ is
not slender. We have to show that G is not narrow, i.e., for any c, there is an
n ∈ N such that dG(n) ≥ c.

We call a nonterminal A ∈ N recurring iff A
∗=⇒uAv, for some u, v ∈ T ∗, |uv| >

0. For a recurring A, let

qA = min{|uv| : A
∗=⇒uAv, u, v ∈ T ∗, |uv| > 0},

sA = min{n : A
n=⇒uAv, for some u, v ∈ T ∗ with |uv| = qA},

and let s = max{sA | A ∈ N, A is recurring}. There is a constant p such that
any derivation of a word w ∈ L(G) with |w| ≥ p uses a recurring symbol. We can
formulate the following length iteration lemma:
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For any w ∈ T ∗ such that S
n=⇒ w and |w| ≥ p, there is a

recurring A such that G can generate a terminal word of length
|w| + iqA in n + isA steps, for any i ≥ 0.

Moreover, let r be the number of recurring nonterminals. For a word w ∈ L(G), let
|w|G be the length of the shortest derivation of w in G, and call |w|G the G-length
of w.

The non-slenderness of L(G) implies the existence of a number n ≥ p such that
sL(G)(n) ≥ rsc2. Consider the set S0 := L(G) ∩ V n. If S0 contains c words with
the same G-length m, then dG(m) ≥ c and we are done. Otherwise, we obtain by
several applications of the pigeonhole-principle the existence of:

• S1 ⊆ S0 with rsc words of pairwise different G-lengths;
• S2 ⊆ S1 with sc words whose shortest derivations use a common recurrent

symbol, say A;
• S3 ⊆ S2 with c words whose G-lengths are congruent modulo sA.

Suppose that S3 = {w1, . . . , wc} with |wi|G < |wj |G, for all 1 ≤ i < j ≤ c. Set
ti = (|wc|G − |wi|G)/sA, for 1 ≤ i ≤ c. The length iteration lemma guarantees the
existence of words w′

i ∈ L(G), 1 ≤ i ≤ c, with |w′
i| = |wi|+ ti · sA such that w′

i can
be generated in |wi|G + ti · r = |wc|G steps. Since |w′

i| > |w′
j |, for 1 ≤ i < j ≤ c,

the words w′
i are pairwise different, and we obtain dG(|wc|G) ≥ c. �

3. Structural and derivational languages

We first consider the case that the structural or derivational languages are
regular.

Theorem 3.1.

(i) If σ(L) is a regular language, then L is slender.
(ii) If δ(G) is a regular language, then G is narrow.

Proof. Let L ⊆ V ∗ be a language such that σ(L) is regular, and let p be the
constant from the regular pumping lemma for σ(L). Then, each word anbm ∈ σ(L)
satisfies m < p, since otherwise anbm+p would belong to σ(L).

The correctness of the second claim is shown analogously. �

Note that the type of the language L or of the grammar G in the previous proof
plays no role.

For context-free languages and grammars, the converse of Theorem 3.1 does
also hold.

Theorem 3.2.

(i) If L is a slender context-free matrix language, then the language σ(L) is
regular.

(ii) If G is a narrow context-free grammar, then the language δ(G) is regular.
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Proof. (i) Let L ⊆ V ∗ be a context-free matrix language. According to [18], the
language Si(L) = {an : sL(n) = j} is regular, for any j ∈ N. If, additionally, L is
k-slender

σ(L) =
k⋃

j=0

Sj(L)bj

is a union of regular languages and therefore regular.
(ii) Follows by Theorem 2.5 and the first part. �

A generalization of Theorem 3.2 does not hold for arbitrary languages For L =
{a2n | n ≥ 1}, the language σ(L) = {a2n

b | n ≥ 1} ∪ {an | n �= 2i, i ≥ 1} is not
context-free, although L is a 1-slender language.

Combining the last two theorems, we get a characterization of slender languages
in the case of context-free matrix languages.

Corollary 3.3. A context-free matrix language is slender if, and only if its struc-
tural language is regular.

We now investigate the relation of structural and derivational languages to
well-known language families.

Theorem 3.4.
(i) For any grammar G, δ(G) is context-sensitive.
(ii) For any context-free grammar G, δ(G) is deterministic context-sensitive.
(iii) For a (deterministic) context-sensitive language L, σ(L) is (determinis-

tic) context-sensitive.

Proof.
(i) Let G = (N, T, P, S) be a grammar and let r be the greatest length of a

right side in P . Then any word derived in n steps has at most length n · r. First,
we construct a Turing machine A accepting

δ′(G) := {anbm | n ≥ 0, m ≤ dG(n)}·

A works as follows. It guesses a word w ∈ T ∗ of length at most n · r. Then
it performs a guessed derivation of length n in G. If the word obtained by this
derivation is not w, it rejects. Otherwise it chooses a new word w which is lexico-
graphically greater than the old one. If this process can be repeated m times, the
input anbm is accepted. The workspace needed by A is O(n).

Finally, it is a standard construction to find an LBA accepting δ(G).
(ii) If G is context-free, we can modify the above nondeterministic algorithm as

follows. Instead of guessing words and derivations, we test for all words w ∈ T ∗

of length up to rn if there is a left-derivation with n steps generating w. The
words w are tested in lexicographic order, and for each w, the left-derivations are
tested in lexicographic order, too. We need additionally space O(n) to store the
currently performed left-derivation.

(iii) A construction similar to that in part (i) of the proof works. �
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We now prove that the structural language of a regular language and the deriva-
tional language of a regular grammar are not necessarily matrix languages.

Theorem 3.5.
(i) There is a regular language L for which the language σ(L) cannot be

generated by a matrix grammar.
(ii) There is an unambiguous regular grammar G such that δ(G) cannot be

generated by a matrix grammar.

Proof. By Theorem 2.1 (ii) and its proof, there is an unambiguous regular gram-
mar G such that dG(n) = sG(n) = 2n = 2n, i.e., δ(G) = {anb2n | 1 ≤ n} and
σ(L(G)) = δ(G) ∪ {λ}.

With the morphism h : {a, b}∗ → {b}∗, h(a) = λ, h(b) = b, we get the languages
h(δ(G)) = {b2n | n ≥ 1} and h(σ(L(G))) = {b2n | n ≥ 0}. By [5], these languages
are not matrix languages, and neither are σ(L) and δ(G). �

4. Decision problems
We first prove the undecidability of the equality of the differentiation and struc-

ture functions of two context-free grammars.

Theorem 4.1. For context-free grammars G and G′, it is undecidable whether or
not dG = dG′ or sL(G) = sL(G′) holds.

Proof. For the structure function, the result follows immediately from the unde-
cidability of the universe problem:

Is L(G) = T ∗, where T is the terminal alphabet of G?

The result for the differentiation function follows by Theorem 2.3. �
Note that the universe problem is undecidable for very specific subclasses of

the family of context-free languages (see, e.g., [7]). Thus Theorem 4.1 can be
refined. In contrast to the general case, we have decidability if we restrict to
slender context-free (matrix) languages.

Theorem 4.2. For slender context-free (matrix) languages L1 and L2, it is de-
cidable whether or not sL1 = sL2 holds.

Proof. Obviously, sL1 = sL2 holds iff σ(L1) = σ(L2). Since the equivalence of
regular grammars is decidable and the determination of σ(L) according to the
proof of Theorem 3.2 is constructive (see [18]), the statement follows. �

Finally, we discuss the decision question whether or not a given context-free
grammar is narrow. While the general problem remains open, we are able to show
decidability if the bound for narrowness is given or the grammar is regular.

Theorem 4.3.
(i) Given a context-free grammar G and a constant k, it is decidable whether

G is k-narrow.
(ii) Given a regular grammar G, it is decidable whether G is narrow.
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Proof. In the proof of Theorem 2.5, we have shown how to construct a context-
free additive valence grammar (in the regular case, a linear grammar) H such that
sL(H) = dG. Obviously, G is k-narrow iff L(H) is k-slender. As k-slenderness of
languages generated by context-free additive valence grammars is decidable [18],
the first assertion is true. The second claim follows by Theorem 2.5 (iii) and the
decidability of the slenderness problem for context-free languages [16]. �
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