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Abstract Typical approach to non-integer order filtering consists of analogue design

and implementation. Digital realization of non-integer order systems is susceptible

to problems such as infinite memory requirement and sensitivity to numerical errors.

The aim of this paper is to present two efficient methods for digital realization of non-

integer order filters: discrete time-domain Oustaloup approximation and Laguerre

impulse response approximation. Properties of both methods are investigated with use

of non-integer low-pass filter. Filters realized with presented methods are then used

for filtering of EEG signal. Paper concludes with discussion of merits and flaws of

both methods.
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1 Introduction

Non-integer (fractional) order systems are a rapidly growing field of interest for both

mathematicians and engineers. One of the intensively analyzed aspects of this domain

is non-integer order filters. One can observe that the theory of such filters is relatively

well grounded; however, many problems of implementation are still open. A need for

efficient implementation is obvious as potential applications are numerous in areas

such as telecommunication, biomedical engineering, control and many others.

In this paper, the authors focus on efficient methods of creating discrete realiza-

tions of filters that do not have the burden of infinite memory and provide good

representation of non-integer order filter frequency characteristics. In order to do so,

two methods are proposed resulting in approximations in the form of discrete state-

space systems. These methods are discrete time-domain Oustaloup approximation and

Laguerre impulse response approximation (LIRA).

The problem of approximating the non-integer order system with an integer order

one is being analyzed from many years. Most popular approaches are based on using

Oustaloup transfer function approximation or Continuous Fraction Expansion (CFE)

in the domain of transfer functions. Both of these methods were used for approximating

integrators. The problem is that Oustaloup method is very sensitive to high discretiza-

tion frequencies and rounding errors. It was observed in earlier authors’ works [7]

that it can become destabilized very easily. On the other hand, CFE method shows

inferior quality in frequency characteristic representation [25]. Detailed analysis of

CFE approximation in discrete time can be found in [12,44,45].

The first method used in this article, the Oustaloup method, is used in the literature in

two different, yet equivalent, versions. The original approach, developed by Oustaloup

[26,27], is based on approximation of fractional systems in frequency domain. This

approach is widely used, e.g., [11,22,25,32] and many others. However, this method

has some flaws which cannot be neglected—when discretized, it does not guarantee

stability of the system (the poles of discrete system are outside unit circle) (see, e.g.,

[30]). In order to avoid, i.e., numerical issues induced by this method, another kind of

approximation was proposed—instead of transfer function, the state-space approach is

considered. State-space realization of Oustaloup transfer function was considered in,

e.g., [23,36,39,40]; however, its discrete properties were not considered in this context.

In this paper, the method from [7] is used. This approach allows avoiding numerical

problems observed in practical realization. The proposed approach is to realize every

block of the transfer function in form of a state-space system. Those first-order systems

will be then collected in a single matrix resulting in full matrix realization. The results

were first presented in authors’ earlier works [7] and [6]. This approach proved to be

more robust to different discretization schemes. The superiority of this approach was

then validated with real-time control experiments—magnetic levitation control [10]

and air heater control [9].

The other method considered in this paper, Laguerre impulse response approxima-

tion (LIRA), chosen by authors to analyze fractional filters uses approximation with

(orthonormal) Laguerre functions. Some works, concerning this type of approxima-

tion, are, e.g., [3,24]. The authors’ approach was developed independently in [5]. It

introduces substantial improvements such as L1 convergence, estimation of approx-
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imation error and choice of optimal approximation basis. For examples of use, see

[46–48].

The most important results on non-integer order filters come from analog filtering

theory. In [34], Radwan et al. generalize standard second-order filters. In particular,

they analyze filters of various characteristics (i.e., low pass, high pass, band pass,

notch) constructed using two fractional-order capacitors of order α. In [2], Soltan Ali

et al. describe a transformation of Butterworth filter to non-integer order domain. They

present both analytical and numerical results combined with Advanced Design System

simulation. The result was a filter with more degrees of freedom than classical filter

and therefore with better design flexibility. In [17], Freeborn et al. presented fractional

two-step Tow-Thomas biquad filter. They used an approximation of fractional-order

capacitors in form of integer order transfer function. The results for low-pass and

asymmetric band-pass filters are verified both with MATLAB and PSPICE, and with

physical experiments using non-integer order capacitors. Another example of second-

order filter generalization was described by Tripathy et al. [42]. Unlike earlier works,

this paper uses two fractional-order capacitors with different orders. Experimental

results were also compared with simulation (MATLAB, PSPICE), along with some

analysis concerning stability of the filter and its sensitivity. In [35], the non-integer

RLC filter is considered. The authors, A. G. Radwan and M. E. Fouda, use a gradient-

based optimization technique to find optimal parameters in the frequency domain. They

describe the performance of such filters along with some new issues which need resolv-

ing when designing non-integer order filters. Important results come from attempts to

directly implement the non-integer order filters. For example, in [33], we can find an

analysis of non-integer order oscillators. Radwan et al. derive there the Barkhausen

condition for non-integer order system to oscillate. They also verify numerically the

results as examples taking, i.e., Wien oscillator, Colpitts oscillator and phase-shift

oscillator. In [1], we see new techniques for implementing continuous-time second-

order band-pass filters with high-quality factors and asymmetric slopes using multiple

amplifier biquads and frequency-dependent negative resistor. Ahmadi et al. present

there four possible realizations of the filters: one based on a frequency-dependent nega-

tive resistor (FDNR), another based on an inductor and two based on multiple amplifier

biquads (MABs). In [41], there are another examples of design and implementation

of fractional-order filters, along with performance analysis—in both simulation and

experiment. This research stated clearly the superiority of non-integer order systems

over classical systems. Tsirimokou et al [43] analyzed the behavior of so-called com-

panding filters in low-voltage environment also using alternative domain, sinh instead

of classic log-one. In [16], Freeborn et al. propose the use of field-programmable ana-

logue array hardware to implement an approximated fractional step transfer function.

They compare the experimental results with simulation performed in MATLAB. In

order to implement the filters, they approximate the fractional operator sα with integer

order transfer function.

Another approach consists of designing non-integer order filters directly in discrete

domain. For example, in Stanislawski et al. [37,38] use Grünwald-Letnikow difference

to design discrete filters. Another proposition of non-integer order discrete filter can

be found in [13].
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Main contribution of this paper is the use of efficient and numerically robust meth-

ods for implementation of non-integer order filters. The methods use the state-space

formalism allowing easy implementation in the form of both MATLAB/Simulink

blocks and direct coding. Methods have different underlying principles which allow

covering wider area of filters allowing choice of proper method for appropriate task.

Both methods allow very fast sampling frequencies without loss of stability. Methods

are illustrated with use of low- pass generalization of classical second-order filter (also

known as bi-fractional filter).

Rest of the paper is organized as follows. Firstly, certain preliminaries are presented,

containing definitions and properties of necessary elements. This section includes also

a brief description of analyzed filter, along with certain results on its stability and gen-

eral remarks on discrete filter realization. Next, the first of considered methods is

presented, the Oustaloup method, and general discussion on its digital implementa-

tions is given, including the description of some issues observed during discretization.

The next section provides theoretical background for another method used for approx-

imation based on impulse response of analyzed filter. Then, these two methods are

compared basing on proposed performance indicator in H∞ space. As an example of

implementation, the results of filtering an EEG signal are presented. Paper ends with

conclusions and some propositions on further works.

Remark 1 In this paper, we will use the following notation: Scalars will be marked

with lowercase slanted letters (e.g., α ∈ R); vectors with lowercase bold-upright (e.g.,

x ∈ Rn) and matrices with uppercase bold-upright (e.g., A ∈ Rn×n).

2 Preliminaries

This section includes some theoretical preliminaries of the paper. In particular, neces-

sary definitions of non-integer derivatives and function spaces are given.

Also the filter used to illustrate the operation of considered methods is described.

Finally, general considerations regarding discrete realization of non-integer order fil-

ters are presented.

2.1 Non-integer Order Calculus

There are at least three widely used definitions of non-integer order derivatives [31].

In this paper, we will use the Caputo derivative of order α:

C
0 Dα

t f (x) = 1

Γ (n − α)

t
∫

0

f (n)(τ )dτ

(t − τα+1−n)
(1)

where Γ (·) denotes the gamma function

Γ (t) =
∞

∫

0

x t−1e−x dx . (2)
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Another definition is useful for practical and numerical implementations—

Grünwald-Letnikow definition of fractional derivative of order α

GL
0 Dα

h f (x) = lim
h→0

1

hα

∑

0≤m<∞
(−1m)

(

α

m

)

f (x − mh) (3)

It should be noted that Caputo and Grünwald-Letnikow derivatives used in non-integer

differential equations give the same results only for 0 initial conditions. The third

popular definition—Riemann-Liouville—is not used in this paper, and it is, however,

equivalent to Grünwald-Letnikov one.

Also we will denote by L1 the Banach space of absolute integrable functions, and

by L2 the Hilbert space of square integrable functions with scalar product

〈x |y〉 =
∞

∫

0

x(θ)y(θ)dθ (4)

and norm ‖x‖2
2 = 〈x |x〉. Additionally, H∞ will denote Hardy space of bounded

holomorphic functions, with the norm

‖x‖∞ = sup
ω

|x( jω)| (5)

2.2 Non-integer Low-Pass Filter

In their celebrated paper [34], Radwan et al. have presented a non-integer generaliza-

tion of classical second-order filter section. In this paper, we focus on the low-pass

variant (known also as bi-fractional filter). Such filters are a class of non-integer filters

fully characterized by three parameters, α, ξ and ω0, and are given by the following

transfer function

G(s) =
ω2

0

s2α + 2ξω0sα + ω2
0

(6)

Equivalent representation of (6) is the realization in the form of a system of differ-

ential equations of order α. This system can take form (see [19])

C
0 Dα

t x(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
(7)

with the following matrices

A =
[

0 1

−ω2
0 −2ξω0

]

B =
[

0

1

]

C =
[

ω2
0 0

]

(8)
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Fig. 1 Block diagram

realization of (7)

and zero initial conditions x(0) = 0 ∈ R2. This system can be realized with non-

integer order integrators as in Fig. 1. The conditions for stability of filter (6) are

presented in Theorem 1.

Theorem 1 System in the form (6) or (7)-(8) for α ∈ (0, 1) is asymptotically stable

if and only if one of the following conditions holds

1. 2ξω0 ≥ 0

2. 2ξω0 < 0 and ξ > τ 2−1
τ 2+1

where τ = tan απ
4

Proof Proof can be found in [29]. ⊓⊔

2.3 Discrete Realization of Non-integer Order Filters

In order to implement filters digitally, one needs to take under consideration that

non-integer order systems have infinite memory. Their natural discrete realization

in the form of Grünwald-Letnikov derivative is not available as it would fill any

computer’s memory. Grünwald-Letnikov derivative can be, however, used for filter-

ing of finite length signals, e.g., in post-processing. It can be done using numerical

method proposed in [28] based on Grünwald-Letnikov derivative (3) in the following

form

x(t) = (I − hαA)−1

(

hαBu(t) −
p

∑

k=1

ckx(t − kh)

)

(9)

h = T/m, t = ph, p = 0, 1, . . . , m (10)

ck = (−1)k

(

α

k

)

, k = 1, 2, . . . , m (11)

u f (t) = Cx(t) (12)

where u(t) is the original signal and u f (t) is the filtered signal. This direct approach

will be used in this paper as a comparison with proposed approximations which are

presented in the following sections.
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3 Oustaloup Approximation

In this section, we will present well-known Oustaloup approximation, problems with

its direct discretization and proposed time-domain realization.

3.1 Continuous Oustaloup Approximation

Continuous Oustaloup filter approximation to a fractional-order differentiator G(s) =
sα is widely used in applications [25]. An Oustaloup filter can be designed as

G(s) = K

N
∏

i=1

s + ω′
i

s + ωi

(13)

where:
ω′

i = ωbω
(2i−1−α)/N
u

ωi = ωbω
(2i−1+α)/N
u

K = ωα
h

ωu =
√

ωh

ωb

(14)

Approximation is designed for frequencies ω ∈ [ωb, ωh], and N denotes the order

of the approximation. As it can be seen, its representation takes form of a product

of a series of stable first-order linear systems. As one can observe, choosing a wide

band of approximation results in large ωu and high-order N results in spacing of

poles from close to −ωh to those very close to −ωb. This spacing is logarithmic with a

grouping near −ωb and causes problems in discretization. Wide band of approximation

is desirable, because approximation behaves the best in the interior of the interval and

not at its boundary, so certain margins need to be kept.

3.2 Direct Discretization of Transfer Function

In applications, especially when using MATLAB/Simulink environment for real-time

control or filtering, two methods of direct implementation of continuous-time systems

are established:

1. Use them as continuous blocks in Simulink, then use a fixed step explicit solver

(e.g., RK4) to evaluate blocks in real time.

2. Create discrete transfer functions using some discretization scheme—usually

Tustin because it should preserve stability.

The problem with first approach that uses explicit solvers for Oustaloup filters

comes from the fastest pole (see [4]) of the transfer function. If the band of approxi-

mation is wide, and includes high frequencies, this pole can be located very far to the

left of complex plane. It can be observed (see [18]) that Runge–Kutta-type algorithms

preserve stability of linear differential equation for such eigenvalues λ and discretiza-

tion step T that stability function of the algorithm R(T λ) is less than one. For classical

Runge–Kutta algorithm, the stability function is
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Fig. 2 Poles of discrete system obtained with Tustin approximation and Oustaloup approximation (in

frequency domain) of order 20

R(z) = 1 + z + 1

2
z2 + 1

6
z3 + 1

24
z4 (15)

That means that forλ ∈ R, T λmust belong to interval (−2.785293..., 0). In considered

case and wide bands, the sampling frequency must be at least relatively close to the

upper end of the approximation band, which can lead to errors in approximation of

frequency characteristics near the Nyquist frequency.

Problems with the second approach come from different reasons. Poles of continu-

ous transfer function have a tendency to group near 0 (especially when lower frequency

is small). Those poles will be mapped close to 1 during discretization. In that case,

when discretizing every pole separately, denominator of the entire system will include

a group of discrete poles similar to (z − 1 + εi )(z − 1 + εi+1)(z − 1 + εi+2) . . . where

εi > 0 are distances of the pole from stability boundary (point (−1, j0) on complex

plane) and they are usually very small (orders of magnitude from 10−4 to 10−9 are not

uncommon). In that case, final denominator will include numbers that will be products

of εi with each other, resulting in numbers close to, or below 2.22 · 10−16 which is a

smallest number that can be added to another in MATLAB (so-called machine epsilon;

in different computation systems, the number is of similar magnitude). It results in

rounding error, which high sensitivity of polynomial roots to coefficient values leads to

instability. These rounding errors are unavoidable, even when substituting to analytical

formulas.

This phenomenon can be observed for example for approximation of order N = 20.

Rounding errors cause Tustin approximation to map real stable poles into complex

unstable poles (see Fig. 2).
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3.3 Time-Domain Realization

This method was developed in order to counteract the rounding errors present when

discretizing the Oustaloup transfer function.

One can easily observe that for zero initial condition

s + ω′
k

s + ωK

⇐⇒
{

ẋk = Ak xk + Bkuk

yk = xk + uk

where

Ak = − ωk, Bk = ω′
k − ωk (16)

Because of that (13) can be written in vector matrix notation

ẋ =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

A1 0 0 . . . 0

B2 A2 0 . . . 0

B3 B3 A3 . . . 0
...

...
...

. . .
...

BN BN . . . BN AN

⎤

⎥

⎥

⎥

⎥

⎥

⎦

x +

⎡

⎢

⎢

⎢

⎢

⎢

⎣

K B1

K B2

K B3

...

K BN

⎤

⎥

⎥

⎥

⎥

⎥

⎦

u

y =
[

1 1 . . . 1 1
]

x + K u

(17)

or in brief
ẋ = Ax + Bu

y = Cx + Du
(18)

What can be immediately observed is that the matrix A is triangular. This is extremely

important in this problem, as all its eigenvalues (poles of transfer function) are on its

diagonal, so there is no need for computing products of eigenvalues, which would lead

to rounding errors. Desired property of discretization would be that it should preserve

triangular structure, so there would not be any need for eigenvalue multiplication.

3.4 State-Space Discretization

Desired discretization should preserve both traingular structure and stability of the

system. Explicit numerical methods generally preserve structure (Euler forward, RK4),

but they are still susceptible to problems listed earlier. That is why implicit methods

have to be used. In this case, we have used state-space Tustin approximation [15].

Discretized system takes form (for simplicity, e.g., u(T k) is written as u(k))

w(k + 1) = �w(k) + Ŵu(k)

y(k) = Hw(k) + Ju(k)
(19)

where

√
T w =

(

I − A
T

2

)

x − T

2
Bu
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� =
(

I + A
T

2

) (

I − A
T

2

)−1

Ŵ =
(

I − A
T

2

)−1

B
√

T

H =
√

T C

(

I − A
T

2

)−1

J = D + C

(

I − A
T

2

)−1

B
T

2

As it can be observed, in this case the matrix � is a product of two lower triangular

matrices, which preserves structure. Thus, the diagonal consists of discrete system

eigenvalues which are discretized individually, so the field for rounding errors is

severely reduced. It can be observed that all eigenvalues are in R and the system is

controllable. Also because the method is implicit, the eigenvalues far from imaginary

axis are mapped well into unit circle.

Remark 2 It should be noted that Tustin method is implemented in MATLAB c2d

function; however, this implementation is not optimized for detecting matrix structure

and resulting matrix is not fully triangular (there are nonzero elements with order

of magnitude 10−12 over diagonal). Implementation using efficient matrix inversion

algorithms with structure detection solved the problem.

3.5 Filter Realization

The realization of considered filter with use of this variant of Oustaloup method is

depicted in Fig. 3. This realization is difficult to analyze, as one has difficulty finding

poles of closed-loop system. The closed-loop equivalent system in matrix notation is

presented in Lemma 1.

Lemma 1 Time-domain discrete approximation of filter

G(s) =
ω2

0

s2α + 2ξω0sα + ω2
0

(20)

is given by

Fig. 3 Realization of filter (6) using discrete time-domain Oustaloup approximation
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z(k + 1) = Adz(k) + Bdu(k) (21)

y(k) = Cdz(k) + Ddu(k) (22)

where

Ad =

⎡

⎢

⎢

⎢

⎣

� −
ω2

0 J

1 + 2ξω0 J + ω2
0 J 2

ŴH

(

1 − J
ω2

0 J + 2ξω0

1 + 2ξω0 J + ω2
0 J 2

)

ŴH

− ω2
0

1 + 2ξω0 J + ω2
0 J 2

ŴH � −
ω2

0 J + 2ξω

1 + 2ξω0 J + ω2
0 J 2

ŴH

⎤

⎥

⎥

⎥

⎦

(23)

Bd =

⎡

⎢

⎢

⎢

⎣

J

1 + 2ξω0 J + ω2
0 J 2

Ŵ

1

1 + 2ξω0 J + ω2
0 J 2

Ŵ

⎤

⎥

⎥

⎥

⎦

(24)

Cd = ω2
0

[(

1 −
ω2

0 J 2

1 + 2ξω0 J + ω2
0 J 2

)

H, J

(

1 −
(ω2

0 J + 2ξω0)J 2

1 + 2ξω0 J + ω2
0 J

)

H

]

(25)

Dd =
ω2

0 J 2

1 + 2ξω0 J + ω2
0 J 2

(26)

Proof The proof is tedious and not very innovative. That is why it is omitted. It requires

a solution of a simple set of linear equations and observing which products of vectors

result in scalars. ⊓⊔

4 Laguerre Impulse Response Approximation Method

The method of Laguerre impulse response approximation LIRA was introduced by

authors in [5]. It should not be confused with traditional discretization method. It is a

method for approximating systems given by transfer functions

ĝ(s) = qmsγm + qm−1sγm−1 + . . . q0

sσn + pn−1sσn−1 + . . . p0
(27)

or more precisely defined by convolution

y(t) = u ∗ g =
t

∫

0

u(t − θ)g(θ)dθ (28)

where j ≤ σ j ≤ j +1, j = 1, 2, . . . , n, j ≤ γ j ≤ j +1, j = 1, 2, . . . , m, p j ,q j ∈ R.

The initial conditions are zero. It is also assumed that |u(t)| ≤ umax for t ≥ 0 and

u(t) = 0 for t < 0 [5]. We assume that ĝ is a Laplace transform of a certain function

g : [0,∞) → R which fulfills g ∈ L1(0,∞) ∩ L2(0,∞). This function g is called

the impulse response.
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It can be shown that the convolution (28) for given input signal u can be approx-

imated with a solution of a system of n linear ordinary differential equations. The

approximation uses an orthonormal basis in L2(0,∞)

ek(θ, µ) =
√

2µe−µθ Lk(2µθ), k = 0, 1, 2, . . . (29)

where µ is an arbitrary positive constant and Lk is k-th Laguerre polynomial of form

Lk(z) = ez

k!
dk

dzk
(e−zzk) (30)

Theorem 2 gives the conditions that must be fulfilled in order to find the approxi-

mation with minimal error.

Theorem 2 If g ∈ L1(0,∞) ∩ L2(0,∞) and |u(t)| ≤ umax then:

1. Response of system defined by convolution (28) can be approximated with

y ≈ ỹn(t) =
n

∑

k=0

βkξk(t) (31)

where set of functions ξk(t) : [0,∞) → R is solution of a system of linear

differential equations

ξ̇k = − µξk − 2µ

k−1
∑

i=0

ξi +
√

2µu

ξk(0) = 0, k = 0, 1, 2, . . . , n

(32)

and

βk = 〈g, ek(µ)〉 =
∞

∫

0

g(θ)ek(µ, θ)dθ (33)

2. For every ε > 0, there exists a number n0 dependent on g, ε and umax for which

approximation error en(t) = x(t) − xn(t) fulfills the inequality

|en(t)| < ε (34)

for all n ≥ n0 and t ≥ 0

Proof For the proof, see [5]. ⊓⊔
The formula (33) for calculating the coefficients is not convenient for numerical

implementation as it requires an analytical fomula for impulse response. In [5], the

authors presented the following recurrence formula

βk =
√

2µ

k!

k
∑

j=0

(

k

j

)

ck
j (µ)ĝ(k− j)(µ) (35)
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where

ck
j = k − j + 1

2µ
ck

j−1, ck
0(µ) = (2µ)k, j = 1, 2, . . . , k (36)

and ĝ( j)(s) =
d j ĝ(s)

ds j
.

Remark 3 Choice of parameter µ Method is convergent for any set of orthonormal

Laguerre functions, parametrized by µ. However, performance of the method strongly

depends on its value, especially for lower orders. In authors’ earlier works, it was shown

that µ chosen by maximization of function:

J (µ) =
n

∑

k=0

β2
k (µ). (37)

introduces smallest approximation error in the sense of L2(0,∞). Influence of choos-

ing nonoptimal µ was investigated in [8,47].

In summary, the approximation of system defined by convolution (28) can

be given in matrix notation as (e.g., for approximation order n + 1, ξ =
[

ξ0 ξ1 ξ2 ξ3 ξ4 . . . ξn

]T
):

ξ̇ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−µ 0 0 0 . . . 0

−2µ −µ 0 0 . . . 0

−2µ −2µ −µ 0 . . . 0

−2µ −2µ −2µ −µ . . . 0
...

...
...

...
. . .

...

−2µ −2µ −2µ . . . −2µ −µ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

ξ +

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

√
2µ√
2µ√
2µ√
2µ
...√
2µ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

u

y =
[

β0 β1 β2 β3 β4 . . . βn

]

ξ

(38)

As it can be seen, the state matrix in (38) is also lower triangular. Because of that use

of Tustin discretization scheme is reasonable, as it preserves this structure. It should

be, however, noted that similarities between time-domain discrete Oustaloup method

and LIRA end here.

Instead of approximating the integrators, LIRA method approximates the entire

system. As it can be seen in Lemma 1, the closed-loop realization of filter (6) with

Oustaloup integrators is quite complicated and closed-loop eigenvalues are not easily

available for analysis. In case of LIRA, eigenvalues of filter are not only available, but

also state matrix in (38) has n identical eigenvalues and their value can be regulated

(moved away from right half plane) and their discrete form is naturally more robust

toward rounding errors. It should be also noted that this approximation leads to effective

approximation of any order, whereas Oustaloup approximation allows only even values

(because two integrators have to be realized).

It should be also noted that explicit discretization schemes can be used, as there

are no eigenvalues located farther to the left of imaginary axis than others, which is a
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Fig. 4 Choice of µ maximizing

J (µ) for filter (6) and different

values of ξ and α and ω0 = 1,

darker colors indicate the lower

values

natural cause of numerical instability. For further analysis, the same code for obtaining

Tustin discretization was used as for the time-domain Oustaloup method.

One weakness of the method is the inability to easily determine the set of fil-

ter parameters for which the impulse response of filter fulfills the assumption g ∈
L1(0,∞) ∩ L2(0,∞). Experiments show that assumptions of appropriate integrabil-

ity are fulfilled if the highest order of denominator of corresponding transfer function

is at least 1/2 and the transfer function is stable. Fortunately, one can easily observe

that the method does not converge for systems not fulfilling that assumption. In Fig. 4,

the optimal values of parameter µ are computed for filter (6) assuming that ω0 = 1

and other parameters are changed in viable range. In two regions, the convergence

was not obtained. First one is the area of unstable pairs (ξ, α) (see theorem 1), and the

other one is located in the area of very low orders α. What is interesting is that in the

considered range of convergence all µ are of the same order of magnitude (around 1)

and the area boundary is not smooth.

Other observed weakness of the method is visible for very high orders of approxima-

tion (over 20). In that situation, the factorials present in the formulas for β coefficients

cause numerical errors of rising magnitude. More on that effect is given in [8,47].

5 Analysis of Filter Behavior

In this section, LIRA and time-domain discrete Oustaloup approximations will be ana-

lyzed in order to show merits and flaws of both methods. Whithout loss of generality,

analysis is conducted for filter (6) with ω0 = 1 and varying values of ξ ∈ (−1, 1)

and α ∈ (0, 1). Sampling period was chosen as 1ms. For the Oustaloup method, the

frequency band was chosen as [10−6, 103] and in that band the characteristics were

compared. For LIRA method parameter, µ was chosen as maximum of (37) for every

case.

The comparison will include:
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– analysis of approximation error expressed in the form of H∞ norm for wide spec-

trum of parameters;

– analysis of Bode plots for selected filters;

– filtration of an EEG signal.

5.1 H∞ comparison

This analysis was conducted in order to find an objective criterion for determining

the quality of approximation. Because the filter realization is the main concern of this

work, H∞ norm was chosen as it represents the frequency characteristics. In Tables

1 and 2, the values of approximation error norm ‖G(s) − G̃(s)‖∞ are presented for

approximation orders of 6 and 12, respectively, for both methods of approximation.

G̃(s) denotes the approximation of filter. The values of H∞ norm were calculated

numerically by computing frequency response of approximations state- space rep-

resentations in MATLAB (for considered frequency band) and subtracting it from

analytically computed frequency response of original filter. Then, maximum of mod-

ulus was chosen. In both tables, columns correspond to values of α and rows correspond

to ξ . For row of ξ , there are two sub-rows containing errors of time-domain Oustaloup

Table 1 Comparison of H∞ norm of approximation error for LIRA and Oustaloup methods with para-

meters ξ and α, and approximation order 6

ξ α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.8 LIRA 1.76 1.84 0.74 10.01 – – – – –

OT 0.16 0.49 1.64 12.54 – – – – –

−0.6 LIRA 0.43 0.37 0.73 0.38 0.42 – – – –

OT 0.08 0.14 0.26 0.57 1.80 – – – –

−0.4 LIRA 0.33 0.25 0.23 0.38 0.16 0.13 2.33 – –

OT 0.05 0.07 0.12 0.20 0.36 0.82 2.70 – –

−0.2 LIRA 0.26 0.32 0.38 0.06 0.18 0.35 0.08 1.04 –

OT 0.04 0.05 0.08 0.11 0.17 0.26 0.48 1.12 –

0 LIRA 0.22 0.41 0.46 0.12 0 0.08 0.01 0.07 0.63

OT 0.03 0.04 0.06 0.08 0.10 0.14 0.19 0.28 0.42

0.2 LIRA 0.25 0.48 0.54 0.25 0.06 0.05 0.02 0.01 0.07

OT 0.03 0.03 0.05 0.06 0.07 0.09 0.11 0.13 0.13

0.4 LIRA 0.27 0.52 0.60 0.35 0.12 0.09 0.06 0.03 0.01

OT 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.07 0.06

0.6 LIRA 0.27 0.55 0.65 0.43 0.18 0.12 0.09 0.05 0.02

OT 0.02 0.02 0.04 0.05 0.05 0.06 0.06 0.05 0.04

0.8 LIRA 0.27 0.57 0.68 0.49 0.23 0.07 0.11 0.06 0.02

OT 0.02 0.02 0.03 0.04 0.05 0.05 0.05 0.04 0.03

1 LIRA 0.27 0.59 0.70 0.55 0.27 0.10 0.13 0.07 0.03

OT 0.02 0.02 0.03 0.04 0.04 0.04 0.04 0.04 0.02



2098 Circuits Syst Signal Process (2016) 35:2083–2107

Table 2 Comparison of H∞ norm of approximation error for LIRA and Oustaloup methods with para-

meters ξ and α, and approximation order 12

ξ α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.8 LIRA 1.80 2.20 0.79 7.97 – – – – –

OT 0.13 0.04 0.15 1.65 – – – – –

−0.6 LIRA 0.44 0.51 0.75 0.38 0.45 – – – –

OT 0.07 0.03 0.02 0.05 0.17 – – – –

−0.4 LIRA 0.29 0.17 0.18 0.26 0.09 0.05 1.41 – –

OT 0.05 0.03 0.01 0.01 0.03 0.07 0.25 – –

−0.2 LIRA 0.24 0.25 0.25 0.07 0.04 0.06 0.01 0.45 –

OT 0.04 0.02 0.01 0.01 0.01 0.02 0.04 0.09 –

0 LIRA 0.20 0.36 0.36 0.10 0 0.01 0.01 0.01 0.22

OT 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.04

0.2 LIRA 0.24 0.44 0.46 0.21 0.04 0.04 0.02 0.01 0.01

OT 0.02 0.02 0.01 0 0 0.01 0.01 0.01 0.01

0.4 LIRA 0.26 0.49 0.53 0.30 0.09 0.07 0.04 0.03 0.01

OT 0.02 0.02 0.01 0 0 0 0 0.01 0.01

0.6 LIRA 0.26 0.52 0.59 0.37 0.13 0.09 0.06 0.03 0.01

OT 0.02 0.01 0.01 0 0 0 0 0 0

0.8 LIRA 0.26 0.55 0.62 0.44 0.17 0.11 0.07 0.04 0.01

OT 0.02 0.02 0.01 0 0 0 0 0 0

1 LIRA 0.26 0.56 0.65 0.49 0.21 0.11 0.09 0.04 0.01

OT 0.02 0.02 0.01 0 0 0 0 0 0

(marked OT) and LIRA methods. Values of methods with lower error for given ξ and

α are marked in bold. Missing values (marked with ’–’) correspond to unstable filters,

and zeros represent errors of magnitude less than 10−2.

Careful analysis of data included in Tables 1 and 2 allows drawing the following

conclusions:

1. For values of α ≥ 0.5, low-order approximations obtained by LIRA method were

either better or at least comparable to those obtained by time-domain Oustaloup

method. For higher orders, approximation errors are still comparable.

2. For α < 0.5 LIRA approximations are generally worse, except for some isolated

cases. This behavior of LIRA is justified that only for those values of α the impulse

responses are believed to be in the required space of L1∩L2. It should be, however,

noted that it was not yet formally proven.

3. Generally, for LIRA approximation, errors are decreasing with its order, but con-

vergence (in the sense of H∞ norm) is slow. Therefore, it can be observed that if

approximation is correct it will be correct even for low orders.

4. Increasing order of Oustaloup approximation results in more evenly decreasing

error for all admissible values of α.
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Fig. 5 Frequency characteristics of approximated discrete filters—order n = 6, α = 0.7, ξ = 0

Remark 4 It should be noted that behavior described in the above conclusions is

consistent for all investigated orders of approximation. We have included only sixth

and 12th orders because all the important effects are visible.

5.2 Detailed Analysis of Selected Filters

In this section, we describe in detail frequency responses of selected filters and their

approximations. They were chosen to represent significant effects visible in Tables 1

and 2.

The first of the considered examples is the filter with α = 0.7 and ξ = 0, i.e.,

G(s) = 1

s1.4 + 1
(39)

Results of approximation of sixth order for this filter are presented in the Fig. 5. As

it can be seen consistently with conclusion of previous section, the LIRA method

provides very good approximation, especially in the magnitude aspect. Also phase

approximation is consistent for frequencies ω < 10ω0. In case of the Oustaloup

approximation, oscillations in both magnitude and phase characteristics are observed.

Substantial differences are especially visible in the phase characteristic for ω > ω0.
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Fig. 6 Frequency characteristics of approximated discrete filters—order n = 12, α = 0.7, ξ = 0

Approximations of the same filter of 12th order are presented in the Fig. 6. As it

can be seen increasing of order in LIRA leads to very similar results. Slight differ-

ences are only in the phase characteristic. Increasing order in the Oustaloup method

leads to substantial improvement, as the oscillations are strongly reduced and phase

characteristic is consistent for ω < 10ω0.

The second example considers the case of α < 0.5, in particular filter with para-

meters α = 0.3 and ξ = 0.6, i.e.,

G(s) = 1

s0.6 + 0.6s0.3 + 1
(40)

Results of approximation of sixth order for this filter are presented in the Fig. 7.

Approximation behavior is, as expected in previous section, in favor of Oustaloup

method. Magnitude characteristic is oscillating around the ideal value visibly keeping

the trend. Phase characteristic exhibits oscillatory behavior. Approximation obtained

with LIRA method is consistent only for frequencies ω > 10ω0. For lower frequencies,

it provides static damping close to 16 dB. Phase characteristic also is significantly

different from the desired one.

Increase in order to 12th leads to results presented in the Fig. 8. For Oustaloup

method, a substantial improvement is observed, especially in the magnitude charac-

teristic, which now very closely follows the characteristic of (40). In case of LIRA, the
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Fig. 7 Frequency characteristics of approximated discrete filters—order n = 6, α = 0.3, ξ = 0.6

approximation is essentially unchanged, with static damping of frequencies ω < 10ω0

lower by approximately 1 dB.

The final considered example is the filter with parameters α = 0.4 and ξ = −0.2,

i.e.,

G(s) = 1

s0.8 − 0.4s0.4 + 1
(41)

It is one of the mentioned before isolated cases, where for α < 0.5 the LIRA method

provides substantially better low-order approximation than Oustaloup method. It can

be observed in Fig. 9. Approximation behavior is very similar to the one characteristic

for α > 0.5. It should be noted that increase in order for Oustaloup method improves

the quality of approximation (not presented in detail, but visible in Table 2).
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Fig. 8 Frequency characteristics of approximated discrete filters—order n = 12, α = 0.3, ξ = 0.6

5.3 Example of Filtering

In this section, a brief example of filter behavior in time domain will be presented.

A set of EEG data is being considered for analysis of delta waves which are located

in the frequencies below 3 Hz. Authors were tasked with providing a non-integer

low-pass filter which would introduce slower damping than 40 dB/dec with standard

second-order filter [20,21]. Filter (6) was used with parameters: α = 0.7, ξ = 0.5,

ω0 = (6π)α .

Signals were sampled with frequency of 50 Hz. This filter was originally used in

postprocessing with non-integer filtration given by (9)–(12). Here we present it as a

comparison with approximated filters. Filter approximations were of sixth order. As

one can see in the Fig. 10, the results are qualitatively identical. Analysis of frequency

spectrum of filtered and original signals allows to observe the differences between

realizations (see Fig. 11). Methods proposed in the paper realize filtering properly

offering the expected damping of 28 dB/dec. The numerical method given by (9)–(12)

is presenting inferior behavior. Filtration realized in that way introduces unwanted

damping for low frequencies, and for frequencies above 3 Hz, the damping is not

consistent with expected 28 dB/dec.
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Fig. 9 Frequency characteristics of approximated discrete filters—order n = 6, α = 0.4, ξ = −0.2
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Fig. 10 Results of filtering of EEG signal with different filter realizations a with numerical method (9)–(12),

b discrete time- domain Oustaloup approximation, c LIRA
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6 Conclusions and Future Work

In this paper, two efficient methods for digital realization of non-integer order filters

were compared. Both these methods have their own merits. Discrete time-domain

Oustaloup method allows the approximation of the filter for wider spectrum of

parameters than LIRA. However, its coefficients are more numerically sensitive to

discretization. Also, the necessity of using two integrators leads to complicated matri-

ces as presented in Lemma 1. Also influence of parameters on the eigenvalues of

closed-loop systems is not straightforward. These weaknesses do not appear in LIRA

method. The structure of state-space representation is simple, and behavior of µ is

predictable. On the other hand, verification of the assumptions is difficult. Regarding

the quality of approximation, there is no clear ’winner’ as the performance strongly

depends on the order of approximation and parameters of the system. Impulse response

approximation leads to filters with smaller gains for low frequencies. However, for

low order of approximation, LIRA is better (or at least comparable) than Oustaloup

method. Oustaloup-based method usually works in the desired bandwidth, sometimes

with problems on the boundary (see, e.g., Fig. 6).

Future work will focus on the following areas. First of them is the improvement of

LIRA method in aspects of assumption verification and numerical errors for approx-

imations of order over 20. The second aspect is the verification if the realization of

Oustaloup transfer function is optimal. In authors’ opinion, it is superior to the cur-

rently discussed in the literature (one of them has diagonal state matrix, which should

be beneficial, but coefficients in the control matrix are very sensitive to rounding errors

and another one is a Frobenius matrix realization, which has the same sensitivity as
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the transfer function). The third considered area is the real-time implementation of the

filters. Authors have experience in implementing simple non-integer order filters on

embedded platforms and want to develop it further (see, e.g., [14]).
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plane case, in Advances in Modelling and Control of Noninteger-Order Systems: 6th Conference on

Non-Integer Order Calculus and its Applications, ed. by K. J. Latawiec, M. Łukaniszyn, R. Stanisławski

(Springer, 2014)
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