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1 Introduction

It is a generic fact that quantum field theories (QFTs) become scale invariant at low

energies. In all known cases of unitary QFTs, scale invariance is also accompanied by

invariance under the “special conformal transformations”. It therefore follows that QFTs

flow to conformal field theories (CFTs) in the infrared (IR). It is therefore no overstatement

that understanding CFTs in general is an imperative cause being pursued by physicists all

over the world.
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Developments in string and M-theory have also uncovered the existence of the so called

“non-Lagrangian theories”. These are CFTs which can be probed through their string the-

oretic construction, however, their quantum excitations are very strongly coupled, such

that they have no known Lagrangian description. Amongst the earliest (and perhaps the

simplest) examples of such non-Lagrangian theories is the Argyres-Douglas (AD) theory [1].

This is also referred to as the H0 theory in literature. It is a 4d CFT with N = 2 super-

symmetry and can be thought of as the theory describing the electromagnetic interaction

between a U(1) magnetic monopole and a dyon, along with their superpartners. Argyres

and Douglas discovered it by studying a very specific point on the Coulomb branch of the

4d N = 2 SU(3) super-Yang-Mills theory. This description in terms of a critical point on

the Coulomb branch of a Lagrangian theory makes it possible to study the Coulomb phase

of the AD-theory, however, its conformal phase is not as easily accessible through such

a description.

By now, we know an infinite set of 4d N = 2 supeconformal field theories (SCFTs)

that can be considered close cousins of the H0 theory in that their Coulomb phase consists

of a system of interacting particles with mutually non-local electromagnetic charges [2–12].

These are referred to as generalized AD theories. Owing to the work of [13], a prescription

to compute their central charges is also available. Based on the general connection betweeen

4d N = 2 SCFTs and 2d chiral algebras [14], the authors of [15] were able to show that

the central charge c of the H0 theory saturates a lower bound and therefore in this sense

the AD theory can be thought of as the simplest of all 4d N = 2 SCFTs.

A quantity that is very useful to characterize the spectra of an SCFT is its super-

conformal index. The lack of Lagrangian description for generalized AD theories implies

that their superconformal index is not readily computable. However, for many classes of

the generalised AD theories, the insights of [16–21] have made it possible to compute the

superconformal index in the so called Schur and Macdonald limits.

The full N = 2 superconformal index of the H0 theory was first computed in [22].

This was made possible through the discovery of a 4d N = 1 Lagrangian theory which

undergoes SUSY enhancement at the end of its RG flow with its fixed point being the

H0 theory. 4d N = 1 Lagrangians for many other generalized AD theory were obtained

in [23–26]. For all those generalized AD theories whose 4d N = 1 Lagrangians are known,

the computation of their full superconformal index is therefore a straightforward exercise.

Besides being inherently interesting owing to being rare examples of SUSY enhancing 4d

RG flows,1 these N = 1 Lagrangians have also been successfully used to probe many other

properties of the generalized AD theories [31–35].

One can also consider the 3d N = 4 SCFTs obtained by reducing AD theories on

a circle. These are best described in terms of their mirror duals [36] and were obtained

in [8, 37–39]. It is natural to expect that the dimensional reduction of 4d N = 1 Lagrangians

of generalized AD theories should give 3d Lagrangians whose IR fixed point is described

by the corresponding 3d mirrors of AD theories. The authors of [40, 41] considered exactly

1We passingly note that 4d N = 1 Lagrangians that flow to the E6 and E7 Minahan-Nemeschansky

theory [27, 28] were obtained in [29] and [30] respectively. However, their construction is different from that

of the Lagrangians for AD theories.

– 2 –



J
H
E
P
0
3
(
2
0
1
9
)
0
1
1

this question. They argued that certain terms in the 4d N = 1 Lagrangians dynamically

dropout due to chiral ring instability and hence such terms should be removed from the

superpotential. Additionally, one can add certain “flipping fields” to the Lagrangians.

The purpose of these flipping fields is to take into account the decoupling of certain gauge

invariant operators by removing them from the chiral ring. It was shown in [40, 41] that the

dimensionally reduced (A1, A2n+1) type Lagrangians only flows to the desired fixed point

when the flipping fields are included in the dimensionally reduced Lagrangian. Thereby

bringing to light the importance of including “flipping fields” whenever the RG flow involves

decoupled operators.

However, the addition of “flipping fields” is a rule-of-thumb that, while expected to hold

in generic cases, might at times fail. In this paper we will demonstrate one such example

where the addition of a flipping field to the dimensionally reduced Lagrangian actually

spoils the expected match. The example we will present corresponds to the Lagrangian

description for the so called (A1, D3) AD theory.

The 3d mirror of the dimensionally reduced (A1, D3) theory is given by a 3d N = 4

U(1) gauge theory coupled to 2 hypers carrying U(1) charge 1. This is popularly called

the T [SU(2)] theory. We will show that the dimensionally reduced (A1, D3) Lagrangian

straightforwardly flows to the T [SU(2)] fixed point without the need to add a flipping field.

On the other-hand, addition of a flipping field deforms the Lagragian in such a way that

it flows to a completely different fixed point with only 3d N = 2 supersymmetry.

At this point we will like to point out that the (A1, D3) AD theory is identical to

the (A1, A3) theory. However, depending upon whether one classifies it as part of the

(A1, A2n+1) type of AD theories or the (A1, D2n+1) type of AD theories, one can write

down two distinct N = 1 Lagrangians for them [23, 24]. In order to distinguish between

the two Lagrangians we will call one of them as the (A1, D3) Lagrangian and the other as

the (A1, A3) Lagrangian, respectively. These two Lagrangians are therefore dual to each

other in the sense of [42]. 3d reduction of the (A1, A3) Lagrangian was already studied

in detail in [40]. More details about these Lagrangians will be provided in the relevant

sections of the paper.

The plan of the paper is as follows: in section 2, we review the construction of 4d N = 1

Lagrangians for generalized AD theories. Section 3 is devoted to reminding the reader about

some basic facts concerning the T [SU(2)] theory. In section 4, we summarize dimensional

reduction of the so called (A1, A3) Lagrangian, as was first done in [40]. We also compute

the 3d superconformal index of the dimensionally reduced (A1, A3) Lagrangian and check

that it matches with that of the T [SU(2)] theory. The matching of the superconformal

index is the only ingredient in this section that was not considered in [40]. In section 5,

we consider the dimensional reduction of the (A1, D3) Lagrangian and compare it to the

T [SU(2)] theory. In section 6, we consider an alternative derivation of the T [SU(2)] theory

as a mirror of the (A1, D3) Lagrangian, thereby providing further confirmation of our claim.

The Lagrangians thereby described in sections 5 and 6 therefore give us two new duals of

the T [SU(2)] theory.

As might be obvious from the plan of the paper mentioned above, sections 2–4 are

general summaries of known facts and can be safely skipped by experts.
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2 Review of 4d N = 1 Lagrangians for generalized AD theories

The construction of 4d N = 1 Lagrangians for generalized AD theories is based on a

specific kind of N = 1 preserving deformation of general 4d N = 2 SCFTs. These were

first introduced in [43] and further studied in detail in [44–49].2 The idea is as follows:

we start with any given 4d N = 2 SCFT TUV having a non-Abelian flavor symmetry

F . Invariance of TUV under F as well as N = 2 superconformal algebra implies that

its spectrum contains a superconformal multiplet of conserved F -currents whose lowest

component is a scalar, usually called “the moment map operator” and denoted by µ. We

now deform this theory by introducing a gauge singlet chiral superfield M transforming in

the adjoint representation of F , and couple it to TUV via a superpotential term given by

δW = TrMµ . (2.1)

Furthermore, we give a nilpotent vev to M : 〈M〉 = ρ(σ+), where ρ specifies the choice

of an SU(2)ρ ↪→ F . This explicitly breaks the N = 2 supersymmetry enjoyed by TUV
and generically triggers an N = 1 preserving RG-flow. The flavor symmetry group of the

theory also gets broken to the commutant of SU(2)ρ ↪→ F .

The deformed superpotential is now given by

δW = Trρ(σ+)µj=1,m=−1 +
∑
j,k

Mj,−j,kµj,j,k , (2.2)

where Mj,m,k is the component of M that transforms in the (2j + 1)-dimensional irrep. of

SU(2)ρ with a spin m, while k denotes its quantum numbers with respect to the remnant

flavor symmetry. The notation µj,m,k can also be understood in a similar way. The above

deformation will also break the SU(2)R×U(1)r R-symmetry of TUV down to U(1)I3×U(1)r,

where U(1)I3 is Cartan subgroup of SU(2)R. The 4dN = 1 R-symmetry U(1)R is then given

by a linear combination of U(1)I3 and U(1)r. This linear combination is a priori unfixed

and is determined by using the principle of “a-maximization” [55] and its modification [56].

Once the appropriate linear combination has been determined, the resulting U(1)R-charge

can be used to compute the central charges of the IR-fixed point using the relations [57]

a =
3

32
(3TrR3 − TrR) , (2.3)

c =
1

32
(9TrR3 − 5TrR) (2.4)

Let us now apply the above deformation to the 4d N = 2 Lagrangian SCFT consisting

of an SU(N) gauge theory coupled to Nf = 2N fundamental flavors. Let us also choose

ρ : SU(2)ρ ↪→ SU(2N) to be given by the principle embedding.3 It turns out that upon

doing so, the central charges of the resulting IR fixed point match with those of the so called

(A1, A2N−1) AD theory. It is natural to wonder if the IR fixed point is indeed given by

2Also see [50–53] for the construction of new 4d N = 1 SCFTs obtained from N = 1 preserving

deformations of the so called class-S theories [54].
3The princinple embedding SU(2)ρ ↪→ SU(2N) sends the 2N dimensional irrep. of SU(2N) to the 2N

dimensional irrep. of SU(2)ρ.
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the (A1, A2N−1) AD theory. In [23], Maruyoshi and Song provided convincing evidence to

show that this is indeed the case. Thereby they were able to obtain an N = 1 Lagrangian

for the (A1, A2N−1) AD theory. One can also consider a similar deformation of the 4d

N = 2 SCFT consisting of the USp(2N) gauge group coupled to Nf = 4N+4 fundamental

half-hypers and choose SU(2)ρ to be the principle nilpotent embedding of its SO(4N + 4)

flavor symmetry. This gives us an N = 1 Lagrangian for the (A1, A2N ) theories. A more

detailed study of all possible nilpotent deformations of the above mentioned 4d N = 2

SCFTs was carried out in [24], thereby leading to the discovery of N = 1 Lagrangians

for (A1, DN ) theories. More recently, [58] found a set of necessary conditions for SUSY

enhancement of N = 1 theories obtained through above mentioned deformations of N = 2

SCFTs. Meanwhile, the authors of [59] have shown how to use T-branes to describe the

above deformations when applied to rank-1 SCFTs, thereby taking the first steps towards

their string theory uplift.

For the purpose of this paper, we need to apply the above deformation to the 4d

N = 2 SCFT consisting of the SU(2) gauge theory coupled to 8 fundamental half-hypers.

This theory has an SO(8) flavor symmetry. To obtain the (A1, A3) Lagrangian we deform

the above theory using SU(4) ⊂ SO(8) that rotates the 4 hypers formed from the 8 half-

hypers. Choosing SU(2)ρ to be the principle embedding of SU(4) then gives us a 4d

N = 1 Lagrangian that flows to the (A1, A3) theory. Along the way some of the gauge

singlets introduced through our deformation decouple from the interacting theory. The

chiral operator Trφ2, where φ is the scalar in the 4d N = 2 SU(2) vector multiplet also

decouples as a free field.

Similarly if one focuses on the full SO(8) flavor symmetry of the UV N = 2 SCFT

mentioned in the previous paragraph, and chooses ρ : SU(2)ρ ↪→ SO(8) to be given by

SO(8)→ SU(2)ρ

8→ 5⊕ 1⊕ 1⊕ 1 , (2.5)

then the 4d N = 1 Lagrangian so obtained flows to the (A1, D3) theory. Once again, some

of the gauge singlets introduced through our deformation as well as the gauge invariant

operator Trφ2 end up decoupling from the interacting theory. Let us reiterate that while

the (A1, A3) AD theory and the (A1, D3) AD theory are identical, their N = 1 Lagrangians

as described here end up being distinct.

3 T [SU(2)] theory

The 3d reduction of the (A1, A3) ≡ (A1, D3) AD theory is given by the T [SU(2)] theory.

This is an N = 4 U(1) gauge theory coupled to 2 hypermutliplets, both having charge 1

with respect to the U(1) gauge transformations. There is a topological global symmetry

U(1)T that arises from the shift symmetry of the dual photon: φ → φ + constant. It was

argued in [36, 60] that this U(1)T gets enhanced to SU(2)T . Similarly, the Higgs branch

of this theory also has an SU(2)b global symmetry with the two hypermultiplets of the

T [SU(2)] together forming a doublet of SU(2)b. The R-symmetry is given by SO(4)R but

– 5 –
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in the N = 2 language, only the U(1)R × U(1)q ⊂ SO(4)R is manifest. We summarize the

matter content of this theory in (3.1).

fields U(1)gauge U(1)b ⊂ SU(2)b U(1)q U(1)R

P1 +1 +1 +1 +1
2

P̃1 −1 −1 +1 +1
2

P2 +1 −1 +1 +1
2

P̃2 −1 +1 +1 +1
2

φ 0 0 −2 1

(3.1)

The superpotential is given by

W = φ(P1P̃1 + P2P̃2) . (3.2)

The 3 components of SU(2)b moment map are given by {P1P̃2, P1P̃1 − P2P̃2, P̃1P2}.
Similarly the moment map of SU(2)T consists of {M+, φ, M−}. Where M± are monopole

operators with magnetic charges ±1 respectively. Together, these operators form the chiral

ring of T [SU(2)]. We list their charges with respect to the various global symmetries

in (3.3).

Chiral Op. U(1)T ⊂ SU(2)T U(1)b ⊂ SU(2)b U(1)q U(1)R

P1P̃2 0 +2 +2 +1

P1P̃1 − P2P̃2 0 0 +2 +1

P̃1P2 0 −2 +2 +1

M+ 1 0 −2 1

φ 0 0 −2 1

M− −1 0 −2 1

(3.3)

It is also quite straight forward to compute the superconformal index and the S3 partition

function of the T [SU(2)] theory. We will use these to establish the duality between the

T [SU(2)] theory and the 3d Lagrangian obtained from dimensional reduction of the (A1, D3)

Lagrangian.

The 3d superconformal index. In the absence of any Chern-Simons term the 3d

superconformal index (SCI) of a Lagrangian SCFT with a gauge group G can be written

as [61–63]4

I =
∑
m

∮ ∏
j

dzj
2πizj

1

|W(m)|
Zvec(z, x,m)

∏
Φ

ZΦ(z, x, t,m) , (3.4)

4In Chern-Simons theories, there is an additional term which captures the contribution from the classical

action of the monopole + holonomy configuration on S2 × S1.
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where m runs over the allowed magnetic charges (modulo Weyl transformations) for the

given gauge group.5 |W(m)| is the order of the Weyl group of the subgroup of G that is

left unbroken by the magnetic fluxes m. Zvec(z, x,m) is the contribution from the vector

multipets and is defined by

Zvec(z = eia, x,m) =
∏
α∈∆

x−
|α(m)|

2 (1− eiα(a)x|α(m)|) . (3.5)

Here ∆ is the set of non-zero roots of G. Similarly,

ZΦ(z,x, t,m) =
∏
ρ∈RΦ

(
x(1−rΦ)e−iρ(a)

∏
k

t
−fk(Φ)
k

) |ρ(m)|
2 (e−iρ(a)

∏
k t
−fk(Φ)
k x|ρ(m)|+2−rΦ ;x2)∞

(eiρ(a)
∏
k t
fk(Φ)
k x|ρ(m)|+rΦ ;x2)∞

,

(3.6)

where RΦ is the representation of chiral field Φ with respect to the gauge group. In the

above formula, we have used the standard notation for the q-Pochhammer symbol

(a; q)n =

n−1∏
k=0

(1− aqk) . (3.7)

SCI of T [SU(2)]. For T [SU(2)], the superconformal index takes the following form

IT [SU(2)] =
∑
m∈Z

∮
dz

2πiz
tmZφ(x,b,v,z)ZP1(x,b,v,z)Z

P̃1
(x,b,v,z)ZP2(x,b,v,z)Z

P̃2
(x,b,v,z) ,

(3.8)

where v, b and t are the fugacities for U(1)q, SU(2)b and U(1)T respectively, and

Zφ(x, b, v, z) =
∞∏
k=0

1− v2x2k+1

1− v−2x2k+1
, (3.9)

ZP1(x, b, v, z) = (x
1
2 z−1b−1v−1)

|m|
2

∞∏
k=0

1− z−1b−1v−1x2k+|m|+ 3
2

1− zbvx2k+|m|+ 1
2

, (3.10)

Z
P̃1

(x, b, v, z) = ZP1(x, b−1, v, z−1) , (3.11)

ZP2(x, b, v, z) = ZP1(x, b−1, v, z) , (3.12)

Z
P̃2

(x, b, v, z) = ZP1(x, b, v, z−1) . (3.13)

5Basically, m ∈ Γ∗
Ĝ
/WĜ, where Γ∗

Ĝ
is the weight lattice of the dual gauge group Ĝ and WĜ is its Weyl

group.
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Evaluating (3.8) explicitly, we find

IT [SU(2)] = 1 + x

(
v2χb3 +

χt3
v2

)
+ x2

(
−1− χb3 − χt3 + v4χb5 +

χt5
v4

)
+ x3

(
1

v2
+ v2 − v2χb5 −

χt5
v2

+ v6χb7 +
χt7
v6

)
+ x4

(
−2 + χb3.χ

t
3 + v4χb3 +

χt3
v4
− v4χb7 −

χt7
v4

+ v8χb9 +
χt9
v8

)
+ x5

(
− χb3.χ

t
3

v2
− v2χb3.χ

t
3 − 2v2χb3 −

2χt3
v2
− v2χb5 + v6χb5

+
χt5
v6
− χt5
v2
− v6χb9 −

χt9
v6

+ v10χb11 +
χt11

v10

)
+O(x6) . (3.14)

Here χbn and χtn represent the characters of the n dimensional irrep. of SU(2)b and SU(2)T ,

where SU(2)T emerges due to enhancement of U(1)T . We note that the index above is

invariant under the Z2 transformation given by

Z2 : v → v−1, b↔
√
t . (3.15)

This is because the Z2 transformation described above corresponds to the mirror symmetry

that exchanges the Higgs and the Coulomb branch of T [SU(2)]. The invariance of the index

then follows from the fact that T [SU(2)] is self-mirror.

The S3 partition function. Given a QFT with gauge group G and chiral multiplets

Φ transforming in the representation RΦ of G, its S3 partition function of can be written

as [64–68]

ZS3 =
1

|W |

∫ ∞
−∞

∏
i

dzi
∏
α∈∆+

4 sinh2 πα(z)
∏
Φ

∏
ρ∈RΦ

el(1−rΦ+iρ(z)) , (3.16)

where, for the time being, we have switched off the background real masses associated to

the various flavor symmetries acting on the chiral fields. |W | is the order of the Weyl

group of G and ∆+ denotes the set of positive roots of G. The function l(z) is such that

l′(z) = −πz cotπz. This can be integrated with the boundary condition l(0) = 0, to give

l(z) = −z log(1− e2πiz) +
i

2

[
πz2 +

1

π
Li2(e2πiz)

]
− πi

12
. (3.17)

For the case of T [SU(2)], the S3 partition function then becomes

ZS3,T [SU(2)] =

∫ ∞
−∞

dze2l( 1
2

+iz)+2l( 1
2
−iz) =

1

2π
. (3.18)

4 The (A1, A3) Lagrangian

In this section we will describe the (A1, A3) Lagrangian. Its dimensional reduction to

3d was first considered in [40]. Let us quickly review the 4d Lagrangian, followed by

– 8 –
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its 3d reduction. The Lagrangian consists of an SU(2)color gauge theory with 2 chiral

multiplets, qm, m ∈ {1, 2}, each transforming in the doublet representation of SU(2)color.

In addition to this there is another chiral superfield φ that transforms in the adjoint irrep

of SU(2)color and gauge singlets M3, β which are coupled to the rest of the theory through

the superpotential. The 2 quarks qm can be rotated into each other, thereby endowing the

Lagrangian with an SU(2)b flavor symmetry. The matter content of the Lagrangian and

its classical symmetries can be summarized as in (4.1).

fields SU(2)color SU(2)b U(1)q U(1)T U(1)R U(1)T − 3
2U(1)q

q 2 2 1 −1
2 rq −2

φ adj 1 0 1 rφ 1

M3 1 1 −2 1 2− 2rq 4

β 1 1 0 −2 2− 2rφ −2

(4.1)

The superpotential is given by

W = M3Trqq + βTrφ2 . (4.2)

Note that, U(1)q and U(1)T are symmetries of the Lagrangian only at the classical level.

In 4d they are both independently anomalous with only the linear combination given by

U(1)A = U(1)T − 3
2U(1)q being non-anomalous. Since, there are no anomalies in 3d, both

U(1)q and U(1)T will survive as the symmetries of the CFT obtained at the fixed point of

the dimensionally reduced Lagrangian.

Requiring the 4d R-symmetry to be non-anomalous enforces the following constraint

on the R-charges:

rq + 2rφ = 1 . (4.3)

Thus in 4d the R-symmetry of the IR-fixed point belongs to a one-parameter family, the

parameter being fixed by a-maximization [55]. Upon a-maximizing, we find that the 4d

R-charges are given by

rq =
5

9
, rφ =

2

9
, rM3 =

8

9
, rβ =

14

9
. (4.4)

When considering the dimensional reduction of a 4d theory to 3d, one needs to check

if a monopole superpotential can be generated or not. In the case at hand, Benvenuti and

Giacomelli argued that a monopole superpotential will not be generated. This, coupled

with the fact that there are no anomalies in 3d, implies that the 3d IR R-symmetry be-

longs to a two-parameter family which can be chosen to be {rq, rφ}. These are fixed by

extremizing the S3 partition function of the theory. Benvenuti and Giacomelli showed that

the corresponding values of R-charges are

rq =
1

2
, rφ = 0, rM3 = 1, rβ = 2 . (4.5)
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4.1 The 4d chiral ring

Let us now consider the 4d chiral ring of the (A1, A3) Lagrangian. Before imposing the

F-term conditions following from the superpotential, the ring of gauge invariant operators

that can be formed from the chiral superfields listed in (4.1) is generated by the all possible

monomials formed from the product over the following letters:6

Trqq := εmnε
αβqmα q

n
β , Trφ2, M3, β, µ

(m,n)
l := qmα (φl)αβqnβ . (4.6)

Now, the equation of motion of M3 throws Trqq out of the chiral ring while the equation

of motion of β forces Trφ2 = 0. By the identities

φ2n =

(
1

2
Trφ2

)n
1 and φ2n+1 =

(
1

2
Trφ2

)n
φ , ∀n ≥ 1 , (4.7)

obeyed by all φ ∈ su(2), it then follows that µ
(a,b)
n = 0, ∀n ≥ 2. The operator β is quantum

mechanically removed from the chiral ring. This is because a non-zero vev for β lands us

on a theory with no SUSY vacua. Alternately, it can be shown that β is Q-exact with

respect to the extra supercharges that emerge at the IR fixed point and hence β is not in

the chiral ring. In summary, the above arguments imply that the 4d chiral ring is given by

µ(m,n) := qmα φ
αβqnβ , and M3 . (4.8)

As was argued in [23], M3 generates the Coulomb branch of the (A1, A3) theory realized

at the IR fixed point of the above Lagrangian. We notice that µ(a,b) transforms in the

adjoint irrep. of SU(2)b with its IR scaling dimensions being 2. It is therefore natural to

identify µ(m,n) as the moment map operator of SU(2)b. Thus we see that µ(m,n) generates

the Higgs branch of (A1, A3) theory. Note that detµ = 0, which is the algebraic relation

needed to define C2/Z2. Once again this is consistent with the identification of µ(a,b) as

the generators of the Higgs branch of (A1, A3).

4.2 The 3d chiral ring

In 3d, the analysis of section 4.1 can be applied without any change. Additionally, there

are two more chiral ring generators corresponding to the SU(2)color-monopole operator M

and the dressed monopole operator {Mφ}. Thus the list of 3d chiral ring generators and

their charges with respect to the various symmetries can be listed as in (4.9).

Chiral Op. U(1)T ⊂ SU(2)T U(1)b ⊂ SU(2)b U(1)q U(1)R

µ11 0 +2 +2 +1

µ12 0 0 +2 +1

µ22 0 −2 +2 +1

M3 1 0 −2 1

{Mφ} 0 0 −2 1

M −1 0 −2 1

(4.9)

6Here α, β are indices labeling the components of an SU(2)color-doublet while m,n label the components

of an SU(2)b-doublet.
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Here the charges of the monopole operator have been determined by using the formula

given in [69].

By comparing the entries in (3.3) and (4.9), one can easily see that the 3d chiral ring

of the (A1, A3) Lagrangian matches with that of the T [SU(2)] theory. The correspondence

between the chiral generators being given by

T [SU(2)] (A1, A3) Lagrangian

P1P̃2 µ11

P1P̃1 − P2P̃2 µ12

P̃1P2 µ22

M+ M3

φ {Mφ}
M− M

(4.10)

It will be useful to note that the gauge singlet field M3 of the (A1, A3) Lagrangian maps

to the monopole operator M+ of the T [SU(2)] theory.

4.3 3d superconformal index

The superconformal index of the 3d (A1, A3) Lagrangian can be written as the following

integral

I(A1,A3) =
∑

m∈Z≥0

∮
dz

2πiz

1

|W(m)|
Zvec(x,b,v,z)Zφ(x,b,v,z)Zq(x,b,v,z)ZM3(x,b,v,z)Zβ(x,b,v,z) ,

(4.11)

where

|W(m)| = 1 + δm,0 , (4.12)

Zvec(x, b, v, z) = x−2m(1− z2x2m)(1− z−2x2m) , (4.13)

Zφ(x, b, v, z) = (xt−1)2m

×
∞∏
k=0

1− z−2t−1x2k+2m+2

1− z2tx2k+2m

1− t−1x2k+2

1− tx2k

1− z2t−1x2k+2m+2

1− z−2tx2k+2m
, (4.14)

Zq(x, b, v, z) = (xtv−2)m

×
∏

σ1,σ2∈{±}

∞∏
k=0

1− zσ1bσ2t
1
2 v−1x2k+m+ 3

2

1− z−σ1b−σ2t−
1
2 vx2k+m+ 1

2

, (4.15)

ZM3(x, b, v, z) =
∞∏
k=0

1− t−1v2x2k+1

1− tv−2x2k+1
and (4.16)

Zβ(x, b, v, z) =
∞∏
k=0

1− t2x2k

1− t−2x2k+2
. (4.17)

Upon explicit evaluation, we find that the superconformal index matches exactly with that

of the T [SU(2)] theory i.e. the series given in (3.14).

– 11 –



J
H
E
P
0
3
(
2
0
1
9
)
0
1
1

One can also consider the S3 partition function of the (A1, A3) Lagrangian and show

that it matches with that of the T [SU(2)] theory, as was done numerically in [40] and

analytically in [70].

5 The (A1, D3) Lagrangian

Let us now move on to the (A1, D3) Lagrangian. Its field content along with the gauge and

classical flavor symmetries are summarized in (5.1).

fields SU(2)color SO(3)b U(1)T U(1)q U(1)R U(1)T − 3
2U(1)q

q1 2 3 1
4

1
2 1− rφ

2 −1
2

q2 2 1 −1
4

3
2 1− rM3

+rφ
2 −5

2

φ adj 1 −1
2 −1 rφ 1

M3 1 1 1 −2 rM3 4

β 1 1 1 2 2− 2rφ −2

(5.1)

Note that for the time being we have included the flipping field β in our Lagrangian. We

will soon show that it must not be included in the dimensionally reduced Lagrangian.

The 4d superpotential is therefore given by

W = Trq1φq1 +M3Trq2φq2 + β Trφ2 . (5.2)

In 4d, U(1)T and U(1)q are both anomalous with U(1)
Ã

= U(1)T − 3
2U(1)q being non-

anomalous. Thus only U(1)
Ã

is a symmetry of the 4d quantum mechanical theory. On the

contrary, in 3d there are no anomalies and hence both U(1)T and U(1)q will be symmetries

of the quantum mechanical Lagrangian.

Requiring the 4d R-charge to be non-anomalous gives us the following constraint

rM3 = 4rφ . (5.3)

Thus in 4d, the IR-symmetry a priori belongs to a one parameter family that can be

parametrized by rM3 . This is fixed by a-maximization with the result being

rM3 =
8

9
, rφ =

2

9
, rq1 =

8

9
, rq2 =

4

9
and rβ =

14

9
. (5.4)

Using these to compute the central charges a and c, it can be checked that they match with

the (A1, D3) AD theory. Moreover, by comparing the respective quantum numbers, it can

be checked that M3 maps to the Coulomb branch operator of the (A1, D3) theory [23, 24].

5.1 The 4d chiral ring

We will now compute the 4d chiral ring of this Lagrangian. The equation of motion of q1 im-

plies that (φq1)aα = 0.7 It therefore follows that (q1)aαφ
αβ(q1)bβ and (q2)αφ

αβ(q1)aβ are trivial

7Here α, β are indices labeling the components of an SU(2)color doublet while a, b label the components

in the vector representation of SO(3)flavor. The indices i, j label the two kinds of SU(2)color: q1 and q2,

in (5.1).
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in the chiral ring. At the same time the equation of motion of M3 throws (q2)αφ
αβ(q2)β

out of the chiral ring. This also implies that all operators of form Trq2φ
(2l+1)q2 are trivial

in the chiral ring since they can be factorized as Trq2φ
(2l+1)q2 = (Trq2φq2)(1

2Trφ2)l = 0

upon using the identities of (4.7). The operators Trq2φ
(2l)q2 are trivially zero, as can be

easily seen by applying (4.7). Hence

(qi)
a
α(φl)αβ(qj)

b
β = 0 , ∀l ≥ 1 & i, j ∈ {1, 2} (5.5)

The equation of motion of β gives Trφ2 = 0, hence Trφ2 is no longer in the chiral ring.

In the cases considered in [40, 41], β was quantum mechanically removed from the

chiral ring. This is because a non-zero vev for β lands us on a theory with no SUSY

vacua. However, in the present case, giving vev to β and upon integrating out φ gives us

a 4d N = 1 SU(2) gauge theory with 4 fundamental chiral doublets. This has a quantum

deformed moduli space. The existence of valid SUSY vacuum moduli space then implies

that we can not apply the same reasoning as [40, 41] to claim that β is not part of the

chiral ring. However, an independent argument to claim that β is not part of the chiral

ring is that β is Q-exact with respect to the accidental supercharge which emerges at the

IR fixed point. To see that this is indeed the case, notice that in 4d N = 2 theories, any

Coulomb branch operator u lives in a multiplet which contains another scalar v, given by

v =

∫
d2θ̃u , (5.6)

where θ̃ is the Grassman parameter of the hidden supercharge at the IR fixed point. It

therefore follows that

∆v = ∆u + 1 , and Rv = Ru +
2

3
. (5.7)

Clearly v is Q-exact and will not be a part of the chiral ring. We now notice that in the

case at hand, the singlet field M3 has R-charge 8
9 and hence its counterpart, as defined

above, will have R-charge 14
9 . This matches exactly with the R-charge of β and hence we

claim that β is related to M3 through the relation (5.6). This implies that β is Q-exact i.e.

it is trivial in the chiral ring.

A priori, it appears that the chiral ring generators are: {M3, εαβ(q1)aα(q1)bβ ,

εαβ(q1)aα(q2)β}. Their charges and scaling dimensions under various global symmetries

are listed in (5.8).

chiral op. SO(3)b Ã RIR ∆

M3 1 4 8
9

4
3

εαβ(q1)aα(q1)bβ 3 -1 16
9

8
3

εαβ(q1)aα(q2)β 3 -3 4
3 2

(5.8)

It was already established in [24] that M3 is isomorphic to the Coulomb branch generator

of the (A1, D3) AD-theory. From the analysis presented here, it is clear that εαβ(q1)aα(q2)β
has the right quantum numbers to be identified with the moment map operator of the
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SU(2)flavor ' SO(3)b symmetry enjoyed by the (A1, D3) AD-theory. However, the (A1, D3)

AD-theory has no other independent chiral operators. We therefore claim that quantum

mechanical corrections to the chiral ring will cause the operator εαβ(q1)aα(q1)bβ = 0. That

this is the case can also be tested by considering the 4d superconformal index of our theory.

The general 4d N = 2 index can be defined as

IN=2(t, y, v) = Tr(−1)F t2(E+j2)y2j1v−I3+ r
2 , (5.9)

with E being the scaling dimension of the operator that contributes to the index, (j1, j2)

are its quantum numbers under the SO(3, 1) ' SU(2)1 × SU(2)2 Lorentz symmetry and

(I3, r) are its N = 2 R-charges. It therefore follows that the operator εαβ(q1)aα(q1)bβ ,

if present, should contribute a term of form t
16
3 v−

1
3χb3, with its conformal descendants

contributing terms which are of higher order in t. The 4d superconformal index of the

(A1, D3) Lagrangian was explicitly computed in [24]. We reproduce it here

I(A1,D3)
N=2 = 1 + t8/3v4/3 − t11/3v1/3χy2 + t4v−1χb3 + t14/3v−2/3 + t16/3v8/3 +O(t17/3)

The absence of t
16
3 v−

1
3χb3 therefore confirms our expectation. However, it will be nice to

better understand the physical mechanism that kills this operator.

5.2 The 3d chiral ring

Taking cue from [41], we will assume that the absence of β and εαβ(q1)aα(q1)bβ from the 4d

chiral ring will continue to be true in 3d also. This implies that no monopole superpotential

can be generated8 and therefore in addition to the generators of the 4d chiral ring presented

in the previous section, the 3d chiral ring will have 2 additional generators: the basic

SU(2)color-monopole operator M and the dressed monopole operator {Mφ}.
Let us now consider the match between the 3d chiral ring of the (A1, D3) Lagrangian

and that of the T [SU(2)] theory. Since the operator M3 corresponds to the generator of 4d

IR Coulomb branch in both (A1, A3) and (A1, D3) Lagrangian, thus we expect that upon

3d reduction, the operator M3 of the (A1, D3) matches with M+ of T [SU(2)], as this was

also the case in the 3d reduction of the (A1, A3) Lagrangian. Hence we must normalize

U(1)T of (A1, D3) such that it assigns charge +1 to M3. Similarly, we must normalize

U(1)q of (A1, D3) to be such that it assigns charge −2 to M3. The normalization of U(1)T
and U(1)q of (5.1) were chosen exactly in this way.

Also, it must be that the moment map operator of the SU(2)b ' SO(3)b flavor symme-

try matches across the 3 Lagrangians. This implies that the operator εαβ(q1)aα(q2)β must

map to the SU(2)b moment map µ(a,b) of T [SU(2)]. This forces us to normalize U(1)T and

U(1)q symmetries of (A1, D3) in such a way that the U(1)T charge of q1 and q2 adds up

to 0 while their U(1)q charge must add up to 2. This was the additional constraint which

helped us assign U(1)T and U(1)q charges to all the fields in (5.1).

8Note that the assumption about β not being part of the 3d chiral ring is somewhat ad hoc in nature.

One way to see this is to notice that in 3d, β can be safely given a non-zero vev without causing a quantum

mechanical break-down of supersymmetry. We will therefore loosen this assumption and consider the

consequences of including a monopole superpotential in section 5.5.
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The above two maps can also be used to compute the expected 3d R-symmetry at

the IR fixed point of the (A1, D3) theory. Thus we want the R-charges to be such that

rM3 = rq1 + rq2 = 1. This implies that we expect that at the IR-fixed point the R-charges

of the various fields in the Lagrangian are

rM3 = 1, rφ =
1

2
, rq1 =

3

4
, rq2 =

1

4
and rβ = 1 . (5.10)

The R-charge of the monopole operator M is given by

rM = 4− 2rφ − 3rq1 − rq2
=
rM3

2
. (5.11)

Upon substituting from (5.10), we then find that

rM =
1

2
and r{Mφ} = 1 . (5.12)

Similarly we can compute the U(1)T and U(1)q charges of M and find that

TM =
1

2
, QM3 = −1, T{Mφ} = 0, Q{Mφ} = −2 . (5.13)

The R-charge of M being 1
2 indicates that it decouples as a free field in the IR. Hence

forth, when we talk about the 3d SCFT described by the (A1, D3) Lagrangian, we mean

the interacting sector obtained after decoupling M.

We almost have the full dictionary between the 3d chiral ring of interacting sector in

the IR of (A1, D3) Lagrangian and T [SU(2)]. However, there seems to be no chiral operator

in the IR SCFT of (A1, D3) Lagrangian that maps to M− of T [SU(2)]. The way out seems

to be from observing that if we omit the term βTrφ2 from the 3d superpotential (for the

time being in an ad hoc manner; we can still include this term in the 4d superpotential),

then the 3d chiral ring will also contain Trφ2 which has just the right charges to match with

M− of T [SU(2)]. Note that, in deleting this term from 3d superpotential, we will end up

decoupling the field β from the 3d theory. We will soon verify our claim by computing the

S3 partition function and the superconformal index of the dimensionally reduced (A1, D3)

Lagrangian. Before moving on, we also wish to point out that excluding the flipping field

β from the 3d Lagrangian will not change our analysis of the 3d chiral ring as we did not

need to use the equation of motion of β in arriving at (5.5) to establish the triviality of

operators Tr(qi)
a(φl)(qj)

b.

5.3 3d superconformal index

Let us consider the superconformal index of 3d (A1, D3) Lagrangian sans the gauge singlet

field β. All the fields will be assigned R-charges according to those listed in (5.10). Upon

accounting for the decoupling of M. the superconformal index of the (A1, D3) Lagrangian
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can be written as

I(A1,D3) =
1

ZM(x,b,v)

×
∑

m∈Z≥0

∮
dz

2πiz

1

W(m)
Zvec(x,b,v,z)Zφ(x,b,v,z)Zq1(x,b,v,z)Zq2(x,b,v,z)ZM3(x,b,v,z) ,

(5.14)

where

W(m) = 1 + δm,0 , (5.15)

Zvec(x, b, v, z) = x−2m(1− z2x2m)(1− z−2x2m) , (5.16)

Zφ(x, b, v, z) = (xtv2)m

×
∞∏
k=0

1− z±2t
1
2 vx2k+2m+ 3

2

1− z∓2t−
1
2 v−1x2k+2m+ 1

2

1− t
1
2 vx2k+ 3

2

1− t−
1
2 v−1x2k+ 1

2

, (5.17)

Zq1(x, b, v, z) = (x
3
4 t−

3
4 v−

3
2 )m

×
∏

σ1,∈{±}

∏
σ2,∈{2,0,−2}

∞∏
k=0

1− zσ1bσ2t−
1
4 v−

1
2x2k+m+ 5

4

1− z−σ1b−σ2t
1
4 v

1
2x2k+m+ 3

4

, (5.18)

Zq2(x, b, v, z) = (x
3
4 t

1
4 v−

3
2 )m

×
∏

σ1,∈{±}

∞∏
k=0

1− zσ1t
1
4 v−

3
2x2k+m+ 7

4

1− z−σ1t−
1
4 v

3
2x2k+m+ 1

4

, (5.19)

ZM3(x, b, v, z) =

∞∏
k=0

1− t−1v2x2k+1

1− tv−2x2k+1
and (5.20)

ZM(x, b, v) =

∞∏
k=0

1− vt−
1
2x2k+ 3

2

1− v−1t
1
2x2k+ 1

2

. (5.21)

Upon evaluating (5.14) explicitly, we find that it matches with the series expansion of

T [SU(2)] superconformal index given in (3.14).

We thus notice that the 3d reduction of the(A1, D3) Lagrangian as described here gives

us a new dual of the T [SU(2)]. It will be interesting to see if, for certain application, this

description gives us any advantage over the T [SU(2)] theory itself or its previously known

duals such as those proposed in [71] (also see [72], who checked its duality to T [SU(2)] at

the level of index) and [73].

5.4 The S3 partition function

The 3d (A1, D3) theory without the flipping field β. Let us also compute the par-

tition function of the 3d theory obtained by removing the βTrφ2 term in the superpotential.

Recall that this implies that β is no longer coupled to the 3d theory and therefore we don’t

include it’s contribution to the partition function, which is then given by

Z(A1,D3)
S3 =

el(1−rM3
)

2!

×
∫ ∞
−∞

dz

2πiz
(2 sinh 2πz)2el(1−rφ±2iz)+l(1−rφ)+3l(

rφ
2
±iz)+l(

rφ+rM3
2

±iz) . (5.22)
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(a) (b) (c)

Figure 1. Extremizing the partition function of the (A1, D3) Lagrangian without the flipping field

β. (a) Contour diagram of Z(A1,D3)
S3 vs. {rM3

, rφ}. (b) Plot of Z(A1,D3)
S3 vs. rM3

at rφ = 1
2 . (c) Plot

of Z(A1,D3)
S3 vs. rφ at rM3

= 1.

(a) (b) (c)

Figure 2. Extremizing the partition function of the (A1, D3) Lagrangian including the flipping

field β. The plots give the values before removing the contribution of the decoupled monopole

operator. (a) Contour diagram of Z(A1,D3)+β
S3 vs. {rM3

, rφ}. (b) Plot of Z(A1,D3)+β
S3 vs. rM3

at

rφ = 0.6752. (c) Plot of Z(A1,D3)+β
S3 vs. rφ at rM3 = 0.9508.

It is easy to check that the above integral attains its minima at rM3 = 1, rφ = 1
2 , as can

be seen from the plots shown in figure 1. After factorizing out the contribution from the

decoupled monopole i.e. dividing the partition function by 1√
2
, we find that at its minima

i.e rM3 = 1, rφ = 1
2 , the numerical value of the partition function is approximately 1

2π

which matches with the numerical value of the S3 partition function of T [SU(2)].

The 3d (A1, D3) theory with the flipping field β. A priori, one might expect that

if we consider Z-extremization of the theory with the flipping field β included in the

Lagrangian, then the partition function would extremize at a point where the R-charge for

φ is greater than 3
4 , thereby forcing the R-charge and hence the scaling dimension of β to

be less than 1
2 , hence signaling the decoupling of β from the interacting theory. If this were

to be the case, it will provide a natural way to explain how β gets removed from the 3d

Lagrangian. Unfortunately, explicit computations show that this is not the case. Initially

the partition function minimizes at rM3 ' 0.9508 and rφ ' 0.6752 (see figure 2). At this

point in the space of R-charges, the R-charge of the monopole operator is rM =
rM3

2 < 1
2 .
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(a) (b) (c)

Figure 3. Extremizing the partition function of the (A1, D3) Lagrangian including the flipping field

β. The plots give the values after removing the contribution of the decoupled monopole operator.

(a) Contour diagram of Z(A1,D3)+β
S3 vs. {rM3

, rφ}. (b) Plot of Z(A1,D3)+β
S3 vs. rM3

at rφ = 0.6772.

(c) Plot of Z(A1,D3)+β
S3 vs. rφ at rM3 = 0.9242.

Thus the monopole operator decouples as a free chiral multiplet. We will therefore have

to factor out the contribution of the decoupled monopole operator and re-extremize the

partition function [74–76]. Upon doing so, we find that the point of extremum is now given

by rM3 ' 0.924 and rφ ' 0.677 (see figure 3). Thus, the R-charge of β is given by rβ = 0.646

which is safely above the unitarity bound. Clearly, β does not get decoupled from the theory

and has to be removed by hand in order to obtain a 3d reduction of the (A1, D3) Lagrangian,

which is consistent with the 3d reduction of the (A1, D3) Argyres-Douglas theory. We also

observe that the R-charges at the extremum do not belong to the set of half-integers,

thereby ruling out the possibility of SUSY enhancement to 3d N = 4 at the fixed point,

in the Lagrangian where the flipping field is included in the dimensionally reduced theory.

5.5 The 3d (A1, D3) theory with the flipping field β and a monopole

superpotential βM

Note that, in the (A1, D3) Lagrangian, the adjoint field φ contributes 2 fermionic zero

modes to the monopole [77]. Therefore a monopole superpotential can only be generated

if these zero modes can be soaked up appropriately. In the absence of the flipping field β,

there is nothing that can soak up these zero modes and therefore a monopole superpotential

will not arise. However, if we do include the flipping field β and couple it to the theory

through the superpotential given in (5.2), then a monopole superpotential of the form

δW = βM (5.23)

can get generated.

We had so far assumed that such a monopole superpotential does not get generated

in the 3d reduction of the (A1, D3) theory even when the flipping field β is included. This

was based on the assumption that much like in 4d, the flipping field β will not be a part

of the 3d chiral ring. Let us loosen this assumption and consider the consequences of

assuming that a monopole superpotential does get generated. Switching on the monopole

superpotential introduces a new constraint on the IR R-charges:

rM + rβ = 2 . (5.24)
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Figure 4. Plot of Z(A1,D3)+β
S3 vs. rφ after including the Monopole superpotential δW = βM.

Figure 5. The 3d N = 4 quiver based on the affine D4 Dynkin Diagram. We number the nodes

in the quiver as per the coloring scheme shown in the diagram.

This forces rM3 = 4rφ. Thus the IR R-charges are now parametrized by a single parameter

rφ. We show the plot of ZS3 vs rφ in figure 4. The partition function now extremizes at

rφ ' 3
10 , with all chiral operators being safely above the unitarity bound. One can also

check that the R-charges of the gauge invariant operators of the theory do not belong to the

set of half-integers. The 3d fixed point therefore is a strictly N = 2 SCFT. Considering the

possibility of a dynamically generated monopole superpotential, therefore does not really

bring the 3d Lagrangian to the same fixed point as T [SU(2)].

6 Mirror of (A1, D3) from the 3d quiver based on the affine D4 Dynkin

diagram

As was shown in [24], 4d Lagrangians for the (A1, D3) and (A1, D4) AD theories can be

obtained from appropriate nilpotent deformations of the 4d N = 2 SU(2) gauge theory with

8 half-hypers [23, 24]. As was argued in [26], we can obtain the 3d mirror of the (A1, D4)

theory by starting with the mirror of 3d N = 4 SU(2) gauge theory with 8 half-hypers

and then turning on monopole superpotential terms which are the mirror equivalent of the

original nilpotent deformations. In this section we wish to replicate this procedure for the

case of (A1, D3) and understand how can we subsequently reduce to the T [SU(2)] theory.

6.1 Mirror of 3d N = 4 SU(2) gauge theory with 8 half-hypers

The mirror for 3d N = 4 SU(2) gauge theory with 8 half-hypers is given by a 3d quiver,

based on the affine D4 Dynkin diagram (see figure 5) [36]. For the sake of brevity, we will

refer to the SU(2) SQCD as the electric theory and the D4 quiver as the magnetic theory.
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The manifest SO(8) flavor symmetry on the electric side corresponds to the SO(8) generated

from the enhancement of the U(1)4 topological symmetry of the magnetic theory. The

additional conserved currents required for this enhancement live in the SUSY multiplets

of monopole operators with R-charge 1. These were described in section 3.4 of [78]. As

we will need them later, we will describe these monopole operators here. The gauge group

of the magnetic theory is given by

(
U(1)4 × U(2)

)
/U(1). The monopole operators are

labeled by a 6-tuple of integers (m1,m2,m3,m4,m5,m6); with m1,m4,m5 and m6 being

the magnetic charges with respect to gauge transformations under U(1)4 and (m2,m3)

being the magnetic charges with respect to the U(2) gauge symmetry. The R-charge of

generic monopole operator is given by

∆m = −|m2 −m3|+
1

2

∑
i∈{1,4,5,6}

(
|mi −m2|+ |mi −m3|

)
. (6.1)

From the above formula one can see that monopoles with charge (n, n, n, n, n, n) always

have ∆ = 0. This is precisely because such monopoles are only charged (magnetically) with

respect to the over all U(1) which decouples in the magnetic theory. Thus such monopoles

are not part of the spectrum of our magnetic theory. It is also implies that ∆m is invariant

under a common shift of all the magnetic fluxes mi. One way to fix this freedom is to

choose all monopole operators in the theory to have m6 = 0. Furthermore, the action of

U(2) Weyl transformations implies that we can always choose to be in the Weyl chamber

with m2 > m3. The topological charges of the monopole operator with flux m|m6=0 are

then given by (t1, t2, t3, t4) = (m1,m2 +m3,m4,m5). We now look for monopole operators

with ∆ = 1. It can be checked that there are exactly 24 distinct solutions of the above

constraints. We explicitly list the monopole operators with positive topological charges

in (6.2). For each monopole operator listed in (6.2) with charge (t1, t2, t3, t4), there is

another monopole operator with ∆ = 1 and topological charge (−t1,−t2,−t3,−t4).

mon. op. Ũ(1)1 Ũ(1)2 Ũ(1)3 Ũ(1)4

Me1+e2 1 2 1 1

Me1+e3 1 1 1 1

Me1−e4 1 1 1 0

Me1+e4 1 1 0 1

Me1−e3 1 1 0 0

Me1−e2 1 0 0 0

Me2+e3 0 1 1 1

Me2−e4 0 1 1 0

Me3−e4 0 0 1 0

Me2+e4 0 1 0 1

Me3+e4 0 0 0 1

Me2−e3 0 1 0 0

(6.2)

Here, Ũ(1)i is the topological symmetry associated to the i-th node of the D4 quiver as

shown in figure 5. As was pointed out in [78], the topological charges listed in (6.2) coincide
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exactly with the weight vectors of the SO(8)-positive roots in the so called α-basis [79].

We therefore label the monopoles operators with the corresponding SO(8)-roots.

6.2 Mirror of (A1, D3) nilpotent deformation

The 4d (A1, D3) Lagrangian can be obtained by starting with the SU(2) SQCD with 8

half-hypers and considering the N = 1 nilpotent deformation labeled by ρ : SU(2)ρ ↪→
SO(8)flavor corresponding to the partition 8→ 5⊕1⊕1⊕1 [24]. This deformation switches

on a mass term for some of the half-hypers. Equivalently, it corresponds to deforming the

superpotential by

δW = µj=1,m=−1 +
∑
j

Mj,m=−j µj=j,m=j , (6.3)

where µ is the SO(8) moment map operator and (j,m) are the quantum numbers of the

SO(8) adjoint representation with respect to the SU(2)ρ ↪→ SO(8). For the SU(2)ρ embed-

ding specified by 8 → 5 ⊕ 1 ⊕ 1 ⊕ 1, the SO(8) irreps. decompose into irreps of SU(2)ρ
according to

SO(8)→ SU(2)ρ × SO(3)b (6.4)

8→ (5,1)⊕ (1,3) (6.5)

adj→ (7,1)⊕ (3,1)⊕ (1,3)⊕ (5,3) (6.6)

where SO(3)b is the commutant of SU(2)ρ ↪→ SO(8). Turns out of all the gauge singlets

Mj,m=−j , only Mj=3,m=−3 stays coupled to the theory while the others decouple along the

RG flow. The singlet field M3 listed in (5.1), is in fact Mj=3,m=−3 here. In view of the

fact that all other gauge singlets decouple, we will remove them from the superpotential

deformation of (6.3), which then becomes

δW = µj=1,m=−1 +M3 µj=3,m=3 . (6.7)

We now consider the 3d mirror version of this deformation. In the mirror theory the

deformation (6.7) corresponds to switching on a superpotential term given by the monopole

operators dual to µj=1,m=−1 along with another superpotential term that couples the singlet

field M3 to the monopole operators dual to µj=3,m=3. These can be easily identified by

observing that at the level of SO(8) Lie algebra, µj=1,m=−1 corresponds to the lowering

operator, X−, of SU(2)ρ ↪→ SO(8). The monopole operators dual to µj=1,m=−1 therefore

correspond to the SO(8) roots that together make up the afore mentioned lowering operator.

An algorithm to assign an explicit standard triple {H,X+, X−} for any given nilpotent

embedding was given in section 5.2 of [80]. For the partition given by 8→ 5⊕ 1⊕ 1⊕ 1,

we then obtain

X+ = Xe2−e3 +Xe3−e4 +Xe3+e4 ,

X− = Xe3−e2 +Xe4−e3 +X−e3−e4 ,

H = 4(E2,2 − E6,6) + 2(E3,3 − E7,7) . (6.8)
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Here Xα is the representation matrix for the SO(8)-root α in the fundamental representa-

tion. Ei,j is the matrix having 1 as its (i, j)-entry and zero elsewhere. Using (6.8) it can

also be checked that e2 + e3 is the only SO(8)-root that carries SU(2)ρ-quantum numbers

(j = 3,m = 3).

This implies that the superpotential deformation in the mirror theory is given by

δW = Me2−e3 + Me3−e4 + Me3+e4 +M3 M−e2−e3 . (6.9)

From (6.2), we see that Me2−e3 carries a magnetic flux only with respect to the U(2) gauge

node of the D4 quiver. Similarly, Me3−e4 only carries a magnetic flux with respect to the

U(1)3 gauge node while Me3+e4 only carries a magnetic flux with respect to the U(1)4

gauge node.9 On the other hand M−e2−e3 carries topological charges (0,−1,−1,−1).

In order to proceed we need to recall that a 3d N = 2 U(Nc) gauge theory with

Nf = Nc + 1 fundamental flavors and a monopole superpotential W = M+ undergoes con-

finement [81]. The low energy theory is therefore given by a Wess-Zumino model describing

the color singlet particles of the gauge theory. Let B be the Nf × Nf matrix of U(Nc)

singlet particles, and S be a singlet chiral field, then the superpotential of Wess-Zumino

model we seek is given by

W = SdetB . (6.10)

We can therefore consider the following 3-step process in our deformed D4 quiver gauge

theory : confinement of U(1)3 → confinement of U(2) → confinement of U(1)4; we imme-

diately see the T [SU(2)] quiver emerge at the end of the RG flow. In the remaining part

of this section, we will consider the sequence of afore mentioned steps in more detail and

show how they give rise to the superpotential of T [SU(2)].

After including the superpotential deformation (6.9), the total superpotential of the

quiver gauge theory becomes:

W =
∑

i∈{1,3,4,5}

φiTr(qiq̃i)−
∑

i∈{1,3,4,5}

Tr(qiφ2q̃i)

+ Me2−e3 + Me3−e4 + Me3+e4 +M3 M−e2−e3 . (6.11)

Here the fields (qi, q̃i) correspond to the chiral multiplets transforming as the bifundamen-

tals of U(1)i ×U(2) and φi is the chiral field transforming in the adjoint irrep. of the i-th

gauge node in the quiver.

From the local perspective of the U(1)3 gauge node, it is coupled to Nf = 2 flavors.

The presence of the linear monopole superpotential Me3−e4 , then implies that the argument

of [81], is applicable and hence the U(1)3 gauge node confines. This implies that the

fields (q3, q̃3) combine to give 4 U(1)3 invariant excitations corresponding the 2× 2 matrix

B3 = q̃3q3. The matrix B3 transforms in the adjoint representation of the U(2) gauge

node. The new quiver resulting from the confinement of U(1)3 is shown in figure 6. The

9The numbering of nodes as described in figure 5.
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Figure 6. The result of U(1)3 confinement in the D4 quiver of figure 5.

Figure 7. The result of U(2) confinement in the quiver of figure 6. The bifundamentals of

U(1)i ×U(1)j gauge nodes are given by (B2)ij .

superpotential of the low energy theory now becomes

W =
∑

i∈{1,4,5}

φiTr(qiq̃i) + φ3TrB3 − Tr(φ2B3) +
∑

i∈{1,4,5}

Tr(qiφ2q̃i)

+ S3 detB3 + Me2−e3 + Me3+e4 +M3 M−e2−e3 . (6.12)

The quadratic term Tr(φ2B3) ⊂ W , implies that φ2 and B3 together become massive and

can be intergrated out. The U(2) gauge node is now coupled to exactly Nf = 3 fundamental

flavors. We can therefore apply the arguments of [81] and conclude that the U(2) gauge

node will also confine. The low energy excitations now correspond to U(2) singlets formed

from {qi, q̃i|i ∈ 1, 4, 5}. These can be encapsulated in a 3× 3 matrix B2 such that its (i, j)-

th entry is given by Trqiq̃j .
10 The resulting quiver is shown in figure 7. The superpotential

is now given by

W =
∑

i∈{1,4,5}

φi(B2)ii + φ
∑

i∈{1,4,5}

(B2)ii

+ S3
(TrB2)2 − Tr(B2)2

2
+ S2 detB2 + Me3+e4 +M3 M−e2−e3 . (6.13)

Where we have used the equation of motion of φ2 from (6.12) to write

detB3 =
(TrB2)2 − Tr(B2)2

2
, (6.14)

and φ := φ3 + Trφ2 i.e. the linear combination of φ3 and Trφ2 that did not get a mass

in (6.12). From the form of (6.13), it is clear that out the 4 fields φ1, φ4, φ5 and φ, exactly

10We label the rows and columns of B2 by numbers {1, 4, 5}. We hope this, slightly unconventional

numbering will not cause too much inconvenience to the reader.
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Figure 8. Result of U(1)4 confinement in the quiver of figure 7. The bifundamental hypers are

given by {(B2)15, (B4)51} and {(B2)51, (B4)15}.

3 linear combinations will get a mass and a fourth linear combination will stay massless.

We will use φ̂ to denote the massless linear combination of φ1, φ4, φ5 and φ. Integrating out

the massive modes and using their equations of motion we find (B2)ii = 0, ∀i ∈ {1, 4, 5},
the superpotential therefore becomes

W = S3

∑
i<j

(B2)ij(B2)ji + S2

(
− (B2)51(B2)14(B2)45 + (B2)41(B2)15(B2)54

)
+ Me3+e4 +M3 M−e2−e3 . (6.15)

At this point the U(1)4 gauge node will also confine. The U(1)4 invariant composites

formed from (B2)i4 and (B2)4i, give rise to low energy excitations which can be written in

the form of a 2 × 2 matrix B4 : (B4)ij = (B2)i4(B2)4j . The resulting quiver is that of the

T [SU(2)] theory as shown in figure 8. The low energy superpotential after confinement of

U(1)4 becomes

W = S3

(
(B4)11 + (B4)55 + (B2)15(B2)51

)
+ S2

(
− (B2)51(B4)15 + (B4)51(B2)15

)
+ S4(detB4) +M3S4 . (6.16)

The fields S3, S4, (B4)11, (B4)55 and M3 are massive and can be integrated out. The super-

potential therefore becomes

W = S2

(
− (B2)51(B4)15 + (B4)51(B2)15

)
, (6.17)

which matches exactly with the T [SU(2)] superpotential. Note that only one linear combi-

nation of (B4)11 and (B4)55 gets a mass through superpotential (6.16), while an orthogonal

linear combination decouples as a free field. We identify this with the monopole operator

that decoupled from the (A1, D3) Lagrangian in section 5.2. Also note that in arriving at

the T [SU(2)] theory starting from the D4 quiver, we did not include the flipping field. This

is therefore an independent consistency check of our previous assertion that the flipping

field need not be included in the 3d version of the (A1, D3) Lagrangian.

7 Discussion

In this paper we illustrated an example of a Lagrangian with decoupled operators where

the addition of extra-flipping fields seemed to be unnecessary. Not only this, it appears

that upon the addition of a flipping field the expected duality gets violated. However

there is a subtle caveat that might be able to explain how even upon the addition of a

flipping field, the 3d theory will flow to the T [SU(2)] fixed point in its IR. This arises upon
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considering the possibility of having extra-accidental symmetries on the Coulomb branch

of the theory under which the monopole operator M acquires non-trivial charges. While

the presence of such accidental symmetries is hard to detect right from the onset, if one

nonetheless assumes their presence, then these symmetries can mix with the R-symmetry

thereby modifying the IR R-charge of monopole operators. If this is indeed the case then,

in the scenario where the addition of a flipping field leads to the generation of a monopole

superpotential, the constraint rM3 = 4rφ resulting from (5.24) will be rendered invalid. It

can then happen that both, the flipping field β as well as the monopole operator M are

forced to decouple from the interacting theory in the IR. The IR will then be described

by two decoupled sectors: the first one being an interacting non-trivial fixed point while

the second being a Wess-Zumino model of two free chiral supermultimets, resulting from

the decoupling of β and M, coupled to each other via a mass-term that arises as a result

of the monopole superpotential in the UV theory. The sector consisting of the interacting

non-trivial fixed point is then expected to be described by the T [SU(2)] theory. Let us also

passingly mention that this seems to indicate a certain IR-instability in the theory wherein

the presence of the flipping field causes a monopole superpotential to be generated but such

a superpotential ultimately causes the flipping field itself to get decoupled from the theory.

That this might indeed be the case can also be seen if one considers the mirror dual

of the 3d theory, as was done in section 6.2, with the difference being that this time we

also include the flipping field β which is now coupled to the rest of the theory via the

mirror dual of the electric theory operators Trφ2 and M. Both, Trφ2 and M are dual to

dimension-2 Higgs branch operators in the mirror theory. As is well known, and is also

shown explicitly in appendix A, there are only two such independent operators in the D4

quiver. We will denote these by O13 and O14, with Oij := Trq̃iqiq̃jqj , ∀i, j ∈ {1, 3, 4, 5}. It

then follows that in the mirror dual we wish to consider, the superpotential will be given

by that presented in (6.11) along with additional superpotential terms given by

δW = β(aO13 + bO14) , (7.1)

with a and b being some arbitrary constants. The explicit values of a and b will not change

the conclusion. What does matter is if a and b are numerically equal to each other.

We can now follow the same steps as in the analysis of section 6.2. Upon doing so

explicitly, one finds that we once again end up with the quiver shown in figure 8, however

the low-energy superpotential now is given by

W = β
(

(b− a)(B4)11 − a(B2)15(B2)51

)
+ S3

(
(B4)11 + (B4)55 + (B2)15(B2)51

)
+ S2

(
− (B2)51(B4)15 + (B4)51(B2)15

)
+ S4(detB4) +M3S4 . (7.2)

It is easy to see that if the constants a and b are such that a 6= b, then the fields β, S3, (B4)11

and (B4)55 are coupled to each other via mass-terms, such that the resulting mass-matrix

does not have any null vectors. Hence these get intergrated out. Similarly, S4 and M3

are also coupled by a mass-term and hence get integrated out. The final superpotential
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therefore once again becomes

W = S2

(
− (B2)51(B4)15 + (B4)51(B2)15

)
, (7.3)

thereby, reproducing the T [SU(2)] superpotential.
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A The Higgs branch of the 3d N = 4 D4 quiver

The 3d N = 4 D4 quiver is as given in figure 5 with the superpotential being

W =
∑

i∈{1,3,4,5}

φiTr(qiq̃i)−
∑

i∈{1,3,4,5}

Tr(qiφ2q̃i) . (A.1)

For the purpose of our discussion, it will help to keep in mind that q̃i are column-vectors

while qi are row-vectors, thus qiq̃i = Tr(qiq̃i) is a color singlet while q̃iqi is a 2 × 2 matrix

transforming in the adjoint representation of the U(2) gauge-group associated to the node

# 2 of figure 5. Note that out of the five fields φ1, φ3, φ4, φ5 and Trφ2, only 4 independent

linear combinations are coupled to the theory while a fifth linear combination does not

appear in the superpotential. This is because, an overall U(1) gauge group is decoupled

in the quiver with its gauge group being
(

U(1)4 × U(2)
)
/U(1). The 4 independent linear

combinations that stay coupled to the theory can be written as ϕi = φi−Trφ2, i ∈ 1, 3, 4, 5.

The superpotential then becomes

W =
∑

i∈{1,3,4,5}

ϕiTr(qiq̃i)−
∑

i∈{1,3,4,5}

Tr(qiϕ2q̃i) , (A.2)

where ϕ2 denotes the traceless part of φ2. The F-term equations of motion are now given as

e.o.m of ϕi : qiq̃i = 0 ∀i ∈ {1, 3, 4, 5} , (A.3)

e.o.m of ϕ2 :
∑

i∈{1,3,4,5}

q̃iqi = 0 , (A.4)

e.o.m of qi : ϕiq̃i − ϕ2q̃i = 0 ∀i ∈ {1, 3, 4, 5} , (A.5)

e.o.m of q̃i : qiϕi − qiϕ2 = 0 ∀i ∈ {1, 3, 4, 5} . (A.6)
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Note that the equations of motion of qi and q̃i are automatically satisfied on the Higgs

branch since 〈ϕi〉 = 0 ∀i ∈ {1, 2, 3, 4, 5} on the Higgs branch.

Let us now consider the various gauge invariant chiral ring operators on the Higgs

branch. We will list them in according to their scaling dimension ∆.

∆ = 1. The only gauge invariant Higgs branch operators with ∆ = 1 are given by

Oi = qiq̃i, i ∈ {1, 3, 4, 5}. These are trivial in the chiral ring due to the e.o.m of ϕi.

∆ = 2. These are given by operators of form Oij = Trq̃iqiq̃jqj i, j ∈ {1, 3, 4, 5}. Clearly,

Oij = Oji. It therefore follows that before applying any e.o.m, there are 10 such operators.

It is also easy to see that Oii = (Oi)2 = 0. Also note that

O13 +O14 +O15 = Tr
(
q̃1q1(q̃3q3 + q̃4q4 + q̃5q5)

)
,

= −Trq̃1q1q̃1q1 (by e.o.m of ϕ2) ,

= 0 (A.7)

Similarly, one can establish that O13 +O34 +O35 = O14 +O34 +O45 = 0. Additionally, it

can be shown that O13 +O14 +O34 = 0. One way to see this is to consider the fact that

the e.o.m of ϕ2 implies that q̃1q1 + q̃3q3 + q̃4q4 = −q̃5q5. The above relation then follows

from taking the square followed by a trace on both sides of the equality and using the fact

that Oii = 0∀i ∈ {1, 3, 4, 5}. Using the above relations, we therefore conclude that there

are exactly two independent gauge invariant Higgs branch operators with ∆ = 2 in the

chiral ring. Let these be O13 and O14.

∆ = 3. The gauge invariant Higgs branch operators with ∆ = 3 are given by

Oijk = Trq̃iqiq̃jqj q̃kqk i, j, k ∈ {1, 3, 4, 5} (A.8)

It is easy to show that up to the equation of motion of ϕi as given in (A.3),

Oijk +Oikj = 0 . (A.9)

The simplest way to do this is to realize that the solution to (A.3) is given by qαi ∝ εαβ q̃iβ ,

substituting this in (A.8) and using the identity εαβεγρ = εαγεβρ − εαρεβγ , we then arrive

at (A.9).

Similarly, using the equation of motion of ϕ2, one can show that

Oijk +Oijl = 0, ∀i, j, k, l s.t. i 6= j 6= k 6= l (A.10)

It therefore follows that the space of chiral operators with scaling dimension ∆ = 3 has a

single generator. Let us choose this to be O134.

With a little bit of work, it can also be shown that upto equations of motion,

(O134)2 = O13O14(O13 +O14) . (A.11)

We therefore arrive at the conclusion that all the chiral operators with scaling dimensions

∆ ≥ 2 can be written in terms of O13 and O14. Thus the chiral ring of the D4 quiver is

generated by two ∆ = 2 operators: O13 and O14.
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Upon mirror symmetry, the D4 quiver maps to the SU(2) gauge theory with 4 fun-

damental hypers, with O134 being mirror dual to the dressed monopole operator {Mφ}.
Similarly, the linear combinations O13+O14

22/3 and O13−O14

22/3 get mapped to Trφ2 and M in the

mirror theory. The relation in (A.11) then becomes

{Mφ}2 = (Trφ2)3 − Trφ2M2 , (A.12)

reproducing the Coulomb branch chiral ring relation of 4d N = 4 SU(2) gauge theory with

4 fundamental hypers.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] P.C. Argyres and M.R. Douglas, New phenomena in SU(3) supersymmetric gauge theory,

Nucl. Phys. B 448 (1995) 93 [hep-th/9505062] [INSPIRE].

[2] P.C. Argyres, M.R. Plesser, N. Seiberg and E. Witten, New N = 2 superconformal field

theories in four-dimensions, Nucl. Phys. B 461 (1996) 71 [hep-th/9511154] [INSPIRE].

[3] T. Eguchi and K. Hori, N = 2 superconformal field theories in four-dimensions and A-D-E

classification, in The mathematical beauty of physics: A memorial volume for Claude

Itzykson. Proceedings, Conference, Saclay, France, June 5–7, 1996, pp. 67–82 (1996)

[hep-th/9607125] [INSPIRE].

[4] T. Eguchi, K. Hori, K. Ito and S.-K. Yang, Study of N = 2 superconformal field theories in

four-dimensions, Nucl. Phys. B 471 (1996) 430 [hep-th/9603002] [INSPIRE].

[5] D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin Systems and the WKB

Approximation, arXiv:0907.3987 [INSPIRE].

[6] G. Bonelli, K. Maruyoshi and A. Tanzini, Wild Quiver Gauge Theories, JHEP 02 (2012) 031

[arXiv:1112.1691] [INSPIRE].

[7] D. Gaiotto and J. Teschner, Irregular singularities in Liouville theory and Argyres-Douglas

type gauge theories, I, JHEP 12 (2012) 050 [arXiv:1203.1052] [INSPIRE].

[8] D. Xie, General Argyres-Douglas Theory, JHEP 01 (2013) 100 [arXiv:1204.2270] [INSPIRE].

[9] S. Cecotti, A. Neitzke and C. Vafa, R-Twisting and 4d/2d Correspondences,

arXiv:1006.3435 [INSPIRE].

[10] D. Xie and P. Zhao, Central charges and RG flow of strongly-coupled N = 2 theory, JHEP

03 (2013) 006 [arXiv:1301.0210] [INSPIRE].

[11] Y. Wang, D. Xie, S.S.T. Yau and S.-T. Yau, 4d N = 2 SCFT from complete intersection

singularity, Adv. Theor. Math. Phys. 21 (2017) 801 [arXiv:1606.06306] [INSPIRE].

[12] Y. Wang and D. Xie, Codimension-two defects and Argyres-Douglas theories from

outer-automorphism twist in 6d (2, 0) theories, arXiv:1805.08839 [INSPIRE].

[13] A.D. Shapere and Y. Tachikawa, Central charges of N = 2 superconformal field theories in

four dimensions, JHEP 09 (2008) 109 [arXiv:0804.1957] [INSPIRE].

– 28 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0550-3213(95)00281-V
https://arxiv.org/abs/hep-th/9505062
https://inspirehep.net/search?p=find+EPRINT+hep-th/9505062
https://doi.org/10.1016/0550-3213(95)00671-0
https://arxiv.org/abs/hep-th/9511154
https://inspirehep.net/search?p=find+EPRINT+hep-th/9511154
https://arxiv.org/abs/hep-th/9607125
https://inspirehep.net/search?p=find+EPRINT+hep-th/9607125
https://doi.org/10.1016/0550-3213(96)00188-5
https://arxiv.org/abs/hep-th/9603002
https://inspirehep.net/search?p=find+EPRINT+hep-th/9603002
https://arxiv.org/abs/0907.3987
https://inspirehep.net/search?p=find+EPRINT+arXiv:0907.3987
https://doi.org/10.1007/JHEP02(2012)031
https://arxiv.org/abs/1112.1691
https://inspirehep.net/search?p=find+EPRINT+arXiv:1112.1691
https://doi.org/10.1007/JHEP12(2012)050
https://arxiv.org/abs/1203.1052
https://inspirehep.net/search?p=find+EPRINT+arXiv:1203.1052
https://doi.org/10.1007/JHEP01(2013)100
https://arxiv.org/abs/1204.2270
https://inspirehep.net/search?p=find+EPRINT+arXiv:1204.2270
https://arxiv.org/abs/1006.3435
https://inspirehep.net/search?p=find+EPRINT+arXiv:1006.3435
https://doi.org/10.1007/JHEP03(2013)006
https://doi.org/10.1007/JHEP03(2013)006
https://arxiv.org/abs/1301.0210
https://inspirehep.net/search?p=find+EPRINT+arXiv:1301.0210
https://doi.org/10.4310/ATMP.2017.v21.n3.a6
https://arxiv.org/abs/1606.06306
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.06306
https://arxiv.org/abs/1805.08839
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.08839
https://doi.org/10.1088/1126-6708/2008/09/109
https://arxiv.org/abs/0804.1957
https://inspirehep.net/search?p=find+EPRINT+arXiv:0804.1957


J
H
E
P
0
3
(
2
0
1
9
)
0
1
1

[14] C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli and B.C. van Rees, Infinite Chiral

Symmetry in Four Dimensions, Commun. Math. Phys. 336 (2015) 1359 [arXiv:1312.5344]

[INSPIRE].

[15] P. Liendo, I. Ramirez and J. Seo, Stress-tensor OPE in N = 2 superconformal theories,

JHEP 02 (2016) 019 [arXiv:1509.00033] [INSPIRE].

[16] M. Buican and T. Nishinaka, On the superconformal index of Argyres-Douglas theories, J.

Phys. A 49 (2016) 015401 [arXiv:1505.05884] [INSPIRE].

[17] C. Cordova and S.-H. Shao, Schur Indices, BPS Particles and Argyres-Douglas Theories,

JHEP 01 (2016) 040 [arXiv:1506.00265] [INSPIRE].

[18] J. Song, Superconformal indices of generalized Argyres-Douglas theories from 2d TQFT,

JHEP 02 (2016) 045 [arXiv:1509.06730] [INSPIRE].

[19] M. Buican and T. Nishinaka, Argyres-Douglas Theories, the Macdonald Index and an RG

Inequality, JHEP 02 (2016) 159 [arXiv:1509.05402] [INSPIRE].

[20] M. Buican and T. Nishinaka, On Irregular Singularity Wave Functions and Superconformal

Indices, JHEP 09 (2017) 066 [arXiv:1705.07173] [INSPIRE].

[21] J. Song, D. Xie and W. Yan, Vertex operator algebras of Argyres-Douglas theories from

M5-branes, JHEP 12 (2017) 123 [arXiv:1706.01607] [INSPIRE].

[22] K. Maruyoshi and J. Song, Enhancement of Supersymmetry via Renormalization Group Flow

and the Superconformal Index, Phys. Rev. Lett. 118 (2017) 151602 [arXiv:1606.05632]

[INSPIRE].

[23] K. Maruyoshi and J. Song, N = 1 deformations and RG flows of N = 2 SCFTs, JHEP 02

(2017) 075 [arXiv:1607.04281] [INSPIRE].

[24] P. Agarwal, K. Maruyoshi and J. Song, N =1 Deformations and RG flows of N =2 SCFTs,

part II: non-principal deformations, JHEP 12 (2016) 103 [arXiv:1610.05311] [INSPIRE].

[25] P. Agarwal, A. Sciarappa and J. Song, N = 1 Lagrangians for generalized Argyres-Douglas

theories, JHEP 10 (2017) 211 [arXiv:1707.04751] [INSPIRE].

[26] S. Benvenuti and S. Giacomelli, Lagrangians for generalized Argyres-Douglas theories, JHEP

10 (2017) 106 [arXiv:1707.05113] [INSPIRE].

[27] J.A. Minahan and D. Nemeschansky, An N = 2 superconformal fixed point with E6 global

symmetry, Nucl. Phys. B 482 (1996) 142 [hep-th/9608047] [INSPIRE].

[28] J.A. Minahan and D. Nemeschansky, Superconformal fixed points with En global symmetry,

Nucl. Phys. B 489 (1997) 24 [hep-th/9610076] [INSPIRE].

[29] A. Gadde, S.S. Razamat and B. Willett, “Lagrangian” for a Non-Lagrangian Field Theory

with N = 2 Supersymmetry, Phys. Rev. Lett. 115 (2015) 171604 [arXiv:1505.05834]

[INSPIRE].

[30] P. Agarwal, K. Maruyoshi and J. Song, A “Lagrangian” for the E7 superconformal theory,

JHEP 05 (2018) 193 [arXiv:1802.05268] [INSPIRE].

[31] C. Cordova, D. Gaiotto and S.-H. Shao, Surface Defects and Chiral Algebras, JHEP 05

(2017) 140 [arXiv:1704.01955] [INSPIRE].

[32] M. Cornagliotto, M. Lemos and P. Liendo, Bootstrapping the (A1, A2) Argyres-Douglas

theory, JHEP 03 (2018) 033 [arXiv:1711.00016] [INSPIRE].

– 29 –

https://doi.org/10.1007/s00220-014-2272-x
https://arxiv.org/abs/1312.5344
https://inspirehep.net/search?p=find+EPRINT+arXiv:1312.5344
https://doi.org/10.1007/JHEP02(2016)019
https://arxiv.org/abs/1509.00033
https://inspirehep.net/search?p=find+EPRINT+arXiv:1509.00033
https://doi.org/10.1088/1751-8113/49/1/015401
https://doi.org/10.1088/1751-8113/49/1/015401
https://arxiv.org/abs/1505.05884
https://inspirehep.net/search?p=find+EPRINT+arXiv:1505.05884
https://doi.org/10.1007/JHEP01(2016)040
https://arxiv.org/abs/1506.00265
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.00265
https://doi.org/10.1007/JHEP02(2016)045
https://arxiv.org/abs/1509.06730
https://inspirehep.net/search?p=find+EPRINT+arXiv:1509.06730
https://doi.org/10.1007/JHEP02(2016)159
https://arxiv.org/abs/1509.05402
https://inspirehep.net/search?p=find+EPRINT+arXiv:1509.05402
https://doi.org/10.1007/JHEP09(2017)066
https://arxiv.org/abs/1705.07173
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.07173
https://doi.org/10.1007/JHEP12(2017)123
https://arxiv.org/abs/1706.01607
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.01607
https://doi.org/10.1103/PhysRevLett.118.151602
https://arxiv.org/abs/1606.05632
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.05632
https://doi.org/10.1007/JHEP02(2017)075
https://doi.org/10.1007/JHEP02(2017)075
https://arxiv.org/abs/1607.04281
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.04281
https://doi.org/10.1007/JHEP12(2016)103
https://arxiv.org/abs/1610.05311
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.05311
https://doi.org/10.1007/JHEP10(2017)211
https://arxiv.org/abs/1707.04751
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.04751
https://doi.org/10.1007/JHEP10(2017)106
https://doi.org/10.1007/JHEP10(2017)106
https://arxiv.org/abs/1707.05113
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.05113
https://doi.org/10.1016/S0550-3213(96)00552-4
https://arxiv.org/abs/hep-th/9608047
https://inspirehep.net/search?p=find+EPRINT+hep-th/9608047
https://doi.org/10.1016/S0550-3213(97)00039-4
https://arxiv.org/abs/hep-th/9610076
https://inspirehep.net/search?p=find+EPRINT+hep-th/9610076
https://doi.org/10.1103/PhysRevLett.115.171604
https://arxiv.org/abs/1505.05834
https://inspirehep.net/search?p=find+EPRINT+arXiv:1505.05834
https://doi.org/10.1007/JHEP05(2018)193
https://arxiv.org/abs/1802.05268
https://inspirehep.net/search?p=find+EPRINT+arXiv:1802.05268
https://doi.org/10.1007/JHEP05(2017)140
https://doi.org/10.1007/JHEP05(2017)140
https://arxiv.org/abs/1704.01955
https://inspirehep.net/search?p=find+EPRINT+arXiv:1704.01955
https://doi.org/10.1007/JHEP03(2018)033
https://arxiv.org/abs/1711.00016
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.00016


J
H
E
P
0
3
(
2
0
1
9
)
0
1
1

[33] S. Gukov, Trisecting non-Lagrangian theories, JHEP 11 (2017) 178 [arXiv:1707.01515]

[INSPIRE].

[34] M. Dedushenko, S. Gukov, H. Nakajima, D. Pei and K. Ye, 3d TQFTs from Argyres-Douglas

theories, arXiv:1809.04638 [INSPIRE].

[35] M. Fluder and J. Song, Four-dimensional Lens Space Index from Two-dimensional Chiral

Algebra, JHEP 07 (2018) 073 [arXiv:1710.06029] [INSPIRE].

[36] K.A. Intriligator and N. Seiberg, Mirror symmetry in three-dimensional gauge theories, Phys.

Lett. B 387 (1996) 513 [hep-th/9607207] [INSPIRE].

[37] D. Nanopoulos and D. Xie, More Three Dimensional Mirror Pairs, JHEP 05 (2011) 071

[arXiv:1011.1911] [INSPIRE].

[38] P. Boalch, Irregular connections and Kac-Moody root systems, arXiv:0806.1050.

[39] F. Benini, Y. Tachikawa and D. Xie, Mirrors of 3d Sicilian theories, JHEP 09 (2010) 063

[arXiv:1007.0992] [INSPIRE].

[40] S. Benvenuti and S. Giacomelli, Supersymmetric gauge theories with decoupled operators and

chiral ring stability, Phys. Rev. Lett. 119 (2017) 251601 [arXiv:1706.02225] [INSPIRE].

[41] S. Benvenuti and S. Giacomelli, Abelianization and sequential confinement in 2 + 1

dimensions, JHEP 10 (2017) 173 [arXiv:1706.04949] [INSPIRE].

[42] N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl.

Phys. B 435 (1995) 129 [hep-th/9411149] [INSPIRE].

[43] A. Gadde, K. Maruyoshi, Y. Tachikawa and W. Yan, New N = 1 Dualities, JHEP 06 (2013)

056 [arXiv:1303.0836] [INSPIRE].

[44] P. Agarwal and J. Song, New N = 1 Dualities from M5-branes and Outer-automorphism

Twists, JHEP 03 (2014) 133 [arXiv:1311.2945] [INSPIRE].

[45] P. Agarwal, I. Bah, K. Maruyoshi and J. Song, Quiver tails and N = 1 SCFTs from

M5-branes, JHEP 03 (2015) 049 [arXiv:1409.1908] [INSPIRE].

[46] P. Agarwal, K. Intriligator and J. Song, Infinitely many N = 1 dualities from m+ 1−m = 1,

JHEP 10 (2015) 035 [arXiv:1505.00255] [INSPIRE].

[47] E. Nardoni, 4d SCFTs from negative-degree line bundles, JHEP 08 (2018) 199

[arXiv:1611.01229] [INSPIRE].

[48] M. Fazzi and S. Giacomelli, N = 1 superconformal theories with DN blocks, Phys. Rev. D 95

(2017) 085010 [arXiv:1609.08156] [INSPIRE].

[49] F. Apruzzi, F. Hassler, J.J. Heckman and T.B. Rochais, Nilpotent Networks and 4D RG

Flows, arXiv:1808.10439 [INSPIRE].

[50] F. Benini, Y. Tachikawa and B. Wecht, Sicilian gauge theories and N = 1 dualities, JHEP

01 (2010) 088 [arXiv:0909.1327] [INSPIRE].

[51] I. Bah, C. Beem, N. Bobev and B. Wecht, Four-Dimensional SCFTs from M5-Branes, JHEP

06 (2012) 005 [arXiv:1203.0303] [INSPIRE].

[52] I. Bah and N. Bobev, Linear quivers and N = 1 SCFTs from M5-branes, JHEP 08 (2014)

121 [arXiv:1307.7104] [INSPIRE].

[53] D. Xie, M5 brane and four dimensional N = 1 theories I, JHEP 04 (2014) 154

[arXiv:1307.5877] [INSPIRE].

– 30 –

https://doi.org/10.1007/JHEP11(2017)178
https://arxiv.org/abs/1707.01515
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.01515
https://arxiv.org/abs/1809.04638
https://inspirehep.net/search?p=find+EPRINT+arXiv:1809.04638
https://doi.org/10.1007/JHEP07(2018)073
https://arxiv.org/abs/1710.06029
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.06029
https://doi.org/10.1016/0370-2693(96)01088-X
https://doi.org/10.1016/0370-2693(96)01088-X
https://arxiv.org/abs/hep-th/9607207
https://inspirehep.net/search?p=find+EPRINT+hep-th/9607207
https://doi.org/10.1007/JHEP05(2011)071
https://arxiv.org/abs/1011.1911
https://inspirehep.net/search?p=find+EPRINT+arXiv:1011.1911
https://arxiv.org/abs/0806.1050
https://doi.org/10.1007/JHEP09(2010)063
https://arxiv.org/abs/1007.0992
https://inspirehep.net/search?p=find+EPRINT+arXiv:1007.0992
https://doi.org/10.1103/PhysRevLett.119.251601
https://arxiv.org/abs/1706.02225
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.02225
https://doi.org/10.1007/JHEP10(2017)173
https://arxiv.org/abs/1706.04949
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.04949
https://doi.org/10.1016/0550-3213(94)00023-8
https://doi.org/10.1016/0550-3213(94)00023-8
https://arxiv.org/abs/hep-th/9411149
https://inspirehep.net/search?p=find+EPRINT+hep-th/9411149
https://doi.org/10.1007/JHEP06(2013)056
https://doi.org/10.1007/JHEP06(2013)056
https://arxiv.org/abs/1303.0836
https://inspirehep.net/search?p=find+EPRINT+arXiv:1303.0836
https://doi.org/10.1007/JHEP03(2014)133
https://arxiv.org/abs/1311.2945
https://inspirehep.net/search?p=find+EPRINT+arXiv:1311.2945
https://doi.org/10.1007/JHEP03(2015)049
https://arxiv.org/abs/1409.1908
https://inspirehep.net/search?p=find+EPRINT+arXiv:1409.1908
https://doi.org/10.1007/JHEP10(2015)035
https://arxiv.org/abs/1505.00255
https://inspirehep.net/search?p=find+EPRINT+arXiv:1505.00255
https://doi.org/10.1007/JHEP08(2018)199
https://arxiv.org/abs/1611.01229
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.01229
https://doi.org/10.1103/PhysRevD.95.085010
https://doi.org/10.1103/PhysRevD.95.085010
https://arxiv.org/abs/1609.08156
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.08156
https://arxiv.org/abs/1808.10439
https://inspirehep.net/search?p=find+EPRINT+arXiv:1808.10439
https://doi.org/10.1007/JHEP01(2010)088
https://doi.org/10.1007/JHEP01(2010)088
https://arxiv.org/abs/0909.1327
https://inspirehep.net/search?p=find+EPRINT+arXiv:0909.1327
https://doi.org/10.1007/JHEP06(2012)005
https://doi.org/10.1007/JHEP06(2012)005
https://arxiv.org/abs/1203.0303
https://inspirehep.net/search?p=find+EPRINT+arXiv:1203.0303
https://doi.org/10.1007/JHEP08(2014)121
https://doi.org/10.1007/JHEP08(2014)121
https://arxiv.org/abs/1307.7104
https://inspirehep.net/search?p=find+EPRINT+arXiv:1307.7104
https://doi.org/10.1007/JHEP04(2014)154
https://arxiv.org/abs/1307.5877
https://inspirehep.net/search?p=find+EPRINT+arXiv:1307.5877


J
H
E
P
0
3
(
2
0
1
9
)
0
1
1

[54] D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].

[55] K.A. Intriligator and B. Wecht, The Exact superconformal R symmetry maximizes a, Nucl.

Phys. B 667 (2003) 183 [hep-th/0304128] [INSPIRE].

[56] D. Kutasov, A. Parnachev and D.A. Sahakyan, Central charges and U(1)(R) symmetries in

N = 1 superYang-Mills, JHEP 11 (2003) 013 [hep-th/0308071] [INSPIRE].

[57] D. Anselmi, D.Z. Freedman, M.T. Grisaru and A.A. Johansen, Nonperturbative formulas for

central functions of supersymmetric gauge theories, Nucl. Phys. B 526 (1998) 543

[hep-th/9708042] [INSPIRE].

[58] S. Giacomelli, Infrared enhancement of supersymmetry in four dimensions, JHEP 10 (2018)

041 [arXiv:1808.00592] [INSPIRE].

[59] F. Carta, S. Giacomelli and R. Savelli, SUSY enhancement from T-branes, JHEP 12 (2018)

127 [arXiv:1809.04906] [INSPIRE].

[60] D. Gaiotto and E. Witten, S-duality of Boundary Conditions In N = 4 Super Yang-Mills

Theory, Adv. Theor. Math. Phys. 13 (2009) 721 [arXiv:0807.3720] [INSPIRE].

[61] S. Kim, The Complete superconformal index for N = 6 Chern-Simons theory, Nucl. Phys. B

821 (2009) 241 [Erratum ibid. B 864 (2012) 884] [arXiv:0903.4172] [INSPIRE].

[62] J. Bhattacharya, S. Bhattacharyya, S. Minwalla and S. Raju, Indices for Superconformal

Field Theories in 3,5 and 6 Dimensions, JHEP 02 (2008) 064 [arXiv:0801.1435] [INSPIRE].

[63] Y. Imamura and S. Yokoyama, Index for three dimensional superconformal field theories with

general R-charge assignments, JHEP 04 (2011) 007 [arXiv:1101.0557] [INSPIRE].

[64] A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in Superconformal

Chern-Simons Theories with Matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].

[65] D.L. Jafferis, The Exact Superconformal R-Symmetry Extremizes Z, JHEP 05 (2012) 159

[arXiv:1012.3210] [INSPIRE].

[66] N. Hama, K. Hosomichi and S. Lee, Notes on SUSY Gauge Theories on Three-Sphere, JHEP

03 (2011) 127 [arXiv:1012.3512] [INSPIRE].

[67] N. Hama, K. Hosomichi and S. Lee, SUSY Gauge Theories on Squashed Three-Spheres,

JHEP 05 (2011) 014 [arXiv:1102.4716] [INSPIRE].

[68] Y. Imamura and D. Yokoyama, N = 2 supersymmetric theories on squashed three-sphere,

Phys. Rev. D 85 (2012) 025015 [arXiv:1109.4734] [INSPIRE].

[69] F. Benini, C. Closset and S. Cremonesi, Quantum moduli space of Chern-Simons quivers,

wrapped D6-branes and AdS4/CFT3, JHEP 09 (2011) 005 [arXiv:1105.2299] [INSPIRE].

[70] N. Aghaei, A. Amariti and Y. Sekiguchi, Notes on Integral Identities for 3d Supersymmetric

Dualities, JHEP 04 (2018) 022 [arXiv:1709.08653] [INSPIRE].

[71] J. Teschner and G. Vartanov, 6j symbols for the modular double, quantum hyperbolic

geometry and supersymmetric gauge theories, Lett. Math. Phys. 104 (2014) 527

[arXiv:1202.4698] [INSPIRE].

[72] D. Gang, E. Koh and K. Lee, Superconformal Index with Duality Domain Wall, JHEP 10

(2012) 187 [arXiv:1205.0069] [INSPIRE].

[73] D. Gang, E. Koh, S. Lee and J. Park, Superconformal Index and 3d-3d Correspondence for

Mapping Cylinder/Torus, JHEP 01 (2014) 063 [arXiv:1305.0937] [INSPIRE].

– 31 –

https://doi.org/10.1007/JHEP08(2012)034
https://arxiv.org/abs/0904.2715
https://inspirehep.net/search?p=find+EPRINT+arXiv:0904.2715
https://doi.org/10.1016/S0550-3213(03)00459-0
https://doi.org/10.1016/S0550-3213(03)00459-0
https://arxiv.org/abs/hep-th/0304128
https://inspirehep.net/search?p=find+EPRINT+hep-th/0304128
https://doi.org/10.1088/1126-6708/2003/11/013
https://arxiv.org/abs/hep-th/0308071
https://inspirehep.net/search?p=find+EPRINT+hep-th/0308071
https://doi.org/10.1016/S0550-3213(98)00278-8
https://arxiv.org/abs/hep-th/9708042
https://inspirehep.net/search?p=find+EPRINT+hep-th/9708042
https://doi.org/10.1007/JHEP10(2018)041
https://doi.org/10.1007/JHEP10(2018)041
https://arxiv.org/abs/1808.00592
https://inspirehep.net/search?p=find+EPRINT+arXiv:1808.00592
https://doi.org/10.1007/JHEP12(2018)127
https://doi.org/10.1007/JHEP12(2018)127
https://arxiv.org/abs/1809.04906
https://inspirehep.net/search?p=find+EPRINT+arXiv:1809.04906
https://doi.org/10.4310/ATMP.2009.v13.n3.a5
https://arxiv.org/abs/0807.3720
https://inspirehep.net/search?p=find+EPRINT+arXiv:0807.3720
https://doi.org/10.1016/j.nuclphysb.2012.07.015
https://doi.org/10.1016/j.nuclphysb.2012.07.015
https://arxiv.org/abs/0903.4172
https://inspirehep.net/search?p=find+EPRINT+arXiv:0903.4172
https://doi.org/10.1088/1126-6708/2008/02/064
https://arxiv.org/abs/0801.1435
https://inspirehep.net/search?p=find+EPRINT+arXiv:0801.1435
https://doi.org/10.1007/JHEP04(2011)007
https://arxiv.org/abs/1101.0557
https://inspirehep.net/search?p=find+EPRINT+arXiv:1101.0557
https://doi.org/10.1007/JHEP03(2010)089
https://arxiv.org/abs/0909.4559
https://inspirehep.net/search?p=find+EPRINT+arXiv:0909.4559
https://doi.org/10.1007/JHEP05(2012)159
https://arxiv.org/abs/1012.3210
https://inspirehep.net/search?p=find+EPRINT+arXiv:1012.3210
https://doi.org/10.1007/JHEP03(2011)127
https://doi.org/10.1007/JHEP03(2011)127
https://arxiv.org/abs/1012.3512
https://inspirehep.net/search?p=find+EPRINT+arXiv:1012.3512
https://doi.org/10.1007/JHEP05(2011)014
https://arxiv.org/abs/1102.4716
https://inspirehep.net/search?p=find+EPRINT+arXiv:1102.4716
https://doi.org/10.1103/PhysRevD.85.025015
https://arxiv.org/abs/1109.4734
https://inspirehep.net/search?p=find+EPRINT+arXiv:1109.4734
https://doi.org/10.1007/JHEP09(2011)005
https://arxiv.org/abs/1105.2299
https://inspirehep.net/search?p=find+EPRINT+arXiv:1105.2299
https://doi.org/10.1007/JHEP04(2018)022
https://arxiv.org/abs/1709.08653
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.08653
https://doi.org/10.1007/s11005-014-0684-3
https://arxiv.org/abs/1202.4698
https://inspirehep.net/search?p=find+EPRINT+arXiv:1202.4698
https://doi.org/10.1007/JHEP10(2012)187
https://doi.org/10.1007/JHEP10(2012)187
https://arxiv.org/abs/1205.0069
https://inspirehep.net/search?p=find+EPRINT+arXiv:1205.0069
https://doi.org/10.1007/JHEP01(2014)063
https://arxiv.org/abs/1305.0937
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.0937


J
H
E
P
0
3
(
2
0
1
9
)
0
1
1

[74] T. Morita and V. Niarchos, F-theorem, duality and SUSY breaking in one-adjoint

Chern-Simons-Matter theories, Nucl. Phys. B 858 (2012) 84 [arXiv:1108.4963] [INSPIRE].

[75] P. Agarwal, A. Amariti and M. Siani, Refined Checks and Exact Dualities in Three

Dimensions, JHEP 10 (2012) 178 [arXiv:1205.6798] [INSPIRE].

[76] B.R. Safdi, I.R. Klebanov and J. Lee, A Crack in the Conformal Window, JHEP 04 (2013)

165 [arXiv:1212.4502] [INSPIRE].

[77] K. Nii, 3d duality with adjoint matter from 4d duality, JHEP 02 (2015) 024

[arXiv:1409.3230] [INSPIRE].

[78] S. Cremonesi, A. Hanany and A. Zaffaroni, Monopole operators and Hilbert series of Coulomb

branches of 3d N = 4 gauge theories, JHEP 01 (2014) 005 [arXiv:1309.2657] [INSPIRE].

[79] R. Feger and T.W. Kephart, LieART — A Mathematica application for Lie algebras and

representation theory, Comput. Phys. Commun. 192 (2015) 166 [arXiv:1206.6379]

[INSPIRE].

[80] D. Collingwood and W. McGovern, Nilpotent Orbits In Semisimple Lie Algebra: An

Introduction, Mathematics Series, Taylor & Francis (1993).

[81] F. Benini, S. Benvenuti and S. Pasquetti, SUSY monopole potentials in 2+1 dimensions,

JHEP 08 (2017) 086 [arXiv:1703.08460] [INSPIRE].

– 32 –

https://doi.org/10.1016/j.nuclphysb.2012.01.003
https://arxiv.org/abs/1108.4963
https://inspirehep.net/search?p=find+EPRINT+arXiv:1108.4963
https://doi.org/10.1007/JHEP10(2012)178
https://arxiv.org/abs/1205.6798
https://inspirehep.net/search?p=find+EPRINT+arXiv:1205.6798
https://doi.org/10.1007/JHEP04(2013)165
https://doi.org/10.1007/JHEP04(2013)165
https://arxiv.org/abs/1212.4502
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.4502
https://doi.org/10.1007/JHEP02(2015)024
https://arxiv.org/abs/1409.3230
https://inspirehep.net/search?p=find+EPRINT+arXiv:1409.3230
https://doi.org/10.1007/JHEP01(2014)005
https://arxiv.org/abs/1309.2657
https://inspirehep.net/search?p=find+EPRINT+arXiv:1309.2657
https://doi.org/10.1016/j.cpc.2014.12.023
https://arxiv.org/abs/1206.6379
https://inspirehep.net/search?p=find+EPRINT+arXiv:1206.6379
https://doi.org/10.1007/JHEP08(2017)086
https://arxiv.org/abs/1703.08460
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.08460

	Introduction
	Review of 4d N=1 Lagrangians for generalized AD theories
	T[SU(2)] theory
	The (A(1), A(3)) Lagrangian
	The 4d chiral ring
	The 3d chiral ring
	3d superconformal index

	The (A(1),D(3)) Lagrangian
	The 4d chiral ring
	The 3d chiral ring
	3d superconformal index
	The S**(3) partition function
	The 3d (A(1),D(3)) theory with the flipping field beta and a monopole  superpotential beta M

	Mirror of (A(1), D(3)) from the 3d quiver based on the affine D(4) Dynkin  diagram
	Mirror of 3d N=4 SU(2) gauge theory with 8 half-hypers
	Mirror of (A(1),D(3)) nilpotent deformation

	Discussion
	The Higgs branch of the 3d N=4 D(4) quiver

