On Dirichlet series for sums of squares

Kwok-Kwong Stephen Choi (choi@cecm.sfu.ca)
Simon Fraser University
Department of Mathematics
8888 University Drive
Burnaby, BC V5A 1S6
Canada

Abstract. In their famous book on the theory of numbers, Hardy and
recorded elegant closed forms for the generating functions of the divisor f
$\sigma_{k}(n)$ and $\sigma_{k}^{2}(n)$ in the terms of Riemann Zeta function $\zeta(s)$ only. In this
explore other arithmetical functions enjoying this remarkable property. We
to generalize this result and prove that if f_{i} and g_{i} are completely multip
then we have

$$
\sum_{n=1}^{\infty} \frac{\left(f_{1} * g_{1}\right)(n) \cdot\left(f_{2} * g_{2}\right)(n)}{n^{s}}=\frac{L_{f_{1} f_{2}}(s) L_{g_{1} g_{2}}(s) L_{f_{1} g_{2}}(s) L_{g_{1} f_{2}}(s)}{L_{f_{1} f_{2} g_{1} g_{2}}(2 s)}
$$

where $L_{f}(s):=\sum_{n=1}^{\infty} f(n) n^{-s}$ is the Dirichlet series corresponding to f.
Let $r_{N}(n)$ be the number of solutions of $x_{1}^{2}+\cdots+x_{N}^{2}=n$ and $r_{2, P}(n)$ be the number of solutions of $x^{2}+P y^{2}=n$. One of the applications of our theorem above is to obtain closed forms, in terms of $\zeta(s)$ and Dirichlet L-functions, for the generating functions of $r_{N}(n), r_{N}^{2}(n), r_{2, P}(n)$ and $r_{2, P}(n)^{2}$ for certain N and P. We also use these generating functions to obtain asymptotic estimates of the average values for each function for which we obtain a Dirichlet series. This is a joint work with Jonathan Borwein.

