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The purpose of this work is to study the mean free path effect of non-magnetic impurities 

on superconductors. It is shown by including the impurities in the electron-phonon system 

that, contrary to the results of the earlier theories, there is no change in the transition 

temperature which is of the order of 1/w0r, where w0 is the cutoff frequency of the BCS 

theory and 'C' the relaxation time in the normal state due to the scattering. The same effect 

on the superconductor with the anisotropic energy gap is studied explicitly. The scattering 

in this case leads to the reduction of the transition temperature which is initially linear in 

1/'t' but becomes logarithmic when 't'Tc<L The gap in the excitation spectrum is shown to 

become isotropic when the mean free path is smaller than the coherence length. Thus, 

Anderson's theory of dirty superconductors is formulated and justified. 

§ l. Introduction 

Many interesting facts have been known about the effects of non-magnetic 

impurities on superconductors. Although several theoretical papers have been 

devoted to this subject, it seems that even the most salient features of the ex

perimental results are not yet fully elucidated. The experimental studies of the 

transition temperature Tc of dilute alloys carried out by Lynton,, Serin and 

Zucker/> Chanin, Lynton and Serin,2> and by Quinn and Budnick3> have established 

that, as the impurities are added, In, Sn, Zn, Al and Ta with a single exception 

of Tl show an initial decrease of Tc which is linear in the impurity concentra

tion. As the concentration is further increased, this initial sharp drop turns 

over to a more gradual decrease followed by a behavior depending on the specific 

nature of the solute. This apparent saturation seems to occur at the concen

tration at which the electronic mean free path in the normal state becomes 

comparable to the coherence Jength ~ 0 • The recent experiment by Lynton and 

McLachlan4> concerning the boundary scattering effect on the transition temper

ature of indium seems to give a strong support to the conclusion that this initial 

decrease is indeed due to the mean free path effect and does not depend on 

'what mechanism determines the path. In the case of thallium Tc increases 

although the initial increase is again linear in the concentration. 

There exist two different theoretical explanations of this initial linear decrease 

*l Main part of this work were carried out at the Institute for Solid State Physics, Tokyo 

University, Tokyo. 
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858 T. Tsuneto 

of Te, the one due to Suhl and Matthias,5> Nakamura/> and Kenworthy and ter 

Haar,7> and the other based on Anderson's theory of dirty superconductors.8> 

Although the methods used by the former group of people are somewhat different 

from one another, they all start with the original BCS model and treat the 

scattering as a perturbation, and their results agree in that the reduction of Te 

depends on the parameter 1/ Wer where We is the cutoff frequency in the BCS 

theory and r the relaxation time due to the impurity scattering in the normal 

state. On the other hand, according to Anderson's theory of dirty supercon

ductors, the basic idea of which is to pair the one electron state ¢nt in the 

presence of the impurities with its time rev:ersal state ¢n"1,, there is no change 

in the properties of a superconductor unless the density of states N(O) or the 

electron-electron interaction characterized by V and We are changed. Therefore, 

one may well question whether the effect inv:olving 1/ Wcr obtained by Suhl

Matthias and others has any real physical significance or not. 

On the basis of the same idea Anderson has suggested that the anisotropy 

of the energy gap, if present in the pure superconductor, may be washed out 

by the impurity scattering and this could be the cause of the initial decrease 

of Tc, since the scattered waves can not make as good use of the attractive inter

action as the unscattered waves. When the mean free path becomes smaller 

than the coherence length, the anisotropy is completely washed out and 

there will be no further decrease of Tc. This is in conformity with the quali

tative picture of the experimental results mentioned above. Anderson's idea 

has also been supported by the recent experiment by Richards9> on infra-red 

absorption in pure and impure single crystals of tin. His results show that as 

the impurities are added the gap edge becomes sharper and the anisotropy 

disappears. The measurement of nuclear spin-lattice relaxation in supercon

ducting aluminium alloys carried out by Masuda10> gives further evidence in 

favor of the theory. However, Anderson's theory has not been given any ex

plicit formulation so that, for instance, one does not know just how the decrease 

of Tc is related to the anisotropy of the energy gap. 

The purpose of the present paper is the following. Firstly, it is shown 

that the reduction of Tc depending on the parameter, 1/wcr, is simply a con

sequence of introducing the artificial cutoff and one does not get such an effect 

when one includes the impurity scattering in the electron-phonon system right 

from the beginning. When there is no anisotropy, the effect of the scattering 

on Tc or on the energy gap arises only through terms of the order of 1/ql 

where 7j is the average phonon momentum. In the next section we shall show 

this with the help of the theory of electron-phonon interaction in superconductors 

developed by Eliashburg.11> Secondly, the effects of the scattering on a super

conductor with the anisotropic energy gap is studied explicitly and in detail. 

The theory we need in order to discuss this problem has already been developed 

by Abrikosov and Gor'kov12J in connection with superconducting alloys with 
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On Dirty Superconductors 859 

paramagnetic impuntles. In fact, it turns out that the present problem is quite 

similar mathematically to that of paramagnetic impurities. For the detail of the 

calculation involved their paper should be referred to. To treat dirty super

conductors Anderson has suggested a procedure of first recalculating the effective 

interaction Vnn' between the scattered waves. Actually, as long as one is con

cerned with the mean free path effect, one realizes it is sufficient to use a 

theory such as ours which makes use of nothing more than the standard 

treatment of the impurity scattering in metals.13> In § 3 we shall present a simple 

model of an anisotropic superconductor, which will be used in the succeeding 

sections to study the mean. free path effect on the excitation spectrum and the 

transition temperature. 

It must be emphasized here that throughout the following discussions we 

assume that the density of electrons is not changed by the addition of the 

impunt1es. In other words we are concerned strictly with the mean free path 

effect on the properties of superconductors. 

§ 2. Electron-phonon system with impurities 

The Hamiltonian of the system that we shall consider in this section con

sists of the Frohlich Hamiltonian and of the impurity potential, 

(1) 

where 

(2) 

and 

(3) 

Here, among rather obvious notations, R, denotes positions of the impurities 

randomly distributed in space and a;=A0TC2qc/p0 , where cis the velocity of sound, 

Po the Fermi momentum and Ao a dimensionless constant, X0:Sl. In the absence 

of the . scattering Eliashburg11> has shown that the superconducting state of the 

system can be described by the two Green's functions of electrons, 

8aP G(x, x') = - i(T¢a (x) ¢p + (x) ), 

LpF+(x, x') =(T¢a+(x)¢p+(x')), F= -1, 

and the Green's function of phonons, 

D(x, x') = -i(T({J(x)({J(x')), 

(4) 

(5) 

(6) 

for which we can use the expression for the normal state obtained by Migdal/4> 

(7) 
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860 T, Tsuneto 

(For convenience the strength of the coupling is included in it). Then, keeping 

only the simplest type of the self-energy parts, one gets 

G(p, w) = [w+~+Z1(p, -w)] 

x {[w-~-Zl(p, w)] [w+~+Z1(p, -w)]- [Z2(p, w)]2}-I, (8) 

F(p, w) =iZ2(p, w)G(p, w)j[w+~+Z1(p, -w)], (9) 

where 

and 

Z1(p, w) = (2!) 4 Jdp'dw'G(p', w')D(p-p', w-w'), 

Z2(p, w) =-i- \dp'dw'F(p', w')D(p-p', w-w') 
(27r)4 o) 

~ = (P 2 - Po2) /2m. 

(10) 

(ll) 

In the presence of the scattering, according to the well-known theory of the 

impurity scattering in metals, the Green's function of electrons in the normal 

state is given by 

G(p, w) = (w-~+isignw/2-r)- 1 • 

Here the relaxation time r is defined by 

_l_= n,pom \dSJ!u(p·p' /pp') !2, 
r (2n) 2 "' 

(12) 

(13) 

where ni is the number density of the impurities. Contributions from the pro

cesses neglected in getting the expression '(12) are estimated to be at most of 

the order of l/p0l where l=v0r. Let us then consider how the Green's function 

of phonons is modified by the scattering. If we neglect the direct effect of the 

impurity atoms on the spectrum of the lattice vibration, which is expected to 

be small in the important region of short wavelength, the change in D(q, w) 

occurs only through its self-energy part. Now it can readily be seen and is 

already known from the study of ultrasonic attenuation in metals15J that the cor

rection due to the electronic mean free path is only of the order of 1/ ql rather 

than 1/ wr. Similarly, the correction to the vertex part of the electron-phonon 

interaction is of the same order of magnitude. Therefore, as long as the im

purity concentration is such that l/p 0 l-1/ql~1 where ij is the average phonon 

momentum, a condition amply met in most experiments, we may use the D

function for the pure metal also in the presence of the impurities. In doing 

so, we are not throwing away .terms of the order of 1/ We!" which is larger by 

a factor of v 0/ c. This conclusion naturally remains valid for the superconducting 

state. 

Consequently, the sole modification due to the scattering appears in the 
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On Dirty Superconductors 

self-energy part of G and F. Clearly it is just to add 

and 

1 I' 

G(w) =--3 ldp'/u(p-p') /2G(p', w) 
(27r) J 

iF(w) =~ \dp'/u(p-p') /2F(p', w) 
(27r) " 

861 

(14) 

(15) 

to 21 and to 22, respectively. We may suppose. that 2l(p, w) +G(w) is an odd 

function of w with the understanding that the chemical potential is adequately 

renormalized. Furthermore, Migdal and Eliashburg have shown that for w~EF 

and P""Po the functions 21 and 22 do not depend on p. This is evidently true 

in our case also. Therefore, we get, assuming the isotropic scattering, 

G(w) = [w-'21(w) -G (w)]-1 -- \dp'/u/ 2/ {[w-21(w) -G(w)]2 
- (27r)3 " 

-e- [22(w) +iF(w)]2}, (16) 

F(w) = [22(w) +iF(w)J~ fdp'/u/ 2/{[w-2l(w) -G(w)]2 
(27r) J 

from which follows a simple relation, 

F(w) =i22(w)G(w)/[w-.2l(w)]. 

Substituting (18) in (14) and (15), we obtain 

(18) 

G(w) = _ _i__ w- 21 and F(w) =-.!._- 22 . (19) 
2r V (w-21) 2-222 2r V (w-21) 2-222 

Hence, the effect of the scattering amounts to replacing w -21 and 2 2 by 'fj (w -21) 

and 'fj22, respectively, where 

=1+ l 

'fJ 2r'V (w-.21) 2 -22
2 ' 

(20) 

just as Abrikosov and Gor'kov have shown on a simpler model. Since the 

analytical property of the Green's functions remains unchanged, we can transform 

the equation for 2 2 into the form similar to that obtained by Eliashburg, 

i 3 [dq [d~ fdw'qD(q, w-w') 
(27r) Po J J J 

x 'fJ (w') 22 (w') I {~ 2 -l (w') ( [w' -2l(w') ]2- [22 (w') ]2)}. (21) 

Since we can first carry out the integration over ~ and there is no need for 

the cutoff, the factor 'fj disappears from the expression after the integration. 

Consequently, we may conclude that there is no reduction of the transition 
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862 T. Tsuneto 

temperature as long as 1/ijl can be neglected. The presence of the screened 

Coulomb interaction does not affect our conclusion. 

§ 3. A model for anisotropic superconductors 

It is clear from Eqs. (14) and (15) that if there exists anisotropy in the 

system so that in particular 1:2 depends also on the direction of p, the simple 

relation (18) does not hold between G and F. As a result r enters into the 

Green's function in a more complicated manner and does not, for instance, drop 

out of the gap equation. In order to study the anisotropic case explicitly, we 

first try to construct a simple model which to a certain extent reflects the 

anisotropy we encounter in real metals.16> 

The energy of an electron with momentum p measured from the Fermi 

surface is denoted by ~ (p)' which now depends on the angle ce, cp) of p with· 

respect to a particular crystalline axis, taken along the z-axis. The velocity of 

sound and the coupling constant are also anisotropic : c ( q) and a (p-p' ; p) . 

We make a change of variables from (p, e, cp) to (~, e, cp), assuming of course 

that this is possible. It will be assumed that none of fJ~jfJp, c(q) and a(p-p', p) 

depend strongly on the energy ~ near the Fermi surface. Then, in the lowest 

approximation in which we neglect the lifetime and the dependence of 1:2 on ~, 

we obtain the gap equation in the form 

xRe{ l:2(8',cp',z) }( 1 
Vz2 -l:2

2 (8', cp', z) z-(J)+c(p-p') /p-p'/-i(J 

+ 1 ) . (22) 
z+ {))+c(p- p') /p- p'/-i& 

One can easily include the screened Coulomb interaction in this equation. It 

seems that the anisotropy of the Fermi surface is reflected in the gap in a 

slightly more direct manner through the Coulomb interaction than the one via 

phonons. The discussions given in the preceding section and the above equation 

justify the use of the simple model of the BCS type with the anisotropic effective 

interaction v (p ; p') between electrons for the purpose of discussing the mean 

free path effect on a superconductor with the anisotropic energy gap. 

With this interaction it is easy to derive the Gor'kov equations, 

({J)-~)G(p, {))) -iLl(p)F(p, {))) =1, 

({))+ ~)F(p, {)))+iLl (p)G(p, {))) = 0 

(23) 

(24) 

for the Green's functions in the absence of the scattering. Here L1 (p) IS defined 

by 
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On Dirty Superconductm·s 863 

r d 'dol 
J(p) = J ~7r) 4 v(p, p')F(p', o/). (25) 

We assume that the effective interaction is approximately a function of the di

rections of p and p', so that the gap J (p) depends only on the angles () and ({J 

of the vector p. When we decompose v(8, ({J; ()', ({J') in terms of the spherical 

harmonics, 

(26) 

the gap equation (25) becomes 

J((), ({J) =N(O)Ivzm; Z'm' Yzm((), ({J) 

X f dSJ' f d~ [ dw. y 1 1 (()' ') iJ (()', ({J') • 
J 4n J J 27r z m '({J 0)2-~2-IJ(()', ({J') 12 

(27) 

When there is no off-diagonal elemenCof v, that is, when there is no anisotropy, 

this equation reduces to the one obtained by Anderson and MoreF7l for the 

big her l-state pairing (Eq; ( 4 · 4)) . 

§ 4. The . gap in the excitation spectrum 

Starting with the Gor'kov equations (23) and (24), it is easy to obtain the 

Green's functions in the presence of the impurities. The result is, if we again 

assume the isotropic scattering for simplicity : 

G(. w) _ _ i[w-G(w)] +~ 
p, - [w-G(w)]2+~ 2 + [J((), ({J) -F(w)] 2 ' 

(28) 

F(p, w) = 11 ((), ({J)- F(w) G(p, w), 
i[w-G(w)] +~ 

(29) 

where 

- 1 - [dSJ 1 
G(w)=-z..-[w-G(w)]J 4n {[w-G(w)]2+[J(8,({J)-F(w)]2}1'2 (30) 

and 

- 1 [ dSJ J((), ({J) -F(w) c31) 

F(w) =- 2r J 4n {[w-G(w)]2+ [J((), ({J) -F(w)] 2}112 

Here we have made a change of variable, w~iw, for the sake of convemence. 

In order to solve the ·above equations, let us introduce 

where 

(32) 

11=-~ r dSJ io+Lir(8, ({J) ' 

Ll0 J 47r Y(;?+[io+J1 ((),({J)]2 

(33) 
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864 T. Tsuneto 

(34) 

We have 

(35) 

Since we are interested in the case where L1 1 ~L1 0 , we can expand these quantities 

in the powers of L11. To the second order in L11 we obtain 

where 

Io=l/1Jf2o- (dN2r/f2o3) (1-3L1Nf2o2), 

Ir = l/7Jf2o- 33;_2 ui/27J3 f20
5, (36) 

One can determine L1 (8, cp) by substituting (35) and (36) into the gap equation. 

Let us just suppose that L1 (8, cp) in- the~ presence of the scattering is deter

mined in this way. Clearly it still depends on the angles. However, while in 

the pure superconductor the quantity L1 (8, cp) is itself equal to the gap in the 

excitation spectrum, they are not necessarily the same in the presence of the 

scattering, just as in the case of superconducting alloys with paramagnetic 

impurities. Let us, therefore, examine the threshold of the excitation spectrum. 

The denominator of the Green's function is equal to 9J=o?- [.d;;+L11 (8, cp)] 2 

for ~=0, where we have returned to the real w. The threshold w0(8, cp) of the 

excitation with momentum in a given direction (8, cp) on the Fermi surface 

is equal either to L10 at which 7J becomes complex or to the root of 9J = 0, ac

cording to which of the two is smaller. For L11 (8, cp) >O the threshold is obviously 

L1o. When L1r(8, cp)<O, 7J is real for w such that L10 +L1r(8, cp)<w<w0• In the limit 

d 0 ';> 1, we get from 9J= 0, with the help of (36), 

(38) . 

Thus, one can see that the gap edge tends to be isotropic by the scattering. 

In the opposite limit of the short mean free path one cannot use the ex

pansion in powers of L11• Although one can show, using (36), that 

(39) 

when L1 0 r~l, the higher order terms in L11 give contribution to w0 of the same 

order of magnitude as the ones kept" in (36) . In the case of a simple model 

whose energy gap is equal to L10' + Jr' in a region A of area 4na and to A0' 

outside A, it can be shown after rather lengthy calculation that 
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On Dirty Superconductors 865 

wo=Lio{1-} ( ~~:1) [ 4a2 (1-a)2-r2LioiL1llr'3 

+ O(-r2LioiLIII) 213} (40) 

in the region where LI~<O. Thus, one can conclude that in this simple case 

the gap edge becomes isotropic when (-r2LIJ1) 113<1. We believe that this con

clusion would remain valid in a more general case. 

§ 5. Change in the transition temperature 

In order to determine the transition temperature Tc of the anisotropic 

superconductor in the presence of the impurities, it is more convenient to use 

the linearized integral equation for Ll, 

<LI(x))av=Tc:E)dx'v(x, x')<J(x')G0.,n(x, x')G0-ron(x', x))av, (41) 
"n 

where G 0 .,n (x, x') is now the thermal Green's function for the normal state with 

Wn = (2n + 1) nTc and < )av means the average over the positions of impurities. 

After averaging we have 

G0 "'n (p) = 1/ (iWn7Jo- ~), 

7Jo = 1 + 1/2-r I Wnl· 

(42) 

(43) 

In obtaining <JG0G 0)av one has to take into account the correlation between 

the two propagators, i.e. to include the ladder type diagrams. The integral 

equation for the Fourier transform of <JG0G 0)av can easily be written down: 

K.,n(p) =G0.,n(p)GD_.,n(p) 

x[L1(8, q;) +~ \dp'lui 2K.,n(p')]. 
(2n) J 

Solving this for the isotropic scattering we get 

K "n (p) =G0"'n (p) GD_.,n (p) 

x[J(8, q;) +-1- \ d!J' L1(8', q;')]. 
2-r I Wnl • 4n 

Therefore, the equation determining Tc is 

where 

X [v(8, q;; 8', q;') +-1-v1 (8, q;) ]LI (8', q;') 
2-rlwnl 

(44) 

(45) 

(46) 
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866 T. Tsuneto 

vl((}, ~)=r diJ v((}, ~; (}', ~'). 
J 4n . 

(47) 

One can perform the f-integral and the summation over Wn by subtracting from 

the integrand [v(O, ~; (}', ~') + (1/2r/wn/)v1 (0, ~)J/Cwn 2 +f2). The result is 

f dSJ' 
.1(0, ~) =N(O) ~ {Lv(O, ~; (}', ~') 

4n 

-K(p) [v(O, ~; (}', ~') -v1 (0, ~)]}J((}', ~'), (48) 

where 

(49) 

and 

K(p) =¢( l;p) -¢( ~). (50) 

Here ¢ is the di-T function, p = 1/2nrTe and r is Euler's constant. 

i) Separable potential. Let us first study this equation with a s~parable po

tential, 

v(O, ~; (}', ~') =J...((}, ~)J..((}', ~'). (51) 

Then ( 48) reduces to 

[N(O) X2] -l=L- K(p) X 

where x= (~-X 2 ) /X2 • When rTe';>l, we get 

Tc=Tco-nx/4r 

(52) 

(53) 

with Teo= (2wer/n)exp[l/N(O)J2]. When rTeo~l, because K(p)--7ln2p+r, we 

have 

1,------------------------, 

O.'Jl 

0 1 

a=1/4n-r:T0o 

Fig. 1. The reduced transition temperature 

t=T0 /T00 is plotted against a=1/4n-r:T00 

for x=1/100. 

T/-x=Tco exp[x(lnnr-r)]. (54) 

If x~l, we obtain 

Tc-Tco[l-x ln(r /nrTco)]. (55) 

Thus the dependence on the mean free 

path becomes logarithmic when rTeo~l. 

In Fig. 1, the reduction of Tc is plotted 

against 1/ 4nrTco for x = 1/100. One 

can see how the depression of Tc is 

saturated once the concentration is such 

that rTco~l. 

ii) Non-separable potential ; weak cou

pling limit. When N(O)v and 1/r1'c 

are both small, one can solve ( 48) by 
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Fredholm's expansion theorem. The eigenvalue equation that determines T. 

is, to the second order in v, 

1/N(O) = [L-K(p)]v+K(p)v1+ [N(0)/2] {[L-K(p)] 2 (vv-v 2) 

+ 2 [ L- K (p)] K (p) ( vv1- vv1) } , 

where 

v= r dQ v(8, i:p; 8, q;) = L:vt~h 
J 4n-' 

- r dQ · 
V1= J ~v1(8, q;) =vo;o, 

VV= r dSJdSJ' v(8, i:p; 8', q;')v(8', (/) 1 ; 8, q;) = L;vl;t' Vt~;t> 
J (4n-)2 

~ r dS2dS2' (8 8' ') C8' ') " vv1=J (47r) 2 v ,q;;. ,q; V1 ,q; =.L.JVo;tVt;o· 

(56) 

(57) 

We have omitted the suffix m for simplicity. If we keep only the first order 

inK, we get 

where 

L= [1/N(O)A] {- [v- (A-B)N(O)K(p)] 

± [v2 +2A+2N(O) (vB-vlA)K(p)r 12}, (58) 

A=vv-v2 =2(L;'vo;t Vt;o-vo;oL;'vt t) +A', 

B=vv1-vv1=1j2 (A-A'). (59) 

Here the important terms are separated from the less important ones ; Vo;o is 

of course the largest component and Vo;t and Vt;o are the ones mainly responsible 

for the anisotropy. The upper sign in (56) should be taken since the corre

sponding solution reduces to the BCS solution with Vo;o when we switch off the 

off-diagonal components of the interaction. From the above equations we get 

ln(T.0/T.) = (1/2) K(p) {1 +A' /2A- [ (vo;o- L;'vt; t) +(A' /2A) (vo+ L;'vt; t)] 

X [(vo;o- L;'vt;t) 2 +4L;'vo;t Vt;o+2A']-112}. (60) 

If A' is negligible and L;'v0;1V1;0/(v0;0 - I:;'v 1 ;r,) 2 ~1, we obtain the expression for 

T. in the low concentration limit, 

(61) 

§ 6. Discussion 

It has been shown in § 4 that the anisotropy of the gap m the excitation 
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spectrum, if present in the pure superconductor, is smeared out by the impurity 

scattering and in the limit of dirty superconductors it tends to be isotropic and 

equal to the averaged gap parameter L/0• This confirms Anderson's idea and is 

in agreement with the experimental results mentioned in the Introduction. The 

comparison of the result obtained here concerning the change in Tc with the 

experimental data is more difficult since we know very little about the actual 

anisotropy of the gap, not to speak of the anisotropy of the effective interaction. 

The general behavior of Tc obtained in the last section, consisting of the initial 

linear decrease and of the much more gradual logarithmic decrease, is indeed 

what we find in the dilute alloys of Sn, Zn, Al and Ta. Aithough we have dis

cussed the limit rTco~1 only for the separable potential, we believe that the 

same conclusion would apply to the more general case. According to ( 44), if 

we take the limit of rTc 0 -~0, Tc approaches zero. But the decrease is so slow 

that it looks as if the effect of the scattering saturates after rTco<1, and before 

having appreciable decrease in this way, other factors not considered here, 

especially the electronic density, will come to play a role. The slope of the 

initial decrease depends upon the part of the interaction which is responsible 

for the anisotropy of the gap. If the relative change of the energy gap over 

the Fermi surface is of the order of 1/10, as is the case in Sn, we would guess 

that the factor appearing in the formula (58), ~~ Vo;zVz;o/ ( Vo;o- ~~ Vz;z) 2, be of the 

order of 10-2 or perhaps smaller. This leads to the initial slope of the curve 

of LITe versus 1/l of the order of 10-5 • According to the result obtained by 

Chanin, Lynton and Serin, the initial slope is about 2.7 X 10-6 for Al, In and 

Sn. The discrepancy is not uncomfortably large. A more complete map of the 

anisotropic gap over the Fermi surface would be desirable in this connection. 

Since Vz;v is thought to be symmetric and Vo;o is the dominant component, the 

scattering always depresses Tc. It seems that the increase of Tc observed in 

Tl alloy cannot be explained by the mean free path effect on the anisotropic 

gap. 

In the present theory we have assumed that the impurity potential is &

function-like and that it does not vary over the Fermi surface. To generalize 

the theory in this respect does not involve any serious difficulty: The inclusion 

of the higher l-wave scattering might reduce the slope of the initial decrease 

of Tc. 
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Note added in proof: The statement given in § 4 concerning the threshold of the excitation 

spectrum must be corrected, since the imaginary parts appearing in 10 and 11 are overlooked. The 
threshold becomes isotropic, strictly speaking, as soon as the scattering is introduced. In the 

limit -rJ 0 ~1 its value is given by w0 in (38) corresponding to minJ(IJ, ~). It tends to J 0 in the 

opposite limit, as one can see from {40) in the simple example. The magnitude of absorptive 

part is, however, anisotropic and we believe it would become isotropic only in the limit -rJ 0 ~1. 

To see this explicitly one must calculate the conductivity. The author is much indebted to Mr. 

K. Maki for critical and helpful discussions on this problem. 
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