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1 Introduction

Oscillations play an important role in nature. Every life form exhibits an oscillatory
behavior at every level of biological organization with periods ranging from mil-
liseconds (neurons) to seconds (cardiac sells), minutes (oscillatory enzymes), hours,
days, weeks and even years (epidemiological processes and predator-prey interactions
in ecology). Of course biological systems are very complex and difficult to model,
nevertheless many attemts were made to explain the mechanism of how persistent
oscillations occur in complex interconnected or distributed biological systems. As a
survey of some theoretical and experimental works we refer to [Mosekilde, 1997] (see
Chapter 9).

A recognizable starting point in related research activities is the paper by A.
Turing [1952] who studied a possible mechanism for morphogenesis – the process
of creation of forms and patterns in development of the embryo. A crucial role in
the study is played by the diffusive medium which can be described in two ways –
continuous, involving partial differential equations, or discrete, involving diffusion of
enzymes (morphogenes in the terminology of Turing) between separate cells described
by ordinary differential equations.

The diffusion which is very important for cooperative behavior of living cells,
was usually considered as a smoothening or trivializing process. However it turns
out that it can result in nontrivial oscillatory behavior in different systems. Some
phenomena occurring in distributed systems written as PDEs are described in the
paper by We-Ming Ni [1998] and references therein. In this paper we are concerned
with oscillatory phenomena occurring in systems consisting of diffusively coupled
subsystems described by ordinary differential equations. A motivation of our study
is the paper by S. Smale [1976] who proposed an example of two 4th order diffu-
sively coupled differential systems. Each system describes a mathematical cell and
by itself is inert or dead in the sense that it is globally asymptotically stable. In
interaction, however “the cellular system pulses (or expressed perhaps overdramat-
ically, becomes alive!) in the sense that the concentrations of the enzymes in each
cell will oscillate infinitely”. In his paper S. Smale posed a problem to find condi-
tions under which globally asymptotically stable systems being diffusively coupled
will oscillate. A solution to this problem based on a frequency domain formalism
was proposed in [Tomberg & Yakubovich, 1989] where diffusive interaction of two
Lur’e systems with scalar nonlinearity was studied. Our approach is based on the
related concepts of passivity and minimum phaseness and the main contribution of
the paper is that we show that the Turing instability occurs as a result of a Poincaré-
Andronov-Hopf bifurcation. Conditions presented in the paper ensure the existence
of oscillatory behavior for diffusively coupled systems with arbitrary topology of the
interconnections. We show that this scenario occurs in diffusively coupled nonmini-
mum phase systems. At the same time in [Pogromsky, 1998] it has been shown that
diffusive coupling of minimum phase systems results in another interesting oscilla-
tory phenomenon, namely synchronization. Therefore the results of this paper and
[Pogromsky, 1998] allow a better understanding of oscillatory behavior occurring in
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diffusively coupled systems.
The paper is organized as follows. First we give some relevant definitions and

recall some useful results. The problem statement is presented in Section 3. Section
4 contains some results regarding boundedness and ultimate boundedness of solutions
of interconnected systems. In Section 5 we will present conditions resulting in the
Turing instability and an illustrative example will be considered in Section 6.

2 Basic definitions

The Euclidean norm in Rn is denoted simply as | · |, |x|2 = x>x, where > stands for
the transpose operation.

A function V : X → R+ defined on a subset X of Rn, with 0 ∈ X, is positive
definite if V (x) > 0 for all x ∈ X \ {0} and V (0) = 0. It is radially unbounded if
V (x)→∞ as |x| → ∞. If the quadratic form x>Px with P is a symmetric matrix:
P = P> is positive definite then the matrix P is called positive definite. For positive
definite matrices we use the notation P > 0; moreover P > Q means that the matrix
P −Q is positive definite.

A matrix A which has all eigenvalues with negative real parts is called Hurwitz.
For matrices A and B the notation A⊗B (the Kronecker product) stands for the

matrix composed of submatrices AijB, i.e.

A⊗ B =


A11B A12B · · · A1nB
A21B A22B · · · A2nB

...
...

. . .
...

An1B An2B · · · AnnB

 (1)

where Aij , i, j = 1 . . . n, stands for the ij-th entry of the n× n matrix A.
Let xe be an equilibrium of the system of differential equations ẋ = f(x), f : Rn →

Rn. If the Jacobian ∂f(xe)/∂x has no eigenvalues on the imaginary axis then the
point xe is called a hyperbolic fixed point.

In this paper we are interested in the study of oscillatory behavior of dynamical
systems described by systems of autonomous ordinary differential equations. To
define the concept of oscillatory system we first give a definition of an oscillatory
function.

Definition 1 A scalar function x : R1 → R1 is called oscillatory in the sense of
Yakubovich (or Y-oscillation) for t→ +∞ if x(t) is bounded on R+ and

lim
t→+∞

x(t) ≥ β, lim
t→+∞

x(t) ≤ α

for some β > α.

Similarly, definitions of Y-oscillation for t→ −∞ and of (two-sided) Y-oscillation
can be given.
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Consider a general autonomous continuous-time systems:

ẋ = F (x), (2)

where x(t) ∈ Rn is the n-dimensional state vector and the vector field F satisfies
conditions guaranteeing existence and uniqueness of the solutions of (2) for all t ≥ 0
and all initial conditions x(0) = x0 ∈ Rn.

Definition 2 The system (2) is called Lagrange stable if each solution of (2) is
bounded.

Next we define a useful definition expressing ultimate boundedness of the solutions
of (2). A system possessing such a property was called dissipative by N. Levinson
[Levinson, 1944; Coddington & Levinson 1955]. Since other versions of the dissipa-
tivity concept are also in use both in nonlinear control theory and in other fields
of science, we refer to the property in question as the dissipativity in the sense of
Levinson, Levinson dissipativity or L-dissipativity.

Definition 3 The system (2) is called L-dissipative if there exists an R > 0 such
that

lim
t→∞
|x(t)| ≤ R

for all initial conditions x(0) = x0 ∈ Rn.

In other words there exists a ball of radius R such that for any solution x(t) there
exists a time instant t1 = T (x0) ≥ 0, x0 = x(0) such that for all t ≥ t1 we have
|x(t)| ≤ R. Obviously the ball can be replaced by any compact set in Rn.

As one can notice all solutions of the L-dissipative system are bounded and tend
to some set which does not depend on the initial conditions x(0). Any L-dissipative
system is Lagrange stable while the converse statement is not true.

Consider the following nonlinear system

ẋ = F (x), x(t) ∈ Rn, (3)

y = h(x), y(t) ∈ Rl. (4)

where as before F satisfies assumptions guaranteeing existence of a unique solution
on the infinite time interval, and y in Eq. (4) represents the output of the dynamical
system (3).

Definition 4 The system (3), (4) is called Y-oscillatory with respect to a scalar
output y if it is Lagrange stable and for almost all initial conditions

lim
t→+∞

y(t) < lim
t→+∞

y(t).
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This definition is motivated by the definition of self-oscillatory systems given in
[Yakubovich, 1973]. Compared to the definition given in [Yakubovich, 1973], instead
of L-dissipativity we require a milder condition of Lagrange stability. Thus, according
to our definition, a simple frictionless pendulum defined on the cylindric manifold,
is an Y-oscillatory system. Nevertheless the same pendulum defined on R2 is not
Y-oscillatory because on R2 it is not Lagrange stable. However in what follows we
are interested in oscillatory behavior of systems with ultimately bounded solutions
and therefore the difference in the definitions is not significant for our study.

Recalling Definition 1 of Y-oscillation given for an arbitrary scalar function (not
necessary being a solution of some differential equation) we call the system with
vector output y Y-oscillatory if it is Y-oscillatory with respect to at least one of the
components of the vector y. If the system is Y-oscillatory with respect to the output
y ≡ x then it is referred to as just Y-oscillatory.

The following result can be proved similarly to the proof of Theorem 1.1, 3◦, 5◦

[Tomberg & Yakubovich, 1989].

Theorem 1 Assume that
A1. The equation F (x) = 0 has only isolated solutions x̄j , j = 1, 2....
A2. The system (2) is L-dissipative.
A3. x̄j are hyperbolic fixed points and each matrix ∂F

∂x
(x̄j) has at least one eigenvalue

with positive real part.
Then the system (2) is Y-oscillatory.

The proof of this statement is based on the fact that the hyperbolicity implies
the existence of a homeomorphism defined in a neighborhood of each equilibrium
between solutions of the nonlinear system and its linearization (Hartman-Grobman
theorem) [Hartman, 1964]. Therefore the set of initial conditions for which a solution
tends to a fixed point is a local manifold. Then a compactness argument completes
the proof.

In fact, in [Tomberg & Yakubovich, 1989] a more detailed result was proved.
Namely, they established conditions ensuring oscillatory behavior with respect to a
given output of the system written in Lur’e form. It is worth mentioning that the
requirement of hyperbolicity can be relaxed. A. Fradkov [1998] pointed out that
the statement of the theorem remains true if instead of hyperbolicity one imposes
a weaker assumption that the system linearized about each equilibrium has at least
one eigenvalue with positive real part. The proof of this statement is based on a
compactness argument. However in this paper we are interested in the study of
oscillatory behavior of structurally stable systems [Arnold, 1983] and therefore the
requirement of hyperbolicity is natural in this case although not necessary. Moreover
if one tries to relax the conditions of the theorem and imposes the assumption that
each equilibrium point is unstable in the sense of Lyapunov, then, without additional
conditions, the statement of theorem can not be true because the set of all initial
conditions for which the corresponding solution tends to an unstable equilibrium can
be of nonzero measure.
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3 Problem Statement

Let Pn be a closed nonnegative orthant in Rn: Pn = {x ∈ Rn, x = col(x(1), . . . , x(n)),
x(j) ≥ 0, j = 1, . . . , n}. Let R be a smooth mapping R : Pn → Pn, such that the
system

ẋ = R(x), x(t) ∈ Pn (5)

is globally (in Pn) asymptotically stable, that is there is a point xe ∈ Pn, such that
R(xe) = 0, xe is Lyapunov stable and all solutions starting from Pn tend to xe. The
problem studied by S. Smale [Smale, 1976] is to find (if possible) a positive definite
diagonal n× n matrix D such that the system on P2n ⊂ R2n

{
ẋ1 = R(x1) + D(x2 − x1)
ẋ2 = R(x2) + D(x1 − x2)

(6)

has a nontrivial periodic solution with a trajectory attracting almost all other solu-
tions of (6). The state vector for each system consists of the concentrations of the
chemicals which are nonnegative. The dynamics (5) describes a chemical reaction
between some chemicals (“morphogenes”) inside one cell. The system (6) describes
a possible diffusive interaction between two cells and is referred to as the Turing
equation. The paper by Smale posed a “sharp problem, namely to ‘axiomatize’ the
properties necessary to bring about oscillation via diffusion. In the 2-cell case, just
what properties does the pair (R, D) need to possess to make the Turing interacting
system oscillate? In the many cell case, how does the topology contribute?”

It was shown by Smale that to design a system (6) it is sufficient to design a
system with the same properties but assuming that R : Rn → Rn. In this case we
can assume that the unique equilibrium point of (5) is the origin.

First we give a definition of diffusive coupling of k identical systems. We will
understand a diffusive medium as a system of ordinary differential equations con-
sisting of interconnected identical systems. Each separate system has an input and
output of the same dimension. The diffusive coupling is described by a static relation
between all inputs and all outputs.

Definition 5 Given the systems{
ẋj = f(xj) + Buj
yj = Cxj

(7)

where j = 1, . . . , k, xj(t) ∈ Rn is the state of the j-th system, uj(t) ∈ Rm is the
input, yj(t) ∈ Rm is the output of the j-th system, f(0) = 0 and B, C are constant
matrices of corresponding dimension. We say that the systems (7) are diffusively
coupled if the matrix CB is similar to a positive definite matrix and the systems (7)
are interconnected by the following feedback

uj = −γj1(yj − y1)− γj2(yj − y2)− . . .− γjk(yj − yk) (8)

where γij = γji ≥ 0 are constants such that
∑k
j=1 γji > 0 for all i = 1, . . . , k.
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Let us clarify this definition. To this end we rewrite (7) in a new coordinate system
which is convenient for subsequent study. Notice that according to the definition the
matrix B (as well as C) is of full rank: rankB = rankC = m, m ≤ n. Therefore there
exists a full rank (n−m) × n left annihillator N of B: NB = 0 and the null space
of N is spanned by the columns of B. Consider the n×n matrix Φ: Φ = (N>, C>)>.
Let us prove that Φ is nonsingular. Suppose for some x ∈ Rn we have Φx = 0.
Therefore Nx = 0 and hence x is a linear combination of the columns of the matrix
B: x = Bx̃ for some x̃ ∈ Rm. Φx = 0 implies also that Cx = 0, or in other words
CBx̃ = 0. However CB is nonsingular and therefore x̃ = 0 and that implies in turn
x = 0. So, the matrix Φ is nonsingular. Now consider the following linear coordinate
transformation (

zj
yj

)
=

(
N
C

)
xj , z ∈ Rn−m.

In the new coordinates the system (7) can be rewritten as{
żj = Nf(xj) + NBuj
ẏj = Cf(xj) + CBuj, xj = Φ−1col(zj, yj)

(9)

or in the following form {
żj = q(zj , yj)
ẏj = a(zj , yj) + CBuj

(10)

where zj(t) ∈ Rn−m, yj(t) ∈ Rm, q : Rn−m × Rm → Rn−m, a : Rn−m × Rm → Rm.
Now it is clear that under some linear transformation the system (10) closed by
the feedback (8) can be written such that CB is a positive definite matrix (even
more without loss of generality we may assume that CB is a diagonal matrix with
positive entries). In control literature the representation (10) for the system (7) is
usually referred to as the normal form. Moreover there are conditions under which
the system has a normal form (locally or globally defined) in case when the input
and output mappings are defined by not constant but state-dependent matrices (see
[Byrnes & Isidori, 1991, Byrnes et. al., 1991]).

When rankB = n and k = 2 the closed loop system (10) coincides with the system
(6). The problem under consideration is to find conditions on f, B, C, γji such that
before coupling all k systems are globally asymptotically stable, but being coupled
the closed loop system becomes Y-oscillatory. As it is now easy to notice, the problem
we consider in this paper, differs from the problem posed by Smale, namely we allow
the matrix D to be similar to a positive semidefinite matrix. The result is that the
systems (10) have some inherent dynamics given by the equations

żj = q(zj, 0)

which in the control literature is usually referred to as zero dynamics. As we will
see later this dynamics plays an important role in the stability analysis of the closed
loop system. Moreover one of the results of this paper (see Theorem 3) is that if we
solve the problem for positive semidefinite matrix D then we can solve the problem
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for positive definite D and in this sense we can say that our problem is equivalent to
Smale’s problem.

The zero dynamics system can be interpreted as following. It describes the dy-
namics of some chemicals with diffusive rates neglectable compared to the diffusive
rates of other chemicals. On the other hand, this dynamics can not be neglected
when modelling a chemical reaction inside one cell alone.

Geometrically a closed loop system consisting of diffusively coupled identical sub-
systems can be illustrated by figure 1 where an example for the case of five cells
is depicted. In the figure we showed the case when only the nearest neighbors are
connected but this is not a limitation for our approach.

1

34

5

2
γ12

γ14
γ15 γ

23
γ
25

γ
45

γ
34

γ35

Figure 1: Possible diffusive cou-
pling of 5 cells

4 Boundedness of solutions of interconnected sys-

tems

Consider the nonlinear time-invariant affine in the control system:{
ẋ = f(x) + g(x)u
y = h(x)

(11)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the input which is assumed to be a
continuous and bounded function of time: u ∈ C0 ∩ L∞; y(t) ∈ Rm is the output;
f : Rn → Rn and the columns of the matrix g : Rn → Rn×m are smooth vector fields,
f(0) = 0; and h : Rn → Rm is a smooth mapping, h(0) = 0.

Definition 6 The internal dynamics of the system (11) consistent with the external
constraint y(t) ≡ 0 for all 0 ≤ t < Tu,x0, where Tu,x0 is the upper time limit for
which the solution with initial condition x(0) = x0 and corresponding input u exists,
is called the zero dynamics of the system (11).

Let us clarify this definition. Assume that we are looking for all initial conditions
x(0) for which there exists an input function u(t) producing a solution x(t) satisfying
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the constraint y(t) = h(x(t)) = 0 for all time instants for which the corresponding
solution exists. The dynamical system with solutions coinciding with the solutions
of (11) closed by the input u(t) resulting in zero output is called the zero dynamics
system. If the system (11) possesses a zero dynamics system with hyperbolically
stable zero solution it is referred to as hyperbolically minimum phase. If the origin
is an hyperbolically unstable solution of the zero dynamics system for (11) then the
system (11) is referred to as hyperbolically nonminimum phase. More about concepts
of zero dynamics, minimumphaseness and related normal forms can be found in
[Isidori, 1995; Byrnes & Isidori, 1991; Byrnes et. al., 1991; Nijmeijer & Schaft, 1990]

Associated with the system (11) consider a real-valued function w defined on
Rn ×Rm called the supply rate. We assume that this function is well defined on any
compact subset of the set Rn ×Rm.

Definition 7 The system (11) with supply rate w is said to be Cr-dissipative in the
sense of Willems (or W-dissipative) if there exists a Cr-smooth, (r ≥ 0) nonnegative
function V : Rn → R+, called the storage function, such that the following dissipation
inequality holds:

V (x(t))− V (x(0)) ≤
∫ t

0
w(x(s), u(s))ds (12)

for all u ∈ C0 ∩ L∞, x(0) ∈ Rn, 0 ≤ t < Tu,x0, where Tu,x0 is the upper time limit
for which the solution corresponding to the input u and initial conditions x(0) = x0

exists.

This definition has a clear physical interpretation if the storage function is under-
stood as the total energy of the system. Then the left hand side of this inequality is
the increment of the energy at time t and the dissipation inequality means that this
increment should not exceed the integral of the supply rate.

Definition 8 The system (11) is Cr-passive if it is Cr-dissipative with supply rate
w(x, u) = y>u and the storage function V satisfies V (0) = 0.

The above definition is classical in nonlinear control theory but in this paper we
also need some weakened version of the passivity property, namely semipassivity,
introduced in [Pogromsky, 1998]:

Definition 9 The system (11) is called Cr-semipassive if it is Cr-dissipative with
supply rate w(x, u) = y>u−H(x) where the scalar function H is nonnegative outside
some ball:

∃ρ > 0, ∀|x| ≥ ρ =⇒ H(x) ≥ %(|x|) (13)

for some continuous nonnegative function % defined for |x| ≥ ρ. If the function H
is positive outside some ball, i.e. (13) holds for some continuous positive function %,
then the system (11) is referred to as strictly semipassive.
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Consider the following k systems:{
ẋj = fj(xj) + gj(xj)uj
yj = hj(xj)

(14)

where j = 1, . . . , k, xj(t) ∈ Rnj are the states, uj(t) ∈ Rm are the inputs, yj(t) ∈ Rm
are the outputs and the functions fj, gj, hj are smooth enough to ensure existence,
at least on some time interval, of all solutions considered below.

Define the symmetric matrix Γ as

Γ =


∑k
i=1 γ1i −γ12 −γ13 · · · −γ1k

−γ21
∑k
i=1 γ2i −γ23 · · · −γ2k

...
...

...
...

...
−γk1 −γk2 −γk3 · · ·

∑k
i=1 γki

 (15)

where γij = γji ≥ 0. The matrix Γ is symmetric and therefore all its eigenvalues
are real numbers. Moreover applying Gerschgorin’s theorem about localization of
eigenvalues (see, e.g. [Stewart & Sun, 1990]) one can see that all eigenvalues of Γ are
nonnegative, that is the matrix Γ is positive semidefinite.

The following result gives conditions under which the solutions of the intercon-
nected systems (14) are bounded.

Lemma 1 Consider the systems (14) in closed loop with the following feedback

uj = −γj1(y
′
j − y′1)− γj2(y

′
j − y′2)− . . .− γjk(y

′
j − y′k) (16)

where y′j = h′j(xj) and h′j : Rnj → Rm is a smooth mapping such that h′j(0) = 0.
Suppose that the systems (14) are Cr-semipassive (r ≥ 0) with respect to input uj
and output yj = hj(xj) with radially unbounded storage functions Vj : Rnj → R+

and functions Hj satisfying (13), j = 1, . . . , k. Assume the function

H(x) =
k∑
j=1

Hj(xj) + y>(Im ⊗ Γ)y′

with x = col(x1, . . . , xk), y = col(y1, . . . , yk), y′ = col(y′1, . . . , y
′
k), satisfies

∃ρ > 0, ∀|x| ≥ ρ =⇒ H(x) ≥ %(|x|) (17)

for some continuous function % defined for |x| ≥ ρ. Then if the function % is nonneg-
ative then all solutions of the closed loop system (14), (16) exist for all t ≥ 0 and are
bounded, that is the system (14), (16) is Lagrange stable, moreover if the function %
is positive then the closed loop system (14), (16) is L-dissipative.

Proof: First notice that due to smoothness of the right hand side of the closed
loop system all solutions are unique and exist at least on some finite time interval.
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Consider the function V : Rn1 × . . .× Rnk → R+

V (x) = V1(x1) + . . . + Vk(xk).

Clearly, this function is radially unbounded. Along the solutions of the closed loop
system this function satisfies the following integral inequality:

V (x(t))− V (x(0)) ≤
∫ t

0
−H(x(s))ds (18)

Consider the set Ω = {x : |x| ≤ ρ}. Clearly, Ω is compact. Fix a constant C such
that the set Ω1 = {x : V (x) ≤ C} contains Ω: Ω ⊂ Ω1. Such a constant always
exists since the function V is positive. Moreover the set Ω1 is compact because of
the radial unboundedness of V . Since Ω1 is compact there exists a closed ball of the
radius ρ1, ρ1 ≥ ρ > 0 which contains Ω1. Consider the functions W ′ and %′′ defined
as follows

W ′(x) =
{

0, if |x| ≤ ρ1

V (x), otherwise
(19)

%′′(|x|) =
{

0, if |x| ≤ ρ1

%(|x|), otherwise
(20)

The functions W ′ and %′′ satisfy the following integral inequality

W ′(x(t))−W ′(x(0)) ≤
∫ t

0
−%′′(|x(s)|)ds ≤ 0, (21)

which means that the quantity W ′(x(t)) is bounded for all t ≥ 0. Since the function
W ′ is radially unbounded, one can conclude that x(t) is bounded and therefore exists
for all t ≥ 0. The first part of the lemma is proved.

It has been proved that all the solutions of the closed loop system are bounded,
that is any solution x(t) has values from some compact set for all t ≥ 0. A continuous
scalar function defined on a compact set attains its maximal value in this set. Since
the norm of the right hand side of the closed loop system is a scalar continuous
function we conclude that the right hand side of the closed loop system is bounded,
or, in other words, ẋ(t) is bounded for all t ≥ 0. The function x(t) is differentiable
with respect to time and, hence, continuous, its derivative is bounded and therefore
the function x(t) is uniformly continuous in t.

From (21) it follows that the integral∫ t

0
%′′(|x(s)|)ds

is finite for all t ≥ 0 and all initial conditions x(0). Since the function %′′ is nonneg-
ative this integral converges as t→∞. Now, define a function %′′′(|x|) as follows

%′′′(|x|) =
{

0, if |x| ≤ ρ1

%(|x|)− %(ρ1), otherwise
(22)
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The function %′′′ is continuous in x and nonnegative. At the same time x(t) is
uniformly continuous in t, therefore %′′′(|x(t)|) is uniformly continuous in t. Moreover
the integral ∫ ∞

0
%′′′(|x(t)|)dt

exists and is finite for all initial conditions x(0). To complete the proof we show that
limt→∞|x(t)| ≤ ρ1, or that %′′′(|x(t)|) → 0 as t → ∞. This statement immediately
follows from Barbalat’s lemma.

Lemma 2 (Barbalat) [Popov, 1973] Consider the function ψ : R1 → R1. If ψ is
uniformly continuous and lim

t→∞

∫∞
0 ψ(s)ds exists and is finite then

lim
t→∞

ψ(t) = 0

It is worth mentioning that if the functions Vj , j = 1, . . . , k are differentiable,
i.e. Vj ∈ C1 then, because of the semigroup property of dynamical systems, the
dissipation inequality (18) can be rewritten in the equivalent infinitesemal form

V̇ ≤ −H(x).

In other words for differentiable storage functions the result of the previous lemma
follows from the Yoshizawa theorem [Yoshizawa, 1960].

Corollary 1 Suppose that the systems (14) are Cr-semipassive (r ≥ 0) with radially
unbounded storage functions Vj : Rnj → R+. Then all solutions of the systems (14)
in closed loop with the feedback

uj = −γj1(yj − y1)− γj2(yj − y2)− . . .− γjk(yj − yk) (23)

with γji = γij ≥ 0, exist for all t ≥ 0 and are bounded, that is, the system (14), (23)
is Lagrange stable. Moreover, if the systems (14) are Cr-strictly semipassive (r ≥ 0)
with radially unbounded storage functions Vj : Rnj → R+ then all solutions of the
coupled system (14), (23) exist for all t ≥ 0 and are ultimately bounded, that is, the
system (14), (23) is L-dissipative.

The statement follows from the positive semidefiniteness of the matrix Γ defined
in (15), which means that (17) is satisfied for ρ = ρ1 + . . . + ρk.

It should be noted that the conditions of Lagrange stability and L-dissipativity
for interconnected systems presented in this section require exact knowledge of the
storage functions for each system. In most cases this function can be found as the
total energy of the system, e.g. for some mechanical or electrical systems it can
be easily determined. However, in general this requirement is not constructive. At
the same time for nonlinear systems which are written in the form “linear part
plus nonlinearity” (i.e. in Lur’e form) there exist constructive frequency-domain
conditions for existence of such functions (see, e.g. [Yakubovich, 1973; Tomberg &
Yakubovich, 1986; Leonov et. al., 1996] and references therein). Nevertheless, to
simplify the presentation we will not use the frequency domain approach because all
the storage functions considered below can be easily found.
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5 Diffusion driven oscillations

5.1 An infinite interval of instability

The purpose of this section is to give an explicit construction of diffusively coupled
globally asymptotically stable systems that become oscillatory being interconnected.
We assume that the topology of the interconnection is described by the matrix Γ
defined in Eq. (15) with entries γij as in Definition 5. In this subsection we consider
the case when the zero dynamics for each system is nontrivial. This condition will
be relaxed in the next subsection.

Let A be an n× n matrix, n ≥ 3

A =

(
A11 A12

A21 A22

)

where A11 is an (n−m)× (n−m) matrix, 1 ≤ m ≤ n−2 and the other matrices are
of corresponding dimensions. Let B and C be full rank n ×m and m × n matrices
such that the product CB is a positive definite matrix.

Theorem 2 Assume that the following assumptions hold for matrices A, B and C
as above.
A1 The matrix A is Hurwitz.
A2 The matrix A11 has an even nonzero number of eigenvalues with positive real
parts.
A3 The matrix (CB)−1T where T = (A22 − A21A

−1
11 A12) has no positive real eigen-

values.
Then there exists a C1-function f : Rn → Rn, f(z, y) = col(q(z, y), a(z, y)), where
z ∈ Rn−m, y ∈ Rm, q : Rn−m × Rm → Rn−m, a : Rn−m × Rm → Rm, such that

A11 =
∂q

∂z
(0, 0), A12 =

∂q

∂y
(0, 0), A21 =

∂a

∂z
(0, 0), A11 =

∂a

∂y
(0, 0)

Moreover we have that
1) The system {

ż = q(z, y)
ẏ = a(z, y)

(24)

has a unique globally asymptotically stable equilibrium at the origin.
2) For all γij ≥ 0 the system consisting of k diffusively coupled systems

żj = q(zj, yj)
ẏj = a(zj , yj) + CBuj
uj = −γj1(yj − y1)− γj2(yj − y2)− . . .− γjk(yj − yk)

(25)

is L-dissipative, has the origin as a unique equilibrium and there exists a positive
number γ̄ such that for all γ > γ̄, where γ stands for the maximal eigenvalue of the
matrix Γ (cf. (15)), the closed loop system is Y-oscillatory.

13



First let us clarify the assumptions of the theorem. Assumption A1 allows one
to find a smooth function f : Rn → Rn such that A is the Jacobian of f at zero
and therefore the origin is a locally hyperbolically asymptotically stable equilibrium
of the system ẋ = f(x). Assumption A2 guarantees that the zero dynamics of the
system ẋ = f(x)+Bu, y = Cx is hyperbolically unstable at the origin. Assumption
A3 is required in order to prove that losing stability the origin does not undergo
a bifurcation resulting in the birth of additional equilibria. It is worth to mention
that Assumption A3 cannot be satisfied if the matrix A11 has an odd number of
eigenvalues with positive real parts (This follows from Schur’s decomposition since
Assumption A3 in this case contradicts the stability of the matrix A). Moreover as
we will see further, to become an oscillatory system the origin should lose stability
via a Poincaré-Andronov-Hopf bifurcation which is ensured by Assumptions A2 and
A3.

We begin to prove the theorem with a preliminary result which immediately
follows from the Inertia theorem due to O. Taussky [1961].

Lemma 3 For any n× n matrix A which has no eigenvalues on the imaginary axis
and for any negative definite matrix N = N> < 0 there exists an n × n symmetric
nonsingular matrix P which satisfies

A>P + PA = N (26)

and the number of positive eigenvalues of P coincides with the number of eigenvalues
of A with negative real parts and the number of negative eigenvalues of P coincides
with the number of eigenvalues of A with positive real parts. Conversely, if (26) holds
for some symmetric P and symmetric negative definite N then A has no eigenvalues
on the imaginary axis.

Proof of Theorem 2: Let x = col(z, y), x ∈ Rn. Consider the function
φ : Rn → Rn, defined as φ(x) = col(φz(z), φy(y)), where φz : Rn → Rn−m,
φy : Rn → Rm and

φz(z, y) = z(1 + |z|2 + |y|2), φy(z, y) = y(1 + |z|2 + |y|2)

Denote

q(z, y) = A11φz(z, y) + A12φy(z, y)

a(z, y) = A21φz(z, y) + A22φy(z, y)

First we prove that the system
ẋ = f(x) (27)

is globally asymptotically stable. Consider the following Lyapunov function candi-
date

V (x) = x>Rx (28)

14



where R = R> > 0 is a positive definite solution of the following Lyapunov equation

A>R + RA = −In

which is solvable because of Assumption A1. The time derivative of (28) with respect
to (27) satisfies

V̇ (x) = −|x|2(1 + |x|2).
It is clear that V̇ is negative definite and hence the system (27) has a unique globally
asymptotically stable equilibrium at the origin.

Now we should prove that the system consisting of k diffusively coupled systems
(25) is Y-oscillatory for sufficiently large γ. To this end we will show that the closed
loop system is L-dissipative (step 1), it has a unique equilibrium for all γ ≥ 0 (step
3) which loses its stability for sufficiently large γ (step 2).

Step 1. First let us prove that all solutions of the closed loop system are ultimately
bounded for all γij ≥ 0. It is quite clear that the system

ẋj = f(xj) + Bu (29)

is strictly semipassive with respect to input u and output h(xj) = 2B>Rxj . Indeed,
differentiating (28) with respect to (29) we have

V̇ = −|xj |2(1 + |xj |2) + 2x>j RBu = −|xj |2(1 + |xj |2) + h(xj)
>u

and therefore the dissipation inequality holds with H(xj) = |xj |2(1 + |xj|2) ≥ 0.
It is also easy to notice that the conditions of the Lemma 1 are satisfied since the

growth rate of the function |xj|2(1 + |xj|2) is as |xj |4 while the output h(xj) with
respect to which each subsystem is semipassive is linear in xj . Therefore the closed
loop system is L-dissipative.

Step 2. The next step is to prove that for sufficiently large γ the origin of the
closed loop system loses its stability. According to Assumption A2 the matrix A11

has no eigenvalues on the imaginary axis and has eigenvalues with positive real parts.
Therefore by virtue of Lemma 3 there exists a symmetric nonsingular indefinite or
negative definite (n−m)× (n−m) matrix P = P> which satisfies A>11P +PA11 < 0.

The matrix Γ is symmetric and hence diagonizable via a similarity transformation.
Therefore using the block diagonal structure of the closed loop system its linearization
about origin can be rewritten after some suitable linear coordinate transformation
in the following form {

˙̂zj = A11ẑj + A12ŷj
˙̂yj = A21ẑj + A22ŷj − γ̂jCBŷj

(30)

where x̂j = col(ẑj , ŷj) ∈ Rn, j = 1, . . . , k and γ̂j stands for one of k eigenvalues of
the matrix Γ. Indeed the linearized system can be rewritten in the form

ẋ = (Ik ⊗ A)x− (Γ⊗D)x (31)

where x ∈ Rkn, x = col(z1, y1, . . . , zk, yk), D is the following n× n matrix

D =

(
0 0
0 CB

)

15



and the operation ‘⊗’ is the Kronecker product (see Sec. 2). Now, using the coor-
dinate transformation x̂ = (M ⊗ In)x, where M is a nonsingular orthogonal matrix
such that Γ = MΓ0M

−1, Γ0 = diag(γ̂1, . . . , γ̂k) we immediately obtain (30). Notice
that since the matrix Γ is singular there is at least one zero among its eigenvalues.

Fix the largest eigenvalue γ̂j = γ and the corresponding index j. We will study
how the origin loses stability when the largest eigenvalue which will be considered as
an increasing bifurcation parameter. Consider the following quadratic form

V (x̂j) = x̂>j Qx̂j

where

Q =

(
P 0
0 Im

)
(32)

It is clear that Q is symmetric, nonsingular and indefinite. The time derivative of V
with respect to solutions of the system (30) satisfies

V̇ (x̂j) = ẑ>j (A>11P + PA11)ẑj + 2ẑ>j PA12ŷj

+2ŷ>j A21ẑj + ŷ>j (A>22 + A22)ŷj

−2γŷ>j CBŷj

≤ 2
(
−δ|ẑj |2 + α1|ẑj ||ŷj|+ α2|ŷj|2 − γβ|ŷj|2

)
(33)

where δ > 0 is the smallest eigenvalue of the matrix −(A>11P + PA11)/2, α1 =
|PA12 + A>21|, α2 is the largest eigenvalue of the matrix (A>22 + A22)/2, β > 0 is the
smallest eigenvalue of the matrix CB. Now it is clear that if

γ >
α2

1

4δ
+ α2 (34)

then the time derivative of V becomes negative definite. Since the matrix Q is
indefinite by virtue of Lemma 3 one can conclude that the subsystem (30) which
corresponds to the largest eigenvalue of the matrix Γ has a hyperbolically unstable
zero solution. Due to the block diagonal form of the system (30) this implies in turn
that the linearized closed loop system has an unstable zero solution and therefore
the closed loop system also has a hyperbolically unstable zero solution for sufficiently
large γ. Moreover, if γij = λ > 0 for all i = 1, . . . , k, j = 1, . . . , k the eigenvalues
of the matrix Γ are the following numbers {0, kλ, kλ, . . . , kλ} and therefore as k
increases the bound of the gain which ensures destabilization decays at least as k−1.

It is worth mentioning that the estimate (34) can be quite conservative and can
be sharpened. However what is crucial for our study is that there exists a threshold
value for γ which ensures instability for all γ ≥ γ̄.

Step 3. To complete the proof we need to show that for all γij ≥ 0 the closed loop
system has a unique equilibrium point. The closed loop system can be rewritten in
the form

ẋ = (Ik ⊗A)ψ(x)− (Γ⊗D)x (35)

where ψ(x) = col(x1(1 + |x1|2), . . . , xk(1 + |xk|2)), x = col(x1, . . . , xk) ∈ Rkn.
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Notice that if the matrix
S ⊗ A− Γ⊗D (36)

for all γij ≥ 0 and arbitrary diagonal k × k matrix S with entries greater or equal
to one, is nonsingular then the system (35) has a unique equilibrium. We can think
of the diagonal entries of S as replacements for 1 + |xj|2 and use the inequality
1 + |xj |2 ≥ 1. The matrix (36) is nonsingular if and only if the following matrix is
nonsingular as well

Ik ⊗ A− S−1/2ΓS−1/2 ⊗D (37)

The matrix S−1/2ΓS−1/2 is symmetric and positive semidefinite and therefore it is
diagonizable via orthogonal transformation. Let M be an orthogonal matrix such
that Γ0 = MS−1/2ΓS−1/2M> is a diagonal matrix. Notice that

(M ⊗ In)(Ik ⊗A− S−1/2ΓS−1/2 ⊗D)(M> ⊗ In) = Ik ⊗ A− Γ0 ⊗D

Since |S−1/2| ≤ 1 all eigenvalues of Γ0 are nonnegative and less or equal to γ. Thus
the matrix (37) is nonsingular for all γ if and only if the matrix

Aµ =

(
A11 A12

A21 A22 − µCB

)
(38)

is nonsingular for all nonnegative µ. The matrix A is nonsingular by hypotheses. In
view of Assumption A2 the matrix A11 is nonsingular, therefore

det Aµ = det A11 det(T − µCB),

with T = A22−A21A
−1
11 A12. Notice that det(T−µCB) 6= 0 for positive µ if the matrix

(CB)−1T has no positive real eigenvalues which is the case due to Assumption A3.
Therefore the closed loop system for arbitrary γij ≥ 0 has a unique equilibrium at
the origin.

Notice that we required so far that n ≥ 3. Actually this is in a sense also necessary
as one can see next.

Proposition 1 Consider a locally Lipschitz continuous function f : Rn → Rn,
f(x) = −f(−x) such that

i. The system ẋ = f(x) has a globally hyperbolically stable zero solution.

ii. The closed loop system {
ẋ1 = f(x1) + B(x2 − x1)
ẋ2 = f(x2) + B(x1 − x2)

(39)

where B is similar to a positive semidefinite n× n matrix, is Y-oscillatory and
has a unique zero equilibrium.

Then necessarily n ≥ 3.
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Proof: Consider the set Ω = {x1, x2 ∈ Rn : x1 + x2 = 0}. Notice that
the hyperbolic stability of the zero equilibrium of the system ẋ = f(x) implies that
the set Ω (clearly, it is invariant) is at least locally attractive and attracts solutions
starting from a nonzero measure set. Assume that n = 2 (the case n = 1 is trivial).
Then Ω is a two dimensional plane containing origin. The closed loop system is
Y-oscillatory and according to the Poincaré-Bendixon theorem it contains a closed
trajectory which corresponds to some nontrivial periodic solution of the closed loop
system with initial conditions from Ω. The index of the closed orbit is +1 and equals
to the sum of the indices of the fixed points within it. Therefore the index of the
unique equilibrium of the closed loop system (39) with the dynamics constrained to
the set Ω is +1. It is not difficult to see that the dynamics of the closed loop system
on the invariant set x1 = −x2 is described by the following equation

ẋ = f(x)− 2Bx

where x is written in some coordinate system on Ω. Let A = ∂f (0)/∂x. The matrix
A is Hurwitz and therefore trA < 0. Since B is positive semidefinite, trB > 0 and
hence tr(A− 2B) < 0. The index of the zero equilibrium is +1, therefore it is either
a sink, or a source or a center. Since tr(A− 2B) < 0 it must be a sink, or in other
words, it is locally asymptotically stable. However this contradicts the fact that the
closed loop system is Y-oscillatory. Therefore n ≥ 3.

It is worth mentioning that the assumption f(x) = −f(−x) is not restrictive in
the general case. Indeed, suppose B = γB0, where γ > 0 and let us study how the
origin loses its stability when γ increases. From the proof of the previous theorem
it follows that the origin loses stability when some of the eigenvalues of the matrix
A − 2γB0 cross the imaginary axis. This follows from the fact that Ω is a locally
invariant manifold, i.e. in the vicinity of the origin. The origin can lose stability via
one of the following bifurcations: saddle-node, pitchfork, transcritical or Poincaré-
Andronov-Hopf We will not consider singularities of codimension greater than 1
because in this case they can be avoided by arbitrary small continuous perturbations
in the right hand side. As a result of the first two bifurcations, the system gains
an additional asymptotically stable equilibrium and we have a contradiction. If
the origin undergoes a transcritical bifurcation, to retain all trajectories bounded
the system must gain some minimal compact invariant set distinct from the origin
exactly when γ is equal to the bifurcation value. This situation is not possible in the
general case since, according to Thom’s transversality theorem (see [Arnold, 1983]),
for a parametrized smooth vector field defined on a compact set all bifurcation points
are isolated. Note that here “in the general case” means that such vector fields form
a dense set in the set of all parametrized smooth vector fields. Therefore to become
an oscillatory system its origin should lose stability via a Poincaré-Andronov-Hopf
bifurcation. Now n = 2 contradicts tr(A− 2γB0) < 0.
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5.2 Finite interval of instability

As we have seen the analysis of oscillatory diffusively coupled systems consists of
two parts: analysis of boundedness of solutions of interconnected systems and local
stability analysis of existing equilibria. A solution of the first problem can be obtained
with the results of Section 4. To solve the second problem in the previous theorem we
made a crucial assumption about instability of the zero dynamics (assumption A2).
So, one may wonder how restrictive this assumption is for the analysis of diffusively
coupled systems. At first glance this assumption is quite restrictive. Indeed, in the
example proposed by Smale the matrix CB has rank n and therefore the system
(25) has trivial zero dynamics. It motivates our subsequent study. First we show
that Smale’s understanding of diffusive coupling is equivalent to our definition. Our
definition includes Smale’s problem as a special case, therefore to show equivalence
between them we need to prove that a solution to the problem posed in this paper
implies existence of solution to the Smale problem. This fact will be established
using the next theorem. Second we will relax the conditions imposed on the zero
dynamics system.

Theorem 3 Assume that there exists an n × n matrix D such that D is singular
and is similar to a positive semidefinite matrix and the zero equilibrium of the system
ẋ = (A−D)x is hyperbolically unstable. Then there exists a positive definite matrix
B such that ẋ = (A − B)x is hyperbolically unstable and the number of positive
eigenvalues of A− B coincides with the number of positive eigenvalues of A−D.

Proof: Without loss of generality we can assume that

D =

(
0 0
0 D1

)

where D1 is a matrix with positive diagonal entries. Then, using the hyperbolic
instability of A − D we can complete D to a full rank diagonal matrix replacing
diagonal zeros with some sufficiently small positive numbers. Indeed from Lemma
3 it follows that there exists negative definite or nonsingular indefinite symmetric
matrix P such that

(A−D)>P + P (A−D)− 2εP < 0

for sufficiently small ε > 0. In other words, the matrix A − B, where B = D + εIn
has the same number of positive eigenvalues as A−D for sufficiently small ε.

Now we can describe a possible way in which the systems become oscillatory
via diffusion. First of all consider the case when each free system has some inherent
unstable dynamics (with a linearization determined by the matrix A11 as in Theorem
2). Then, if the largest eigenvalue of the matrix Γ which describes the interconnection
topology exceeds some threshold value, the origin of the system loses its stability.
Two possible scenarios can occur in general. If for this bifurcation value the linearized
system has a zero eigenvalue (the Jacobi matrix is singular) then as a result of
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bifurcation the system possesses additional stable equilibrium(ia) and no oscillations
occur. The second scenario takes place if for the critical value of γ the Jacobi matrix is
nonsingular, which corresponds to a pair(s) of purely nonzero imaginary eigenvalues
of the linearized system. Then according to the Implicit Function Theorem the
additional equilibrium cannot bifurcate from the origin and therefore the diffusively
coupled systems exhibit oscillatory behavior. Notice that the condition that the
zero dynamics has only an even number of eigenvalues with positive real parts is a
sufficient condition that the Jacobi matrix of the linearized system is nonsingular
for all γ > 0, i.e. when γ belongs to infinite interval. If we are interested in the
interconnection analysis when γ lies in a certain range, this condition can be relaxed.
However, it is crucial that the zero dynamics cannot have one real positive eigenvalue
because in this case the origin cannot lose stability via a Poincaré-Andronov-Hopf
bifurcation.

Now we present a result guaranteering existence of oscillatory behavior in the
diffusively coupled systems in case when the largest eigenvalue γ > 0 of the matrix
Γ is not greater than some limit value γ0.

Theorem 4 Suppose that n×m and m×n, m ≤ n matrices B and C are such that
CB is similar to a positive definite matrix. Assume that
A1. The n× n matrix A is Hurwitz.
A2. There exists 0 < γ1 ≤ γ0 such that for all γ ∈ [γ1, γ0] the matrix A − γBC
has at least two eigenvalues with positive real parts and the matrix Γ has at least one
eigenvalue in the region [γ1, γ0].
A3. The matrix A−1BC has no real eigenvalues in the region [γ−1

0 ,∞).
Then there exist a function f : Rn → Rn such that

A =
∂f

∂x
(0)

and
1) The system ẋ = f(x) has a unique globally asymptotically stable equilibrium at the
origin.
2) The system consisting of k diffusively coupled systems, j = 1, . . . , k

xj = f(xj) + Buj
yj = Cxj
uj = −γj1(yj − y1)− γj2(yj − y2)− . . .− γjk(yj − yk)

is L-dissipative, has a unique equilibrium and is Y-oscillatory.

Proof: As an example of the function f take f(x) = Ax(1 + |x|2). The
statement 1 and L-dissipativity of the coupled systems can be proven in the same
way as in the proof of Theorem 2. Assumption A2 implies instability of the origin of
the coupled systems. According to Theorem 1 it is sufficient to show that the whole
system has a unique equilibrium. Then similarly to the proof of Step 3 of Theorem
2 we need to show that the matrix A− γBC is nonsingular for all γ ∈ [0, γ0). This
fact immediately follows from Assumption A3.
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As one can see conditions imposed in Theorems 2 and 4 ensure that the trivial
solution of the coupled systems undergoes a Poincaré-Andronov-Hopf bifurcation for
some critical value of γ. In the proof the cubic type nonlinearity we chose, guarantees
that this bifurcation is a global bifurcation. So one may wonder whether the cubic
nonlinearity is crucial to guarantee oscillations. The answer is negative. As soon as
the local behavior of the nonlinearity is described by the conditions of the theorems
its global behavior should ensure 1) ultimate boundedness of solutions of coupled
systems and 2) uniqueness of the system equilibrium. A solution to the first problem
can be derived from the results of section 4.

When parameters change a parametrized system with a unique equilibrium can
possess an extra equilibrium in two ways. It can bifurcate from the existing equilib-
rium and it can appear far from this equilibrium. The nonlinearity we chose guar-
antees only the first way which significantly simplifies the proofs and allows us to
concentrate on the local behavior of the coupled systems. So in general the condition
we presented are local and not sufficient, although they give a good understanding
of the mechanism to bring about oscillations via diffusion. Now let us briefly sketch
a way to solve problem 2 for general systems. A region in the state space where the
graph of nonlinearity lies can be described for example by a set of linear constraints.
Therefore for the class of nonlinearities satisfying these constraints the system has
the unique equilibrium if and only if the set of linear strict and nonstrict enequalities
has no solutions. This problem can be easily solved by linear programming.

It is worth mentioning that the methodology presented for analysis of diffusively
coupled systems can be extended to the case of multiple equilibria. However, in this
case the complexity to check all conditions increases with the number of equilibria.
Nevertheless in such systems it is possible to observe a quite interesting phenomenon
when the coupled systems exhibit chaotic oscillations [Kocarev & Janić, 1995].

6 An example

As an example we design a third order globally asymptotically stable system such that
a diffusive interconnection between two such systems results in oscillatory behavior.
One of the problems posed in [Smale, 1976] was to find an example of minimal order
of such systems. S. Smale proposed an example of the 4th order. We will design
an example of the 3rd order which is a minimal order for diffusively interconnected
systems with oscillatory behavior and unique equilibrium. Therefore this example
solves one of the problems posed in [Smale, 1976].

Choose any stable nonminimum phase transfer function of 3rd order and relative
degree one with a numenator having two eigenvalues with positive real parts. Take
for example

W (s) =
s2 − s + 1

s3 + 2s2 + 2s + 1
(40)
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Its state space representation can be written in the following form{
ẋ = Ax + Bu
y = Cx

with

A =

 1 −1 1
1 0 0
−4 2 −3

 , B =

 0
0
1

 , C = ( 0 0 1 ).

Notice that the eigenvalues of the 2× 2 left upper submatrix of the matrix A co-
incide with the zeros of the transfer function (40), moreover as required in Definition
5 the matrix CB, which is a scalar in this case, is positive definite.

Now consider the following system{
ẋ1 = Ax1(1 + |x1|2) + γBC(x2 − x1)
ẋ2 = Ax2(1 + |x2|2) + γBC(x1 − x2)

where x1, x2 ∈ R3 and γ is a positive number. It is not difficult to calculate that for
γ = 0.6512 the origin of the system undergoes a Poincaré-Andronov-Hopf bifurcation
which, according to Theorem 2, results in oscillatory behavior of the interconnected
system for all γ > 0.6512. Computer simulations are presented in figures 2 (for
γ = 0.5) and 3 (for γ = 1). In the example CB = 1, however, according to Theorem
3 it is possible to design a system with the same properties for rankCB = 2 or 3. In
Fig. 4 we plotted how the eigenvalues of the linearization of the closed loop system
change when γ varies from 0 to 2. It is seen that for some value of γ, γ = 0.6512, a pair
of eigenvalues crosses the imaginary axis. The linearized system has 6 eigenvalues,
three of them are changing with γ and the rest three remain unchanged because the
closed loop system has the invariant set x1 = −x2 which does not depend on γ.

As a simple exersize we propose to prove that for n = 3 the matrices A, B, C
can be chosen as the state representation of arbitrary single-input-single-output sta-
ble nonminimum phase system of relative degree 1 whose zero dynamics has only
eigenvalues with positive real parts.

7 Conclusion

In the paper we presented conditions guaranteering existence of oscillatory behavior
in diffusively coupled systems while each isolated system is globally asymptotically
stable. A motivation for our study was the problem posed by Smale [1976]. He wrote:
“There is a paradoxical aspect to the example. One has two dead (mathematically
dead) cells interacting by a diffusion process which has a tendency in itself to equalize
the concentrations. Yet in interaction, a state continues to pulse indefinitely”. From
a control theory point of view diffusion is an analog for negative feedback and it is well
known that a negative feedback is not always stabilizing and it can even destabilize
a stable system (e.g. nonminimum phase). Therefore, for control theorists the result
should not be so surprising although some work should have to be been done. Indeed,
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Figure 2: γ = 0.5

losing stability at the origin the diffusively coupled systems may gain an additional
equilibrium and there need not to be oscillations. However if at the bifurcation point
the Jacobian of the system is nonsingular, then according to the Implicit Function
Theorem no additional equilibria bifurcate from the origin. Also additional conditions
should be imposed to guarantee that the bifurcation resulting in oscillatory behavior
is global. Moreover we have seen that to exhibit an oscillatory behavior after coupling,
each system alone has an unstable dynamics consistent with some external state
constraint. Thus if one accepted Smale’s terminology that stability is death while
instability is life he would say that each cell by itself can not be totally dead.

From the proof of Theorem 2 one can make some important observations. First
it has been shown that if all γij are equal to each other then the gain which en-
sures destabilization decreases with the growth of the number of interacting systems.
Therefore the number of interacting systems can be considered as a bifurcation pa-
rameter. In other words, it is possible to create an oscillatory behavior in the colony
of living cells if we add into the colony an additional cell which diffusively interacts
to the other cells. Moreover in the diffusive medium consisting of diffusively coupled
systems it is possible to observe locally generated spatial phenomena. Indeed, we
have shown that the interconnected systems will exhibit an oscillatory behavior if the
largest eigenvalue of the matrix Γ exceeds some threshold bifurcation value. There-
fore the local changes in one parameter γij which describes connection between ith
and jth cells can result in propagation of oscillatory behavior through the whole dif-
fusive medium. With this in mind it is interesting to notice that the real living cells
have an ability to control diffusion between them. This control involves such pro-
cesses as facilitated diffusion, active transport and transport through coupled channel
(see [Raven & Johnson, 1992]). So, perhaps, an abstract mathematical approach will
allow us to understand better what is going on in biological systems.
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Figure 3: γ = 1
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