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On Digital Signatures and Public-Key Cryptosyst ems

Ronald L. Rivest
MI Shamir
Len Adleman

Abstract
We show that the single operation of raising a number to a fixed

power modulo a composi te modulus Is sufficient to implement ‘digital
signatures’: a way of creating for a (digitized) document a recognizable,
untorgeable, document-dependent digitized signature whose authenticity the
signer can not later deny . An ‘electronic funds transfer’ system or
‘electronic mail’ system clearly could use such a scheme, since the

messages must be digitized in order to be transmitted.

Key words and Phrases: digital signatures, public-key cryptosystems,
privacy, authentication, security, factorization, electronic mail, rMssage-
passing, electronic funds transfer, cryptography .
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On Digital Signatures and Public-Ke y Cryp tosystems
• 

• by R. L. Rivest , A. Shamir, and L. Adleman
NIT Laboratory for Computer Science
Cambridge , Mass. 02139
April 4, 1977 (Revised April 21, 1977)

The operation of raising a number to a fixed power modulo a
• composite modulus Is shown to be sufficient to implement ‘digital

signatures’: a way of creating for a (digit ized) document a recognizable,
untorgsable, document-dependent, digitized signature whose authenticity the
signer can not later deny . This scheme has obvious applications in the
design of ‘electronic funds transfer’ systems or ‘electronic mail’ systems,
since here the messages must be digitized in order to be transmitted.

I. Introduction

• Our approach is to provide an implementation of a ‘public-key
cryptosystem’, an elegant concept invented by Rif f le and Hellman (2J . Such
a System provide s digi tal signatures , as well as enabling enciphered
co umunicat Ion between arbitrary pairs of people, without the necessity of
agreeing on an enciphering key beforehand.

In a public -key cryptosystem each user A places In a public file an
enciphering algorithm (or key) EA . User A keeps to himself the details of

• th. corresponding deciphering algorithm DA which satisfies the equation

DA(EA(N)) • N , for any message N. (1)

Roth EA and DA must be efficiently computable. It is assumed that A

doss not compromise 0A when revealing EM . That is, it should not be

computationally feasible for an ‘enemy’ to find an efficient way of
• compu ting 0M ’ 

given only a specification of the enciphering algorithm EM.
(Clearly a very inefficient way exists: to compute DA(C) Just enumerate

all possible messages N until one such that EA(N) z C Is found. Then

DA(C)aff.) Only A will be able to compute DA efficiently.

Whenever another user (say B) wishes to send a message N to A , he

looks up 
~
M in the public file and then sends A the enciphered message

• E4(M ,l. User A deciphers the message by computing DA(EA(M))$~
. By our

assumptions only user A can decipher the message EA(N) sent to him. If A

wants to send a response to B he of course enciphers It using E8, also
1 ’  available in the public file. Therefore no transactions between A and B

are required to initiate private comeunicatlon. The only ‘setup’ required

• is that each user A who wishes to receive private coimuunicat ions must place

• his enciphering algorithm EA in the 
p ublic file.

If electronic message-passing systems(7J are to fully replace the
existing papermork systems for ordinary business transactions, there Is an

attribute of a paper message that will have to be duplicated for electronic
messages: they can be ‘signed’. More preci sely , the recipient of a

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
_ _ _ _ _ _  4
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‘signed’ massage has ‘proof’ that the message originated from the sender.
This quality Is stronger than mere authentication (verifying that the

message when received actually came from the sender) in that the recipient
• 

• of a signed document Is able to convince a disinterested third party (a

Judge) that the signer actually sent the message. To do so, the Judge must
• be convinced that the signed message was not forged by the recip ient

himself! In an ordinary authentication problem the recipient does not

worry about this possibility.

We would like to remark that an electronic , or digital , signature
must be message-dependent, as well as signer-dependent. Otherwise the
recipient could modify the received massage by changing a few characters

• b fore showing th. message-signature pair to a judge. Even worse, the
recipient would be able to attach the rece ived signature to any message

whatsoever, inasmuch as electronic ‘cutting and pasting’ of sequences of

characters are entirely undetectable in the final product.

In order to Implement signatures it is necessary that EM and

effect permutations of the s
~
.w message space 5, so that in addition to (1)

we have:

for any message N. (2)

(If the ‘cipher space’ - the image of the message space S under EM -

different from S then (1) need not Imply (2), sInce 0M may not even be

def ined for those elements of the message space which are not in the cipher
space.)

• Suppose now that user A wants to send user B a ‘signed’ document N.
User A then sends EB(DA(N)) to B, 

who then deciphers it with RB to obtain

lf’aDA(N). Now using EM (available on 
the public file), 8 can read the

‘signed’ document EM(N’) • EM(L*M(N)) 
. N. Here N’ wil l act as M’ s

‘signature’ for the message H.

User A can not deny having sent B this massage, since no one but A

could have created N’
~
bA(fl) , under our assumption that DA is not computable

from E*. User B can obviously convince a ‘Judge ’ that EA(M’)’tl, so that B

has ‘proof’ that A has signed the document.

Clearly 8 can not modify N to a different version N’, since then 8

would have to create the corresponding signature D4(H’) as well. Therefore

• has received a document ‘signed’ by A , which he can ‘
prove’ that A sent,

but which 8 can not modify in any detail. (Nor can B forge A’s signature

on any other document).

We observe that the act of sending a ‘signed’ message does not

• Increase th. length of the transmitted version of the message (compared to

Its ‘unsigned’ form) at all, since the ‘signature is effected by

• 

p.rforising a length-preserving transformation on the message before
transmission. .1 vary long message should be broken into blocks , each 

- -— —
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block labelled with a ‘this is block i of n’ notation, and transmitted

after ‘signing’ each block separately.

The concept of a public -key cryptosystese as described above, and

its potential use as a means of implementing digital ‘signatures’, are due

to Diff Ic and Hellman(2J. The reader Is encouraged to read this excellent
article for further background and elaboration of this concep t, as well as

for a discussion of other problems in the area of cryptography . Their

article was the motivation for the present work, in that while they

presented the concep t of a public-key cryptosystem, they did not present —

any practical way of ImplementIng such a system. In this paper we present a

candidate implementation scheme.

If the security of the system proposed here turns out to be

sat isfactory, then we wil l  as a corollary have demonstrated the existence
of ‘trip-door one-way functions’, as defined in (2J. A ‘trap-door one-way

funct ion’ is a function which is easy to compute and easy to invert, but

for which tile inverse function Is difficult to compute from a descrip tion

of the function itself.

II. Implementation

The scheme presented here enciphers a message N by raising It to a

fixed power s modulo a certain composite number r . The deciphering

opera tion is performed by raising the received message to another power t,

again modulo r . User A makes public r and s and keeps t pr ivate.

(These values should more properly be denoted rA, 5A’ and t4, 
since each

user will have separate set of values, but in what follows we will only

concern outselves with user M’ s system, and will omit the subscripts.) We

assume that the message can be viewed as a number less than r, or that it

can be broken into a series of blocks, each of which can be viewed as a

number less than r which will be separately enciphered.

We observe that raising a number x to the s-tie power .uodulo r
• requires only O(log24’r)T(r)) operations to 

perform, It $ is less than

r, where T(r) denotes the t ime required to multip ly two numbers modulo r

This bound is easily derived by considering the binary representatIon of

s, reading from left to right, as a rule for obtaining x1 from 1 by

treating each I as an instruct Ion to ‘square the preceding value and

multiply the result by x’, and each 0 as an instruction to ‘square the

preceding value’. Thus we may consider enciphering and deciphering to be

‘efficient’ operations. The fact that the enciphering end deciphering
operations are similar leads to a simple Iaplemsntat ion (conceivably the
whole operation could be implemented on a single integrated circuit chip).

As a small running ex ple, consider the case

r.4769’2??3,s’l?.
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• 

With an r of this size we can encode two english letters in a block , by

mapping each letter into a two-digit number (blankz00, AzOl, 8z02,
Zz26). Thus the massage

ITS ALL GREEN TO HE

(Julius Caesar, 1,11,286) would be encoded into ten blocks:

0920 1900 0112 1200 0716 0505 1100 2015 0013 0500

Since s’lOOOl in binary, the encoding of the first block goes as:

140 .1,

• (1)
2.920 • 920, (for the leftmost 1)

• (920)2 • 635,

lV .(s335)2 .1140,
• ,46 .(1140)2 .1636,

• (1336)2920 •

• (Here all arithmetic is done modulo 2773.) In a similar fashion, the whole
message is enciphered as:

0948 2342 1064 1444 2663 2390 0776 0774 021P 1655 .

In order to create a realIstically-sized public-key cryptosystesw,

we use the fact that to determine whether a given integer n is pr ime or

not can also be performed efficiently, even if n is over 100 digits
long. As an illustration of the kind of test used by these procedures,

the algorithms described in (4,8) are based on the following facts. For
every prima number p and every number a not congruent to zero, mod p, we

r have

• 1 (.od p) (3)

On the other hand, for most composite numbers n at least one-half of the

numb rs a, 0(a(n, fail to satisfy tile analagous relation

(4)

• Once an a which violates (4) Is found we have ‘proof’ that n is In fact

• 

composite . For example, since • 10664mod 2773), we know that 2773

is composite. We refer tile reader to the original papers discussing these

results (4,6,8,91 for a detailed discussion of these procedures, including
• j the appropriate tests to use for those numbers n which satisfy (4) for

all a (the Carmichael numbers).

It is important to note that the efficient primality-testing
algorithms just described do not in general, when given as input a

• composite integer n , determine any of the factors of n . It is so~
swhat

surprising that while it Is relatively easy to determin, whether n is
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prime or composite , there are no eff ic ient ways known for computing the
prima factorizet ion of a composite number n . To determine the
factorizat ion of an integer n which is the product of just two 50-digit
prime numbers is considerably beyond current capabilities. Knuth(3,
section 4.5.4) gives an excellent presentation of several eff ic ient
factoring algorithms. The most efficient general factoring algorithm
keow,p to the authors is due to Pollard (6); it will factor a number n in

O(n1”4) steps . A 125-digit number can be tested for pr imal ity in about
one minute; we estimate that factoring a number of that size could require
40 quadri l l ion years using Pollard ’ s algorithm. If we may quote J.
Bril lhart , 0. H. Lehmer , and J. I.. Sel tridge on the di f f icul ty of
factoring,

‘In general nothing but frustrat ion can be expected to come
from an attack on a number of 60 or more digits , even with

the speeds available with modern computers. ’ (1, page 645)

Let d be an Integer such that determining the pr ime factorizat ion
of a number n which is the product of just two prime numbers of length d
( in d ig i ts)  is ‘computationa l ly imposs ible ’. Choosing dz4O seems to be
sat isfactory at present. If better factoring algorithms are discovered
then the appropriate value of d would have to be increased, but as long as
testing for primelity Is significanly easier than factoring the scheme to
be described will have the desired prop erties.

When user A desires to put on the public f i l e  his enciphering key,
consisting of the integers r and s , he does so by determining two 4—
dig i t  ‘random’ prime numbers p and g , and an intege r a which is
relatively prime to (p-1) (q-Z) . (The reason for this condition will be
explained shortly.) Then A puts on p ublic file the integers r and s
where r is defined to be pg  . By assumption , only A w i l l  have available
the prime factors p and g of r , even though r is on the public file.
When A makes r and s publ ic , the values of p and g are effective ly
hidden from everyone else due to the computationa l impossibi l i ty of
factoring r in a reasonable amount of time .

For our example we have p • 47, g • 59, r • p •q • 2773.

The subtask of finding a d-digit ‘random’ prime number is easily
accomplished by first generating an (odd) d-digit random number and then
Incrementing it by 2 until a prime number Is found. By the prime number
theorem, we should expect to have to do about 0(d) incrementations before
f inding a prime . In order to avoid those few cases where the ef f ic ient
primality -testing algorithms do yield a factor, it is desirable to ensure

that both (p-I) and (g-1) themselves contain large pr ime factors and
that gcd(p-i,r-i) and gcd(q-i r-I) are both small. The latter condition
is easily checked. To obtain a prime number p such that (p-i) has a
large prime factor one can generate a d-dlgit prime number u and then
find the first prime in the sequence i

~
u • 1, for i’2,4,6,... . By the

prime number theorem for arIthmetic progressions we can expect to find a 



— ~~~~~~~~~~~ —‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~

—
~~~~

-
~~~

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
-_ — ----

PAGE 6

• prime after examining 0(d) elements of this series. ( There is some
-
• additional security provided by selecting u in the same manner to be of

the form j •v • 1, where v is a large pr ime.)

me enciphering algorithm LA is thus the operation :

EA(H) • ~
5 (mod r)

for any message H.

To obtain the corresponding deciphering algorithm, we will use the
identity (due to Euler and Fermat) that for any message N which is
relatively prime to r:

• 1 (mod r ) ,  (5)

• where •(r) is the Euler totient function giving the number of positive

integers less than r which are relatively prime to r . Equation (5) is

easily proved: the set of residues (mod r) which are relative ly prIme to r
form a group of order •(r) under grijitiplicatlon, and In any group the

order of an element must divide the order of the group. Since •(p).p-1
for prime numbers p , equation (3) is a special case of (5). In our case,
we have

•(r) • ~
(p) $ (g) , (6)

• (p-1)~
(g-1)

.p.q - (p .q)#1

by the elementary properties of the totient function (5). In our example we

have

•(2773) • 46.58 • 2668.

It is easy to see that the factorl.!at ion of r enables the
computation of •(r) by (6), and that conversely the ab i l i ty  to compute

•(r) enables the factorization of r , since (pig) is easily obtained
from r and •(r), and (p-g) can be obtained by taking the square root

of (p,g) 2 - 4pq. By our assumptions about tile size of d , therefore , it

is not poss ible for anyone except A to know •~
r ) .

Since s is relative ’y prime with respect to 0( r )  , it has a
mul t ip l ica t i ve inverse t in the ring of integers modulo • (r).  Thus we
have that

st • 1 (mod 4(r)).

The value of t is easily computed using a s imple variant of -;

Euclid’s algorithm to compute the greatest common divisor of s and

•(r). (See exercise 4.5.2.15 in (31.) Briefly, the procedure is as
follows. Euclid’s algorithm computes gcd(x09 x1) by computing a series
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• • 
x0, x1, .., Xf~ 

where x1,1 • x11 mod x1 and x
~
.gcd(x0,x1). It is

simple to compute in addition for each x1 coefficients ai and b1 such
that x1’a1 x0.b1x1. If xksl then bk Is the inverse of x1 mod x0. For
our example we have

x0 ’2666, a0 ’l, b0 s0 ,
x1 ’17, a1 .0, b1 ’i,

• 16, a2 • 1, b2 • -156, (since 2668.15617.16),
x3 • 1, a3 • -1, b3 • 157 (since 17.116.1).

• Therefore the inverse of 17(reod 2668) is 157.

It is now easy to see that

(EA(I4))t • (145)
t (mod r)

• ~
5
~
t (mod r)

• WJ
0(r).l (mod r)

• H 1 . H ( m o d r),

for some Integer u. Therefore the deciphering function

DA(C) • Ct (mod r)

is the desired inverse operation. (The reader can check in our example
that ~,~

157 
• 920 (mod 2773).)

It should of course be checked that t is large enough so that a
direct search for It is infeasible. The value of s is rather arbitrary
but should be chosen larger than loggr), so that every message suffers
some “wrap-around’ (reduct ion mod r )  during the encoding process .

The preceding analysis was based on the assumption that the input
message N was relat i vely prime to r . While not al l  numbers less than
r are relat ively prime to r , only those which are mul t ip les of either p
or g are not . Therefore the chances of finding, among a collection of
messages, one which is not relatively prime to r is very small, say on
the order of l0

~~ 
, and is therefore negligible. This must be so by our

— assumpt ion since if it were l ikely or easy to find a number less than r
whi ch was not relat ively pr ime to r , then r could be factored. (The
gcd of this number and r will be either p or g.)

It is interesting to note that the enciphering operation EA(H) is
always invertible, even if the message N is a multipl e of p (or
similarly, g). The deciphering operation is modified as follows. We first
note that if N Is a multiple of p then so Is EA(fV . The decoder can

detect this fact easily. If the decoder rece i ves a multiple of p it
concludes that H is a multiple of p, so that in order to determine N
unIquely it need only determine the residue of N module g, by the Chinese
remainder theorem. The residue of H modulo g can be found by: -

~‘ - -

_ _ _ __ _ _ _ _  _ _ _ _  _ _ _  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~
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N • (Efl (t4))t ’ (mod q),

where t ’ is the Inverse of s modulo (q-1). The existence of t’ is

• guaranteed by the fact that a is relat i ve ly prIme to
• (p—1)•(q-1), and therefore to q-i . To decoded a rece ived message which

is a multipl e of p it therefore suffices to raise It to the t’-th
power, modulo r .  In our example the inverse of 17, mod 58, is 41. Thus

• the value t’-~
41 (instead of 157) would be used to decode those messages

which are a mul t ip le  of p.47. SimIlarly those received messages which are
a mul t ip le  of q.59 can be decode d with a value- of t’ slP.

III. Remarks

We note that a minor awkwardness exists in using our system for
digital signatures In the fashion proposed by 01ff le and Neu man. Namely,
it may be necessary to ‘reblock ’ the signed message for encryp tion since
the value of r used for signatures may be larger than that used for
enciphering (every user has his own value of r). If desired , ti l ls  problem
can be avo ided as follows. A certain threshold value h is decided upon
(say h 2 ii’°°j .  Every user then maintains two r ,s pairs In the pub l ic
f i l e, one for enciphering purposes and one for signature purp oses. If
every user’s signature r is less than h, and every user ’s enciphering r
Is greater than h , then reblocking in order to encipher a signed message
wi l l  never be necessary .

We now examine this scheme from tile viewpoint of the ‘enemy
cryptanalyst” who wants to ‘break the system’, that Is , to f ind an
efficient way of compu ting 0A given only r and s to work with.  By our
previous assumpt ions he can not do it In tile same way that A did , since he
does not have 4(r) available to him. He has two approaches he may try :
(1) determine t or some equivalent number In some fashion that does not

require the knowledge of 0(r), or (2) fInd an altogether different method
of computing 0A

A method for determining t is unl ikely to exist since it would
- - 

- 

more or less enable a calculation of 4 (r ),  since it is a factor of
s t  — 1. More precisely, a method for calculating a t corresponding to

an arbitrary s would thus enable the cryptanalyst to determine many
• different mult iples of 4(r) , by varying s . The gcd of these

quantities is like ly to be 4(r) . In any case Gary M i l l e r  (43 has in
fact shown that determining any multiple of 4 (r)  enables r to be
factored.

As for the the second approach, we have no proof that this Is
In feas ib le , nor is this a ‘well-known’ computatlona l ly intractable problem.
However , we fee l reasonably confident that this Is the case. Just as any

modern cryptographic system must be ‘certified’ by proving Itself immune to
a sophisticated cryptanalytic attack, the scheme proposed here must be
similarly certified by having the preceding conjecture of intractability

—-

~

--- _
- - -
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withstand a concerted attempt to disprove it. The reader is hereby
challenged to f ind a way to “break’ this scheme .
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