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On Direct Versus Indirect Peer Influence in Large Social Networks 

Abstract 

With the availability of large-scale network data, peer influence in social networks can be more rigorously 

examined and understood than before. Peer influence can arise from immediate neighbors in the network 

(formally defined as cohesion or direct ties with one-hop neighbors) and from indirect peers who share 

common neighbors (formally defined as structural equivalence or indirect ties with two-hop neighbors). 

While the literature examined the role of each peer influence (direct or indirect) separately, the study of 

both peer network effects acting simultaneously was ignored, largely due to methodological constraints. 

This paper attempts to fill this gap by evaluating the simultaneous effect of both direct and indirect peer 

influences in technology adoption in the context of Caller Ring Back Tone (CRBT) in a cellular telephone 

network, using data from 200 million calls by 1.4 million users. Given that such a large-scale network 

makes traditional social network analysis intractable, we extract many densely-connected and self-

contained subpopulations from the network. We find a regularity in these subpopulations in that they consist 

either of about 200 nodes or about 500 nodes. Using these sub-populations and panel data, we analyze direct 

and indirect peer influences using a novel auto-probit model with multiple network terms (direct and 

indirect peer influence, with homophily as a control variable). Our identification strategy relies on 

Bramoullé et al.’s (2009) spatial autoregressive model, allowing us to identify the direct and indirect peer 

influences on each of the extracted subpopulations. We use meta-analysis to summarize the estimated 

parameters from all subpopulations. The results show CRBT adoption to be simultaneously determined by 

both direct and indirect peer influence (while controlling for homophily and centrality). Robustness checks 

show model fit to improve when both peer influences are included. The size and direction of the two peer 

influences, however, differ by group size. Interestingly, indirect peer influence (structural equivalence) 

plays a negative role in diffusion when group size is about 200, but a positive role when group size is about 

500. The role of direct peer influence (cohesion), on the other hand, is always positive, irrespective of group 

size. Our findings imply that businesses must design different target strategies for large versus small groups: 

for large groups, businesses should focus on consumers with both multiple one-hop and two-hop neighbors; 

for small groups, businesses should only focus on consumers with multiple one-hop neighbors. 
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1. Introduction 

Technology diffusion is a core area of Information Systems research. An important assumption made 

in technology diffusion theory is that adoption is affected by an individual’s neighbors in a social network. 

This process, by which an individual adapts her behavior to those of her neighbors in a social network is 

known as peer influence (Duncan et al., 1968; Leenders, 1997). When making decisions, individuals 

usually rely on people that they either know directly in their social network (direct ties1) or that they know 

indirectly (indirect ties2). Direct peer influence (cohesion) is made through direct communication, i.e. 

direct ties between an individual and her one-hop neighbors (Figure 1a); indirect peer influence (structural 

equivalence) occurs when an individual imitates two-hop neighbors with whom she only has an indirect 

connection in a social network through others (Figure 1b). These two peer influence models lead to very 

different technology diffusion strategies. For a social network in which diffusion is driven mostly by direct 

influence, the strategy should be to target individuals with many direct connections, while for a social 

network driven mostly by indirect influence, the strategy should be to target individuals with many indirect 

ties. However, while the effect of each of these peer influence models in technology diffusion in social 

networks has been examined separately, the simultaneous effect of both peer network influences, 

especially in large-scale social networks, has not been examined, largely due to methodological challenges. 

This study aims to fill in this gap by simultaneously examining both direct and indirect peer influences in a 

large-scale network that makes social network analysis intractable with extant methodological approaches.  

Figure 1: Direct Peer Influence (Cohesion) and Indirect Peer Influence (Structural Equivalence) 

 
 

Figure 1a: Direct influence (Cohesion):  
Individuals’ adoption is directly influenced through 
one-hop neighbors through direct ties. 

Figure 1b: Indirect influence (Structural Equivalence): 
Individuals’ technology adoption is influenced through 
indirect connection with two-hop neighbors.  

                                                      

1 Direct ties with one-hop neighbors, formally defined as cohesion. 
2 Indirect ties with two-hop neighbors, formally defined as structural equivalence. 
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The debate about which peer influence—direct (cohesion) or indirect (structural equivalence)—plays a 

more influential role in technology diffusion is still inconclusive. Coleman et al. (1966) studied diffusion of 

medical innovation and found that medical doctors adopted new technology at earlier stages largely due to 

direct influence. However, Burt (1987) reanalyzed Coleman et al.'s data and concluded that diffusion was 

not driven by direct peer influence (cohesion), but rather by indirect peer influence (structural equivalence). 

Both camps, those supportive of direct peer influence (cohesion) (e.g., Rogers and Kincaid, 1981; Harkola 

and Greve, 1995) and those championing indirect peer influence (structural equivalence) (e.g., Strang and 

Tuma, 1993; Van den Bulte and Lilien, 2001), have found quantitative evidence to support their claims. 

Thus, determining whether direct influence or indirect influence is the major driver of technology diffusion 

has been an unresolved research question. This study aims to reconcile these two competing views on 

technology diffusion in large-scale social networks by examining their effects simultaneously in the activity 

of cellular phone users in a large network. 

Methodologically, we include both direct peer influence and indirect influence as two network terms in 

a single model. However, most existing analyses only used network autocorrelation models that include one 

peer influence term at a time or two terms in two separate models. The assumption made by such models is 

that only one network term can be significant. Some methods were developed to work in situations where 

both terms are influential, notably Doreian's (1989) two regimes of network effect autocorrelation model 

and the joint role of both peer influences can be evaluated. However, Doreian’s approach does not support a 

dichotomous response variable. This is important for technology diffusion where the individual’s decision is 

typically binary — that is, whether to adopt a technology or not. Although Yang and Allenby's (2003) 

Hierarchical Bayes Autoregressive Mixture Model supports a binary response variable, it cannot compare 

several network terms that may have different signs at the same time. This study introduces a model that not 

only supports binary response variable and multiple network terms, but also permits the signs of multiple 

network terms to be different. Many IS problems study individuals’ binary choices, such whether to adopt a 

new technology (or not) or purchase an app (or not). Also, individuals in social networks may be affected 

by homophily, for which we must also, therefore, control. Such analysis requires a network autocorrelation 

model having more than two network terms, with homophily as an additional term. However, no model to 

date can simultaneously examine multiple network terms while still controlling for homophily.  
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Besides building a model with multiple network terms, we need to solve the data size problem. In terms 

of network size, our data set contains more than one million nodes (linked individuals). Traditional studies 

of social networks have been limited to hundreds of nodes. For example, Coleman et al.'s (1966) classic 

Medical Innovation data only had a node size of 125. Advances in data collection technologies, such as 

Web crawling and APIs, have enabled researchers to use large-scale network data. Two major challenges 

come with big network data. The first and most important is statistical. Heterogeneity across subsets of the 

population increases with the size of the population. As cultures in different parts of the world are different, 

a network that consists of millions of individuals has groups with different social norms. The pattern of peer 

influences may be different among these groups. Even assuming that we have sufficient computing power, 

analysis of the whole population would confound across these distinct effects across different subsets. The 

second challenge is computational. With the exception of a few network analyses, such as degree centrality, 

most analyses do not scale well. That is, for some class of analytic routines, our standard desktop machines 

are not fast enough to conduct the analysis of a large network in a realistic time frame. A list of examples 

run on a standard desktop computer with Intel 4-core 2.67G Hz CPU and 4GB RAM is shown in Table 1. 

Table 1. Summary of running time of network analysis methods/routines of various network sizes 

(all implemented by R language, running on a PC with Intel 4-core 2.67G Hz CPU and 4GB of RAM) 

Analysis Method/Routine Network node size Network density Running time 

Bonacich (1987) power 

centrality score 

400 0.025 0.37 seconds 

800 0.0125 2.0 seconds 

1600 0.00625 14 seconds 

106 10-5 >32 years 

Two regimes of network 

autocorrelation model  

400 0.025 9.5 seconds 

800 0.0125 56 seconds 

1600 0.00625 331 seconds 

106 10-5 >181 years 

 

Studying several peer influences in large-scale networks simultaneously presents major methodological 

challenges. First, comparing peer influence on interdependent decisions among individuals requires a 

complex statistical model. Accommodating direct and indirect peer influence, together with homophily as a 

control variable, requires a network autocorrelation model with multiple network terms. However, no model 

that supports more than two network terms also controls for homophily (Zhang et al., 2013). Second, the 

analysis of social networks with size at the societal scale (node size>106) cannot be accomplished by existing 

models. Our approach employs a network processing method capable of handling larger networks which 
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enables heterogeneity and computation challenges from running the statistical model on the full network to be 

solved. Comparing peer influences in large-scale networks requires both a new statistical model and a data 

processing solution for large-scale network data. This study examines three network peer influences in a large 

social network with a method that can process three network terms in a network with a node size larger than 

one million (106). Our paper makes a methodological contribution by extending the multi-network auto-probit 

(mNAP) model (Zhang et al., 2013) to examine the effects of both direct and indirect peer influences on 

CRBT adoption (Figures 2 & 3), aside from homophily and network centrality, resulting in a novel extension 

of the mNAP model with simultaneous multiple network terms. To our knowledge, our work introduces the 

first hierarchical Bayesian model with multiple network autocorrelation terms with no restriction on the signs 

of the estimated parameters, which can be estimated using either cross-sectional or panel data. Finally, 

following Bramoullé et al. (2009), we demonstrate how peer influences can be identified using our model. 

Figure 2: Demonstration of Direct Peer Influence of CRBT adoption (Cohesion) 

   
(a) A (non-adopter) calls B 
(adopter) 

(b) A hears CRBT from B (c) A receives direct influence 

from B, and A also adopts 

Figure 3: Demonstration of Indirect Peer Influence of CRBT adoption (Structural Equivalence) 

   
(a) A (non-adopter) calls B 
(adopter) 

(b) A hears CRBT from B (c) C knows of B having CRBT, 
receives indirect influence from B, 
and C adopts (A does not adopt) 

 

The nature of peer influence, in both magnitude and direction, could be quite different in social 

networks with different sizes. For example, social networks constructed by friends in small (versus large) 

social networks may differ, since people in small communities may find it easier to know each other than 

people in large communities. Therefore, people in small networks are likely to have closer links and have 

stronger peer influence on each other. Yet, the pattern of the magnitude and direction of peer influences on 



5 

technology diffusion within different social network sizes, and whether the magnitude and sign of the 

coefficients of the social network terms change when the size of the social network changes, has, to our 

knowledge, never been empirically tested. Using large-scale network data, we have the opportunity to 

examine the role of network size in (direct and indirect) peer influence, thus contributing to the literature 

on how direct and indirect peer influences vary based on the size of the social network. 

Our data comes from one of the largest cellular phone services in Asia that provide CRBT.3 There are 

over a million subscribers and over one billion phone call records in our data (after data preprocessing). 

Each record includes (hashed and anonymized) phone numbers from the caller and callee, as well as the call 

date and time. Given the size of our data, it is impossible to analyze the full set using available standard 

computing power. Thus, to examine CRBT diffusion, we used subpopulations to decrease heterogeneity and 

also make our analyses computationally tractable. The subpopulations analyzed in our study are extracted 

using the Transitive Clustering and Pruning (T-CLAP) algorithm (Zhang et al., 2011). People in such dense 

networks have stronger peer influence than those in sparse networks, and they do not receive contaminated 

influence from external connections. We developed a new solution to the mNAP model (Zhang et al., 2013) 

that accommodates three network autocorrelation terms to analyze the data, as the current implementation 

of mNAP only supports two network terms. Because networks of different sizes could have different peer 

influence magnitude or direction, we extracted subnetworks (densely connected group of individuals) of 

different sizes. We show that in a large network, when subpopulations (or subnetworks) are extracted using 

an empirically-tested algorithm without specifying a predetermined size, their sizes empirically fall in two 

levels only — about 200 and 500. These sizes align with the principle of Dunbar’s (1992) number, though 

they are larger, implying that the size of each individual’s social network is restricted by her cognitive limit. 

The number tends to be larger in cellular phone or social networks because of the ease of connectivity.  

                                                      

3 CRBT replaces plain ringback tones with music for a caller to hear as she waits for the callee to answer. CRBT is 
becoming one of the most attractive mobile contents, with estimated revenues of $4.7B in the United States in 2012 
(Broadcast Music Inc., 2011). The penetration rate of CRBT is even larger in Asia and Africa; for example, 95% of the 
digital music market in Indonesia comes from CRBT. Unlike other social networks, which are often extracted from 
social media websites, the interaction between a caller-callee pair entails a stronger intent-to-communicate, implying 
that a CRBT network is a good approximation of a social network. Thus, it is useful to understand how diffusion 
unfolds in a CRBT social network: whether new adopters adopt CRBT because of direct influence from existing 
adopters (one-hop neighbors), or because of indirect influence from two-hop neighbors. Despite the non-exclusive 
effects of these two peer influences, we simultaneously examine their effects on CRBT diffusion in social networks. 
CRBT adoption is represented by a binary variable within the large-scale cellular phone communication network. 
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This study has practical implications, since these two peer influence models will lead to different 

strategies for businesses. Specifically, businesses could focus on consumers with many direct (one-hop) 

neighbors or individuals with many indirect (two-hop) neighbors. A cellular phone service provider can 

easily identify subscribers who have many direct neighbors—those who call and receive calls from many 

other subscribers—and share direct neighbors with many two-hop neighbors—those who call and receive 

calls from the same group of people, but never call each other. If CRBT diffusion is driven solely by direct 

influence, then businesses that want to convert more people to adopt CRBT must target individuals who 

have many directly connected neighbors in the network, because they can influence a large number of 

potential adopters. However, if diffusion is driven by indirect influence, then businesses would need to 

target individuals who have many indirectly connected neighbors, because these individuals will use the 

indirect neighbors as a reference and thus exhibit the same behavior. If diffusion is driven by both models, 

a joint scheme needs to be considered. For example, if we want to convert an individual user in the network 

shown in Figure 1, if the adoption is driven by direct influence, then we need to convert individuals with 

many ties, such as A, to an adopter, because she will influence all of her direct (one-hop) neighbors. 

However, if adoption is mainly influenced by indirect peer influence, we need to convert individuals such 

as C to adopt, because C can affect many individuals, such as B, D, and E, as well as the focal individual, 

and can eventually influence all of her two-hop neighbors who share the same one-hop neighbors 

(represented by a dashed arrow in Figure 1). Considering that people are likely to have many two-hop 

friends, even more than one-hop friends, the effect from indirect influence should not be ignored when 

evaluating peer influence. In order to facilitate CRBT adoption in social networks, businesses should target 

individuals with many one-hop neighbors in smaller groups; in larger groups, businesses should target 

individuals with both many one-hop neighbors and two-hop neighbors.   

The rest of the paper is organized as follows. We introduce the literature on direct peer influence and 

indirect peer influence in the Literature Review (Section 2). After hypotheses development (Section 3), 

the statistical model used—mNAP—is described (Section 4). In Data and Analysis (Sections 5 and 6), we 

present our data and results respectively. Finally, the paper concludes with the Discussion (Section 7). 
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2. Literature Review 

2.1 Technology Diffusion in Social Networks 

Technology diffusion is the “process by which an innovation is communicated through certain channels 

over time among the members of a social system” (Rogers, 1962). The adoption of social media enables us 

to understand technology diffusion in a large social network (e.g., Brancheau and Wetherbe, 1990; 

Chatterjee and Eliashberg, 1990; Premkumar and Nilakanta, 1994; Ahuja, 2000; Agarwal et al., 2008; 

Oinas-Kukkonen et al., 2010). Earlier literature assumed that individuals adopt a technology entirely 

because of their own attributes, such as gender, age, education, and income (Kamakura and Russell, 1989; 

Allenby and Rossi, 1998). However, this emphasis on individual attributes may be due to lack of social 

network data and models for handling large-scale networked data; indeed, studies show that decisions to 

adopt technology are driven by an individual's social network peers (e.g., Bernheim, 1994; Manski, 2000; 

Smith and LeSage, 2004). This could be due to a “contagious” effect, where people imitate the behavior of 

their peers, or a feeling of homophily, in which some unobserved traits drive people’s tendency to form a 

friendship and to exhibit a similar behavior (e.g., Aral et al., 2009; Shalizi and Thomas, 2011). Homophily 

explains how connected individuals with similar attributes make similar decisions (Bott, 1928; McPherson 

and Smith-Lovin 1987; McPherson et al., 2001). In sum, the social contagions literature suggests that social 

and network aspects affect an individual’s technology adoption beyond their individual characteristics.  

In a network diffusion model, the process of diffusion is driven by peer influence from neighbors in the 

network (Valente, 2005). Peer influence can be due to direct influence (cohesion), which is the influence of 

direct one-hop neighbors, indirect influence (structural equivalence), influence from two-hop neighbors 

who share common neighbors, centrality, the number of neighbors (Valente, 2005), and homophily.4  

Centrality uses the number of direct neighbors to measure the size of influence, without considering the 

direct neighbors’ decisions. Because centrality has been a measure for social influence in the IS literature 

(e.g. Susarla et al., 2012; Aral and Walker, 2011), it is used as a control variable in the model. 

Homophily also needs to be controlled for when studying peer influence on interdependent decisions, 

since homophily may have a confounding effect on such decisions. Although the purpose of our study is not 

                                                      

4 Centrality only takes the number of the direct neighbors into account without considering the neighbors’ adoption 
decisions, while direct influence takes both the number of direct neighbors and their decisions into account. 
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to reconcile peer influence versus homophily on technology diffusion, we still control for homophily when 

examining the (direct and indirect) effect of peer influence to capture all interdependent adoption decisions.   

Several studies have previously considered homophily. Aral et al. (2009) used propensity score matching 

with observed individual attributes to measure homophily to show that ignoring homophily over-estimates 

peer influence. For example, Nair et al. (2010) used individual level fixed effects to control for homophily 

when analyzing peer influence in prescription decisions. Ma et al. (2015) modeled homophily as a group-

level correlation, where a group was defined as a clique of size four. In this paper, we define homophily 

directly from individuals’ personal attributes—the weighted average of attribute similarity of all connected 

individuals. The more two individuals are similar in their demographics, usage behavior, social circle, and 

location, the higher the homophily between them. Homophily is thus captured by: individual demographics 

(age and gender), location (frequently used base stations), behavior (average call duration in seconds), and 

social circle (number of unique friends called). Taken together, all four dimensions potentially associated 

with similar adoption decisions among connected individuals, including the three types of peer influence 

(direct, indirect, and network centrality) other than homophily, are all explicitly accounted for in our model.  

In this study, we include both direct and indirect peer influence as network autocorrelation terms, plus 

we control for homophily and network centrality. Centrality, as well as direct and indirect influence, are all 

derived from the same network in which individuals are embedded. Therefore, our paper makes a 

contribution to methodology by including three types of influence when studying technology diffusion. 

Although the study’s main goal is to compare direct and indirect peer influence, we include homophily and 

centrality in the model as controlled covariates to account for their possible effects on technology diffusion. 

2.2 Diffusion Models 

In the social networks literature, there are three main models for studying diffusion: macro models, 

event history model, and network autocorrelation models (Valente, 2005). 

Early on, the probability of adoption was only related to the time that an actor gets exposed to an object 

of diffusion. Bass (1969) proposed a model—referred to as the Bass diffusion model—that includes both 

peer influence and innovativeness. This model explains that initial adoption is based on an actor's 

innovativeness and exposure to potential sources of influence. This model is a population-level model, 



9 

assuming that every actor in the network has the same probability of interacting with others. We do not use 

the Bass model, because in large real world networks, this assumption usually does not hold and the 

variation of the number of individuals’ connections is large (usually following a power law distribution). 

Comparatively, the event history model offers some useful tools for network analysis. Sometimes, the 

factors that affect technology diffusion also affect the formation of the network. Therefore, it is necessary to 

collect data at different time periods (panel data) for the event history analysis. The purpose of event history 

analysis is to explain why certain people are at a higher risk of experiencing the event of interest than 

others. The most commonly-used analysis methods include failure-time models, survival models, and 

hazard models (when an event is viewed as a transition from one status to another, such as from non-

adoption to adoption). One example of the event history model is as follows (Strang and Tuma, 1993): log(ℎ(𝑡)) = 𝛼 + X𝜷 + X𝒕𝜷𝒕 + 𝜌𝐖𝐲𝑡 + 𝝐 

Where: yt is the hazard of adoption at time t, Xt is time-variant covariates, and t is the coefficient of Xt.  

This model studies whether an individual adopts under both time-invariant and time-variant covariates and 

requires the collection of connection matrices for each time period, which is a formidable task. Therefore, 

model implementation is scarce. We do not use this model, since real-life networks are in equilibrium status. 

The network autocorrelation model completes the trio. It is used to study whether connected individuals 

tend to have the same behaviors, and it originates from the spatial autoregressive (SAR) model (Ord, 1975). 

The general form of such model is as follows: 𝐲 = X𝜷 + 𝜌𝐖𝐲 + 𝝐 

y is an individual’s binary decision, where 1 stands for technology adoption of CRBT and 0 — 

otherwise. X is the vector of exogenous covariates, β is the correspondent coefficient. W is network 

structure, and ρ is the correspondent coefficient for the autocorrelation term Wy. The mNAP model we use 

in this study belongs to this category of (network autocorrelation) models. 

Most network autocorrelation models can only accommodate one type of peer influence as a single 

autocorrelation term and compare the coefficients from multiple models using a Q-test (Leenders, 2002). 

Doreian (1989) designed two regimes of a network effect autocorrelation model that only supported a 

continuous response variable and with only two network impact terms at most. Fujimoto and Valente (2012) 

directly put network autocorrelation terms at the right hand side of their logistic regression. Doreian (1982) 
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called this model Quick and Dirty (QAD), because it did not satisfy the assumption of logistic regression 

that observations are not independent (and thus the estimation results are biased). Another model under this 

type, considered state of the art by many, is Yang and Allenby's (2003) hierarchical Bayesian autoregressive 

mixture model that supports a categorical dependent variable and multiple component networks. Still, this 

model is not sufficient, because the sum of all weights of component networks must be one, implying that 

the effect from all network terms must be on the same side and be statistically significant at the same time. 

Accordingly, in order to use this family of methods, we need to design our own model. 

Another family of social network models are Exponential Random Graph Models (ERGM) (Robins et al., 

2007) and their extension on dynamic networks Temporal ERGM (Temporal ERGM, Hanneke et al., 2010). 

ERGM models assume that the probability of connections among individuals follows an exponential family 

distribution. However, the objective of these models is predicting network structure using observed network 

and individual attributes, and they do not align with our focus, which is designed to study interdependent 

decisions among connected individuals; thus, we are not able to use this family of models in our analysis.  

Finally, another popular application for social networks analysis is SIENA (Simulation Investigation 

for Empirical Network Analysis) (Snijders and van Duijn, 1997; Snijders, 2001), which is based on 

stochastic actor-oriented models and used to represent the evolution of networks. The network structure 

change is the result of actors (individuals) making changes about network connections based on objective 

functions. Although extensions of SIENA can model interdependent decisions among connected 

individuals based on the assimilation principle (Snijders et al, 2010), we could not use SIENA due to two 

reasons: first, SIENA assumes that individuals can observe the whole network, including all other 

individuals’ attributes and their network connections, and consequently adjust their network connections 

with their peers. Given a large network data (more than 1 million individuals), such an assumption does 

not hold in our context. Second, SIENA does not guarantee convergence of the parameter estimation 

(Steglich et al., 2006). Based on pilot studies, this limitation of SIENA does apply to our data. Therefore, 

SIENA is inappropriate for our study. 

3. Hypotheses Development 

3.1 Direct Peer Influence Model 

The direct influence (or “cohesion”) model, suggests that an individual's technology adoption can be 

affected by the neighbors to whom she is directly connected. Connections signify communications among 
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individuals in the network. An individual could be informed by, persuaded by, or get suggestions from her 

neighbors in the network. Coleman et al. (1966) produced perhaps the most famous piece of work that uses a 

direct peer influence model to explain technology diffusion. They found that medical doctors prescribe a new 

drug because of direct ties with other doctors. The stronger a doctor's connection to her colleagues (who are 

also adopters), the earlier the doctor prescribes that drug for the first time. Coleman gave a very reasonable 

explanation: when there is a need to make a decision in an ambiguous situation, doctors would ask for 

suggestions and advice from those with whom they usually discuss questions or from whom they get advice. 

“The more frequent and empathic the communication is between individual and neighbor,” the more likely 

the neighbor's adoption will affect the individual's adoption decision. Such adoption is the result of 

discussions on benefits and costs between the individual and her neighbors (Burt, 1987, p. 1289). Rogers and 

Kincaid (1981) also examined the effect of direct influence (cohesion) on innovation diffusion. In contrast to 

Coleman et al., Rogers and Kincaid used personal network density as a measure of direct influence. Still, 

their result is similar to that of Coleman et al. — personal network density is positively related to adoption.  

Existing IS literature examined peer influence on people’s different technology adoption decisions, such as 

Facebook apps (e.g., Aral and Walker, 2011), home computers (e.g., Goolsbee and Klenow et al., 2002), 

online social networks (e.g., Katona et al., 2011, Trusov et al., 2010), and online content generation (e.g. 

Susarla et al., 2012, Shriver et al., 2013). The literature also noted that individuals do notice and understand 

new technologies through discussion and observation with others who are close to their social network 

(Harkola and Greve, 1995), specifically direct neighbors. In the CRBT context, direct influence (cohesion) 

assumes callers who make phone calls to each other will hear the callee's CRBT and would thus be more 

likely to become interested in CRBT and eventually buy CRBT. Thus, an individual's direct ties to existing 

adopters influence her decision to adopt. Therefore, we propose to test whether the average probability of 

CRBT adoption by people whom an individual calls affects the individuals’ probability of CRBT adoption.5  

We thus propose the following hypothesis for testing:  

H1 (Direct Peer Influence and CRBT Adoption): An individual’s probability of CRBT adoption 

is positively associated with the number of CRBT adopters among the individual’s direct peers 

(one-hop neighbors).  

                                                      

5 As the variation in the number of one-hop neighbors could be very large for all individuals, we use the ratio of adopters 
among neighbors instead of the absolute number of adopters; this is because one single neighbor’s influence could be 
different for an individual with a small number of neighbors from another individual with a large number of neighbors. 



12 

3.2 Indirect Influence Model 

An individual's adoption can also be affected by peers to whom she is indirectly connected, that is, 

individuals who are friends with a mutual, focal individual (two-hop neighbors) (Figure 1b), a relationship that 

lends itself to an effect termed indirect influence (structural equivalence). Indirect influence is also known as 

the role equivalence model (Burkhardt, 1994).6 Indirect influence is a measure of the extent to which 

individuals communicate with the same other people and not necessarily with one another. The degree to 

which an individual and her peers interact with the same others reflects the extent of their indirect influence. 

Thus, two individuals may have indirect influence between them, even if they never communicate with one 

another. An individual would infer judgment of her peers who have the same position on certain things in the 

influential flow of the social network, and in order not to lose her influential power, the individual would 

eventually make the same judgment and same decision as well. Indirect influence models “were developed ... 

explicitly as a vehicle for describing the structure of role relations defining statuses across multiple networks.” 

(Burt, 1987, pp. 1291). For example, a medical doctor wants to maintain an image of innovativeness. After 

another doctor with whom she shares common friends adopts a new technology, the doctor believes the 

adoption of such technology will enhance her reputation as an innovator and effective power in the social 

network. Thus, she also wants to adopt. Burt (1987) reanalyzed Coleman et al.’s (1966) Medical Innovation 

data and concluded that direct influence (cohesion) was not the dominant or the only factor driving diffusion. 

He found that individuals indirectly connected to and sharing common friends with adopters are more likely to 

adopt, concluding that the effect of social contagion was through indirect influence instead of direct influence. 

Strang and Tuma (1993) found weak influence among doctors who are directly connected, but found strong 

influence between those that are indirectly connected but share common friends. Burkhardt (1994) also 

compared these two peer influences—direct and indirect—with regard to users' attitudes, self-efficacy, and 

frequency of using computers. He found (pp. 890): “when people evaluate their own personal skills or self-

images, they rely on those close to them; when they determine job-related attitudes, they are more likely to 

rely on structural equivalents.” Van den Bulte and Lilien (2001) reanalyzed Burt's analysis to compare the 

                                                      

6 In organizations, individuals who are structurally equivalent typically have the same role in the organization, and thus 
the model is also called the “role equivalence” model. An individual is exactly structurally equivalent to her neighbor if 
both of them share the same set of neighbors. 



13 

effects of direct and indirect influence. Distinct from Burt, who used the Euclidean distance to measure 

indirect influence, Van den Bulte and Lilien used the proportion of exact peer matches as their measure of 

indirect influence. Their results showed both direct and indirect influence to be significant, although indirect 

influence was stronger. Finally, Harkola and Greve (1995, p. 423) concluded from the literature that people in 

a social network will “use each other as a frame of reference for subjective judgments and so make similar 

judgments even if they have no direct communication with each other.” 

In the context of CRBT, indirect influence refers to the situation where users in the network have the 

same or similar pattern of relations with their two-hop neighbors (Figure 2-3). In a network constructed by 

callers and callees, an individual could learn from direct friend that an indirect neighbor with whom she 

shares many common neighbors is using CRBT, even though the direct friend may not be a CRBT adopter. 

The focal user may like the idea of CRBT, as the indirect friend did. The more common friends the focal 

individual shares with the two-hop friend, the higher the chance the focal user would learn about and thus 

adopt CRBT. In the indirect influence model, “the trigger to individual's adoption is adoption by the people 

with whom he jointly occupies a position in the social structure” (Burt, 1987, p. 1294). Decision similarity 

occurs when users adopt the same behaviors as their direct neighbors. Similarity could also happen when a 

user and her neighbors connect to the same set of people in a CRBT network, i.e. when people are indirectly 

connected to each other (Coleman et al., 1966; Burt, 1982, 1987; Krackhardt and Stern, 1988). We define 

indirect influence as the Euclidean distance between two (CRBT) callers, measured by how many common 

friends two callers share. The more common friends two callers share, the smaller their Euclidean distance is. 

Thus, we propose:  

H2 (Indirect Influence and CRBT Adoption): An individual’s probability of CRBT adoption 

is positively associated with the number of indirect peers (two-hop neighbors) who share 

many common direct (one-hop) neighbors who have also adopted CRBT. 

 

3.3 Network Size 

A social network usually consists of clusters, which are sub-networks that are densely connected. As 

the size of the population increases, the heterogeneity across clusters in the population also increases. One 

source of heterogeneity is the size of cluster. According to Dunbar's number, the number of stable social 

relationships an individual can maintain is restricted by her cognitive ability, and varies between 100 and 
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230 (Dunbar, 1992). Therefore, we would believe that in a small social network, the relationships among 

individuals tend to be stronger; accordingly, the size of the influence will be larger too. Likewise, in a large 

social network, peer influence among neighbors tends to be smaller. For indirect influence, however, the 

larger the social network, the more likely an individual has more two-hop neighbors. It is worth noting that 

the individual’s personality may also have impact on the purchase choice (Ma et al. 2015). This is because 

CRBT choice can indicate an individual’s taste in music. Among indirectly connected neighbors where 

competition for attention from peers is significant, individuals may want to make a different choice in 

CRBT to reflect her personality. In larger networks the competition for attention is typically larger, and the 

attempt to showcase one’s personality in larger networks is expected to be higher than smaller networks.  

Thus, our hypotheses about the size of the network on both network peer influence terms are proposed as: 

H3a (Network Size and Direct Influence): The effect of direct influence (cohesion) on an 

individual’s probability of CRBT adoption is negatively associated with the size of the 

network to which the individual belongs. 

H3b (Network Size and Indirect Influence): The effect of indirect influence (structural 

equivalence) on an individual’s probability of CRBT adoption is positively associated with 

the size of the network to which the individual belongs. 

4. Method 

4.1 Model 

The goal of our study requires the simultaneous accommodation of two network autocorrelation terms 

(direct and indirect peer influence), allowing these two terms to have different signs and not necessary to be 

significant at the same time. In addition, a third network autocorrelation term is included to account for 

homophily. The mNAP model (Zhang et al., 2013) becomes a natural choice because of its support for a 

binary outcome, covariates describing individuals in terms of their network attributes, and most importantly, 

more than two network autocorrelation terms. However, only an analytical solution for including more than 

two network autocorrelation terms is provided for mNAP. A solution for mNAP with multiple network 

autocorrelation terms explicitly controlling for homophily has never been implemented. Therefore, we not 

only offer an explicit specification of the mNAP model (Zhang et al., 2013) with two network 

autocorrelation terms to study both direct and indirect peer influence on CRBT diffusion, we include two 
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terms for homophily from direct and indirect friends respectively. We modeled peer influence as latent and 

correlated terms among individuals. Following Aral et al. (2009), we used observed individual attributes to 

measure homophily, as described below. Centrality, another type of peer influence is also controlled for, but 

as an observed covariate. Notably, the proposed model supports longitudinal panel data, making it the first, 

to our knowledge, hierarchical Bayesian model to take homophily into consideration. With all these factors 

being included, the mNAP model takes both the interdependence of the individuals’ decision, direct peer 

influence, indirect peer influence, and homophily, and individuals’ observable attributes, such as centrality, 

into consideration. Taken together, the specification of our model, extending mNAP, is described as:7  

 

 

 

 

 

 

yt is the vector of observed binary choices—whether a caller purchased CRBT—in time period t. It is an 

indicator function of the latent preference of users, zt. If zt is larger than a threshold 0, users choose yt as 1 — 

purchase CRBT; if zt is smaller than 0, then users would choose yt as 0, i.e. not purchase CRBT. zt could be 

represented as a function of both exogenous covariates xt, autocorrelation term θt, and fixed effects η. The 

covariates that make up vector Xt are exogenous degree centrality of the cellular phone subscribers, which is 

measured by the number of unique callees to which a focal subscriber places phone calls. Xt consists of two 

parts, a time-invariant mean μX and a time variant error term et. We considered adding both one-hop and two-

hop neighbor percentages. Our concern was that these two percentages are highly correlated with degree 

centrality and may not be necessary to include. First, the percentage of one-hop neighbors is 
𝑑𝑖𝑁 , where di is the 

degree centrality of individual i and N is the network size. Since N is a constant for all individuals in the same 

                                                      

7 Our mNAP model is estimated using Markov Chain Monte Carlo. The detailed estimation steps are shown in 
Online Supplementary Appendix A. 
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network, the percentage 
𝑑𝑖𝑁  is equivalent to degree centrality di. Second, the percentage of indirect friends is 

given by 
∑ 𝑑𝑗𝑗𝑁 , where j is the neighbor of focal individual. Since the aggregation of each individual’s degree 

centrality is already controlled for, such a measure may be redundant. Our concern is supported empirically; 

when including both percentage variables in our model, neither of them are significant.  

Covariance of η and et follows a multivariate normal distribution. θt is the autocorrelation term, which 

is responsible for tho nonzero covariances in zt. θt can be described as the sum of the product between 

network structures and unobserved preference Wtθt. Wi,t represents the social structure underlying each 

autocorrelation term. W1,t is the matrix describing connections between one-hop neighbors, which is the 

normalized adjacency matrix, in time period t; W2,t is the matrix describing two-hop neighbors in time period 

t, whose definition is given in the paragraph below. The definition of all Ws is given below. ρ1 and ρ2 are the 

parameters of two network influence terms respectively. Considering that the variation of degree (number of 

1-hop neighbors) is large, we normalized the adjacency matrix when defining W1,t as: 

 

 

where aij,t is the entry in the adjacency matrix representing individual connections in time t, At, At={aij,t}. 

The definition of indirect connections is based on indirect peer influence. We followed the literature on the 

comparison between direct and indirect peer influence done by Van den Bulte and Lilien (2001), and we used 

the Euclidean distance between two individuals as the measure for indirect connection, which is a type of social 

position similarity. In an undirected network with unweighted edges, the Euclidean distance dij,t between two 

individuals i and j in time t is the sum of squared difference between the adjacency vectors of nodes i and j.  

      (1) 

 
 

where Aik,t is 1, if node i  and k are neighbors, and 0 otherwise. 

Since a larger Euclidean distance represents a lower influence between nodes i and j, we used the 

inverse of the summation of dij,t and a small constant — one. Fang et al. (2013) also used the same 

measure. The distance is shown in Equation (1). The element of W2,t, 
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sij,t, has a positive relationship with indirect influence, where a large value represents a higher indirect 

influence.  

 

 

It is worth noting that both the Euclidean distance and cosine similarity are two most common measures 

for position similarity. The cosine similarity of nodes i and j is defined as the number of common neighbors 

divided by the geometric mean of the two nodes’ degrees (Salton, 1989). Cosine similarity and Euclidean 

distance are related and can be converted to each other under certain conditions. The squared Euclidean 

distance is actually proportional to the cosine distance. We present the results using cosine similarity in 

Online Supplementary Appendix C (Table C7). From these results, we show there is no significant 

difference between the models using these two measures of position similarity. 

We also defined a mathematical rule to enforce W2,t not correlated with W1,t. 𝐀̅ is the logical NOT of 

adjacency matrix A used to define W1, t. It is defined by switch “A’s 1 entry to 0, and 0 entry to 1.” For all 

W2,t, we element-wise multiplied (denoted by ∘) itself with 𝐀̅: 𝐖2′ = 𝐀̅ ∘ 𝐖𝟐.  

H t is the matrix of individual attributes representing different dimensions of homophily in period t. 

According to the literature, homophily is associated with both time-invariant attributes, such as age, gender, 

race, and education (McPherson et al., 2001), and time-variant attributes, which affect how individuals behave 

similarly (Lazarsfeld and Merton 1954). Following the literature, we included multiple attributes representing 

various dimensions of homophily, including demographics (age and gender). Since homophily may also be 

associated with behavioral attributes about patterns of people’s cellular phone use, we included time-variant 

homophily dimensions, such as location (frequently used stations), behavior [average call duration (seconds)], 

and social circle (number of unique friends called). We define H t in both product terms W1,t H t and W2,t H t 

respectively, to control for the effects of homophily that may come from both direct and indirect friends. ρ3 

and ρ4 are the two correspondent vectors of parameter, respectively. 

4.2 Identification Strategy 

The major challenge in identifying peer influence is the “reflection problem” (Manski 1993). Endogeneity 

in peer influence, or the inability to separate the endogenous effect (peer influence) from the exogenous effect 

(similarity in individual attributes that may 
ttttttttI uHWρHWρWW ++−−  ,2,1,2,1 =)( θ
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result in homophily). Bramoullé et al. (2009) proposed a spatial autoregressive model with network 

autocorrelation terms that can be categorized as a network autocorrelation model. They also showed that if a 

network contains an individual’s three-hop neighbors, peer influence is identifiable. The principle of 

Bramoullé et al.’s strategy is that the behavior of a neighbor’s neighbor can be used as an instrumental 

variable, because it is not a determinant of response variable y, despite still being correlated with individual 

attributes. Considering a simplified, yet still containing all necessary terms, structural model about z, the core 

variable representing latent preference of CRBT purchase would be: 

 

The identification of peer influences is achieved if and only if all the parameters in the structural model 

ρ1 to ρ4 can be uniquely recovered from the reduced form below.  
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Expected peer influence in the network, conditional on homophily is: E[(I−W1,t− W2,t)(ρ1W1,t + ρ2W2,t)θt|Ht]. 

Using Bramoulle et al.’s proposition (2009), variables [(I−W1,t − W2,t)(ρ3W1,t + ρ4W2,t) Ht
 2, (I−W1,t −W2,t)(ρ3W1,t 

+ ρ4W2,t) Ht
 3, ….] can be used as valid IVs for (I− W1,t − W2,t)(ρ1W1,t + ρ2W2,t)θt. This condition is equivalent to 

I, (W1,t + W2,t)
2, (W1,t + W2,t)

3 are linearly independent, which ultimately can be converted to the condition of 

both W1 and W2’s diameter being greater than or equal to 3. Figure 4 below shows an example of an extracted 

subnetwork of size 252. An edge from node 𝑖 to node 𝑗 represents that individuals i and j make mutual phone calls 

in that period. From the network topology, we can easily find that there are paths between nodes with a distance 

greater than or equal to three. The linear independence among matrices representing direct and indirect peer 

influence I, Wk,t, Wk
2, and Wk

3 (k=1,2; 1=direct influence; 2=indirect influence) is quantitatively confirmed for 
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each subnetwork extracted in all time periods. Thus, the necessary and sufficient condition of peer influence 

identification by Bramoullé et al.’ (2009) is satisfied, as illustrated in Online Supplementary Appendix B. 

 
Figure 4: Example Subnetwork of Size of 252 in time t 

5. Data and Results 

Our data were obtained from a large Asian telecommunications firm. Data include cellular phone call 

records and CRBT purchase records over a three-month period, in addition to demographic information, such 

as age and gender. Since the phone call conversation network is directed, asymmetry can exist between callers. 

We restricted the data to reciprocal calls, since symmetric connections imply equal and stable connections, 

while an asymmetric connection indicates an unstable relationship (e.g. Hanneman and Riddle, 2005).   

We define reciprocity for dyads (A, B) as the condition in which A calls B and B calls A in the same 

month. We interpreted reciprocity as a higher probability that the two parties are acquaintances. Thus, we 

further constrained our analysis to include data with reciprocal dyads. Constrained by these requirements, 

the total size of our phone call record was about 197 million calls placed by about 1.4 million users. This 

network is not only too large to analyze, but it also contains many clusters that contain different effect 

sizes in them, and hence it could be analyzed only by using multiple subpopulations and meta-analyses. 

A detailed description of the preprocessed data is listed in Table 2. The dependent variable was 

measured as a binary variable, indicating whether a caller purchased CRBT in a three-month period. We 

included the degree of the caller and the number of unique callees a subscriber called (and vice versa) to 

observe the exogenous effect of the number of neighbors. Direct peer influence was captured as callers who 

make phone calls to each other (0 or 1). Since the number of people callers call are dramatically different 

across subscribers, we normalized the direct influence matrix by dividing each row by the total number of 

neighbors, in order to make the matrix element be the percentage of adopters among their neighbors.  
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Table 2: Variable Description 

Variable Description 

Yt Dependent variable, whether subscriber purchase CRBT (binary) in time period t 

Gender Gender of cellular phone account holder 

Age Reported age of cellular phone account holder 

Degree centralityt Number of callees that a subscriber has called in time period t 

W1,t Matrix describing direct connection in time period t, normalized adjacency matrix 

W2,t Matrix describing indirect connection time period t, elements are defined by inverse of 
Euclidean distance of adjacency vector 

Ht Matrix describing homophily, each column represents one measure. Measures include 
dimensions about homophily such as demographics, location, behavior, and social circle. 

Indirect peer influence is herein defined as the inverse of the Euclidean distance of the neighbor list 

(adjacency vector) of callers. Indirect influence is only calculated among callers who are not directly 

connected in order to guarantee that direct and indirect peer influences are not correlated. H t is the matrix 

of individuals’ attributes representing different dimensions of homophily in time period t, including the 

multiple dimensions of homophily defined by McPherson et al. (2001). Attributes used to control for 

homophily are: individual demography (age and gender), location (frequently used base stations), 

behavioral patterns (average call duration, in seconds), and social circle (number of unique friends called). 

Accordingly, variables included in the H t matrix were: agei and genderi, representing the age and gender of 

individual i respectively; durationi,t, the average call duration in seconds of i in time period t; uniqfrndi,t, the 

number of unique friends of i in time t; and locationik,, the most frequent location of individual i in time t.  

5.1 Data  

Before examining the role of network peer influence in CRBT adoption, we faced another challenge: 

the size of the data. As a social network with 1.4 million users, our network of focus is quite large. The size 

of the data introduces two challenges — one statistical and one computational. The statistical challenge is 

such: as the size of the network increases, the heterogeneity across subsets of the population also increases. 

The computational challenge manifested itself in most social network analysis packages not scaling well. 

That is, for some class of questions and analytic routines, standard desktop systems are not able to analyze 

large networks in a realistic time frame. Memory-wise desktops do not have enough power to accommodate 

the structure of such a large social network. One solution to this problem is using subpopulations of a 

smaller size that is computable within the restrictions of memory size in a realistic time frame. We wanted 

subpopulations to have the following favorable characteristics: first, they should have high density within 
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the network. Internal density shows strong connections among individuals in a network, so social influence 

is more likely to happen. Second, these networks should still have variation in their connections. Third, 

there should be relatively few ties from within the subpopulation to the total network. We wanted to avoid 

‘boundary leakage’ (nodes with more edges to the external network than the internal network that 

contaminate the structure of the extracted networks). Fourth, all these subpopulations should have relatively 

small node sizes so the estimation of the model could be finished in a reasonable amount of time. Since no 

algorithm exists to provide an ideal balance of quality and speed, we used the T-CLAP algorithm (Zhang et 

al., 2011) to identify dense and relatively independent subpopulations. T-CLAP outperformed leading 

algorithms in community detection, such as Infomap, which can also be used for subpopulation extraction. 

The algorithm does not require returned network size as a parameter, and thus it does not predetermine the 

subpopulation size. Instead, it returns a subpopulation with a local maximal I-E ratio, a measure for cluster 

quality. The algorithm uses the I-E ratio to define the boundaries among individual groups. Each individual 

is placed within the group (subnetwork) from which she has a connection. If an individual has connections 

with more than one group, she is placed in the group with which she has the most connections. Thus, using 

this principle, each individual is placed in a subnetwork from which she receives the most peer influence. 

As a result, we avoid contaminated influence from external networks. The size of the returned subnetwork 

is also close to the true group size; this is because subnetworks representing individual groups are well 

reflected by the design of I-E ratio — densely connected internally and relatively sparsely connected with 

external networks. Note that the T-CLAP algorithm does not exclude weak ties. We extracted more than 

100 subpopulations, covering more than 50% of nodes in the entire population. Interestingly, the size of the 

returned subpopulation can be only sorted into two categories, one of approximate size 200 and the other of 

approximately 500. These two numbers only represent the approximate magnitude of the networks, not their 

exact size. For ease of reference, we define the group of about 200 as the “smaller group,” and we define 

the group of about 500 as the “larger group.” All estimation results generally follow the same pattern in 

each size level, so we randomly picked five from the ≈200 level and five from the ≈500 level. This pattern 

also suggests that in the cellular phone call social network, the number of contacts an individual could 

manage is larger than Dunbar's number. The size of subnetworks, I-E ratio, where higher value indicates 

denser and more cohesive internal connections, and the density of all 10 subpopulations is listed in Table 3. 
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Table 3: Extracted subpopulations’ structure characteristics 
 Subpopulation n I-E ratio Density 

 1 191 0.83 0.13 

 2 202 0.43 0.10 

Smaller  3 213 0.48 0.039 

group 4 238 0.82 0.030 

 5 263 0.82 0.029 

 6 465 0.43 0.075 

 7 485 0.82 0.033 

Larger 8 553 0.82 0.029 

Group 9 563 0.43 0.021 

 10 597 0.82 0.082 

 
 
Descriptive statistics of the independent variables for each subpopulation are listed in Table 4. 

Table 4: Descriptive statistics of independent variables 
 Subpopulations 

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

N 191 202 213 238 263 465 485 553 563 597 
Gender 0.19 0.12 0.033 0.11 0.065 0.57 0.12 0.27 0.12 0.050 
(0=male) (0.50) (0.45) (0.18) (0.40) (0.29) (0.89) (0.41) (0.62) (0.42) (0.25) 
Age 45 42 38 42 42 48 45 40 42 36 
 (11) (12) (11) (11) (12) (12) (13) (13) (13) (12) 
Centrality 13.6 10.0 3.6 4.0 4.5 18.1 9.3 9.8 5.3 3.4 
 (14.9) (10.6) (5.1) (5.2) (5.6) (18.6) (13.6) (15.5) (6.7) (1.8) 
Location 0.15 0.13 0.17 0.13 0.27 0.13 0.16 0.29 0.24 0.17 
 (0.39) (0.24) (0.13) (0.40) (0.30) (0.51) (0.24) (0.39) (0.41) (0.19) 

Behavior 107.7 158.6 127.0 180.2 178.5 112.3 102.6 120.8 132.3 98.6 
 (53.5) (28.4) (62.2) (40.0) (35.5) (22.0) (66.3) (63.5) (49.4) (66.5) 
Social Circle 22 16 9 7 7 33 21 19 11 5 
 (24) (6) (9) (12) (11) (38) (24) (33) (8) (3) 
The numbers in are the means, and the numbers below in parentheses are standard deviations. 

 

Table 5 presents the results of model estimation for all 10 subpopulations whose node size ranges from 

191 to 597. We found that direct influence (cohesion) is consistent across all subpopulations. The results 

show that direct peer influence from all subpopulations is significant at the p<0.05 level, ranging from 0.056 

to 0.075, thus supporting H1. It shows that callers receive strong peer influence through direct connections to 

one-hop neighbors in the same group who have already adopted CRBT. The simple explanation is that if a 

caller calls more CRBT subscribers, she gets exposure to more ring back tones, and she is more likely to hear 

ring tones that interest her, which means that she is more likely to buy those ring tones. Finally, the effects of 

centrality (degree) are positive and significant at the p<0.01 level, which suggest that if a caller calls more 

people, the probability of adopting CRBT increases. This result is also consistent with the support for H1. 
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Table 5: Results of analysis using the mNAP model (Direct versus Indirect Influence)  

 Subpopulations 
Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Degree 
0.014* 0.040** 0.030** 0.0043 0.069** 0.040** 0.042** 0.023 0.043** 0.024** 

(0.0088) (0.0098) (0.0095) (0.020) (0.020) (0.022) (0.019) (0.033) (0.044) (0.0070) 
Direct 

Influence 

0.070** 0.060** 0.065* 0.056* 0.061** 0.016** 0.013** 0.014** 0.016* 0.014** 
(0.022) (0.022) (0.026) (0.027) (0.019) (0.0048) (0.0045) (0.0045) (0.0063) (0.0042) 

Indirect 

Influence 

–0.0059† –0.0098* –0.010* –0.0079* –0.0015* 0.0066* 0.0098* 0.0010* 0.034* 0.0049* 
(0.0031) (0.0041) (0.0045) (0.0035) (0.00080) (0.0030) (0.0041) (0.00060) (0.015) (0.0024) 

 Direct Homophily 
  Gender 0.38 –0.20 –0.034 0.27 0.20 –0.11 0.14 0.69 0.094 0.90 

(0.51) (3.3) (0.33) (0.51) (0.22) (0.31) (0.16) (0.42) (0.46) (0.87) 

  Age 
0.023 –0.026 0.053 0.024 0.028 0.0086 0.064 0.037 0.065 –0.080 

(0.018) (0.017) (0.044) (0.025) (0.027) (0.021) (0.054) (0.033) (0.040) (0.067) 

  Location 
0.016 0.018 0.0050 0.017 0.024 0.017 0.021 0.0061 -0.0071 0.022 

(0.012) (0.019) (0.0070) (0.014) (0.017) (0.016) (0.017) (0.0055) (0.0077) (0.011) 

  Behavior 
0.026 0.044 0.0091 0.028 0.045 0.039 0.040 0.011 0.013 0.053 

(0.021) (0.031) (0.014) (0.024) (0.043) (0.19) (0.028) (0.0090) (0.021) (0.041) 
  Social 

  Circle 

0.055 0.050 0.014 0.045 0.061 0.048 0.058 0.018 -0.020 0.065 

(0.033) (0.035) (0.011) (0.029) (0.044) (0.031) (0.037) (0.011) (0.013) (0.051) 
 Indirect Homophily 

  Gender 
0.036 -0.018 -0.003 0.019 0.014 -0.008 0.010 0.058 0.0080 0.078 

(0.045) (0.029) (0.028) (0.040) (0.017) (0.0080) (0.011) (0.033) (0.040) (0.083) 

  Age 
0.0018 -0.0025 0.0050 0.0025 0.0023 0.00077 0.0049 0.0033 0.0042 -0.0069 

(0.0013) (0.0015) (0.0037) (0.0020) (0.0019) (0.0020) (0.0038) (0.0028) (0.0030) (0.0054) 

  Location 
0.0015 0.0012 0.00038 0.0012 0.0023 0.0016 0.0015 0.00042 -0.00051 0.0016 

(0.00098) (0.0018) (0.00062) (0.0011) (0.0013) (0.0015) (0.0012) (0.00051) (0.00052) (0.0011) 

  Behavior 
0.0019 0.0032 0.00070 0.0021 0.0035 0.0030 0.0030 0.00078 0.00088 0.0041 

(0.0018) (0.0022) (0.00094) (0.0024) (0.0034) 0.018 0.0020 0.000091 0.0015 0.0037 

  Social 

  Circle 

0.0040 0.0037 0.0011 0.0034 0.0047 0.0036 0.0043 0.0013 0.0013 0.0050 

(0.0029) (0.0025) (0.00074) (0.0029) (0.0035) (0.0030) (0.0026) (0.0011) (0.00091) (0.0054) 
**: p<0.01; *: p<0.05; †: p<0.10 

 
We also observed a significant effect of indirect peer influence, which suggests that the adoption of 

CRBT is also impacted by two-hop neighbors. For the indirect influence model, a caller evaluates the 

behavior of two-hop neighbors who are in the same position of a phone call network as she is (Figure 3).  

Being in the same position in a social network means that people are in similar relationships with the same 

group of people. Interestingly, the effect size of indirect influence varies with the size of the 

subpopulation. When the subpopulations consist of about 200 individuals, the effect of indirect influence is 

significant but negative, meaning that individuals with more CRBT adopters who have the same social 

position as they have in the network (two-hop neighbors) are less likely to adopt CRBT. This finding 

rejects H2, and while it seems surprising at first glance, it is actually quite reasonable. One explanation is 

that when adopting CRBT, people not only want to be fashionable, but they also want to reflect their 

individuality. In a smaller group, people weigh individuality higher than being fashionable or making 
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similar decisions. If two-hop friends adopt CRBT, the focal individual does not want to do the same thing 

but rather to show her individuality by having a different adoption decision (not to adopt). When the 

subpopulations are larger (about 500), however, indirect peer influence is significant and positive, thus 

supporting H2. Considering the centrality of bridge nodes connecting indirect neighbors may account for 

such difference, we empirically tested the difference between the centralities of bridge nodes in smaller 

and larger networks respectively, and there is no significant difference. Taking both results above about 

smaller networks (n≈200) and larger networks (n≈500), we observe a positive association between indirect 

peer influence and network size, confirming H3b. One explanation is that in a phone social network, 

people who call each other are likely to be acquaintances by belonging to same social group (under some 

indirect relationships). The enthusiasm of demonstrating to others her adoption of a fashionable product is 

high, and the satisfaction of letting friends appreciate one’s fashion statement is thus also high. Motivated 

by this thought, the individual knows that her two-hop neighbors whom she does not necessary call have 

adopted CRBT through common friends they both call, and she is likely to imitate the indirect neighbor. 

The more ring tones those neighbors bought, the more CRBT the focal person is also likely to buy. In fact, 

individuals in larger networks can still reflect their individuality even when making the same adoption 

decision by purchasing CRBT of a different genre. To test this explanation, we empirically examined the 

genres of CRBT purchases due to indirect peer influence. Controlling for all observables in our dataset, in 

larger networks, the majority of adopters (80% on average) under indirect peer influence purchase CRBT 

of a different genre than those of their indirect neighbors. This ratio is only about 50% in smaller networks. 

This shows that if her indirect neighbors adopt CRBT, the focal node wants to be different and thus not 

adopt. Since the results imply that network size may be correlated with subpopulation size, a meta-analysis 

that integrates the estimated parameters for direct and indirect peer influence based on subpopulation size 

was performed. Specifically, the coefficient of direct influence has a higher significance level and size than 

that of indirect influence, implying that direct peer influence is more influential than indirect influence on 

CRBT adoption. Peer influence has a significant effect on a caller's decision to adopt CRBT — adoption is 

mostly shaped by adopters who are one-hop neighbors. When group size is large, people tend to imitate 

indirect neighbors. When group size is small, however, people tend to differentiate themselves from others.  
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We do not observe a significant effect of homophily from either direct or indirect friends — 3 and 4 

are both insignificant across all networks. Such results imply that CRBT purchase is only affected by peer 

influence, but not homophily. The results are also consistent with some empirical studies in the literature. 

For example, Ma et al. (2015) showed that homophily does not affect individuals’ purchase timing decision 

(when to buy); instead, it only affects product choice (what to buy). Since we treat all CRBT purchases as a 

binary decision and we do not consider product type, homophily not affecting the decision is expected.  

We then broke down our subpopulations to two groups based on size. One group of subpopulations is at 

n≈200, while the other group is at n≈500. Through the comparison of the two pooled mean effects, we can 

determine whether the role of direct and indirect peer influence varies with network size (H3a and H3b). 

The meta-analysis of the effect of direct peer influence in networks of n≈200 is shown in Table 6. The 

weights in the meta-analysis is determined by inverse variance. 

Table 6: Meta-analysis for direct influence (cohesion), smaller subpopulations group (n≈200) pooled 
  95% C.I.  

Subpopulation Direct Influence Lower Upper Weight 
1 0.070 0.026 0.11 1.1 
2 0.060 0.026 0.14 0.15 

3 0.065 0.0034 0.13 0.52 

4 0.056 0.010 0.10 0.66 
5 0.061 0.037 0.085 2.6 

Summary effect=0.063, 95% C.I.=(0.027, 0.099) 

 

In smaller networks (n≈200), direct peer influence has a pooled mean of 0.063, with a 95% confidence 

interval (0.027, 0.099). Larger networks (n≈500) have a pooled mean of 0.014, with a confidence interval 

(0.0069, 0.027). The results show that direct peer influence is stronger in smaller subpopulations (n≈200). 

The results of the meta-analysis confirm Hypothesis 3a that in smaller groups, individuals have stronger 

direct influence on each other than indirect influence. 

Table 7: Meta-analysis for direct influence, larger subpopulation group (n≈500) pooled 
  95% C.I.  
Subpopulation Direct Influence Lower Upper Weight 

6 0.016 0.0063 0.026 0.81 
7 0.013 0.0030 0.023 0.91 
8 0.014 0.0048 0.023 1.0 
9 0.016 0.0033 0.028 1.1 

10 0.014 0.0090 0.019 1.2 

Summary effect=0.014, 95% C.I.=(0.0069, 0.027) 
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For the five networks at n≈200, the summarized indirect influence is statistically significant with a size 

of –0.0067 and a 95% confidence interval (–0.011, –0.0025) (Table 8). This result confirms that for small 

sizes (n≈200), individuals tend to make different decisions from their two-hop neighbors in the network. 

Table 8: Meta-analysis for indirect influence, smaller subpopulations group (n≈200) pooled 
  95% C.I.  
Subpopulation Indirect Influence Lower Upper Weight 
1 –0.0059 –0.0096 –0.0022 1.0 
2 –0.0098 –0.014 –0.0059 0.82 
3 –0.010 –0.017 –0.0034 0.90 
4 –0.0079 –0.014 –0.0017 1.1 
5 –0.0015 –0.0026 –0.00043 1.2 

Summary effect=–0.0067, 95% C.I.=(–0.011, –0.0025) 

 
 

Table 9: Meta-analysis for indirect influence, larger subpopulations group (n≈500) pooled 

  95% C.I.  
Subpopulation Indirect Influence Lower Upper Weight 
6 0.0066 0.0043 0.0089 0.63 
7 0.0098 0.0028 0.017 1.1 
8 0.0010 0.0004 0.0016 1.1 
9 0.034 0.019 0.049 0.97 
10 0.0049 0.0032 0.0066 1.2 

Summary effect=0.0092, 95% C.I.=(0.0048, 0.014) 
 

When the network size is n≈500, the summarized indirect influence effect is statistically significant at 

0.0092, with a confidence interval (–0.011, –0.0025) (Table 9). The positive effect size suggests that in 

larger networks (n≈500), individuals tend to imitate their two-hop neighbors. Combining the results of 

Tables 7 and 8, we conclude that H3b is supported. Notably, the direction of indirect influence is different 

when the network size is different. This is a surprising new finding. This result can only be derived using 

subpopulations of different sizes and a model that supports multiple network autocorrelation terms.8   

5.2 Robustness Checks 

5.2.1 Propensity Score Matching 

To further infer causality between the peer influences and CRBT purchase, we employed DID matching 

strategies to explore the robustness of our hierarchical Bayesian model’s estimation. The DID matching 

                                                      

8 We should point out that the change from indirect to direct neighbor is trivial. First, the average proportion of the 
addition or the removal of a friend relationship from one-time period to the next is less than 5%. Second, once an 
indirect neighbor becomes a direct neighbor, she is considered as one who poses a direct influence to the focal node, 
and she is thus no longer considered as an indirect peer influence. 
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estimator compares the change of the purchase decision of individuals from the first time period to the last 

time period (12 weeks) by controlling for both direct and indirect peer influence. For each network size 

group, we constructed one control group and two treatment groups out of the population data (Table 10). The 

control group consists of individuals that are isolated from the phone call social network (represented as a 

Type 1 position in Table 10) from the first until the last time period, meaning that individuals in the control 

group are not affected by peer influence. The first treatment group consists of individuals who are isolated 

from the phone call network in the first time period but become a leaf node by the end of the last time period, 

connecting to exactly one individual from the network (represented as a Type 2 position). Individuals in the 

first treatment group are only affected by direct peer influence from their one and only neighbor who is a 

buyer. The second treatment group consists of individuals who are isolated from the phone call network in 

the first period but are connected in a triad with only one direct neighbor and one indirect neighbor 

(represented as a Type 3 position). Individuals in the second treatment group are affected by both direct and 

indirect peer influences. We focus on the network position types as the event of interest. Following the 

position type change, the purchase decisions of individuals in the two treatment groups are compared with 

those of matching individuals in the control group. The impact of direct influence is inferred by comparing 

the difference between the purchase probability change in the first treatment group and the control group. 

Besides, individuals in the second treatment group are under a similar amount of direct influence as 

individuals in the first treatment group, because individuals in both groups have the same number of direct 

neighbors (one and only one). Given that the direct influence is controlled, the impact of indirect influence 

can be examined by comparing the difference of the purchase probability changes in the two treatment 

groups. The matching parameters include attributes representing homophily, such as age, gender, call 

duration, etc. Also, degree centrality is added in the matching variables in order to control for the peer 

influence of non-adopters. We employed Propensity Score Matching (PSM) (Leuven and Sianesi, 2003) for 

average treatment effects estimation. Finally, PSM is run each on each smaller and larger network size group 

respectively. The results are shown in Tables 10 and 11. 

Table 10. Network position type change of control and treatment groups over time 

 Size First time period (week 1) Last time period (week 12) 

Control group 2,000 Type 1    Type 1       
Treatment 1 2,000 Type 1    Type 2      

Treatment 2 2,000 Type 1    Type 3      
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Table 11. Average treatment effect of Peer Influences on purchase of individuals in control and 

treatment groups over time 
 PSM 

Smaller (n≈200) Larger (n≈500) 

Treatment 1 vs. Control 0.31** (0.14) 0.23** (0.10) 
Treatment 2 vs. Control 0.27** (0.11) 0.28** (0.13) 
Treatment 2 vs. Treatment 1 –0.070* (0.027) 0.061* (0.023) 

Note. Data above demonstrate the mean and standard deviation (in parentheses) of average treatment effects.  
**: p < 0.01. *: p < 0.05. 

 

As we expected, the DID matching results indicate that the peer influences will significantly affect the 

CRBT purchase decision in both network size groups. In a smaller network size group (n≈200), when an 

individual is only affected by direct peer influence, she is 31% more likely to purchase CRBT (p<0.01) than 

the matched player from the control group. When affected by both direct and indirect peer influences, an 

individual is 27% more likely to purchase CRBT (p<0.01) than the matched sample from the control group. 

Such an increase is 7% less likely (p<0.05) than for individuals in the direct influence only group. In a 

larger network size group (n≈500), when an individual is only affected by direct peer influence, she is 23% 

more likely to purchase CRBT (p<0.01) than the control group. When affected by both direct and indirect 

peer influences, she is 28% more likely to purchase CRBT (p<0.01). Such an increase is 6.1% more likely 

(p<0.05) than for individuals in the direct influence only group. The PSM estimators confirm our finding 

that in a smaller network group, direct peer influence leads to a higher chance of CRBT purchase, while 

indirect influence has a cancellation effect — less of a chance among individuals. Meanwhile, in a larger 

network group, both direct and indirect influence leads to more CRBT purchases, and indirect influence has 

a reinforcement effect with regard to direct influence. All results confirm what we find in the main analysis. 

5.2.2 Goodness of Fit Test 

A significant network autocorrelation term does not necessary mean a model with two terms is better. 

We used the Deviance Information Criterion (DIC) to measure our model’s goodness-of-fit. It is similar to 

the Akaike information criterion (AIC) and Bayesian information criterion (BIC) model selection criteria, 

and we calculated from the likelihood of samples generated from Markov Chain Monte Carlo (MCMC) 

draws. The definition of DIC is shown below. Models with the lowest DIC value represent the best model. 

Where: 
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Figure 5: Deviance Information Criterion (DIC) of Four Competing Models 

 

)(2 DDDIC −=  

As shown in Figure 5, when we have both peer influence terms (direct and indirect), the model is better. 

The model containing a term representing only direct peer influence is better that one with only indirect 

peer influence. The best model, the one with the lowest DIC, is one that includes both the direct and indirect 

influences simultaneously. Thus, we should include both network terms in our models. The goodness-of-fit 

test confirmed that CRBT adoption is influenced by both direct peer influence and indirect peer influence. 

5.2.3 Additional Robustness Checks 

To confirm the robustness of peer influence on CRBT adoption, we also took the temporal information of 

both network connection (phone call conversation) and purchase decision into consideration. Since the entries 

of the two network terms W1 and W2 are defined by connections aggregated over the three-month period, we 

wanted to confirm whether the connections among users created in the earlier period still have the same 

pattern of (direct and indirect) influences on CRBT purchase in the latter period. Consider the model 

represented by the matrix form equations below: 

uHWHWθWθWθ
εηθβXz

z1y

++++=
+++

=

     

=

)0(

2121 
  

The model is the same as that in Section 4, but with different values for the component terms. y' is the 

vector representing observed CRBT purchases of all users in the second half of the three-month period; z' is 

the vector representing all people’s latent preference in the same time period, resulting from an indicator 

function of value being larger than zero; X' is the matrix representing all the users’ attributes in the same 

time period y'; people’s interdependent component of preference, θ , can be represented as the sum of the 
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autocorrelation terms HWHWθWθW ++++
44332211  . The 𝐖1"and 𝐖2" terms are derived from the 

network connections created in the first half of three-month period. Homophily matrix H' is also defined 

using the attributes in the second half of the three-month period. If the estimates are consistent with those in 

Table 5, then we can confirm the robustness of our results. The estimated results are shown in Table 12.  

Table 12: Robustness check of analysis using mNAP model, direct vs indirect influence  

(CRBT purchase from second half of 3-month period, network from first half of 3-month period) 

 Subpopulations 

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Degree  0.013** 0.036** 0.031** 0.0045 0.068** 0.038 0.046** 0.020 0.040** 0.027** 

Centrality (0.0096) (0.011) (0.011) (0.020) (0.017) (0.024) (0.021) (0.033) (0.0043) (0.0075) 

Direct 0.074** 0.063** 0.060* 0.059* 0.056** 0.050* 0.045** 0.045** 0.052* 0.040** 

Influence (0.023) (0.021) (0.026) (0.027) (0.020) (0.022) (0.013) (0.016) (0.023) (0.015) 

Indirect –0.0061* –0.010* –0.0090* –0.0090* –0.0017† 0.0064* 0.011* 0.0011* 0.033** 0.0046* 

Influence (0.0030) (0.0040) (0.0040) (0.0043) (0.00089) (0.0031) (0.0048) (0.00058) (0.013) (0.0023) 

Direct 0.0037 0.0037 0.0011 0.0018 0.0012 0.042 0.0016 0.0017 0.00078 0.0042 

Homophily (0.0036) (0.0038) (0.0033) (0.0025) (0.0041) (0.071) (0.0020) (0.0021) (0.0037) (0.087) 

Indirect 0.00026 0.00035 9.6×10−5 0.00012 0.00011 0.0029 0.00015 0.00014 6.8×10−5 0.00029 

Homophily (0.0036) (0.0028) (0.00031) (0.00018) (0.00031) (0.0056) (0.00018) (0.00021) (0.00027) (0.0067) 

**: p<0.01; *: p<0.05; †: p<0.10 

All results are very similar to those in Table 5 using aggregated CRBT purchases and network structure. 

The robustness of the model is thus further supported.  

We then recoded y' as the vector representing observed CRBT purchase decisions of all individuals in 

the second and third months of the three-month period, and we derived the 𝐖1" and 𝐖2" terms from the 

network connection created in the first month. The definition of the rest of the model is the same as in the 

paragraph above. The estimation results are presented in Table C1 (Online Supplementary Appendix C). 

Those results are still consistent with the results shown in Table 12. 

We also changed the window width to redefine y',𝐖1" and 𝐖2"  terms. Using the CRBT purchase 

decisions of all users in the third month to define y' and deriving the 𝐖1" and 𝐖2" terms from the network 

connection created in the first and second months, the rest of the model keeps the same structure as the 

previous two robustness checks. The estimation results are presented in Table C2 (Online Supplementary 

Appendix C). The results are once again consistent with those in both Table 12 and Table C1. 

To confirm whether peer influence has the same pattern of impact on the number of CRBT purchases as 

a binary purchase decision, we also ran the same data set on a model supporting a continuous type response 
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variable. The model is an extension of Doreian’s two regimes of network effects autocorrelation model 

(1989) with an additional third network term. The model is defined using the matrix notation shown below: 

εHWHWyWyWXβy +++++=  2121   

y is the vector of the observed number of CRBT purchases for all callers included in the data. Both X 

and β are the same as those in the model defined in Section 4. Both network terms W1 and W2 are the same 

as those defined in Section 4. H still represents a matrix measuring homophily. Entries of these three 

matrices were also derived from connections created over the three-month period. The auto-correlated 

response variable y is also on the right-hand side. The product term Wiy represents the aggregated number 

of CRBT purchases from all neighbors in network i for each of the focal users. ρi, i={1,2} is the 

corresponding coefficient for term Wiy. The product term WiH, i={3,4} represents the aggregated impact of 

homophily from all neighbors in network i for each of the focal users. ρi, i={3,4} represents the 

corresponding coefficients. ε is the random error term. Estimation results are shown in Table C3 in Online 

Supplementary Appendix C, and they have the same pattern as all the previous models. This again confirms 

the robustness of our results. 

Similar to the tests performed for binary CRBT purchase outcomes, we took the temporal information of 

both the network connection and purchase time into consideration, and we redefined the model as follows: 

εHWHWyWyWβXy +++++=  2121   

y' is the vector representing the observed number of CRBT purchases by all individuals in the second 

half of the three-month period; X' is the matrix representing all the individuals’ attributes in the same time 

period as y'; H' is the matrix representing homophily dimensions in the same time period; the 𝐖1" and 𝐖2" 
terms representing network structures are derived from the conversation relationships that occurred in the 

first half of three-month period. Results are shown in the Table C4 (Online Supplementary Appendix C), 

and they have a similar pattern as the results in Table 12. 

We then used the number of all users’ CRBT purchases in the second and third months to define y', the 

attributes accounting for homophily in the same time period to define H', and the network connection created 

in the first month of three-month period to define the 𝐖1" and 𝐖2" terms. The rest of the model kept the same 

structure as the previous two robustness tests. The estimation results are presented in Table C5 (Online 

Supplementary Appendix C). The results are consistent with Tables 12 and 13. The test of using the number 
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of CRBT purchases of all users in the third month as y', and the network connection created in the first two 

months of 3-month period to define the 𝐖1" and 𝐖2" terms is also done. The estimation results are shown in 

Table C6 (Online Supplementary Appendix C), and they are also consistent with the results in Tables C3, C4, 

and C5. All robustness checks show that the results with regard to direct and indirect peer influence, along 

with centrality and homophily, are robust. Taken together, CRBT adoption is affected by all three types of 

peer influence (direct, indirect, and centrality), but not homophily, extending the work of Aral et al. (2009). 

These results imply that for a decision that is mainly affected by peer influence, such as the case of CRBT, 

the effect of homophily could be less influential than direct and indirect peer influence and centrality.   

6. Discussion 

6.1 Key Findings 

Using the subpopulations extracted, we analyzed the effects of direct and indirect peer influence on the 

adoption of CRBT using an extended mNAP model with new implementation to support the complexity of 

large-scale social networks. Our study is one of very few to investigate several peer influences on technology 

diffusion as a binary variable in social networks. Our results show that the adoption of CRBT is consistently 

predicted by direct peer influence. When the size of a subpopulation is small, (about 200), CRBT adoption is 

negatively affected by indirect peer influence (structural equivalence); when the size of a subpopulation is 

large (about 500), adoption is positively affected by indirect peer influence. Between these two network 

effects, direct peer influence has a statistically significant larger coefficient size than indirect peer influence. 

Such a result is obtained when other peer influences—centrality and homophily—are controlled for, so its 

robustness is assured. Based on these results, businesses should use different strategies for networks of 

different sizes. If businesses want to trigger higher adoption rates, then for smaller groups, they only need to 

focus on individuals with many direct connections, while for larger groups, they should not only focus on 

individuals who are popular, but also those who have many common one-hop friends with two-hop friends.  

6.2 Contributions and Implications for Theory and Methodology 

The first and foremost implication of our research is the reconciliation of a classic yet inconclusive 

theoretical problem: identifying which peer influence affects technology diffusion. The long-held debate 

about the relative impact of two popular network models—cohesion (direct influence) versus structural 

equivalence (indirect influence)—on technology diffusion in social networks still persists. The literature has 
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assumed that only a single peer influence affects diffusion: some researchers still believe that only direct 

peer influence triggers technology diffusion, while others believe that indirect peer influence from two-hop 

neighbors matters more, and both camps have found empirical support for their theoretical claims (e.g. 

Coleman 1962, Burt 1987, Leenders 1992, Van den Bulte, and Lilien 2001). One gap in the literature is that 

other than Coleman's classical Medical Innovation data, few new data sets have been used to address this 

important question. Reconciling these findings is very important, because a social network is a key medium 

of technology diffusion, and figuring out which social network effect drives this diffusion can help us 

decide what targeting strategies to use to encourage it.  

By using a new statistical model, the proposed enhanced mNAP that supports panel data, we are able 

not only to show which peer influence is more influential, but also to capture when both peer influences are 

significant, even in opposite directions (different signs). Controlling for homophily using exogenous 

personal attributes and centrality as a covariate assures the robustness of our results. Without our new 

implementation of the mNAP model, which supports three network autocorrelation terms and other 

covariates (for centrality and homophily to be controlled for), such results could not be properly identified. 

Our analyses, using multiple network sizes, provide new insights into technology diffusion since the size of 

peer influence and its direction are associated with network size. Extraction of multiple subpopulations 

demonstrates that in a large-scale social network, subnetworks with high internal density may not be large, 

and the variations of group size may not be large. In our cellular phone caller-callee (CRBT) network, 

network size only comes in two levels—about 200 and 500. This finding implies that densely-connected 

subnetworks as subpopulations when analyzing large social networks can be a feasible and valid strategy. 

Our study is a modest step toward tackling large-scale social network data with multiple network terms. 

With the emergence of social media and social communities, increasingly more social network datasets are 

large-scale, and many types of relationships and patterns can be observed in network data. Our models 

should thus enable researchers to solve a variety of problems in such large-scale network data.  

In the context of social networks with millions or even billions of nodes, there is high heterogeneity 

among different subnetworks. Such data may be intractable because of size. To resolve these problems, we 

constructed a model to make large network data be less heterogeneous and tractable, and we extended a 

recent statistical model to estimate the two types of peer influence. We also used an innovative algorithm, 
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T-CLAP, to extract subpopulations from the population network. This method not only concentrates the 

analysis on individual networks that are relatively self-contained, but it also preserves the properties and 

structure of the network. Also, an analysis of influence maximization in online settings should consider the 

clusters of peer influence and the sub-networks within which individual content creators are embedded. 

Focusing on an individual content creator might overstate or understate the effect of peer influence.  

Our study offers guidance on using sub-network extraction strategy to social media analytics in networks. 

Since we examined technology diffusion through social network connections (caller-callee relationships), our 

study implies that it is necessary to consider the degree of interaction across individuals to analyze technology 

diffusion in a group of networked individuals. The methodological issues involved in identifying individuals' 

probability for technology adoption could also apply to other settings beyond phone networks. Since many 

social media phenomena are of much interest to practitioners, such as app adoption on iTunes and Facebook 

(Aral and Walker, 2012) and content consumption on YouTube (Susarla et al., 2012), all large networks, this 

method could find broader applications. Our ability to identify endogenous peer influences on individual 

behavior while controlling for homophily can be generalized to other studies of social influence in networks.   

Peer influence could be widely applied to many IS phenomena, such as adoption of apps in online 

social media networks, content creation on social media platforms, and software adoption in a network. 

On social network sites, people are able to observe the apps adopted by their direct friends; at the same 

time, they read about the apps adopted by indirect friends through their direct friends. Indirect influence 

may be even stronger than direct influence, because an individual may want to impress her friends and 

make them write posts about her. Indirect peer influence may play an important role in software adoption, 

since a user can adopt software due to indirect peer influence, even if her direct friends did not adopt the 

software. Given that many products, such as mobile apps, music, and videos, are on networked platforms, 

our results can be extended to other IS phenomena, such as apps and software adoption. Our framework 

for processing and analyzing network data enables us to generalize to other social networks. With access 

to social media data from social networks, many IS researchers have large-scale network data, although 

there are still no straightforward approaches for analyzing large-scale network data.  
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6.3 Contributions and Implications for Practice 

The key to the growth of CRBT adoption on cellular phone platforms is to target existing adopters in 

social groups and let them use peer influence to affect neighbors in a social network and simultaneously 

promote the product to individuals who have similar personal attributes as the adopters. The penetration rate 

of CRBT in Asia, Europe, and Africa indicates there is still space for CRBT market growth. In 2011, 

Verizon added CRBT to its Music V CAST with the purpose of making CRBT adoption more convenient 

and potentially encouraging CRBT adoption. However, our results show that CRBT adoption is not 

significantly associated with cellular phone users’ similarity in personal attributes (homophily in terms of 

demographics, behavior, social circle, and location), but rather with direct and indirect peer influence. This is 

consistent with existing empirical studies, such as Ma et al. (2015)—homophily does not affect individuals’ 

purchase decision timing (when to buy); instead, it only affects product choice decisions (what to buy). We 

treat all purchases of CRBT as a binary decision, and we do not consider product type; thus, our results are 

still consistent with those of Ma et al. (2015) Cellular phone service providers should thus invest their 

marketing efforts into leveraging adopters to affect their non-adopter neighbors, both direct and indirect. 

Our results show that networks of different sizes have different indirect influence directions and signs. 

Indirect influence is positive and significant in larger networks (n≈500), but negative and significant in 

smaller networks (n≈200). Thus, service providers should design different target marketing schemes for 

larger versus smaller networks. For smaller networks, service providers should target adopters with many 

direct neighbors who can affect their one-hop neighbors through direct ties. Service providers should also 

avoid adopters with many indirect (two-hop) friends, because these friends are not likely to follow what 

their indirect adopter friends do. For larger social networks, service providers should target adopters with 

many direct and indirect friends, because adopters could affect both types of friends through direct and 

indirect ties, and both types of peer influence will increase their friends’ probability of adoption.  

6.4 Limitations and Suggestions for Future Research 

There are some limitations to our research that must be addressed. First, we treat social network terms, 

direct influence, indirect influence, and homophily, as fixed effects, as a model containing these terms as 

random effects has not been implemented yet. Future research can develop a new model that takes network 
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.30000/* autocorrelation terms as random effects. Second, our data does not contain many personal 

attributes of the cellular phone subscribers other than age and gender. Based on the empirical results using 

age and gender, there is no strong evidence that indicates that the network connections are associated with 

these attributes.  Still, it is possible that the creation of network connections is affected by other personal 

attributes. Third, other possible shocks on CRBT adoption, e.g. a marketing campaign, are not included in 

our data. Fourth, although we explicitly controlled for measures of homophily in our model to empirically 

show that with several dimensions controlled for, the effect of homophily is not empirically significant, 

there is still a possibility that some unobserved variables that are correlated with homophily are not captured 

in our data. Fifth, membership in smaller and larger groups is possibly endogenous. Individuals in smaller 

groups, on average, are different in attributes that are not included in our data set, from those who are in 

larger groups. Thus, they behave differently with respect to differentiating themselves with respect to 

indirect neighbors. 

Future research could also explore the effect of weak ties (asymmetric phone calls). Current research has 

not explored whether peer influence among individuals connected by weak ties exists. An empirical study on 

whether weak ties affect diffusion can help businesses determine whether asymmetric relationships need to be 

considered when designing a conversion strategy, as well as its associated cost. For example, if peer influence 

size among individuals connected by weak ties is not much less than that among individuals with strong ties, 

and more people are connected with weak ties, then the marketing scheme should still target individuals 

connected with weak ties, because potentially more people could become adopters. We can also explore the 

case where individuals' latent preferences, as well as these individuals’ observed decisions, are affected by 

their peers. Existing network autocorrelation models only consider situations where peer influence works as 

an interdependent latent preference, regardless of observing neighbors’ decisions, or imitates the neighbor’s 

decision only when the decision is observed. If peer influence only happens when individuals observe what 

their neighbors do, businesses should make their marketing targets know that their neighbors have adopted the 

focal technology or product. To infer the causality inference between (direct and indirect) peer influence and 

CRBT adoption, one should take both the time of network connection creation and the time of adoption into 

consideration. If adoption happens after a new relationship is created between an adopter and a non-adopter, 

the causality of peer influence on CRBT adoption can be strengthened further.  
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More in-depth investigation of the direction of indirect influence in different sizes of networks is needed. 

We empirically found the opposite direction of indirect influence in smaller and larger networks, respectively. 

Our initial results suggest that individuals have different ways of demonstrating their personality in different 

sizes of networks. In smaller networks, personality is associated with different purchase decisions. However, 

in larger networks, personality is associated with the genre of CRBT. Future research could include additional 

subnetworks of different sizes to study whether the pattern of individuality in indirect influence is persistent. 

Considering that network size may be associated with individual attributes, future research could also include 

more attributes in the aforementioned networks. 

Finally, our meta-analyses of multiple subpopulations return a single value for the population moments 

parameters. The assumption is that all subpopulations are homogenous, and their parameters are the same as 

the population parameter. However, in the focal context of social networks, when a network gets larger 

(especially >1 million), it is very likely that subnetworks are heterogeneous and can be classified in multiple 

groups. In this case, one single number cannot represent the parameter of all subnetwork groups. Specifically, 

a distribution of a hyper-parameter for the population would be a better solution. Accordingly, future research 

could design a new sophisticated Bayesian model to estimate the distribution of population parameters. 

7. Conclusion 

Technology diffusion has long been recognized as a very important challenge for IS research. In a very 

well-connected world, through cellular phones, social media, and other information technologies, people are 

influenced by peers when making decision. Two key types of peer influence were identified in the literature 

and are believed to shape adoption decisions: direct influence and indirect influence. Direct influence comes 

from focal individuals’ one-hop neighbors, i.e., when an individual has many one-hop neighbors who are 

adopters, she is likely to adopt. Indirect peer influence comes from an individual’s two-hop neighbors who 

share common one-hop neighbors. It is believed that the more common friends two individuals share, the 

more similar social positions these two individuals have and therefore make similar adoption decisions. 

Thus, peer influence can be considered as coming from two-hop neighbors, i.e. when an individual has 

many two-hop neighbors with whom the focal friend shares common friends who are adopters, she is likely 

to adopt. Both direct and indirect peer influence can explain the phenomenon that people who are embedded 
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in social networks tend to make similar decisions. However, the debate about which type of peer influence 

dominates has not been settled in the literature, because these two types of peer influence lead to different 

conversion schemes. If direct peer influence is the driver of adoption decisions, then businesses should 

target adopters with many one-hop neighbors, because adopters can affect their immediate neighbors to also 

adopt. But if indirect peer influence is the driver, then businesses should target adopters who share the same 

group of common one-hop friends with many two-hop friends, because the adoption decision will happen 

through the two-hop relationship. Comparing these two types of peer influence is challenging, especially in 

large-scale social networks. First, such study requires a binary choice network autocorrelation model that 

supports multiple types of peer influence. Second, since both social influences and homophily could be the 

reason for technology adoption, a model that supports three network terms—direct influence, indirect 

influence, and homophily respectively—with homophily as a control variable is required. However, such a 

model has neither been implemented nor it has been empirically tested in the literature.  

Moreover, the size of the social network presents computation and heterogeneity challenges. To address 

these practical challenges, using a large-scale social network dataset from cellular phone call conversations, 

we examined the role of direct and indirect peer influence in CRBT adoption, while controlling for network 

centrality and homophily. Our analysis is built on a framework that allows us to process large-scale network 

data and that contains a process to extract multiple small network subpopulations and a meta-analysis for 

summarizing the results from multiple tests. Our study thus contributes to the literature by providing 

empirical evidence to settle the long-held debate in the literature about which type of peer influence is the 

main driver of technology diffusion.  

The proposed framework in this study also makes contributions to methodology, because we 

implemented the first hierarchical Bayesian model to accommodate three network autocorrelation terms 

(accounting for direct and indirect peer influence), while including homophily as a control (network) term. 

We find that in real-life, cellular phone conversation networks, people tend to form groups of only two sizes 

— a smaller size with about 200 people and a larger size with about 500 people. We further find that both 

direct and indirect peer influences have a strong effect on CRBT adoption in both small and large networks. 

Although the pattern of direct peer influence is consistent in both groups, the pattern of indirect influence is 
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not. People only make similar decisions to those of their two-hop neighbors when the group size is large 

(about 500). However, when the group is smaller, the pattern goes in the other direction — people do not 

make the same decision as their two-hop neighbors. Our explanation is that when the network is smaller, 

people show their individuality by making a different adoption decision (that is, not purchasing CRBT), 

while when the network is larger, people demonstrate their individuality by purchasing CRBT of a different 

music genre. If indirect neighbor purchases CRBT in one genre, for example rock, the focal individual also 

purchases CRBT, but the CRBT belongs to different music style, for example hip-hop. Our findings show 

that there are two different strategies of showing individuality in smaller and larger networks, respectively. 

Our study is one of the very few to examine both network peer influence terms on diffusion, especially 

in large social networks. The results are interesting — both direct and indirect influences affect diffusion — 

and notably in the opposite direction. The identification of peer influence is also empirically supported. The 

findings of our work can provide evidence for reconciling these two types of peer influence in large-scale 

networks. We have also controlled for homophily, although it is not significant in the adoption of CRBT. 

Our model thus provides a means to reconcile the role of both peer influences and homophily on adoption. 

Such reconciliation was considered a very difficult challenge previously due to methodological limitations. 

Given our methodological advances, future research could apply our model to other adoption phenomena in 

social networks to examine whether the patterns observed in this study are consistent with other contexts. 

Finally, the results of our study have direct implications for practitioners — they can advise managers 

on designing targeted strategies to encourage more people to adopt CRBT and other networked products. 

Specifically, businesses could design different strategies for smaller versus larger networks of consumers, 

thereby stressing the importance of network size in affecting product adoption and technology diffusion. 

For smaller networks, businesses should design marketing schemes targeting opinion leaders who can exert 

peer influence on many direct neighbors (but only on few indirect neighbors), whereas for larger networks, 

businesses should target opinion leaders who can exert peer influence to both direct and indirect neighbors.  
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Appendix A. Markov Chain Monte Carlo Estimation of the Proposed Model 
 

The prior distribution of all the parameters to be estimated in our model is shown in Table A1 below. 
 

Table A1: Prior Distribution of Parameters 

Parameter Prior Distribution 
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The Markov chain Monte Carlo method generates a chain of draws from the conditional posterior 

distributions of parameters. Our solution consists of the following steps: 

Step 1. Generate z, which follows a truncated normal distribution as shown below: 
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If yit = 1, then zit ≥ 0; if yit = 0, then zit < 0. 

Step 2. Generate β, which follows a normal distribution with parameters νβ and Ωβ. 
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Step 3. Generate θ, which follows a normal distribution with parameters νθ and Ωθ. 

),(Normal~ θθ Ωνθ  

Where:  

( )ηθβXzΩν

WWB
BBΩ

−−−=

−−=







+=

−

ttt

nn II

θθ

θ ρρ
σ 2211

1

2
,

T

 

Step 4. Update η, which follows a normal distribution with parameters MΛ and M. 
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T is number of time period, K is the number of variables in Xt. 

Step 5. Generate σ2, which follows an inverse Gamma distribution with parameters a1 and b1. 
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n is the number of observations. 

Step 6. Generate ρ1 and ρ2 using the Metropolis-Hasting sampling: 
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where δi is the random increment following a Normal distribution: 
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Step 6. Generate ρ3 and ρ4 using the Metropolis-Hasting sampling: 
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where δi is the random increment following a Normal distribution: 
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The accepting probability a is shown below, where i=3.4, j=1,2, C1=W1H, C2=W2H 
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Appendix B. Illustration of the Identification Condition 

 
Consider a directed chain network consisting of four individuals, 1 through 4, at time point t, as 

shown in the Figure B1.  

 
Figure B1: An Example of a Directed Network of Four Individuals at Time t 

 

Each individual 𝑖𝑖 is assumed to be influenced by her left-hand neighbor i−1, except that individual 

1’s left hand neighbor is 4. The adjacency matrix of the network A takes the following specific 

form. Both W1,t and W2,t are defined the same way as on manuscript p. 17-18. Considering no two 

nodes share same neighbor in the directed network shown above, we convert the network to be 

undirected when defining W2,t. Note that the element 0.4 is the rounded value for 
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structural equivalence measure for any two indirectly connected nodes, as defined on p. 18. 
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Based on the specified Wi,t matrices, we have the following structural model about the core 

variable zit, the latent preference about creating new content, for each individual i in time t: 
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where xit is one single covariate of individual i at time t; θit is the interdependent latent preference 

for individual i at time t; ρ1 is the coefficient of direct peer influence; ρ2 is the coefficient of indirect 

peer influence; hi,t is one single measure of homophily of individual i at time t-1; ηi is the fixed 

effects for individual i.  

 

Define the difference of all variables between individuals at time t as: 
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where ∆𝜃𝜃𝑖𝑖(1)  represent change come from direct influence for i, ∆𝜃𝜃𝑖𝑖(2) is change from indirect 

influence, ∆ℎ𝑖𝑖(1) is change in effect of direct homophily, and ∆ℎ𝑖𝑖(2) is change in effect of indirect 

homophily. Starting from i = 1, the difference between the preference of individual i and the 

neighbor who influence her is given by: 
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Since the change in error term ∆uit and ∆εit, and change in covariates ∆xit are not correlated,  

0),,,|(E 4321 =∆∆∆∆∆ ttttit xxxxν , where ∆νit = ∆uit + ∆εit. 
 

Thus, given a focal individual i, e.g. i = 1, the change in covariate, starting from two hops away

),( 32 tt xx ∆∆ , can be used as instruments for the identification purpose. The moment restrictions for 

all four is also stand: 
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The group of equations above demonstrates internal conditions guaranteeing peer influences 

identification. Thus, when having a model for a network in which each node has a neighbor three 

hops away (network diameter ≥ 3), peer effects can be identified. The same identification 

procedure is used in our CRBT dataset, as the diameter of the CRBT friend networks in all time 

periods are larger than 3. 

 

Appendix C. Robustness Checks 
 

Table C1: Robustness check of analysis using mNAP model, direct vs indirect influence (CRBT purchase 

from 2nd and 3rd months of 3-month period, network from the first month of 3-month period) 

 Subpopulations 

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Degree 
0.014† 0.045** 0.039** 0.031† 0.067** 0.046* 0.038* 0.023** 0.050** 0.035** 

(0.0082) (0.010) (0.011) (0.016) (0.022) (0.018) (0.018) (0.0073) (0.00060) (0.0075) 

Direct 

Influence 

0.052** 0.066** 0.059** 0.070** 0.094** 0.016** 0.020** 0.016** 0.021** 0.014** 

(0.019) (0.022) (0.010) (0.022) (0.023) (0.0025) (0.0023) (0.0029) (0.0066) (0.0044) 

Indirect 

Influence 

-0.0048* -0.010** -0.010* -0.0058* -0.0025** 0.0079* 0.0014** 0.0013** 0.050** 0.0067* 

(0.0023) (0.0028) (0.0043) (0.0023) (0.00059) (0.0031) (0.00051) (0.00038) (0.015) (0.0030) 

Direct 

Homophily 
 

  Gender 0.38 -0.18 -0.031 0.29 0.19 -0.11 0.14 0.64 0.091 0.99 

(0.50) (0.36) (0.35) (0.53) (0.20) (0.33) (0.16) (0.44) (0.49) (0.91) 

  Age 
0.025 -0.023 0.045 0.026 0.025 0.008 0.068 0.034 0.071 -0.074 

(0.019) (0.017) (0.047) (0.024) (0.025) (0.020) (0.052) (0.030) (0.043) (0.067) 

  Location 
0.017 0.017 0.0045 0.017 0.022 0.016 0.022 0.0058 -0.0068 0.021 

(0.013) (0.018) (0.0063) (0.013) (0.017) (0.015) (0.017) (0.0048) (0.0052) (0.017) 

  Behavior 
0.027 0.044 0.0091 0.037 0.049 0.026 0.053 0.015 0.015 0.036 

(0.025) (0.037) (0.011) (0.021) (0.029) (0.018) (0.029) (0.0092) (0.016) (0.029) 

  Social 

  Circle 

0.059 0.046 0.013 0.052 0.063 0.043 0.066 0.018 -0.022 0.072 

(0.043) (0.039) (0.0077) (0.034) (0.040) (0.046) (0.041) (0.015) (0.017) (0.061) 

Indirect 

Homophily 
 

  Gender 
0.025 -0.016 -0.0029 0.019 0.021 -0.0080 0.014 0.052 0.0063 0.086 

(0.045) (0.25) (0.022) (0.052) (0.018) (0.030) (0.012) (0.0039) (0.032) (0.070) 

  Age 
0.0021 -0.0025 0.0044 0.0023 0.0020 0.0006 0.0050 0.0026 0.0055 -0.0066 

(0.0016) (0.0012) (0.0029) (0.0025) (0.0022) (0.0020) (0.0038) (0.0033) (0.0038) (0.0060) 

  Location 
0.0014 0.0016 0.0047 0.0012 0.0018 0.0015 0.0018 0.00055 -0.00062 0.0022 

(0.00088) (0.0018) (0.0042) (0.0011) (0.0013) (0.0015) (0.0011) (0.00051) (0.00052) (0.0015) 

  Behavior 
0.0018 0.0042 0.00072 0.0026 0.0042 0.0025 -0.0049 0.0011 0.0011 0.0033 

(0.0021) (0.0031) (0.00058) (0.0020) (0.0026) (0.0030) (0.0033) (0.00067) (0.0015) (0.0021) 

  Social 

  Circle 

0.0053 0.0039 0.0011 0.0048 0.0060 0.0034 0.0061 0.0012 -0.0017 0.0061 

(0.0042) (0.0035) (0.00069) (0.0029) (0.0039) (0.0044) (0.0038) (0.0015) (0.0012) (0.0045) 

**: p<0.01; *: p<0.05; †: p<0.10 



 

Table C2: Robustness check of analysis using mNAP model, direct vs indirect influence (CRBT 

purchase from the last month of 3-month period, network from the first two months of 3-month period) 

 Subpopulations 

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Degree 
0.014** 0.041** 0.036** 0.032* 0.071** 0.046* 0.050** 0.025* 0.040** 0.030** 
(0.0064) (0.0081) (0.012) (0.015) (0.020) (0.021) (0.013) (0.010) (0.013) (0.0083) 

Direct 

Influence 

0.061** 0.059** 0.078* 0.055† 0.063** 0.018** 0.016** 0.014** 0.018** 0.013** 

(0.016) (0.017) (0.031) (0.030) (0.015) (0.0051) (0.0058) (0.0033) (0.0048) (0.0036) 

Indirect 

Influence 

–0.0051* –0.012* –0.013** –0.0076* –0.0013* 0.0055* 0.0081** 0.00093† 0.040** 0.0056** 

(0.0022) (0.0040) (0.0045) (0.0030) (0.00064) (0.0026) (0.0030) (0.00054) (0.012) (0.0020) 

Direct 

Homophily 
 

  Gender 0.41 -0.18 -0.031 0.29 0.19 -0.11 0.14 0.64 0.091 0.99 

(0.49) (0.39) (0.037) (0.55) (0.18) (0.36) (0.16) (0.46) (0.052) (0.95) 

  Age 
0.027 -0.025 0.050 0.023 0.024 0.008 0.071 0.031 0.065 -0.065 

(0.019) (0.019) (0.048) (0.023) (0.022) (0.020) (0.056) (0.027) (0.045) (0.066) 

  Location 
0.015 0.019 0.0049 0.017 0.020 0.017 0.024 0.0059 -0.0061 0.021 

(0.014) (0.017) (0.0054) (0.012) (0.015) (0.017) (0.019) (0.0053) (0.0050) (0.019) 

  Behavior 
0.025 0.037 0.0090 0.041 0.032 0.040 -0.049 0.011 0.015 0.033 

(0.031) (0.039) (0.011) (0.028) (0.037) (0.026) (0.032) (0.0090) (0.012) (0.035) 

  Social 

  Circle 

0.052 0.063 0.015 0.049 0.065 0.052 0.079 0.018 -0.021 0.053 

(0.044) (0.057) (0.016) (0.033) (0.037) (0.057) (0.047) (0.018) (0.017) (0.065) 

Indirect 

Homophily 
 

  Gender 
0.026 -0.017 -0.0031 0.018 0.022 -0.0091 0.013 0.057 0.0074 0.091 

(0.043) (0.031) (0.033) (0.039) (0.017) (0.031) (0.011) (0.041) (0.0044) (0.080) 

  Age 
0.0025 -0.0017 0.0037 0.0018 0.0018 0.00078 0.0047 0.0024 0.0040 -0.0052 

(0.0018) (0.0016) (0.0033) (0.0016) (0.0013) (0.0017) (0.0048) (0.0017) (0.0033) (0.0045) 

  Location 
0.0013 0.0016 0.00046 0.0012 0.0015 0.0015 0.0021 0.00053 -0.00054 0.0021 

(0.0011) (0.0015) (0.00036) (0.00084) (0.0012) (0.0013) (0.0013 (0.00044) (0.00039) (0.0014) 

  Behavior 
0.0023 0.0031 0.00065 0.0028 0.0028 0.0039 0.0033 0.0008 -0.0010 0.0028 

(0.0028) (0.0027) (0.0011) (0.0022) (0.0030) (0.0020) (0.0026) (0.00070) (0.00093) (0.0025) 

  Social 

  Circle 

0.0049 0.0049 0.0015 0.0034 0.0045 0.0037 0.0060 0.0017 -0.0017 0.0044 

(0.0034) (0.0046) (0.0015) (0.0028) (0.0031) (0.0055) (0.0032) (0.0016) (0.0012) (0.0046) 

**: p<0.01; *: p<0.05; †: p<0.10 

 

 

Table C3: Robustness check of analysis using mNAP model, direct vs indirect influence 

(Continuous response variable, number of CRBT purchased in the 3-month period,  

network from 3-month period) 

 Subpopulations 

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Degree 
0.019† 0.030** 0.025** 0.028† 0.11** 0.053† 0.049* 0.032* 0.026** 0.020** 

(0.0099) (0.00099) (0.0065) (0.010) (0.013) (0.031) (0.023) (0.013) (0.00049) (0.0035) 

Direct 

Influence 

0.073** 0.061** 0.096** 0.084** 0.096** 0.087** 0.070** 0.047** 0.045** 0.063** 

(0.030) (0.013) (0.026) (0.024) (0.017) (0.016) (0.0016) (0.012) (0.011) (0.010) 

Indirect 

Influence 

-0.0055* -0.011** -0.013* -0.011** -0.0025** 0.011** 0.016** 0.00055** 0.023** 0.0061** 

(0.0026) (0.0035) (0.0062) (0.0046) (0.0011) (0.0028) (0.0046) (0.00021) (0.0074) (0.0015) 



Direct 

Homophily 
 

  Gender 0.40 -0.19 -0.032 0.26 0.18 -0.12 0.14 0.71 0.082 1.06 

(0.480) (0.42) (0.039) (0.57) (0.16) (0.39) (0.16) (0.48) (0.056) (0.99) 

  Age 
0.029 -0.028 0.057 0.017 0.022 0.008 0.076 0.031 0.053 -0.061 

(0.019) (0.021) (0.049) (0.022) (0.020) (0.020) (0.060) (0.025) (0.047) (0.065) 

  Location 
0.013 0.021 0.0053 0.017 0.018 0.018 0.027 0.0060 -0.0055 0.021 

(0.014) (0.019) (0.0055) (0.012) (0.013) (0.017) (0.020) (0.0048) (0.0052) (0.019) 

  Behavior 
0.022 0.041 0.0098 0.041 0.029 0.043 0.054 0.011 -0.013 0.033 

(0.031) (0.039) (0.011) (0.028) (0.037) (0.026) (0.032) (0.0090) (0.012) (0.035) 

  Social 

  Circle 

0.046 0.071 0.017 0.049 0.059 0.056 0.086 0.018 -0.019 0.053 

(0.044) (0.057) (0.016) (0.033) (0.037) (0.057) (0.047) (0.018) (0.017) (0.065) 

Indirect 

Homophily 
 

  Gender 
0.028 -0.015 -0.0029 0.020 0.021 -0.0091 0.013 0.053 0.0072 0.10 

(0.022) (0.033) (0.0034) (0.040) (0.015) (0.034) (0.011) (0.043) (0.0046) (0.083) 

  Age 
0.0027 -0.0019 0.0042 0.0014 0.0016 0.00078 0.0051 0.0024 0.0033 -0.0048 

(0.0013) (0.0018) (0.0034) (0.0016) (0.0014) (0.0017) (0.0052) (0.0016) (0.0034) (0.0045) 

  Location 
0.0011 0.0024 0.00050 0.0011 0.0015 0.0017 0.0019 0.00064 -0.00062 0.0023 

(0.0011) (0.0015) (0.000360 (0.00084) (0.0012) (0.0013) (0.0013) (0.00044) (0.00039) (0.0013) 

  Behavior 
0.0020 0.0034 0.00071 0.0028 0.0025 0.0042 0.0036 0.00083 -0.00094 0.0028 

(0.0028) (0.0027) (0.0011) (0.0022) (0.0030) (0.0030) (0.0026) (0.00070) (0.00093) (0.0025) 

  Social 

  Circle 

0.0043 0.0055 0.0016 0.0034 0.0041 0.0039 0.0066 0.0018 -0.0016 0.0044 

(0.0034) (0.0046) (0.0015) (0.0028) (0.0031) (0.0055) (0.0042) (0.0016) (0.0012) (0.0046) 

**: p<0.01; *: p<0.05; †: p<0.10 

 

 

Table C4: Robustness check of analysis using mNAP model, direct vs indirect influence 

(Continuous response variable, number of CRBT purchased from second half of 3-month period, 

network from first half of 3-month period) 

 Subpopulations 

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Degree 
0.021** 0.028** 0.031** 0.033** 0.10** 0.065* 0.060* 0.030* 0.033** 0.015** 

(0.0072) (0.00078) (0.0057) (0.011) (0.012) (0.031) (0.027) (0.015) (0.00037) (0.0043) 

Direct 

Influence 

0.11** 0.047** 0.081** 0.069** 0.096** 0.021** 0.015** 0.012** 0.011** 0.017** 

(0.010) (0.012) (0.021) (0.018) (0.015) (0.0032) (0.0018) (0.0032) (0.0038) (0.0028) 

Indirect 

Influence 

-0.0054** -0.042** -0.016** -0.013** -0.0030** 0.012** 0.020** 0.00070** 0.025** 0.0049** 

(0.0014) (0.0033) (0.0055) (0.0040) (0.00078) (0.0027) (0.0057) (0.00022) (0.0093) (0.0013) 

Direct 

Homophily 
 

  Gender 0.39 -0.20 -0.033 0.23 0.17 -0.13 0.14 0.79 0.074 1.13 

(0.47) (0.45) (0.041) (0.59) (0.15) (0.42) (0.16) (0.50) (0.060) (1.03) 

  Age 
0.031 -0.030 0.064 0.015 0.021 0.008 0.079 0.028 0.049 -0.054 

(0.024) (0.025) (0.048) (0.025) (0.019) (0.024) (0.071) (0.027) (0.051) (0.072) 

  Location 
0.011 0.023 0.0057 0.017 0.017 0.019 0.030 0.0061 -0.0050 0.021 

(0.015) (0.018) (0.0047) (0.011) (0.011) (0.019) (0.022) (0.0053) (0.0050) (0.021) 

  Behavior 
0.019 0.045 0.011 0.041 0.026 0.045 0.060 0.011 -0.012 0.033 

(0.033) (0.041) (0.010) (0.026) (0.028) (0.030) (0.038) (0.0090) (0.012) (0.040) 

  Social 

  Circle 

0.040 0.078 0.018 0.049 0.053 0.059 0.097 0.018 -0.017 0.053 

(0.047) (0.060) (0.014) (0.030) (0.028) (0.065) (0.055) (0.018) (0.017) (0.072) 



Indirect 

Homophily 
 

  Gender 
0.027 -0.016 -0.0030 0.018 0.020 -0.010 0.013 0.058 0.0065 0.11 

(0.041) (0.036) (0.0036) (0.042) (0.014) (0.036) (0.011) (0.045) (0.0050) (0.087) 

  Age 
0.0029 -0.0021 0.0047 0.0011 0.0016 0.00078 0.0053 0.0022 0.0030 -0.0043 

(0.0018) (0.0021) (0.0033) (0.0018) (0.0014) (0.0020) (0.0061) (0.0018) (0.0037) (0.0049) 

  Location 
0.0010 0.0027 0.00054 0.0011 0.0013 0.0018 0.0021 0.00065 -0.00056 0.0023 

(0.0011) (0.0016) (0.00031) (0.00078) (0.00088) (0.0015) (0.0015) (0.00044) (0.00039) (0.0014) 

  Behavior 
0.0018 0.0038 0.00076 0.0028 0.0023 0.0044 0.0040 0.00084 -0.00085 0.0028 

(0.0030) (0.0029) (0.0010) (0.0021) (0.0023) (0.0023) (0.0031) (0.00070) (0.00093) (0.0028) 

  Social 

  Circle 

0.0038 0.0060 0.0018 0.0034 0.0037 0.0041 0.0074 0.0018 -0.0014 0.0044 

(0.0036) (0.0049) (0.0013) (0.0026) (0.0024) (0.0062) (0.0038) (0.0016) (0.0012) (0.0051) 

**: p<0.01; *: p<0.05; †: p<0.10 

 

 

Table C5: Robustness check of analysis using mNAP model, direct vs indirect influence 

(Continuous response variable, number of CRBT purchased from the 2nd and 3rd months of 3-month 

period of 3-month period, network from the 1st month of 3-month period) 

 Subpopulations 

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Degree 
0.018* 0.026** 0.037** 0.022** 0.12** 0.029† 0.065** 0.031† 0.024** 0.018** 

(0.0089) (0.0011) (0.0053) (0.0051) (0.017) (0.017) (0.027) (0.018) (0.00056) (0.0049) 

Direct 

Influence 

0.070** 0.090** 0.079* 0.066** 0.10** 0.018** 0.017** 0.0099** 0.011** 0.017** 

(0.018) (0.010) (0.035) (0.018) (0.020) (0.0017) (0.0020) (0.0030) (0.0032) (0.0025) 

Indirect 

Influence 

-0.0057* -0.013** -0.012** -0.016** -0.0030** 0.015** 0.024** 0.00058** 0.029** 0.0071** 

(0.0024) (0.0045) (0.0040) (0.0054) (0.00094) (0.0018) (0.0068) (0.00015) (0.011) (0.0019) 

Direct 

Homophily 
 

  Gender 0.38 -0.21 -0.034 0.20 0.16 -0.14 0.14 0.88 0.066 1.21 

(0.46) (0.49) (0.043) (0.61) (0.14) (0.45) (0.16) (0.52) (0.064) (1.08) 

  Age 
0.033 -0.032 0.072 0.013 0.020 0.0082 0.083 0.026 0.045 -0.048 

(0.031) (0.030) (0.047) (0.028) (0.018) (0.029) (0.084) (0.030) (0.055) (0.079) 

  Location 
0.010 0.025 0.0062 0.017 0.016 0.020 0.033 0.0062 -0.0045 0.021 

(0.017) (0.017) (0.0040) (0.010) (0.010) (0.021) (0.024) (0.0059) (0.0048) (0.023) 

  Behavior 
0.016 0.050 0.0114 0.041 0.024 0.048 0.067 0.012 -0.011 0.033 

(0.036) (0.039) (0.0083) (0.024) (0.024) (0.033) (0.042) (0.0099) (0.012) (0.044) 

  Social 

  Circle 

0.034 0.085 0.020 0.049 0.050 0.062 0.11 0.018 -0.015 0.053 

(0.050) (0.057) (0.012) (0.028) (0.024) (0.073) (0.061) (0.020) (0.016) (0.080) 

Indirect 

Homophily 
 

  Gender 
0.026 -0.017 -0.0030 0.016 0.018 -0.011 0.013 0.065 0.0059 0.11 

(0.040) (0.038) (0.0038) (0.043) (0.013) (0.039) (0.011) (0.047) (0.0054) (0.090) 

  Age 
0.0030 -0.0022 0.0053 0.0010 0.0015 0.00078 0.0055 0.0020 0.0028 -0.0038 

(0.0022) (0.0025) (0.0033) (0.0020) (0.0013) (0.0024) (0.0072) (0.0019) (0.0040) (0.0054) 

  Location 
0.00082 0.0029 0.00058 0.0011 0.0013 0.0019 0.0024 0.00066 -0.00051 0.0023 

(0.0012) (0.0015) (0.00027) (0.00071) (0.00075) (0.0017) (0.0016) (0.00048) (0.00038) (0.0016) 

  Behavior 
0.0015 0.0041 0.00082 0.0028 0.0021 0.0047 0.0045 0.00086 -0.00077 0.0028 

(0.0032) (0.0027) (0.00082) (0.0019) (0.0019) (0.0026) (0.0034) (0.00077) (0.00090) (0.0031) 

  Social 

  Circle 

0.0032 0.0066 0.0019 0.0034 0.0034 0.0043 0.0082 0.0018 -0.0013 0.0044 

(0.0039) (0.0046) (0.0011) (0.0023) (0.0020) (0.0069) (0.0042) (0.0018) (0.0011) (0.0056) 

**: p<0.01; *: p<0.05; †: p<0.10 



 

 

Table C6: Robustness check of analysis using mNAP model, direct vs indirect influence 

(Continuous response variable, number of CRBT purchased from the 3rd months of 3-month 

period of 3-month period, network from the 1st and 2nd months of 3-month period) 

 Subpopulations 

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Degree 
0.012* 0.035** 0.031** 0.036** 0.087** 0.053** 0.055† 0.042** 0.020** 0.017** 

(0.0052) (0.00073) (0.0037) (0.0061) (0.015) (0.016) (0.029) (0.013) (0.00047) (0.0031) 

Direct 

Influence 

0.055* 0.091** 0.14** 0.073* 0.090** 0.013** 0.016** 0.014** 0.018** 0.019** 

(0.028) (0.012) (0.018) (0.034) (0.0085) (0.0032) (0.0032) (0.0030) (0.0038) (0.0035) 

Indirect 

Influence 

-0.0081** -0.013** -0.011* -0.012** -0.0013† 0.012** 0.020** 0.00050* 0.024** 0.0064** 

(0.0019) (0.0039) (0.0049) (0.0034) (0.00068) (0.0023) (0.0052) (0.00020) (0.0089) (0.0016) 

Direct 

Homophily 
 

  Gender 0.38 -0.22 -0.035 0.18 0.15 -0.15 0.14 0.98 0.059 1.29 

(0.45) (0.53) (0.045) (0.64) (0.13) (0.49) (0.16) (0.54) (0.068) (1.13) 

  Age 
0.035 -0.035 0.081 0.011 0.019 0.0084 0.087 0.024 0.041 -0.042 

(0.040) (0.035) (0.046) (0.032) (0.017) (0.035) (0.099) (0.033) (0.060) (0.087) 

  Location 
0.0088 0.028 0.0067 0.017 0.015 0.021 0.037 0.0063 -0.0041 0.021 

(0.019) (0.016) (0.0034) (0.0090) (0.0088) (0.023) (0.026) (0.0065) (0.0046) (0.026) 

  Behavior 
0.015 0.054 0.0124 0.041 0.023 0.050 0.074 0.012 -0.010 0.033 

(0.040) (0.037) (0.0070) (0.022) (0.022) (0.036) (0.046) (0.011) (0.011) (0.048) 

  Social 

  Circle 

0.031 0.093 0.021 0.049 0.047 0.065 0.12 0.019 -0.014 0.053 

(0.057) (0.054) (0.010) (0.035) (0.032) (0.080) (0.076) (0.023) (0.016) (0.088) 

Indirect 

Homophily 
 

  Gender 
0.026 -0.018 -0.0031 0.014 0.017 -0.012 0.013 0.072 0.0052 0.12 

(0.039) (0.042) (0.0040) (0.044) (0.012) (0.042) (0.011) (0.049) (0.0057) (0.095) 

  Age 
0.0032 -0.0023 0.0059 0.00088 0.0014 0.00080 0.0058 0.0019 0.0025 -0.0034 

(0.0029) (0.0030) (0.0032) (0.0022) (0.0012) (0.0029) (0.0085) (0.0021) (0.0044) (0.0059) 

  Location 
0.00074 0.0032 0.00063 0.0011 0.0012 0.0020 0.0026 0.00067 -0.00046 0.0023 

(0.0014) (0.0014) (0.00023) (0.00065) (0.00068) (0.0018) (0.0018) (0.00054) (0.00036) (0.0017) 

  Behavior 
0.0014 0.0045 0.00089 0.0028 0.0020 0.0049 0.0049 0.00087 -0.00069 0.0028 

(0.0036) (0.0026) (0.00070) (0.0017) (0.0018) (0.0028) (0.0037) (0.00086) (0.00086) (0.0034) 

  Social 

  Circle 

0.0029 0.0072 0.0021 0.0034 0.0032 0.0046 0.0090 0.0019 -0.0011 0.0044 

(0.0044) (0.0044) (0.0010) (0.0021) (0.0018) (0.0077) (0.0045) (0.0020) (0.0011) (0.0062) 

**: p<0.01; *: p<0.05; †: p<0.10 

 

Table C7: Robustness check of analysis using mNAP model, direct vs indirect influence 

(indirect influence is defined by cosine similarity) 

 Subpopulations 

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Degree  0.013* 0.046** 0.041** 0.035* 0.079** 0.041* 0.062** 0.022* 0.046** 0.025** 

Centrality (0.0056) (0.0095) (0.013) (0.016) (0.017) (0.019) (0.011) (0.0092) (0.016) (0.0089) 

Direct 0.11** 0.069** 0.092** 0.059** 0.041** 0.030** 0.025** 0.022** 0.018** 0.011** 

Influence (0.011) (0.0091) (0.034) (0.021) (0.013) (0.0054) (0.0048) (0.0030) (0.0060) (0.0039) 

Indirect -0.012† -0.0046* -0.032* -0.011* -0.0015* 0.012* 0.012* 0.0016** 0.043* 0.0060† 

Influence (0.0062) (0.0022) (0.014) (0.0046) (0.00070) (0.0052) (0.0057) (0.00059) (0.018) (0.0030) 

**: p<0.01; *: p<0.05; †: p<0.10 
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