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Abstract

We consider dilation operators Tk : f → f(2k
·) in the framework of Besov spaces Bs

p,q(R
n)

when 0 < p ≤ 1. If s > n
`

1

p
− 1

´

, Tk is a bounded linear operator from Bs
p,q(R

n) into itself and

there are optimal bounds for its norm. We study the situation on the line s = n
`

1

p
− 1

´

, an
open problem mentioned in [ET96]. It turns out that the results shed new light upon the
diversity of different approaches to Besov spaces on this line, associated to definitions by
differences, Fourier-analytical methods and subatomic decompositions.
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Introduction

In this article we consider dilation operators

Tkf(x) = f(2kx), x ∈ R
n, k ∈ N, (0.1)

which represent bounded operators from Bs
p,q(R

n) into itself. Their behaviour is well known

when s > σp = nmax
(

1
p − 1, 0

)
. In this situation we have for 0 < p, q ≤ ∞,

‖Tk|L(Bs
p,q(R

n))‖ ∼ 2k(s−n
p
), s > σp,

cf. [ET96]. We study the dependence of the norm of Tk on k on the line s = σp, where 0 < p ≤ 1.
In particular, we obtain for 0 < q ≤ ∞ that

‖Tk|L(Bσp

p,q(R
n))‖ ∼ 2k(σp−

n
p
)k1/q.

The situation s = 0 was already investigated in [Vyb08, Sect. 3], where it was proved that for
0 < q ≤ ∞,

‖Tk|L(B0
p,q(R

n))‖ ∼ 2−k n
p ·

{
k

1
q
− 1

max(p,q,2) , if 1 < p <∞,

k
1
q , if p = 1 or p = ∞.

We generalize the methods (and adapt the notation) used there.

As a by-product the new results for the dilation operators lead to new insights concerning the
nature of the different approaches to Besov spaces – namely the classical (Bs

p,q), the Fourier-
analytical (Bs

p,q) and the subatomic approach (Bs
p,q) – on the line s = σp.

So far recent results by HEDBERG, NETRUSOV [HN07] on atomic decompositions and by
TRIEBEL [Tri06, Sect. 9.2] on the reproducing formula prove coincidences

B
s
p,q(R

n) = B
s
p,q(R

n), s > 0, 0 < p, q ≤ ∞, (0.2)

and
Bs

p,q(R
n) = B

s
p,q(R

n) = B
s
p,q(R

n), s > σp, 0 < p, q ≤ ∞, (0.3)

(in terms of equivalent norms). Furthermore, since for s < n( 1
p − 1) the δ-distribution belongs

to Bs
p,q(R

n) – which is a singular distribution and cannot be interpreted as a function – we
know as well that

Bs
p,q(R

n) 6= B
s
p,q(R

n), 0 < s < σp.
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The situation on the line s = σp, 0 < p < 1, so far remained an open problem. Our results yield,
that in this case the Fourier-analytical approach and the classical approach do not coincide,
i.e., for all 0 < q ≤ ∞,

Bσp

p,q(R
n) 6= B

σp

p,q(R
n),

where B
σp

p,q(Rn) can be replaced by B
σp

p,q(Rn) in view of (0.2).

This gives me the opportunity to thank J. Vybíral for many valuable discussions and com-
ments on the subject as well as D.D. Haroske and Prof. H. Triebel for their support.

1 Besov spaces B
s
p,q(R

n)

We use standard notation. Let N be the collection of all natural numbers and let N0 = N ∪ {0}.
Let Rn be euclidean n-space, n ∈ N, C the complex plane. The set of multi-indices β =
(β1, . . . , βn), βi ∈ N0, i = 1, . . . , n, is denoted by Nn

0 , with |β| = β1 + · · · + βn, as usual. Moreover,
if x = (x1, . . . , xn) ∈ Rn and β = (β1, . . . , βn) ∈ Nn

0 we put xβ = xβ1

1 · · ·xβn
n .

We use the equivalence ‘∼’ in
ak ∼ bk or ϕ(x) ∼ ψ(x)

always to mean that there are two positive numbers c1 and c2 such that

c1 ak ≤ bk ≤ c2 ak or c1 ϕ(x) ≤ ψ(x) ≤ c2 ϕ(x)

for all admitted values of the discrete variable k or the continuous variable x, where {ak}k,
{bk}k are non-negative sequences and ϕ, ψ are non-negative functions. If a ∈ R, then
a+ := max(a, 0) and [a] denotes the integer part of a.
All unimportant positive constants will be denoted by c, occasionally with subscripts. For
convenience, let both dx and | · | stand for the (n-dimensional) Lebesgue measure in the
sequel. As we shall always deal with function spaces on Rn, we may usually omit the ‘Rn’
from their notation for convenience.

Let Qj,m with j ∈ N0 and m ∈ Zn denote a cube in Rn with sides parallel to the axes of
coordinates, centered at 2−jm, and with side length 2−j+1. For a cube Q in Rn and r > 0, we
denote by rQ the cube in Rn concentric with Q and with side length r times the side length of Q.

Furthermore, when 0 < p ≤ ∞ the number σp is given by

σp = n

(
1

p
− 1

)

+

. (1.1)

The Fourier-analytical approach

The Schwartz space S(Rn) and its dual S′(Rn) of all complex-valued tempered distributions
have their usual meaning here. Let ϕ0 = ϕ ∈ S(Rn) be such that

suppϕ ⊂ {y ∈ R
n : |y| < 2} and ϕ(x) = 1 if |x| ≤ 1 , (1.2)

and for each j ∈ N let ϕj(x) = ϕ(2−jx) − ϕ(2−j+1x). Then {ϕj}
∞
j=0 forms a smooth dyadic

resolution of unity. Given any f ∈ S′(Rn), we denote by f̂ and f∨ its Fourier transform and
its inverse Fourier transform, respectively. If f ∈ S′(Rn), then the compact support of ϕj f̂

implies by the Paley-Wiener-Schwartz theorem that (ϕj f̂)∨ is an entire analytic function on Rn.

Definition 1.1 Let s ∈ R, 0 < p ≤ ∞, 0 < q ≤ ∞, and {ϕj}j a smooth dyadic resolution of unity.
The Besov space Bs

p,q(R
n) is the set of all distributions f ∈ S′(Rn) such that

∥∥f |Bs
p,q(R

n)
∥∥ =




∞∑

j=0

2jsq
∥∥(ϕj f̂)∨|Lp(R

n)
∥∥q




1/q

(1.3)

is finite (with the usual modification if q = ∞).
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Remark 1.2 The spaces Bs
p,q(R

n) are independent of the particular choice of the smooth
dyadic resolution of unity {ϕj}j appearing in their definition. They are (quasi-)Banach spaces
(Banach spaces for p, q ≥ 1), and S(Rn) →֒ Bs

p,q(R
n) →֒ S′(Rn), where the first embedding is

dense if p < ∞ and q < ∞. The theory of the spaces Bs
p,q(R

n) has been developed in detail
in [Tri83] and [Tri92] (and continued and extended in the more recent monographs [Tri01],
[Tri06]), but has a longer history already including many contributors; we do not further want
to discuss this here.
Note that the spaces Bs

p,q(R
n) contain tempered distributions which can only be interpreted as

regular distributions (functions) for sufficiently high smoothness. More precisely, we have

Bs
p,q(R

n) ⊂ Lloc
1 (Rn) if, and only if,






s > σp, for 0 < p ≤ ∞, 0 < q ≤ ∞,

s = σp, for 0 < p ≤ 1, 0 < q ≤ 1,

s = σp, for 1 < p ≤ ∞, 0 < q ≤ min(p, 2),

(1.4)

cf. [ST95, Thm. 3.3.2]. In particular, for s < σp one cannot interpret f ∈ Bs
p,q(R

n) as a regular
distribution in general as may be seen from the δ-distribution which belongs to all Bs

p,q(R
n)

with s < n( 1
p − 1) since Fδ = c, recall definition (1.3).

Local means and atomic decompositions

There are equivalent characterisations for the Besov spaces Bs
p,q(R

n) in terms of local means
and atomic decompositions. We first sketch the approach via local means. For further details
we refer to [BPT96], [BPT97], and [Tri06] with forerunners in [Tri92, Sect. 2.5.3].
Let B = {y ∈ Rn : |y| < 1} be the unit ball in Rn and let κ be a C∞ function in Rn with
supp κ ⊂ B. Then

k(t, f)(x) =

∫

Rn

κ(y)f(x+ ty)dy = t−n

∫

Rn

κ
(y − x

t

)
f(y)dy (1.5)

with x ∈ Rn, and t > 0 are local means (appropriately interpreted for f ∈ S′(Rn)). For given
s ∈ R it is assumed that the kernel κ satisfies in addition for some ε > 0,

κ∨(ξ) 6= 0 if 0 < |ξ| < ε and (Dακ∨)(0) = 0 if |α| ≤ s. (1.6)

The second condition is empty if s < 0. Furthermore, let κ0 be a second C∞ function in Rn

with supp κ0 ⊂ B and κ∨0 (0) 6= 0. The meaning of k0(f, t) is defined in the same way as (1.5)
with κ0 instead of κ.
We have the following characterization in terms of local means, cf. [Tri06, Th. 1.10] and
[Ryc99].

Theorem 1.3 Let 0 < q ≤ ∞ and s ∈ R. Let κ0 and κ be the above kernels of local means. Then
for f ∈ S′(Rn),

‖k0(1, f)|Lp(R
n)‖ +




∞∑

j=1

2jsq‖k(2−j, f)|Lp(R
n)‖q




1/q

(1.7)

is an equivalent (quasi-)norm in Bs
p,q(R

n).

Remark 1.4 We shall only need one part of Theorem 1.3, namely that ‖f |Bs
p,q(R

n)‖ can be
estimated from below by (1.7). In that case some of the asumptions in (1.6) may be omitted.
The inspection of the proof, cf. [Ryc99, Rem. 3], shows that if κ is a C∞ function in Rn with

supp κ ⊂ B and Dακ∨(0) = 0, |α| ≤ N,

where N > s− 1, then

‖f |Bs
p,q(R

n)‖ ≥ c




∞∑

j=1

2jsq‖k(2−j, f)|Lp(R
n)‖q




1/q

.
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The following atomic characterization of function spaces of type Bs
p,q(R

n) is sometimes pre-
ferred (compared with the above Fourier-analytical approach), e.g. when establishing the
lower bound for the dilation operators later on; we closely follow the presentation in [Tri97,
Sect. 13].

Definition 1.5 Let 0 < p ≤ ∞, 0 < q ≤ ∞, and λ = {λν,m ∈ C : ν ∈ N0,m ∈ Zn}. Then

bp,q =





λ : ‖λ|bp,q‖ =




∞∑

ν=0

(
∑

m∈Zn

|λν,m|p

)q/p



1/q

<∞






(with the usual modification if p = ∞ and/or q = ∞).

Definition 1.6

(i) Let K ∈ N0 and d > 1. A K-times differentiable complex-valued function a on Rn (continuous
if K = 0) is called a 1K -atom if

supp a ⊂ dQ0,m for some m ∈ Z
n, (1.8)

and

|Dαa(x)| ≤ 1 for |α| ≤ K.

(ii) Let s ∈ R, 0 < p ≤ ∞, K ∈ N0, L+1 ∈ N0, and d > 1. A K-times differentiable complex-valued
function a on Rn (continuous if K = 0) is called an (s, p)K,L-atom if for some ν ∈ N0

supp a ⊂ dQν,m for some m ∈ Z
n, (1.9)

|Dαa(x)| ≤ 2−ν(s−n
p
)+|α|ν for |α| ≤ K, (1.10)

and ∫

Rn

xβa(x)dx = 0 if |β| ≤ L. (1.11)

It is convenient to write aν,m(x) instead of a(x) if this atom is located at Qν,m according to (1.8)
and (1.9). Assumption (1.11) is called a moment condition, where L = −1 means that there
are no moment conditions. Furthermore, K denotes the smoothness of the atom, cf. (1.10).
The atomic characterization of function spaces of type Bs

p,q(R
n) is given by the following result,

cf. [Tri97, Thm. 13.8].

Theorem 1.7 Let 0 < p ≤ ∞, 0 < q ≤ ∞, and s ∈ R. Let K ∈ N0 and L+ 1 ∈ N0 with

K ≥ (1 + [s])+ and L ≥ max(−1, [σp − s])

be fixed. Then f ∈ S′(Rn) belongs to Bs
p,q(R

n) if, and only if, it can be represented as

f =
∞∑

ν=0

∑

m∈Zn

λν,maν,m(x), convergence being in S′(Rn), (1.12)

where the aν,m are 1K-atoms (ν = 0) or (s, p)K,L-atoms (ν ∈ N) with

supp aν,m ⊂ dQν,m, ν ∈ N0, m ∈ Z
n, d > 1,

and λ ∈ bp,q. Furthermore,

inf ‖λ|bp,q‖,

where the infimum is taken over all admissible representations (1.12), is an equivalent
(quasi-)norm in Bs

p,q(R
n).
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2 Dilation operators

Theorem 2.1 Let 0 < p ≤ 1, 0 < q ≤ ∞, k ∈ N, and Tk be defined by (0.1). Then

‖Tk|L(Bσp

p,q(R
n))‖ ∼ 2k(σp−

n
p
)k1/q = 2−knk1/q, (2.1)

where the constants of equivalence do not depend on k.

P r oo f : Step 1. We give an estimate for the upper bounds of the dilation operators Tk

similar to [Vyb08, Prop. 3.2]. Since the techniques used there even fail for p = 1, we need to
find suitable substitutes when 0 < p ≤ 1.

Recall Definition 1.1, where in particular the dyadic resolution of unity was constructed such
that

ϕj(x) = ϕ(2−jx) − ϕ(2−j+1x), j ∈ N.

Elementary calculation yields

(ϕj(ξ)f̂(2k·)(ξ))∨(x) = 2−kn(ϕj(ξ)f̂(2−kξ))∨(x) = (ϕj(2
kξ)f̂(ξ))∨(2kx). (2.2)

For convenience we assume q <∞ in the sequel, but the counterpart for q = ∞ is obvious.
From the definition of Besov spaces with f(2kx) in place of f(x) we obtain

‖f(2k·)|Bσp

p,q‖ =




∞∑

j=0

2jσpq‖(ϕj(2
k·)f̂)∨(2k·)|Lp‖

q




1/q

= 2−k n
p




∞∑

j=0

2jσpq‖(ϕj(2
k·)f̂)∨|Lp‖

q




1/q

. (2.3)

If j ≥ k + 1, then ϕj(2
kx) = ϕj−k(x). This gives

2−k n
p




∞∑

j=k+1

2jσpq‖(ϕj(2
k·)f̂)∨|Lp‖

q




1/q

=2−k n
p




∞∑

j=k+1

2(j−k)σpq2kσpq‖(ϕj−k f̂)∨|Lp‖
q




1/q

=2−k n
p
+kσp

(
∞∑

l=1

2lσpq‖(ϕlf̂)∨|Lp‖
q

)1/q

≤c2−kn‖f |Bσp

p,q‖. (2.4)

For the further calculations we make use of the following Fourier multiplier theorem, cf.
[Tri83, Prop. 1.5.1],

‖(Mĥ)∨|Lp‖ ≤ c‖M∨|Lp‖ · ‖h|Lp‖, if 0 < p ≤ 1, (2.5)

with M∨ ∈ S′ ∩ Lp, and supp ĥ ⊂ Ω, suppM ⊂ Γ, where Ω and Γ are compact subsets of Rn (c
does not depend on M and h, but may depend on Ω and Γ).
Of course, for p = 1, this is just the Hausdorff-Young inequality (which was also used in
[Vyb08]).
We put h = (ϕ0f̂)∨, where supp ĥ ⊂ suppϕ0 = Ω.
If j = 0, we take M0 = ϕ0(2

k·), where suppM0 ⊂ suppϕ0 = Γ, and calculate

2−k n
p ‖(ϕ0(2

k·)f̂)∨|Lp‖ ≤ c2−k n
p ‖ϕ0(2

k·)∨|Lp‖ · ‖(ϕ0f̂)∨|Lp‖,

= c2−k n
p 2kσp‖ϕ0

∨|Lp‖ · ‖(ϕ0f̂)∨|Lp‖

= c′2k(σp−
n
p
)‖(ϕ0f̂)∨|Lp‖

≤ c2k(σp−
n
p
)‖f |Bσp

p,q‖

= c2−kn‖f |Bσp

p,q‖. (2.6)
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Finally it remains to consider 1 ≤ j ≤ k. This is the crucial step, leading to k1/q. In this case
ϕj(x) = ϕ̄(2−jx), where ϕ̄ = ϕ(x) − ϕ(2x). Hence

2−k n
p




k∑

j=1

2jσpq‖(ϕj(2
k·)f̂)∨|Lp‖

q




1/q

= 2−k n
p




k∑

j=1

2jσpq‖(ϕ̄(2k−j ·)f̂)∨|Lp‖
q




1/q

= 2−k n
p




k−1∑

j=1

2jσpq‖(ϕ̄(2k−j ·)ϕ0f̂)∨|Lp‖
q + 2kσpq‖(ϕ̄f̂)∨|Lp‖

q




1/q

. (2.7)

The term for j = k in (2.7) needs some extra care. Using (2.5) where we set Mk = ϕ0(2·),
suppMk ⊂ suppϕ0 = Γ we obtain

2kσpq‖(ϕ̄f̂)∨|Lp‖
q = 2kσpq‖(ϕ0f̂)∨ − (ϕ0(2·)f̂)∨|Lp‖

q

≤ c2kσpq
(
‖(ϕ0f̂)∨|Lp‖ + ‖(ϕ0(2·)ϕ0f̂)∨|Lp‖

)q

≤ c′2kσpq‖(ϕ0f̂)∨|Lp‖
q (1 + ‖ϕ∨

0 (2·)|Lp‖)
q

= c12
kσpq‖(ϕ0f̂)∨|Lp‖

q.

This estimate can be incorporated into our further calculations. Now for 1 ≤ j ≤ k − 1 we use
the multiplier theorem with Mj = ϕ̄(2k−j ·), and observe that suppMj ⊂ {x : |2k−jx| ≤ 2} ⊂ {x :
|x| ≤ 2} = Γ. Now (2.7) yields

2−k n
p




k∑

j=1

2jσpq‖(ϕj(2
k·)f̂)∨|Lp‖

q




1/q

≤ c2−k n
p




k−1∑

j=1

2jσpq‖(ϕ̄(2k−j ·))∨|Lp‖
q · ‖(ϕ0f̂)∨|Lp‖

q + 2kσpq‖(ϕ0f̂)∨|Lp‖
q




1/q

= c22
−k n

p · ‖(ϕ0f̂)∨|Lp‖




k−1∑

j=1

2jσpq‖(ϕ̄(2k−j ·))∨|Lp‖
q + 2kσpq




1/q

≤ c22
−k n

p · ‖f |Bσp

pq ‖




k−1∑

j=1

2jσpq‖(ϕ̄(2k−j ·))∨|Lp‖
q + 2kσpq




1/q

≤ c22
−k n

p · ‖f |Bσp

pq ‖




k−1∑

j=1

2j( n
p
−n)q‖2(j−k)nϕ̄∨(2j−k·)|Lp‖

q + 2kσpq




1/q

≤ c22
−k n

p · ‖f |Bσp

pq ‖




k−1∑

j=1

2j( n
p
−n)q2(j−k)nq2−(j−k)n· 1

p
·q‖ϕ̄∨|Lp‖

q + 2kσpq




1/q

≤ c32
−k n

p · ‖f |Bσp

pq ‖




k∑

j=1

2kσpq




1/q

= c3k
1/q2−kn · ‖f |Bσp

pq ‖. (2.8)

Now (2.3) together with (2.4), (2.6), and (2.8) give the upper estimate.

Step 2. It remains to prove that the estimate is sharp. Let ψ ∈ S(Rn) be a non-negative
function with support in {x ∈ Rn : |x| ≤ 1/8} and

∫
Rn ψ(x)dx = 1. We show that for 0 < q ≤ ∞,

‖ψ(2k·)|Bσp

p,q‖ ≥ c2−knk1/q, k ∈ N.
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Let us take a function κ ∈ S(Rn) with

(Dακ∨)(0) = 0, |α| ≤ r, (2.9)

where r > σp−1, according to [Ryc99, Th. BPT]. In particular, by [Ryc99, Rem. 3] these condi-
tions on κ are sufficient for our purposes; we refer as well to [Vyb08, Sect. 2.2]. Furthermore,
we require

κ(x) = 1, if x ∈M = {z ∈ R
n : |z − (1/2, 0 . . . , 0)| < 1/4}. (2.10)

We construct a function κ that satisfies (2.9) and (2.10). Let us first consider the one-
dimensional case n = 1. Put

f(x) =
dr

dxr
f0(x), f0 ∈ S(R).

Then we have that
f∨(ξ) = −ir

(
xrf∨

0

)
(ξ) = −irξrf∨

0 (ξ).

In particular, for l < r we calculate

(
dl

dxl
f∨

)
(0) = −ir

l∑

j=0

(
l

j

)
r!

(r − j)!
ξr−j dl−j

dxl−j
f∨
0 (ξ)

∣∣∣
ξ=0

= 0,

from which we see that f satisfies the moment conditions. Needing

f(x) = 1,
1

4
< x <

3

4
,

we put f0(x) := xr · β(x), where β ∈ S(R) is chosen such that

β(x) =
1

r!
, x ∈ B1(

1

2
).

The previous considerations can easily be extended to higher dimensions by setting

g(x1, . . . , xn) = f0(x1)f0(x2 −
1

2
) · · · · · f0(xn −

1

2
),

and finally
κ(x) = D(r,...,r)g(x), x ∈ R

n,

gives the desired function, if we choose r > σp − 1.
Simple calculation shows that if j = 1, 2, . . . , k and |x− (1

2 · 1
2j , 0 . . . , 0)| < 1

2j
1
8 , then

supp yψ(2kx+ 2k−jy) ⊂M.

For these x we get

K(2−j , ψ(2k·))(x) =

∫

Rn

κ(y)ψ(2kx+ 2k−jy)dy =

∫

Rn

ψ(2kx+ 2k−jy)dy = 2(j−k)n.

Hence,
‖K(2−j , ψ(2k·))|Lp‖ ≥ 2−

jn

p 2(j−k)n = 2−jn( 1
p
−1)2−kn = 2−jσp2−kn.

This yields

‖ψ(2k·)|Bσp

p,q‖ ≥ c




k∑

j=1

2jσpq‖K(2−j , ψ(2k·))|Lp‖
q




1/q

= c2−kn




k∑

j=1

1




1/q

= c2−knk1/q,

which is the desired result.
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3 Applications

3.1 Besov spaces with positive smoothness on Rn

With the help of the previous results on dilation operators, we want to discuss the connection
and diversity of three different approaches to Besov spaces with positive smoothness in this
section.
In addition to the Fourier-analytical approach, cf. Definition 1.1, we now present two further
characterizations – associated to definitions by differences and subatomic decompositions –
before we come to some comparison.

The classical approach: Besov spaces B
s
p,q(R

n)

If f is an arbitrary function on Rn, h ∈ Rn and k ∈ N, then

(∆1
hf)(x) = f(x+ h) − f(x) and (∆k+1

h f)(x) = ∆1
h(∆k

hf)(x), k ∈ N.

For convenience we may write ∆h instead of ∆1
h. Furthermore, the k-th modulus of smoothness

of a function f ∈ Lp(R
n), 0 < p ≤ ∞, k ∈ N, is defined by

ωk(f, t)p = sup
|h|≤t

‖∆k
hf | Lp(R

n)‖, t > 0. (3.1)

We shall simply write ω(f, t)p instead of ω1(f, t)p and ω(f, t) instead of ω(f, t)∞.

Definition 3.1 Let 0 < p, q ≤ ∞, s > 0, and r ∈ N such that r > s. Then the Besov space B
s
p,q(R

n)
contains all f ∈ Lp(R

n) such that

‖f |Bs
p,q(R

n)‖r = ‖f |Lp(R
n)‖ +

(∫ 1

0

t−sqωr(f, t)
q
p

dt

t

)1/q

(3.2)

(with the usual modification if q = ∞) is finite.

Remark 3.2 These are the classical Besov spaces, in particular, when 1 ≤ p, q ≤ ∞, s > 0. The
study for all admitted s, p and q goes back to [SO78], we also refer to [BS88, Ch. 5, Def. 4.3]
and [DL93, Ch. 2, §10]. There are as well many older references in the literature devoted to
the cases p, q ≥ 1. A recent approach including atomic characterisations is given in [HN07]
based on [Net89].
Definition 3.1 is independent of r, meaning that different values of r > s result in
(quasi-)norms which are equivalent. Furthermore the spaces are (quasi-)Banach spaces (Ba-
nach spaces if p, q ≥ 1). Note that we deal with subspaces of Lp(R

n), in particular we have the
embedding

B
s
p,q(R

n) →֒ Lp(R
n), s > 0, 0 < q ≤ ∞, 0 < p ≤ ∞.

The classical scale of Besov spaces contains many well-known function spaces. For example,
if p = q = ∞, one recovers the Hölder-Zygmund spaces Cs(Rn),

B
s
∞,∞(Rn) = Cs(Rn), s > 0. (3.3)

We add the following homogeneity estimate, which will serve us later on. Let R > 0, s > 0, and
0 < p, q ≤ ∞. Then

∥∥f(R·)|Bs
p,q(R

n)
∥∥ ≤ c max

(
R−n

p , Rs−n
p

) ∥∥f |Bs
p,q(R

n)
∥∥ . (3.4)

To prove this we simply observe that

∥∥f(R·)|Bs
p,q(R

n)
∥∥ = ‖f(R·)|Lp(R

n)‖ +

(∫ 1

0

t−sqωr(f(R·), t)q
p

dt

t

)1/q

= R−n
p ‖f |Lp(R

n)‖ +R−n
p

(∫ 1

0

t−sqωr(f,Rt)
q
p

dt

t

)1/q

= R−n
p ‖f |Lp(R

n)‖ +Rs−n
p

(∫ R

0

τ−sqωr(f, τ)
q
p

dτ

τ

)1/q

≤ cmax
(
R−n

p , Rs−n
p

) ∥∥f |Bs
p,q(R

n)
∥∥ .
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The subatomic approach: Besov spaces B
s
p,q(R

n)

The subatomic approach provides a constructive definition for Besov spaces, expanding func-
tions f via building blocks and suitable coefficients, where the latter belong to certain se-
quence spaces. For further details on the subject we refer to [Tri06,HS08]. Let

R
n
++ := {y ∈ R

n : y = (y1, . . . , yn), yj > 0}.

Definition 3.3 Let k be a non-negative C∞ function in Rn with

supp k ⊂
{
y ∈ R

n : |y| < 2J−ε
}
∩ R

n
++ (3.5)

for some fixed ε > 0 and some fixed J ∈ N, satisfying
∑

m∈Zn

k(x−m) = 1, x ∈ R
n. (3.6)

Let β ∈ Nn
0 , j ∈ N0, m ∈ Zn, and let kβ(x) = (2−Jx)βk(x). Then

kβ
j,m(x) = kβ(2jx−m) (3.7)

denote the building blocks related to Qj,m.

Definition 3.4 Let ̺ ≥ 0, s ∈ R, 0 < p, q ≤ ∞, and

λ =
{
λβ

j,m ∈ C : β ∈ N
n
0 , m ∈ Z

n, j ∈ N0

}
.

Then the sequence space bs,̺
p,q is defined as

bs,̺
p,q :=

{
λ : ‖λ|bs,̺

p,q‖ <∞
}

(3.8)

where

‖λ|bs,̺
p,q‖ = sup

β∈Nn
0

2̺|β|




∞∑

j=0

2j(s−n/p)q

(
∑

m∈Zn

|λβ
j,m|p

)q/p



1/q

(3.9)

(with the usual modification if p = ∞ and/or q = ∞).

Remark 3.5 It might not be obvious immediately, but the building blocks kβ
j,m in our sub-

atomic approach differ from the atoms a – used to characterize the spaces Bs
p,q(R

n) in The-
orem 1.7 – mainly by the imposed moment conditions on the latter and some unimportant
technicalities. In particular, the normalizing factors 2j(s−n

p
) are incorporated in the sequence

spaces bs,̺
p,q in the subatomic approach; recall Definition 1.5. We refer as well to [Tri01, Th. 3.6].

Definition 3.6 Let s > 0, 0 < p ≤ ∞, 0 < q ≤ ∞, ̺ ≥ 0. Then B
s
p,q(R

n) contains all f ∈ Lp(R
n)

which can be represented as

f(x) =
∑

β∈Nn
0

∞∑

j=0

∑

m∈Zn

λβ
j,mk

β
j,m(x), x ∈ R

n, (3.10)

with coefficients λ =
{
λβ

j,m

}

β∈Nn
0 ,j∈N0,m∈Zn

∈ bs,̺
p,q, and equipped with the norm

∥∥f |Bs
p,q(R

n)
∥∥ = inf

∥∥λ|bs,̺
p,q

∥∥ (3.11)

where the infimum is taken over all possible representations (3.10).

Remark 3.7 The definitions given above follow closely [Tri06, Sect. 9.2]. The spaces B
s
p,q(R

n)
are (quasi-)Banach spaces (Banach spaces for p, q ≥ 1) and independent of k and ̺ (in terms
of equivalent (quasi-)norms). Furthermore, we have the embedding

B
s
p,q(R

n) →֒ Lp(R
n), 0 < p ≤ ∞,

see [Tri06, Th. 9.8].
Concerning the convergence of (3.10) one obtains as a consequence of λ ∈ bs,̺

p,q that the series
on the right-hand side converges absolutely in Lp(R

n) if p < ∞, and in L∞(Rn, wσ) if p = ∞,
where wσ(x) = (1 + |x|2)σ/2 with σ < 0. Since this implies unconditional convergence we may
simplify (3.10) and write in the sequel

f =
∑

β,j,m

λβ
j,mk

β
j,m.
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Connections and diversity

We now discuss the coincidence and diversity of the above presented concepts of Besov spaces
and may restrict ourselves to positive smoothness s > 0. In view of our Remarks 1.2, 3.2,
and 3.7 concerning the different nature of these spaces, it is obvious that there cannot be
established a complete coincidence of all approaches when s < σp, since B

s
p,q(R

n) and B
s
p,q(R

n)
are always subspaces of Lp(R

n) and thus contain functions, whereas the elements of Bs
p,q(R

n)
are distributions which can be interpreted as regular distributions (‘functions’) if, and only
if, (1.4) is satisfied. However, when s > σp, the outcome is optimal in the sense that all
approaches result in the same Besov space.

Theorem 3.8 Let s > 0, 0 < p ≤ ∞, 0 < q ≤ ∞.

(i) Then
B

s
p,q(R

n) = B
s
p,q(R

n) (3.12)

(in the sense of equivalent norms).

(ii) Let s > σp, then
Bs

p,q(R
n) = B

s
p,q(R

n) = B
s
p,q(R

n) (3.13)

(in the sense of equivalent norms).

Remark 3.9 The first equality in (3.13) is longer
known, see [Tri83, Thm. 2.5.12], [Tri92, Thm. 2.6.1]
with forerunners in case of p, q ≥ 1, see [Tri78, 2.5.1,
2.7.2], whereas the second equality in (3.13) is a con-
sequence of the recently proved coincidence (3.12),
see [Tri06, Prop. 9.14] (with forerunners in [Tri97,
Sect. 14.15], [Tri01, Thm. 2.9]). It essentially re-
lies on the atomic decomposition, cf. [Net89], [HN07,
Thm. 1.1.14]. In the figure aside we have indicated
the situation in the usual ( 1

p , s)-diagram.
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������s

1

B
s
p,q = B

s
p,q

Bs
p,q = B

s
p,q = B

s
p,q

s = σp

1
p

Our results on the norms of the dilation operators Tk established in Theorem 2.1, now lead to
new insights when dealing with the limiting case s = σp.

Corollary 3.10 Let 0 < p < 1, and 0 < q ≤ ∞. Then

Bσp

p,q(R
n) 6= B

σp

p,q(R
n)

(in terms of equivalent norms).

P r oo f :
We use the homogeneity estimate (3.4), which for R = 2k, s > 0, and 0 < p, q ≤ ∞ shows

∥∥f(2k·)|Bs
p,q

∥∥ ≤ c 2k(s− n
p
)
∥∥f |Bs

p,q

∥∥ . (3.14)

We proceed indirectly, assuming that Bσp

p,q(Rn) = B
σp

p,q(Rn) for 0 < q ≤ ∞. But then using
Theorem 2.1 and (3.14), we could find a function ψ ∈ B

σp

p,q with

2k(σp−
n
p
)k1/q‖ψ|Bσp

p,q‖ ≤ c‖ψ(2k·)|Bσp

p,q‖ ∼ ‖ψ(2k·)|Bσp

p,q‖ ≤ c2k(σp−
n
p
)‖ψ|Bσp

p,q‖ ∼ c2k(σp−
n
p
)‖ψ|Bσp

p,q‖,

which leads to
k1/q ≤ c, k ∈ N.

This gives the desired contradiction.

Remark 3.11 Alternatively, we could use the idea from [Vyb08, Rem. 3.7], and show that the
moment conditions on the line s = σp are absolutely necessary. This immediately leads to

Bσp

p,q(R
n) 6= B

σp

p,q(R
n)
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in view of Remark 3.5. We sketch the proof.
Every f ∈ B

σp

p,q(Rn) may be rewritten into its optimal atomic decomposition

f(x) =
∑

ν,m

λν,maν,m(x), x ∈ R
n,

with
‖λ|bσp

p,q‖ ≤ c‖f |Bσp

p,q‖, f ∈ Bσp

p,q(R
n),

see [Tri06, Ch. 1.5] for details. If no moment conditions were required here, then

gk(x) = f(2kx) =
∑

ν,m

λν,maν,m(2kx), x ∈ R
n

would represent an atomic decomposition of f(2kx). This can be seen by setting

gk(x) =
∑

ν,m

λν,m2k(σp−
n
p
)2−k(σp−

n
p
)aν,m(2kx) =

∑

ν,m

λk
ν,ma

k
ν,m(x),

where ak
ν,m(x) = 2−k(σp−

n
p
)aν,m(2kx) ∼ ãν+k,m(x), since

supp ak
ν,m ⊂ Qν+k,m,

|Dαak
ν,m(x)| = 2−k(σp−

n
p
)+k|α||Dαaν,m(x)| ≤ 2−(ν+k)(σp−

n
p
)+(ν+k)|α|.

Therefore we obtain

‖gk|B
σp

p,q‖ ≤ ‖λk|bσp

p,q‖ = 2k(σp−
n
p
)‖λ|bσp

p,q‖ = 2−nk‖λ|bσp

p,q‖,

and thus,
‖f(2k·)|Bσp

p,q‖ ≤ c2−nk‖f |Bσp

p,q‖.

But we know by Theorem 2.1 that this is not true in general.
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