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Abstract. Motivated by problems from calculus of variations and partial differential
equations, we investigate geometric properties of D-convexity. A function f:R?Y - Ris
called D-convex, where D is a set of vectors in R, if its restriction to each line parallel to a
nonzero v € D is convex. The D-convex hull of a compactset A C R?, denoted by coP(4),
is the intersection of the zero sets of all nonnegative D-convex functions that are zero on
A. It also equals the zero set of the D-convex envelope of the distance function of A. We
give an example of an n-point set A C R? where the D-convex envelope of the distance
function is exponentially close to zero at points lying relatively far from co”(A), showing
that the definition of the D-convex hull can be very nonrobust. For separate convexity in
R® (where D is the orthonormal basis of R?), we construct arbitrarily large finite sets A
with co?(A) # A whose proper subsets are all equal to their D-convex hull. This implies
the existence of analogous sets for rank-one convexity and for quasiconvexity on 3 x 3 (or
larger) matrices.

1. Introduction

Let X be a finite-dimensional real vector space (which can be identified with some
R?), and let D C X be a set of vectors, which are thought of as directions. A function
f:X — Ris called D-convex if the restriction of f to each line parallel to a nonzero
vector in D is a convex function. The D-convex hull of a compact set A C X, denoted
by coP(A), is defined as the intersection of the zero sets of all nonnegative D-convex
functions f: X — [0, co) that are zero on A. (Later, in Section 3, we give a more direct
characterization of the D-convex hull. Also, we remark that this D-convex hull is called
the functional D-convex hull in [MP], in order to distinguish it from the set-theoretical
D-convex hull. The latter is not considered in the present paper.)

* This research was supported by Charles University Grants No. 158/99 and 159/99.
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The “usual” notion of convexity is obtained for D = X. Our investigation is mainly
motivated by rank-one convexity, which is a special case of D-convexity, where X is the
space of real n x n matrices and D is the set of n x n matrices of rank one. In what follows,
this D will be denoted by rc. The rank-one convex hull, as an inner approximation to the
so-called quasiconvex hull, is important in the theory of partial differential equations and
in the calculus of variations and it was studied in a number of papers, among which we
mention only a few: [Mo], [Sv], [BFJK], [DKMS], [MS], and [MS]. The lecture notes
[Miil] can serve as a nice and up-to-date introduction to this area.

Another significant special case of D-convexity is that with D being the standard
orthonormal basis of R?: the separate convexity (this D will be denoted by sc). This
arises by restricting the rank-one convexity on the subspace of diagonal matrices, and
has been considered in this connection [T], but it seems natural and interesting in its own
right and was independently studied, e.g., in probability theory [AH]}.

New Results. In the first part of this paper we concentrate on separate convexity in R?.
For the usual convexity, the well-known Carathéodory’s theorem holds: if A C R? and x
lies in the convex hull of A, then x is in the convex hull of some at most (d+-1)-point subset
of A; we say that the Carathéodory number for convexity in R? is d + 1. In [MP], it was
proved that the Carathéodory number for separate convexity in R? is 5. Here we show that
the Carathéodory number for separate convexity in dimensions 3 and higher is infinite. As
a consequence, the Carathéodory number for rank-one convexity and for quasiconvexity
on 3 x 3 matrices is infinite as well. We also report other results concerning minimal
nontrivial configurations for separate convexity, and mention outcomes of computer
experiments with separate convexity performed by Letocha in his M.Sc. thesis [L].

In Section 3 we give a somewhat more direct description of the D-convex hull of a
set A, While the usual definition takes into account all nonnegative D-convex functions
vanishing on A, we show that co? (A) is actually the zero set of the D-convex envelope
of the distance function of A. (The D-convex envelope of a function f: X — R, denoted
by Cp f, is defined as the pointwise supremum of all D-convex functions g satisfying
g < f on X.) As was pointed out by one of the referees, such a result (for rank-one
convexity) has been known to people working on rank-one convexity and quasiconvexity;
supposedly it was proved by Yan. The author was unable to find an explicit reference
earlier than [MS2], and so although the result is probably not new, it may be useful to
include a proof.

The characterization using the distance function suggests an algorithmic approach to
computing the D-convex hull, via D-convexification of the distance function. In Section 4
we show that this approach may be quite problematic in some cases: we exhibit an n-point
set A C R? and a point x lying relatively far from co®“(A) but such that the separately
convex envelope of the distance function has value exponentially close to zero at x.
Computational experiments indicate bad behavior in this respect (although not as drastic
as in the example just mentioned) even for random n-point subsets A of the n x n x n
grid in R3.

In the remaining sections we establish some general properties of D-convexity. In
Section 5 we show that the D-convex envelope of a 1-Lipschitz function is again 1-
Lipschitz; we present an argument due to Kirchheim, which is similar to our original
proof but simpler. We note that Kirchheim et al. [KKB] recently proved strong results,
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somewhat related to the Lipschitz condition, concerning the differentiability of D-convex
envelopes (as well as quasiconvex envelopes) of differentiable functions. Essentially, they
show that if a differentiable function satisfies suitable growth conditions at the infinity,
then the envelopes are differentiable as well, while the differentiability may fail without
the growth condition.

In [MP], aresult on the local behavior of the D-convex hull was stated (Corollary 2.9),
but, as was pointed out by Kirchheim, it was not sufficiently substantiated. We prove it
in Section 6; an independent proof of a somewhat stronger result was recently given by
Kirchheim [K].

2, New Configurations for Separate Convexity

We call a (finite) set A C X nontrivial (for some fixed D) if co?(A) # A, and trivial
otherwise. One simple reason for the nontriviality of A is that A contains two points x, y
such that the vector x —y is parallel to a direction in D (we say that A has a D-connection);
for separate convexity in R, this means that x and y share d — 1 coordinates.

As was independently discovered by several authors [Sc], [AH], [T], [C], a set can be
nontrivial without possessing a D-connection. In the plane, the four-point configuration
Ty = {ay, az, as, as} below has a separately convex hull as indicated in the picture (the
shaded square and four segments):

as

(19

Note that this nontrivial configuration is generic nontrivial, meaning that any sufficiently
small perturbation of its points again gives a nontrivial set. For separate convexity in
R?, a nontrivial configuration in which no two points share the value of any coordinate
is necessarily generic (because the combinatorial structure of the separately convex hull
is determined by the orderings of the points along the coordinate axes; see Section 2.1
below).

For separate convexity in R?, the situation is relatively simple: any nontrivial set
without an sc-connection contains a copy of the configuration 7 or of its mirror reflection
[MP]}. Moreover, as was mentioned in the Introduction, the Carathéodory number is 5,
meaning that any pointin the separately convex hull of A is in the hull of some at most five
points of A. As we will see in this section, there is no such simple description of nontrivial
configurations for separate convexity in higher dimensions. Inclusion-minimal generic
nontrivial configuration can be arbitrarily large (and, consequently, the Carathéodory
number is infinite), and the number of small configurations is astronomic.
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In Sections 2.1-2.4 we always consider separate convexity unless explicitly stated
otherwise.

2.1.  Preliminaries

Let B € R? be a set. A point x € B is called sc-extremal in B if x is contained in no
open segment s C B parallel to one of the coordinate axes.

For the reader’s convenience, we briefly review an algorithmic description of the
separately convex hull of a finite set A C R? derived in [MP}. Fori = 1,2,...,d, let
x;(A) = {x;(a): a € A}, where x;(a) denotes the ith coordinate of ¢, and let grid(4) =
x1(A) x x3(A) x - -- x x4(A). For a point x € G = grid(A), let a'* (resp. a’~) denote
the point of G, all of whose coordinates except the ith coincide with those of a, and
whose ith coordinate is the successor (resp. predecessor) of x;(a) in x; (G) (thus, a'* or
a'~ need not exist for “border” points of G). Let B € G and a € B; we call a point
a € grid(A) grid-extremal in B if, for eachi = 1,2,...,d, at least one of a‘", a-
either does not exist or does not belong to B; intuitively, ¢ is a “local corner” of B.

Given a finite A C RY, put By = grid(A), and for j = 0, 1,2, ..., if B; contains
a grid-extremal point b & A, set Bj;; = B;\{b} and continue with the next j. This
procedure terminates with a set Bj, with all grid-extremal points lying in A, and this set
describes the separately convex hull of A. Namely, let an elementary box for grid(A) be
a Cartesian product of the form I), x I, x --- x Iz, where each I; is either {x;} for some
xi € x;(A) or [x;(a), x;(a'")] for an a € grid(A). The box complex of B C grid(A)
consists of the elementary boxes whose corners all lie in B. Then, as shown in [MP],
c0*“(A) is the union of the box complex of the set B;, obtained by the above algorithm.

As a consequence of this algorithmic description, we get that if B = co*“(A) for A
finite, then all sc-extremal points of B belong to A and B is the separately convex hull
of its extremal points.

2.2. Generic Nontrivial Configurations in All Dimensions

The existence of generic nontrivial configurations for separate convexity in R* was
established in [MP]; a 20-point configuration was exhibited. Its nontriviality was verified
by applying the above algorithm. Here we generalize the idea of that construction and
we present a systematic inductive construction in any dimension.

Theorem 2.1. For any d = 2, there exists a finite generic nontrivial configuration Ay
for separate convexity in R?.

Proof. We proceed by induction on the dimension d. We need a slightly stronger
statement; to state the additional condition, we use the following definition. Leta € A
be an sc-extremal point of co*“(A), and let u € {e;, —ej, €2, —e€3, ..., €4, —e4} be a
direction of some coordinate semiaxis. We call u an inward direction at a if an open
neighborhood U of a exists such that, for any x € U, the ray {x + tu:¢ > 0} intersects
co*“(A).
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Fig. 1. Ilustration of the construction of Az |.

Our inductive hypothesis is the claim of the theorem with the additional conditions
that the origin O lie in the interior of co*“(A,) and that every point a € A4 has an inward
direction. The basis of the induction is provided by the configuration 7} in the plane.

Suppose that the claim has been proved for d, and we want to construct the config-
uration Ay C R4t We refer to the direction of the x,.-axis as “vertical,” and to
hyperplanes perpendicular to the x;;-axis as “horizontal.”

As a first step, we place copies of A, into the horizontal hyperplanes x411 = 1
and x;4; = —1, and we perturb the points of each copy vertically. Formally, for a =
(ai, @, ...,aq) € Ag, weputay = (ay,ap,...,a4, 1 +z,)anda_ = (a1, ay, - .., a4,

—1 — z,), where the z,’s are pairwise distinct positive real numbers, and we set A; =
{a, :a € Ay} and similarly for A_.

Next, we choose pairwise distinct numbers 7, € (—1, 1) fora € A;. Lete > Obe a
sufficiently small parameter. Let P, = ([0, €] + a) x {t,} be a small horizontal “plate”
lying at height £, with a corner on the vertical segment connecting a* and a~ (see Fig. 1).
Moreover, let A, = A, + (¢, ¢,...,¢,0) be a horizontal translate of A, and put

B=A,UuA_U | P

acAy

We observe that for any horizontal hyperplane & = {xy4; = z} with —1 < z < 1,
h N co*“(B) contains an approximate copy A(h) of A, with each point perturbed by
at most . By the stability of the combinatorial structure of co*“(A4) under sufficiently
small perturbations, we see that the combinatorial structure of co*“(A(h)) is the same
for all 4 (if ¢ is sufficiently small), and an inward direction u, at a pointa € A, remains
an inward direction for the corresponding point in each A(k) (u, is a direction in R¢,
but from now on we interpret it in R?*! by appending a zero x,.-coordinate).

Foreacha € Ay, letc, = (ay, ay, ..., a4, t;)—u, be the point reached from the corner
of the horizontal plate P, by going one unit against the direction «, (in the horizontal
hyperplane x;.; = t,). Previous considerations show that there exists an open ball U,
centered at ¢,, whose radius is independent of ¢ (provided that ¢ > O is sufficiently
small), such that all rays {x + tu,:t > 0} for x € U, intersect co**(B).

Let g, be the hyperplane perpendicular to u, and containing the point c,. Identify R?
with g, so that 0 is placed into c, and the axes directions in R? remain parallel to the
axes directions in R4*!, and let M, be a copy of A, in g, scaled by the factor of \/e.
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In this way, we may assume that M, is contained in the ball U, and, moreover, that the
union of rays emanating from points of co**(M,) in the direction u, contains the whole
plate P, in its interior. As a final step of the construction, shift each point b € M, by
—Ypl,, where the y,’s are pairwise distinct positive real numbers. This yields a set AZIa.
Set
C=BU|J M,,
acAy
and define A;4; as the set of all sc-extremal points of co®*(C). By the remark at the
end of Section 2.1, we have co*“(C) = co’“(Ay41), and Ayy consists of points of
A_U AL UlU,ea, M, plus possibly sc-extremal points of the P,’s. However, since
co*¢(C) contains each P, in its interior, we get Ay, € A_U A/ U Uvae A Ma. So Ayqq
is finite, nontrivial with O lying in the interior of co®“(A4+1), and it is easily checked
from the construction that no two of its points share a common coordinate hyperplane,
and hence A, is also generic. Finally, for the points of A_ and A/, inward directions
are (0,0,...,0,1) and (0,0, ..., 0, —1), respectively (because an open neighborhood
of each P, is contained in co®“ (A4, 1)), and, for each b € Ma, u, can be chosen as an
inward direction. This finishes the proof of Theorem 2.1. O

2.3.  Computer Experiments in Dimension 3

The algorithm for the three-dimensional separately convex hull reviewed in Section 2.1
was fine-tuned and implemented by Letocha [L]. The correctness of the implementation
was checked by the comparison of many results with an earlier, slower implementation
by Matousek. Letocha noticed that the generic nontrivial configuration constructed in
[MP] is not inclusion-minimal, and an 18-point generic nontrivial configuration can
be obtained from it by removing two suitable points. This is also the smallest generic
nontrivial configuration known so far.

Letocha conducted extensive computer search for inclusion-minimal generic nontriv-
ial configurations. At each experiment, independent random permutations 7r; and 73 of
{1,2, ..., n} were generated, and the (generic) set

A={@Gm@),m@)i=1,2,...,n} ¢))]

was considered. (For example, for n = 100, the computation of the separately convex
hull for such a set took about 0.2 s on a Pentium II, 300 MHz machine.) If A turned out
to be nontrivial (successful experiment), it was checked for inclusion-minimality, and as
soon as apointa € A with A\{a} nontrivial was found, it was removed. This was repeated
until an inclusion-minimal nontrivial set was obtained. As noted in [MP], the existence
of a single generic nontrivial configuration implies that the probability of success in this
experiment tends to 1 as n — co. However, it turned out that the probability of success
is quite large even for fairly small n; for n = 65 it is (estimated to be) slightly over 0.5,
and for n = 78 it exceeds 0.9.

Minimal configurations with sizes between 18 and 28 were discovered by this method.
The 18-point configurations were most frequent; for n = 66, with about 55% of success-
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ful experiments, about 36% of the successful experiments led to 18-point configurations,
33% to 19-point ones, and 19% to 20-point ones. From such data, one can estimate
from below the number of distinct minimal nontrivial configurations of the “canonical”
form (1). For example, for n = 40, an 18-point configuration was observed in about
0.12% of the cases (in 10° experiments). Thus, up to the small statistical uncertainty,
we get that the probability P (40, 18) of a random set (1) containing a minimal non-
trivial 18-point configuration as a subset is at least 0.0012. A random 40-point set (1)
contains (j3) 18-point subsets, each of which can be regarded as a random 18-point
set of the form (1). These random subsets are not independent, but certainly we have
P(40,18) < (‘I‘g)P(IS), where P(18) is the probability of a random 18-point set (1)
being minimal nontrivial. Since the total number of 18-point sets (1) is (182, we can
conclude that the number of distinct 18-point minimal generic nontrivial configurations
is at least about (18!)2P(40, 18)/(}5) > 4 x 10'7.

Generic nontrivial configurations of 17 or fewer points were never encountered in the
experiments, and they must be much more rare than those with 18 points, if they exist
at all.

2.4. Arbitrarily Large Minimal Configurations

First we exhibit an arbitrarily large inclusion-minimal nontrivial set in R3 which is not
generic. For n = 1,2,..., the set A, has 3n + 3 points d, e, f and a;, b;,c;, | =
1,2, ...,n. The construction for n = 3 is drawn in Fig. 2. The cube drawn by thin
line is included solely for better visualization; the points are drawn by dots and the
set B3 = co*“(A3) by thick lines. For other n, the construction is analogous, but the
“stairs” produced by a;, b;, ¢; are made smaller and n of them are put in. Using the
algorithm in Section 2.1, it is not difficult to check that B, = co’“(A,). (The inclusion
B, € co®“(A,) is especially easy, since all sc-extreme points of B, lie in A4,.) If we
remove, for example, the point c3 from A3, the algorithm allows us to remove the segment

of B3 ending in cs, and then, successively, the segments ending in b3, as, c2, b2, .. ., e,
b
ay
(3}
b
f a 2
c2
b3
a3
-y <
z =
d
€

Fig. 2. The minimal nontrivial set A3 and its sc-hull.
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and d. The set As\{c3}is trivial, and the situation with removing any other point is entirely
analogous.

Proposition 2.2. The Carathéodory number for the separate convexity inR?, ford > 3,
is infinite. In fact, arbitrarily large (finite) inclusion-minimal nontrivial configurations
exist.

Recently, Miiller proved that if R? is identified with the space Diag, of d x d diagonal
matrices in the obvious manner ((x;, x, ..., xg) becomes the matrix with x1, x5, ..., X4
on the diagonal and zeros elsewhere), and if f:Diag, — R is any separately convex
function, then for any ¢ > 0 and a compact set K C Diag,, a quasiconvex function g on
the space M4*¢ of all d x d matrices exists with | f(x) — g(x)| < & forall x € K ([Mii2]
deals with the case d = 2 and announces the result for an arbitrary d). Consequently, for
compact A C Diag,,the separately convex hull of A within Diag, equals the quasiconvex
hull, and also the rank-one convex hull, of A in M?*¢, (We remark that the result just
mentioned is not obvious even for rank-one convexity.) Therefore, we get

Corollary 2.3. The Carathéodory number for quasiconvexity, as well as for rank-one
convexity, on d x d matrices, d = 3, is infinite, and arbitrarily large (finite) inclusion-
minimal nontrivial configurations exist.

The configuration A, constructed above is not generic, but an arbitrarily large minimal
generic nontrivial configuration for separate convexity can be obtained as well (for
rank-one convexity or quasiconvexity, the existence of such configurations is open at
present). The idea is to replace each point of A, by a small (perturbed) copy of the
planar configuration T;. We first note that if the horizontal rectangle R as in Fig. 3 lies
in the hull of some set, and the four points ay, . .., a4 are in the set, then the rectangle
R, also lies in the hull. Then such rectangles (and the corresponding 4-tuples) can be
arranged cyclically, similar to the segments in Fig. 2, as depicted in Fig. 4 (the position of
the 4-tuples is indicated schematically by thick segments). The resulting configuration is
generic nontrivial. It is not minimal (it turns out that two points suffice at each turn of the
“stairs”; Fig. 5 shows a minimal subconfiguration obtained for n = 3), but if we delete
any of the 4-tuples, we get a trivial configuration, and hence any minimal nontrivial
subset has at least 3(n + 1) points.

a ® (1
wadl
”y |
|
x |
,//’ == /,./

Fig. 3. Four suitable points and R generate the rectangle R;.
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Fig. 4. Constructing arbitrarily large generic nontrivial configuration.

We note that by applying this construction with n = 1 and selecting a minimal non-
trivial subset, we arrive at the nicely symmetric 18-point configuration (the smallest
known size) shown in Fig. 6. The picture displays the separately convex hull as the
appropriate box complex; the two-dimensional elementary boxes are shown semitrans-
parent. It is also remarkable that, unlike the usual convex hulls, the separately convex
hulls in dimension 3 need not be contractible.

Fig. 5. A minimal 30-point generic nontrivial configuration and its sc-hull.
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Fig. 6. An 18-point generic configuration with its sc-hull.

3. Envelope of the Distance Function Defines the Hull

Theorem 3.1. Let D C R? be a set of directions containing a basis of R®. Let A C R?
be a compact set. Let 8,4 be the function giving distance from A; that is, §4(x) =
infyeq lx — yll. Let Z be the zero set of Cpds. Then Z = coP(A).

Proof. The inclusion co?(A) C Z is clear. To prove the opposite inclusion, consider
a point xo ¢ co”(A). This means that a nonnegative D-convex function f exists with
f(x0) > 0and f(A) = 0. Our goal is to produce a D-convex function g with g(xg) > 0
and satisfying g < 34 everywhere. Then we will also have that the D-convex envelope
of 64 majorizes g, and in particular it cannot be zero at x;.

Choose the coordinate system so that 0 € A. Let B(0, R), R > 1, be a (closed) ball
containing both xg and A. Set

n= i inf[ Sa(x)
4 max(§4(x), f(x))

:x € B(0, 2R)\A] .
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We want to prove that n > 0. We recall that the function f, being D-convex, is locally
Lipschitz [MP, Observation 2.3], and hence Lipschitz on any compact set. Let C be the
Lipschitz constant of f on B(0, 2R).If x € B(0, 2R) lies at distance ¢ > 0 from A, then
there is a point a € A at distance ¢ from x, and since f(a) = 0 we have f(x) < Ct.
From this we get n > 1/4C.

Now we know that nf is a D-convex function nonzero at x( satisfying nf < 84
everywhere on the ball B(0, R); we still need to extend it on the whole R? so that it
remains below 8, everywhere. To this end, we use a standard trick from convex analysis
for extending a convex function defined on a ball.

Define a function g by setting

(x) = max(nf(x), |lx|| — R) for x| <2R,
EOZ1 1x1-R for |x|| > 2R.

First we note that on B(0, R), g coincides with nf, and hence g(x¢) > 0. We also have
g < 8,4 everywhere (because nf < d4 on B(0,2R) and ||x|| — R < §4(x)). It remains
to show that g is D-convex. Clearly it is D-convex on B(0, 2R), being a maximum of
two D-convex functions there. We note that for all x with %R < |Ixll < 2R we have

nf(x) < 38a(x) < llxll < 3R < lIx|| = R.

This means that in the annulus %R < |lx|l < 2R, g(x) coincides with ||x] — R, and from
this it is routine to check the D-convexity of g on the whole R?. O

4. Nonrobustness of the D-Convex Hull

For separate convexity, there is a simple exact algorithm for computing the sc-hulls of
finite sets, but for rank-one convexity (or for any D with more than d directions in RY),
no such algorithm is known so far. In view of Theorem 3.1, it seems natural to try to
approximate the D-convex hull by approximately computing the D-convex envelope of
the distance function and taking the “near-zero” set. However, even for separate convexity
in the plane, this is generally unrealistic, because enormous accuracy would be required.

Proposition 4.1. For each n > 1, there exist: an (n + 1)-point set A C R? contained
in the m x m integer grid withm = O(n) and with co*“(A) = A, and two points by and
by, both at distance 1 from A, such that any separately convex function f that is zero on
A satisfies f(b,) < n™" f(by).

Proof. The construction is shown in Fig. 7. There is an auxiliary gray square with side
n in the middle, and the points ay, a1, ..., g, are placed in a spiral-like configuration
around the square; the scaling is such that the distance of ap and by is 1, as well as each
of the distances a;b;. Since f(a;) = 0 and the distance bya; is at least n, the convexity
of f on the line bya; implies f(b;) < (1/n)f(bo), and induction (along the indicated
lines) yields f(b;) < n™* f(bp). Finally, the triviality of A is easy (one can check that
there is no T, configuration, or apply the algorithm). O
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bg |

™
(=

Fig. 7. A configuration with nonrobust hull.

Of course, one can hope that configurations with this bad behavior are exceptional
and that we suffice with much smaller precision for computing the D-convex envelope
for “usual” examples. Computational experiments, described next, indicate that one has
to be careful even with not too large random configurations.

For various values of n, random n-point sets A C R3 of the form (1) were generated.
Recall that they are subsets of the grid G = {1, 2, ..., n}3. For such an A, the function
fa: G — {0, 1}, with f4(x) = Oforx € Aand fa(x) = 1 otherwise, was considered. As
shown in [MP], the points of G Nco®°(A) are exactly the zero set of the separately convex
envelope of f4 on G (where the separately convex envelope on G is the largest function
G — Rthatisbelow f, and satisfies the convexity condition for any triple of points of G
lying on a line parallel to a coordinate axis). The function f4 was separately convexified
on the grid G by a straightforward iterative algorithm: convexify along the lines parallel
to the x-axis, then along the y-axis, then along the z-axis, and repeat until the maximum
change of the function’s value in a single iteration drops below a small threshold (chosen
as 10713 for double-precision arithmetic). Up to small rounding errors, this algorithm
provides an upper bound on the values of C;. f4 on G (and, hopefully, should provide
good approximation to the actual values of the separately convex envelope, but no error
bound seems to be available).

A measure of the accuracy required for correct computation of co*“(A) by this method
is the smallest value of C. f4(x) for x € G\ co*“(A) (where co*“(A) was determined
by the exact combinatorial algorithm). In the experiments, this value was typically
quite small even for moderate values of n. For example, while it was typically be-
tween 103 and 10~ for n = 20, already for n = 40 it was usually below 10~7 and
values as small as 2 x 107!! appeared in a few cases. For n = 50, the values were
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often below 10~ 13 and cannot be considered reliable anymore with the double-precision
computations.

Still, knowing that the value of the D-convex envelope of the distance function of A
(or of some other suitable function) is reasonably large at some point x, we can conclude
that x & co®(A). Approximate computation of D-convex envelopes might thus yield
at least a reasonable outer approximation of the D-convex hull. Nonetheless even here
there is a problem with controlling the error of the approximation of the envelope. The
most natural method of computing the D-convex envelope (employed above for sepa-
rate convexification on a grid), namely iterative one-dimensional convexifications along
the directions in D, is likely to provide an upper bound on the values of the envelope.
However, controlling the error, and getting a reliable bound from below, appears chal-
lenging. As was remarked above, no error bounds seem to be available even for separate
convexification on a grid.

5. Lipschitz Constant is Preserved by the D-Convex Envelope

Recall that for a function f: R? — R and a direction vector v, C{y f denotes the convex
envelope of f taken in direction v; that is, f is convexified (independently) along each
line parallel to v. For simplicity, we write only C, f for Cy,, f.

Lemma 5.1. Let v € R? be a nonzero direction vector. Let f be a real 1-Lipschitz
function defined on R?. Then C, f is 1-Lipschitz as well. Here “1-Lipschitz” may be
taken with respect to an arbitrary translation-invariant metric on R?.

The following simple proof was communicated to me by Kirchheim; my previous
formulation was more complicated.

Proof. Forbrevity, denote the function C, f by g. Letx, y € R? be two arbitrary points;
it suffices to prove

gx) < g(y)+ p(x, y), 2)

where p is the considered translation-invariant metric. Let &£ > 0 be arbitrary, and let £,
be the line parallel to v containing y. Since the point (y, g(y) + €) is above the convex
envelope of f restricted to £, there are two points y;, y» € £, such that y lies between
y1 and y; and g(y) +¢& > tf(y1) + (1 — t) f(y2), t € [0, 1]. Then we have

g(x) = g(y +(x—y)
<tfn+x—-—yN+A-f(+x-y) (convexity of g on £,)
SO+ A=) fO) +p(x,y) (as f is 1-Lipschitz)
< gy +e+plx,y).
Since ¢ > 0 was arbitrary, (2) is proved. O

Corollary 5.2. Let f be a 1-Lipschitz real function defined on R®. Then Cp f is 1-
Lipschitz as well.
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Proof. Set

f=inf{C,,Cy, - Cyp, f 1v1,V2,..., 0 €D,n=1,2,3,...}

(a pointwise infimum). Clearly Cp f < f, and it is straightforward to verify that f is a
D-convex function, hence f = Cy. At the same time, all the functions C,,Cy, -+ - Cy, f
are 1-Lipschitz by Lemma 5.1, and hence Cp, f is 1-Lipschitz as well. O

There is an interesting consequence for D-convex envelopes of distance functions to
sets.

Corollary 5.3. Let A C R? be a set and let B = coP(A). Then Cpds = Cpdp, where
8x denotes the distance function of a set X.

Proof. Since A C B, we have §4, > 8p and hence also Cpds > Cpdp. To see the
opposite inequality, we note that Cpé, is a D-convex function and hence it is zero on B.
Moreover, itis 1-Lipschitz by Corollary 5.2, and therefore Cpd4 < 85. Taking D-convex
envelopes on both sides of the last inequality yields Cpds < Cpés. 0O

6. A Locality Result
The following result was claimed in [MP] as Corollary 2.9:

Proposition 6.1. Let A C R? be contained in a (functionally) D-convex set C, which
is a disjoint union of compact sets C1, ..., Cy. Then coP(A) = | Ji_, co® (AN C)).

As was pointed out by Kirchheim (private communication, 1998), this is probably
not an immediate consequence of the previous theorem in [MP] (which states that if
Ci1, C2 € R are disjoint compact sets with C; U C, being D-convex, then C; and C;
are D-convex as well). Here we give a full proof. The result was independently proved,
together with some other related properties of D-convex hulls, by Kirchheim [K].

Proof. It suffices to prove the following statement: Let B, C C R? be disjoint compact
sets whose union is D-convex, and let K € B; then BNco? (K UC) = co?(K). Indeed,
in the situation of Proposition 6.1, weset B =C;,C = C,U---UC,, K = ANCy,
and we use the monotonicity of the D-convex hull.

Put f = Cpépuc. Fix B > 0 such that B,g N C = @ (where B, denotes the &-
neighborhood of B), and let S = Byg\ Bg. By Theorem 3.1, f is positive on S, and so
it is bounded away from zero there, by the compactness of S.

Let fx = Cpdk. This fx is positive on the compact set S (since co?(K) < B).
Choose n > 0 so that nfx < f on S. Define a function g as follows:

_ jmax(nfx, f) on Byg,
&= { f elsewhere.
Since f = 0 on B U C, the zero set of g contains C, and its intersection with B equals
the zero set of f, i.e., coP(K). It remains to check that g is D-convex. On Bag, g is
D-convex as the maximum of two D-convex functions. Outside of Bg, we have g = f.
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If a line £ intersects both Bg and the complement of B,g, it shares a segment of length
at least B with S; consequently, g is D-convex everywhere on R?. |
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