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1 Introduction

Discrete symmetries not only play a prominent role in particle physics as selection rules

governing the structure of interactions, but they are also interesting by themselves from

the perspective of quantum field theory. Indeed, the conjecture that in quantum gravity

no global continuous symmetries exist is believed to apply also to global discrete sym-

metries [1]. String theory as a candidate for a quantum theory of gravity is therefore a

natural arena to study discrete symmetries and their emergence from gauge symmetries at

high energy scales as believed to be required for consistency with black hole physics. This

question has received a lot of recent attention in the context of compactifications of type

II string and M-theory [2–10]. If we focus for definiteness on type IIA compactifications

on a Calabi-Yau 3-fold X3, the appearance of a closed string Ramond-Ramond (RR) Zk

symmetry is in one-to-one correspondence with the existence of torsional (co)homology

groups on X3 [2]. Indeed, the smoking gun for a Zk symmetry in four-dimensional field

theory is the existence of Zk charged particles and strings [1]. While in field theory these

arise a priori as operators describing the associated probe particles and strings, in quantum

gravity all such operators are conjectured to be realized a forteriori as physical objects. In

type IIA compactifications these Zk charged particles and strings are due to wrapped D2-

and D4-branes along k-torsional 2- and 3-cycles. By definition, k copies of such k-torsional

cycles are homologically trivial, in agreement with the fact that k copies of the Zk charged

particles and strings are uncharged and can thus decay [2]. Furthermore, the existence

of such torsional 2- and 3-cycles implies the existence of a torsional 3-form α with the

property

k α = dw. (1.1)

Dimensional reduction of the RR 3-form C3 as C3 = A ∧ w + . . . gives rise to a massive

U(1) gauge potential A whose associated gauge symmetry is in fact broken to Zk, which is
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precisely the discrete symmetry observed in the effective action. Thus a closed string Zk

symmetry in type IIA on X3 manifests itself geometrically in the fact that [2]

TorH2(X3,Z) ≃ TorH3(X3,Z) = Zk,

TorH3(X3,Z) ≃ TorH4(X3,Z) = Zk.
(1.2)

More recently, the origin of discrete symmetries has been studied in the framework of

F-theory compactifications [11–16].1 One way how discrete symmetries arise turns out to

be from F-theory compactifications on genus-one fibrations without a section [11]. More

precisely, if a genus-one fibration possesses only a multi-section of order k (as opposed to a

rational section), this manifests itself generically in a Zk symmetry of the F-theory effective

action. In view of the geometric realization of closed string discrete symmetries in type

II theory sketched above, a natural question is whether torsional (co)homology plays any

role in this picture.

In this note we answer this question and along the way clarify a number of open

questions and puzzles concerning both the geometry and the field theory underlying the

class of discrete symmetries in F-theory studied so far in [11–16]. For concreteness we

will be working in the context of the simplest possible type of discrete symmetry, a Z2

symmetry, but our conclusions immediately extend to larger discrete symmetry groups.

Associated with a Z2 symmetry in the effective action of F-theory compactified to 2n

large dimensions is a pair of related fibrations PQ and PW which are genus-one fibrations

over a base B5−n of complex dimension 5 − n. The fibration PQ only possesses a bi-

section [11], while PW is the singular Jacobian of PQ which does exhibit a zero-section.

More generally, a Zk symmetry is related to a set of k isomorphism classes of genus-one

fibrations with the same Jacobian, classified by the Tate-Shafarevich group of the latter.

As we will discuss in great detail extending the results of [12, 16], both fibrations give

rise to identical compactifications in 2n dimensions, but when compactifying M-theory on

either of them to 2n − 1 dimensions, the theories are strikingly different. This difference

of the underlying M-theory compactification will be shown to correspond, amongst other

things, to the presence of torsional (co)homology on the Jacobian fibration PW , which

is absent on PQ. For simplicity we will mostly focus on the case n = 3 in the sequel

(with the exception of the end of section 2), which corresponds to F-theory and M-theory

compactifcations to six and five dimensions, respectively. We will see how the two different

M-theory compactifications give rise to the same effective F-theory model in six dimensions

by taking into account that the Higgs field which breaks to the Z2 symmetry can have

a spatially varying vacuum expectation value along the circle relating the six and five-

dimensional theories. This will offer a dual perspective on, and allow us to derive directly

quantitative properties of, the observation first made in [18], and subsequently substantially

developed further in [13, 15], that F-theory compactifications without a section are dual in

terms of a fluxed circle reduction to M-theory.

This field theoretic picture for F/M-theory on a genus-one fibration PQ without section

will be developed in section 2. At the end of this section we also comment further on the

1Non-abelian discrete symmetries in F-theory spectral cover models have been discussed in [17] and

references therein.
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G4 flux in four-dimensional compactifications introduced for these models in [16]. We then

analyse in section 3 the different geometric and physical properties of F/M-theory on the

Jacobian fibration PW . We explictly identify torsional 3-cycles and analyse a birational

blow-up of PW which allows us to deduce also the expected torsional 2-cycles. More details

on this computation can be found in the appendix A.

2 Z2 symmetry from genus-one fibrations

The first type of geometry, PQ, is a genus-one fibration whose fibre takes the form of a

quartic hypersurface in P112 with homogenous coordinates [u : v : w],

PQ = w2 + b0u
2w + b1uvw + b2v

2w + c0u
4

+ c1u
3v + c2u

2v2 + c3uv
3 + c4v

4.
(2.1)

The coefficients are sections of suitable line bundles over the base B2, which we take, for

the time-being, to be two-complex-dimensional. As first discussed in detail in [11], this

fibration does not possess a section, but only a bi-section

Ubi : {u = 0} (2.2)

intersecting the generic fibre in two points exchanged by monodromies along a branch cut

on B2. For generic coefficients the fibration contains a smooth I2-fibre over a specific co-

dimension-two locus C on the base B2. Each of the two fibre components AC and BC over

C are intersected by the bi-section once. M2-branes wrapping the two fibre components

give rise, in the F-theory limit, to massless states with Z2-charge 1 mod 2. This Z2

charge manifests itself explicitly as a selection rule governing the Lagrangian and becomes

particularly effective in the presence of extra non-abelian gauge groups [12–16].

The appearance of a Z2-symmetry in the six-dimensional effective theory has been

understood in [12–16] as the effect of the Higgsing of a six-dimensional U(1) gauge sym-

metry with a Higgs field of charge 2.2 Let us briefly review this six-dimensional picture.

The unhiggsed theory arises by F-theory compactification on a related elliptic fibration P̂Q

with Mordell-Weil group of rank one, given by [20]

P̂Q = sw2 + b0s
2u2w + b1suvw + b2v

2w+

+ c0s
3u4 + c1s

2u3v + c2su
2v2 + c3uv

3.
(2.3)

Compared to (2.1), the coefficient c4 vanishes; the hypersurface PQ|c4≡0 acquires a conifold

singularity along the co-dimension four locus w = u = b2 = c3 = 0. These conifold

singularities admit a small resolution by blowing up the ambient space, thereby introducing

the exceptional divisor S : s = 0. The resulting fibration P̂Q is therefore described by a

Bl1P112[4]-fibration over the base and has two independent rational sections S and U .

To avoid confusion we will reserve the notation U for the section U : u = 0 on P̂Q, in

contrast to the bi-section Ubi on PQ. In F-theory on P̂Q, the six-dimensional U(1) symmetry

2See [19] for a recent discussion of non-abelian Higgsing in F-theory.
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fibre over CI

AI BI

fibre over CII

AII BII

Figure 1. The fibre structure over the singlet curves CI and CII taken from [16] with blue denoting

the section S and green the section U .

AI BI AII BII

S -1 2 0 1

U 1 0 1 0

S + U 0 2 1 1

S − U -2 2 -1 1

Table 1. U(1) charges of M2-branes wrapping fibre components in M-theory compactified on P̂Q.

arises by duality with M-theory upon expanding C3 = A ∧ w with w the Poincaré dual

of the image of the rational section S under the Shioda map, where the image of S is

S − U − (b2 + K̄). The fibre splits over two different co-dimension-two loci CI and CII

into two rational curves AI , BI and, respectively, AII , BII as depicted in figure 1. Our

notation is such that the fibre components AI and AII are intersected by the section U .

The locus CI = {b2 = 0} ∩ {c3 = 0} is the locus of the conifold singularities in PQ|c4≡0,

while the locus CII is associated with a more complicated prime ideal. Note that the locus

C on PQ is the remnant of CII after switching on c4. The intersection numbers of the

fibre components with the independent sections S and U are also summarized in table 1.

The intersection number with S−U is the charge of M2-branes wrapping the various fibre

components with respect to the six-dimensional massless U(1) gauge symmetry. Thus, the

Higgs field of charge ±2 with respect to the six-dimensional U(1) symmetry is associated

with an M2-brane wrapping either of the fibre components over the locus CI . The conifold

transition from P̂Q to PQ corresponds to giving the Higgs field with charge −2 a VEV,

thereby breaking the six-dimensional U(1) gauge symmetry to Z2.

The appearance of this Z2 discrete symmetry in F-theory as reviewed above leads to a

puzzle: following the field theoretic arguments of [1], we expect sets of Z2 charged particles

and, since we are working in six spacetime dimensions, also sets of dual (3+1)-dimensional

operators. Adapting the logic of [2] to the case at hand these should come from M2- and

M5-branes wrapped on torsional 2- and 3-cycles, respectively. However, for generic base

spaces B2 the fibration PQ does not possess any such torsion elements as follows from the

general analysis of integral cohomologies of toric hypersurfaces in [21].

We now resolve the puzzle about the absence of torsion on PQ by carefully identi-

fying the various U(1) symmetries and the Higgs field, in particular regarding the five-
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dimensional versus six-dimensional fields. Let us consider M-theory compactified on P̂Q

to five spacetime dimensions. In five dimensions, both independent sections S and U give

rise to a bona fide U(1) gauge symmetry from expanding C3.
3 The intersection numbers

in table 1 then compute the charges of M2-branes wrapping the various fibre components

over CI and CII .

The deformation process that relates P̂Q with PQ corresponds to first blowing down

the exceptional divisor S and then switching on c4,

P̂Q → PQ|c4≡0 → PQ. (2.4)

Importantly, on the singular fibration PQ|c4≡0 the fibre AI shrinks to zero size while all

other fibres remain of finite volume. In particular the volume of AII and BII are equal

and non-zero [12, 16] and, as further stressed in [16], it is the M2-branes wrapping AI that

become massless. The associated hypermultiplet serves as the massless Higgs field which

obtains a VEV upon switching on c4. Since the six-dimensional U(1) corresponds to the

combination S−U and the Higgs field is uncharged under S+U , one might be tempted to

work in the basis U(1)S−U and U(1)S+U and naively conclude that in the five-dimensional

field theory this deformation higgses U(1)S+U × U(1)S−U → U(1)S+U × Z2. However

the correct prescription for determining the discrete symmetry is to bring the Higgs, via

a unimodular transformation, into a basis where it is only charged under a single U(1),

cf. appendix A of [16]. It is simple to check that the appropriate basis is U(1)S+U and

U(1)U . Since the Higgs field has charge (0, 1) under these symmetries, the gauge symmetry

breaking in five dimensions is

U(1)U ×U(1)S+U → U(1)S+U . (2.5)

This explains the absence of Z2-torsion (co)homology on PQ: in the five-dimensional ef-

fective theory obtained by dimensional reduction of M-theory on PQ no discrete gauge

symmetry arises. Similarly, and again consistently with absence of torsion on PQ, com-

pactification of type II theory on PQ gives rise to a four-dimensional N = 2 effective theory

with gauge group U(1)S+U and no discrete RR symmetry.

This conclusion, in turn, calls for an explanation of the fact that in the six-dimensional

F-theory compactification on PQ there is a Z2 symmetry while in the five-dimensional M-

theory compactification the gauge group is U(1)S+U . To understand this one must analyse

the reduction of the six-dimensional theory on a circle. Consider the five-dimensional

theory obtained from M-theory on P̂Q, i.e. before the Higgsing. This theory has two U(1)

symmetries U(1)U and U(1)S−U . This particular basis is the appropriate one to interpret

U(1)U as the Kaluza-Klein U(1) coming from the metric upon reducing the six-dimensional

theory on a circle and U(1)S−U as the zero mode of the six-dimensional U(1): indeed the

tower of states constructed by wrapping the full elliptic fibre n times generates the full

integer charges for U(1)U and all have equal charges under U(1)S−U , as expected from

a KK tower. Now since the Higgs field has charge 1 under U(1)U it is a first excited

3We ignore further U(1) symmetries due to elements of H1,1(B2) as these play no role in our considera-

tions.
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KK mode (see [13, 15, 16] for discussions on this point). The important point is that

this implies that the background has a vacuum expectation value for the Higgs which is

spatially varying along the circle. This mixes the geometric action on the wavefunctions

associated to translations along the circle with the internal gauge symmetry. Since it is a

first excited KK mode but has charge −2 under the six-dimensional U(1)S−U the remaining

symmetry

U(1)S+U = U(1)S−U + 2U(1)U (2.6)

corresponds to moving at twice the rate along the circle as along the internal U(1). In

particular, it means that the Z2 subgroup of U(1)S−U , i.e. a shift in phase by π, takes us

a full path around the circle. The Z2 is therefore actually a five-dimensional symmetry

and becomes a subgroup of the remnant five-dimensional symmetry U(1)S+U constructed

from U(1)U and the zero mode of U(1)S−U . To understand why in the six-dimensional

theory only the Z2 symmetry remains, consider decompactification of the circle to a line.

We should think of the action of going around the circle part of the Z2 as a map to

the point at infinity added to the real line to make the circle. Upon decompactification

this point is removed and what remains is just the action of the Z2 subgroup of the six-

dimensional U(1)S−U . Another way to think about it is that the wavefunction of the first

KK mode becomes flat and we have the usual Higgsing of a U(1) with a constant vacuum

expectation value.

A related way to see the emergence of a Z2 symmetry in F-theory is as follows: a Z2

symmetry means that two copies of a state of charge 1 can decay to the vacuum. Consider

two copies of the state associated with an M2-brane along AC on PQ, where we recall

that on PQ, over the point set C the fiber splits into two fiber components AC and BC .

These are related to AII and BII on P̂Q. In homology [AC ] = [BC ] and thus this pair

of states is equivalent to an M2-brane along [AC ] + [BC ] = [T 2]. From the perspective of

five-dimensional M-theory a state along T 2 carries KK charge and is thus different from the

vacuum, while in the six-dimensional F-theory such a state is equivalent to the vacuum.

Put differently, the relation [AC ] = [BC ] implies that 2[AC ] = [T 2], i.e. AC is 2-torsion in

H2(PQ,Z)/[T
2]. Thus while no torsion arises in H2(PQ,Z) on a bi-section fibration such as

PQ, torsion modulo the fiber class does appear and guarantees a Z2 symmetry in F-theory,

but not in M-theory.4

The above picture of Higgsing has a nice reformulation in terms of a Stückelberg

mechanism. The usual way to write the Higgs field is as a modulus and a phase, φ = heic,

where the phase part is associated with an axion c. Since the Higgs is a first KK mode, it

depends on the circle coordinate y as eiy, which implies a linear profile for the axion field.

The field therefore has an associated flux when integrated over the circle. The fact that

the F-theory T-dual perspective to the M-theory geometry should be a fluxed reduction

along a circle was first noted in [18]. More recently, in [13, 15], this was developed further

and applied to bi-section models. In particular the duality with the flux reduction was

4This is to be contrasted with the effect of k-torsional elements in the Mordell-Weil group of rational sec-

tions, which, as shown in [22], give rise to k-torsional divisors modulo certain resolution divisors associated

with the appearance non-abelian gauge symmetry.
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shown to reproduce the expected lower-dimensional physics including the Chern-Simons

terms. The flux then breaks the KK U(1)U while the fact that the Higgs has charge −2

under the six-dimensional U(1)S−U means that the axion couples to it with coefficient 2

and (linearly) breaks it. The resulting five-dimensional U(1) is then the combination that

remains of the zero mode of U(1)S−U and U(1)U as discussed above.

In the next section we will present the M-theory geometric perspective on this breaking

and the particular point of why in M-theory no Z2 symmetry remains, while in F-theory

a Z2 symmetry does remain. To summarise there are 3 dual perspectives on the same

physics of the breaking: the linear Higgs field theory (open string picture), the non-linear

or Stückelberg mechanism (closed string picture),5 and the M-theory geometry (T-dual

picture). Note that these are really dual rather than co-existing effects.

Our analysis immediately generalises to compactifications of F/M-theory to four and,

respectively, three dimensions on fibrations over a three-complex dimensional base B3.

Among the novelties compared to the six- and five-dimensional case is the appearance of

G4-flux as analysed in [16]. On PQ a G4-flux of the form

G4(P ) = [σ1]−
1

2
Ubi ∧ P (2.7)

will in general compensate for the change in the Euler characteristic from P̂Q to PQ, anal-

ogously to the previously discussed conifold transitions in F/M-theory of [23–25]. In (2.7)

σ0 = {u = 0} ∩ {w = 0} ∩ {ρ = 0},

σ1 = {u = 0} ∩ {w = −b2v
2} ∩ {ρ = 0}

(2.8)

are four-cycles on PQ described as complete intersections in the ambient P112-fibration over

B3 and the flux G4 fixes the complex structure such that c4 = ρ τ and P : {ρ = 0}.6 Let us

briefly describe the effect of this G4 on the massless spectrum of the compactification due

to M2-branes wrapping the fibre components over the locus C. In M-theory compactified

on PQ to three dimensions the charges of the states arising from M2-branes along AC and

BC with respect to the surviving U(1)S+U can be read off from table 1 by identifying

S + U on P̂Q with Ubi on PQ. Since states from AC and BC carry the same quantum

numbers, counting the total number of charged zero-modes requires adding up the zero-

mode excitations from both fibre components. The integrals
∫

AC

G4 =
1

2

∫

C

P,

∫

BC

G4 = −
1

2

∫

C

P (2.9)

count the separate chiral index of states on AC and BC . Note that both quantities are

integer because the homology class of C is even. Adding up both contributions we see

that the net chirality with respect to U(1)S+U induced by the flux vanishes. In the four-

dimensional F-theory model on PQ, U(1)S+U is replaced by the Z2 symmetry as discussed,

and states along AC and BC both carry Z2 charge 1 mod 2. Clearly, there is no notion

of chirality associated with this Z2, and this is well in agreement with the property of the

flux of not inducing any U(1)S+U chirality already in M-theory.

5In [13, 15] a map from the axion to the closed-string sector of IIB has been proposed.
6This assumes vanishing flux on P̂Q, see [16] for generalisations.

– 7 –



J
H
E
P
0
6
(
2
0
1
5
)
0
2
9

3 Torsion from the Weierstraß fibration

The second class of fibrations describing the same six-dimensional F-theory compactifica-

tion is given by the Jacobian associated with the fibration PQ [11, 12]. It takes the form

of a non-generic Weierstraß model

PW = y2 − x3 − fxz4 − gz6 (3.1)

with [x : y : z] homogeneous coordinates of P231 and

f = e1 e3 −
1

3
e22 − 4e0 e4, (3.2)

g = −e0e
2
3 +

1

3
e1e2e3 −

2

27
e32 +

8

3
e0e2e4 − e21e4

where the ei’s are given by

e0 = −c0 +
1

4
b20, e1 = −c1 +

1

2
b0b1,

e2 = −c2 +
1

2
b0b2 +

1

4
b21, e3 = −c3 +

1

2
b1b2,

e4 = −c4 +
1

4
b22. (3.3)

We focus again on a two-complex dimensional base space B2. While PQ and PW have

the same discriminant, their fibre structure differs in two crucial ways [11]: unlike PQ, the

Weierstraß model does have a holomorphic zero-section Z : z = 0. Second, PW exhibits

non crepant-resolvable I2-singularities over the specific locus C on B2 over which the fibre

in PQ is a smooth I2 fibre.

The Weierstraß model PW is again related via a conifold transition to a smooth model

P̂W . As shown in [20]7 this resolved model can be identified with the geometry of P̂Q by

mapping (blowing-up) PW |c4≡0 to the Bl1P112[4]-fibration over B2. The conifold transition

occurs as the two-step process

P̂W → PW |c4≡0 → PW . (3.4)

As pointed out in [12, 16], the crucial difference compared to the transition relating P̂Q to

PQ is that now in passing from P̂W → PW |c4≡0 the fibre component BI and, simultaneously,

BII shrink to zero size. Due to the fibration structure the Kähler form on the Bl1P112[4]

fibration is given by J = Jf + π∗Jb, where Jb a Kähler form on the base and the volume

of the curves in the fibre depends only on Jf . Using the intersection numbers in table 1

allows us to parametrise Jf as

Jf = t1 U + t2 (S + U)

with t1, t2 > 0. Integrating J over the curves AI , AII , BI and BII yields
∫

AI

J = t1,

∫

BI

J = 2 t2,

∫

AII

J = t1 + t2,

∫

BII

J = t2 .

7For details see p. 22 of this reference.
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Therefore, we can identify the blow-down to the singular quartic (2.4) with the limit t1 → 0,

while the blow-down to the singular Weierstraß (3.4) corresponds to t2 → 0. What becomes

massless after this shrinking are M2-branes wrapping BI (and also those wrapping BII).

The M2-branes along the vanishing BI furnish the Higgs field which acquires a VEV upon

deforming the model from PW |c4≡0 → PW . The states associated with BII are mere

spectators in this process. From table 1 we read off that e.g. under U(1)U × U(1)S−U the

Higgs field has charges (0, 2). Hence, there does not exist any unimodular transformation

to a different basis in which the Higgs field is charged only under one of the U(1)s with

charge 1. As a result it breaks

U(1)U ×U(1)S−U → U(1)U × Z2, (3.5)

in contrast to (2.5). Thus compactification of M-theory to five dimensions on PW does

exhibit a bona fide Z2 symmetry. Since the Weierstraß model has a zero-section, standard

duality to F-theory in six dimensions turns U(1)U into part of the six-dimensional diffeo-

morphism invariance and only the Z2 symmetry remains. As we have seen the mechanism

how this Z2 comes about in F-theory on PW is very different to the PQ model.

This prompts the quest for torsional cohomology in the geometry PW . To understand

this we now analyze the conifold transition from the smooth P̂W to PW in more detail.

The conifold transition occurs along the lines of the well-known general analysis of [26–28]

except for some peculiarities which to the best of our knowledge have not been addressed

before and which are responsible for the appearance of torsion.

On P̂W the locus CI = {b2 = 0} ∩ {c3 = 0} consists of N = [b2] · [c3] points on

the base B2 of the fibration over which the fibre factorises. Let us label the two fibre

components by Bi
I and Ai

I with i = 1, . . . , N . Due to the fibration structure all Bi
I are

homologous to each other. This gives rise to N − M = N − 1 homology relations of the

form B1
I = Bj

I for j = 2, . . . , N . Each of these homology relations is associated with a

3-chain Γ1j with ∂Γ1j = B1
I −Bj

I . The conifold transition first shrinks the Bi
I to zero size

and then deforms them into 3-spheres Si
3. Following the general arguments of [26–28], the

3-spheres enjoy M = 1 homology relations such that the number of independent spheres

after the deformation is N − 1.

Note once more that at the same time as the Bi
I shrink, also the fibre component BII

over the locus CII shrinks to zero size, but the deformation corresponding to switching on

c4 does not deform the resulting singularities into 3-spheres. This is just the statement

that on PW non-crepant resolvable I2 loci in the fibre remain. We will return to the fate

of these singularities later.

According to the general analysis of the conifold transition with M = 1, there must

exist one ‘magnetic’ 4-cycle D which intersects each of the two-spheres Bi
I . This 4-cycle is

given by the divisor S with intersection numbers

D ·Bi
I = 2. (3.6)

Indeed, the rational section S wraps the entire fibre Ai
I , and the two intersection points

with Bi
I are evident from figure 1. Importantly, the other section U does not intersect the

– 9 –
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blow down

to sing. Weierstraß

deformation

of sing. Weierstraß

Figure 2. Figure showing the boundaries induced after the conifold transition in the Weierstraß

hypersurface in P231. The divisor S is denoted in blue and U is denoted in green. After the

transition U does not develop a boundary and therefore is associated to the five-dimensional U(1)U
symmetry. On the other hand S develops two boundaries of the same orientation. The sum over all

the points Bi
I for each one of the two boundaries illustrated gives the torsional 3-cycle associated

to the Z2 symmetry.

Bi
I and therefore, since the Bi

I are fibral curves, the fibration structure guarantees that

no other integer four-cycle exists intersecting the Bi
I . In particular there exists no such

divisor with intersection number 1. After shrinking the Bi
I cycles to nodes and deforming

them into Si
3, each one induces a boundary on S turning it into a 4-chain. The crucial

peculiarity of the conifold transition P̂W → PW is that S intersects the two-spheres at

two points and so they each induce a boundary of the same orientation. Thus the precise

homological relation obeyed by the Si
3 is

2 Γ = ∂D̂, Γ =
∑

i

Si
3. (3.7)

This is illustrated in figure 2. We therefore identify the 3-cycle Γ as a Z2 element of

TorH3(PW ,Z). For a generic base B2 this is the only such element and so

TorH3(PW ,Z) = Z2. (3.8)

The argument about the boundary of the 4-chain D̂ after the transition made crucial use of

the fact that D intersects each of the shrinking 2-cycles Bi
I . Note that in addition, D also

intersects the shrinking fibre component BII over CII as is evident from table 1. As will

be discussed in more detail momentarily, it is possible to resolve these singularities after a

suitable blow-up in the base B2 as in [29]. This will replace the former intersection points

with D by an even-dimensional cycle and thus does not induce any additional boundaries

for the 4-chain D̂ which could spoil the argument. Consistently, the general analysis of [29]

shows that after the blow-up in the base and resolving, the resulting geometry possesses

non-trivial torsional cohomology.

Having identified a non-trivial Z2 element in TorH3(PW ,Z) the universal coefficient

theorem implies that on a smooth manifold also TorH2(PW ,Z) is non-trivial. In order

to identify these torsional cycles consider the fully resolved Bl1P112[4]-fibration. We are

interested in the homology classes of the fibre components AI , BI , AII and BII . Since

there are only two homologically independent sections these four fibre components must

enjoy certain homology relations. Being fibral curves they only intersect the sections S and

U (in the absence of non-abelian gauge symmetries) and so these intersection numbers, as

– 10 –
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Figure 3. Figure showing the 3-chains stretching between a point in the set of points CI and two

points in the set CII in the resolved space. The boundary of the chain is therefore 2BII − BI .

After the deformation the boundary BI is lost leaving a chain with a boundary 2BII and thereby

identifying BII as the torsional 2-cycle.

given in table 1, determine uniquely their homology classes. In particular we see that in

homology 2BII = BI , which means that there are 3-chains stretching between a point in

the set of points CI and two points in the set CII with a boundary 2BII −BI . See figure 3

for an illustration of this. Now as we perform the conifold transition over the CI loci the BI

shrink and then are deformed as S3s and so no longer form boundaries to these 3-chains.

If we were able to perform these transitions over the CI loci without affecting the CII loci

the remaining 3-chains would have a boundary 2BII and so the BII would be associated to

the expected torsional 2-cycles. This is essentially the correct identification, however there

is a subtlety due to the fact that necessarily the BII must simultaneously shrink in order

to be able to perform the deformation.

In order to see the torsional cycles on a smooth manifold we must resolve the loci

CII . First we note that since we have found the torsional 3-cycles explicitly, any smooth

resolution implies the existence of the torsional 2-cycles identified above via the universal

coefficient theorem. One way to perform the resolution is by a small resolution which would

lead to a non-Kähler manifold, but as stated would be sufficient to identify the torsional

cycles (see [30] for examples of this process). Another way, following [29], is by blowing

up the base over the CII locus and then resolving the resulting SU(2) singularity over the

exceptional divisor of this base blow-up TII . The resulting space is not Calabi-Yau but still

Kähler. Over certain points ĈII on TII the fibre will enhance to type I3 (corresponding to

SU(2)-matter). In this smooth geometry the torsional 2-cycles can be identified as before

in terms of 3-chains stretching between the points CI and ĈII . In the appendix we present

– 11 –
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blow down

to sing. quartic

deformation

of sing. quartic

Figure 4. Figure showing the boundaries induced after the conifold transition in the quartic

hypersurface in P112. The divisors S, denoted in blue, and U , denoted in green, both develop a

single boundary from each of the Ai
I of opposite orientation. The two boundaries are then glued

together to form the divisor S + U corresponding to the remnant five-dimensional U(1) symmetry.

a detailed analysis of this procedure and in particular identify the explicit components of

the fibre which after the deformation become the torsional 2-cycles.

With this understanding it is worth returning to the PQ fibration to see why this

torsion is absent there. Now the divisors S and U both develop a single boundary from

each of the Ai
I of opposite orientation. Therefore we can make a cycle from these two chains

by gluing these boundaries forming the divisor S + U . The other four-chain associated to

U has only a single boundary and therefore no torsion element arises. This is illustrated

in figure 4. Note that if we chose to consider the 4-chain corresponding to S − U it would

indeed have 2 boundaries of the same orientation at each locus, but this would not imply

torsion since there are other 4-chains, S and U , which have half the boundary of S − U .

Consistent with this we see that the identification of the torsional 2-cycles presented in

the above paragraphs is also modified because now it is the AI components which shrink

and are removed as boundaries to 3-chains associated to homology relations between the

components. But this does not create a new torsion cycle but just implies in homology

that AII = BII .

By Poincaré duality the existence of a Z2 torsional 3-cycle implies the existence of a

3-form α such that

2α = dw. (3.9)

The non-closed 2-form w is the Poincaré dual to the 4-chain D̂ and can be interpreted as the

generator of the Z2 symmetry. Expanding the M-theory 3-form C3 as C3 = A∧w+. . . gives

rise to a massive U(1) gauge field in five spacetime dimensions which precisely corresponds

to the original U(1)S−U gauge symmetry after Higgsing (see [31] for a discussion of this

mechanism in the context of F-theory).

We conclude by discussing the physical significance of the identified torsional cycles.8

As alluded to already in the introduction, a Z2 gauge theory contains a characteristic set

of Wilson line operators [1]. If the theory contains physical Z2 electrically charge particles,

these operators can be interpreted as describing the associated world-line. However, from a

quantum field theoretic perspective the Wilson line operators exist even in absence of any

Z2 charged particle in the physical particle spectrum. In quantum gravity, by contrast, it

8See [2] for an analogous analysis in four-dimensional Type II compactifications.
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is conjectured that the full lattice of possible charges is populated by (possibly massive)

physical states [1]. To appreciate how this conjecture is indeed confirmed in our M/F-

theoretic setting, consider the five-dimensional effective field theory associated with M-

theory compactified on PW . The Wilson line operators describe the word-line of M2-branes

wrapping the identified torsional 2-cycles, which do exist as physical particles, in perfect

agreement with the above conjecture. One might wonder if a modification of the geometry

would be possible that gives rise to a Z2 gauge theory without such physical Z2 charged

particles. As we have seen, the torsional 2-cycles wrapped by the associated M2-branes are

related to the fibre components over CII before the deformation. The class of CII depends

on the class of the coefficients ci and bi defining the Weierstraß model. Recall that these

transform as sections of certain line bundles on the base. One might try to exploit the

existing freedom in choosing these line bundles to arrange for the cohomology class of the

locus CII to be trivial, in which case no Z2 charged states would exist. It is easy to see by

direct inspection of the coefficient classes (cf. e.g. table 1 of [16]), however, that this also

removes the Higgs field along CI and thus destroys the Z2 gauge theory in the first place.

This is of course in agreement with the universal coefficient theorem which guarantees that

TorH3(PW ,Z) ≃ TorH2(PW ,Z).

In five dimensions, the magnetic dual to an electrically charged particle is a string. In

our setting these magnetic objects again exist as physical objects arising from M5-branes

wrapping the 4-chain D̂. Since D̂ has the boundary 2Γ, one can consider a configuration

consisting of an M5-brane on the 4-chain D̂ together with two M5-branes on Γ. This is

the M-theory analogue of the configuration considered before in [28] with the important

difference that here the M5-branes on the boundary of D̂ give rise to two membranes in

five dimensions ending on the (‘magnetic’) string. This again realises the expectations

based on the general framework of Z2 gauge theory described in [1]: in a four-dimensional

Zk gauge theory, k units of flux tubes (strings) end on a magnetic monopole to turn the

full configuration into a stable object, and in five dimensions the strings and magnetic

monopoles become membranes and ‘magnetic’ strings.

4 Conclusions

In this paper we have studied the relation between discrete gauge symmetry and torsional

homology in F/M-theory. A Zk discrete symmetry in F-theory is associated with k isomor-

phism classes of inequivalent genus-one fibrations with the same Jacobian. These form the

Tate-Shafarevich group associated with the Jacobian. Focusing here on k = 2 for simplicity

we have studied in detail the two different fibrations PQ and PW associated with the ap-

pearance of a Z2 discrete gauge group in F-theory, where PQ is a smooth P112[4]-fibration

and PW represents its singular Jacobian fibration in Weierstrass form [11]. Compactifica-

tions on PQ have been studied in quite some detail recently in [11–16]. We have shown

in this article that compactification of M-theory on PQ gives rise to a fibral U(1) gauge

symmetry and discussed how this symmetry is lifted to a Z2 symmetry in the F-theory

limit. By contrast, M-theory on PW yields fibral gauge group U(1) × Z2, of which only

the Z2 part survives in the F-theory limit. Consistently with field theoretic expectations

based on the different M-theory compactifications on PQ and PW , it is only on PW that
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torsional homology arises. We have explicitly identified Z2 torsional 2- and 3-cycles by

analyzing a birational blowup-up of PW . On PQ, on the other hand, torsional homology

appears only in the formal sense of a Z2 torsional fibral 2-cycle modulo the fiber class. It

would be interesting to explicitly generalize our analysis of the appearance of torsion to

fibrations which give rise to higher discrete symmetry groups.

A rather different notion of torsion arises in the context of the Mordell-Weil group

of rational sections. The Mordell-Weil group can have not only a free part corresponding

to massless U(1) symmetries, but also a torsional component. As conjectured in [32] and

proven in [22], such Mordell-Weil torsion enforces non-simply connected non-abelian gauge

groups in F-theory. Geometrically, fibrations with torsional Mordell-Weil group exhibit

torsional divisors modulo the Cartan divisors associated with (parts of) the non-abelian

gauge group [22]. Interestingly, fibrations with Mordell-Weil torsion and with discrete

gauge symmetries are interchanged by mirror symmetry in the fiber [14]. This suggests an

intriguing connection between the Tate-Shafarevich group underlying discrete symmetries

and the torsion component of the Mordell-Weil group of rational sections, which will be

exciting to further study in more detail.
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A Blowing up the matter locus

As outlined in the main text, one way to identify the torsional 2-cycles in a smooth geometry

is by blowing up the CII locus in the base of the fibration [29]. The resulting space is

birationally equivalent to the original one and therefore allows one to deduce the torsional

cohomology also for the latter [11]. In this appendix we give the technical details of this

procedure.

Let us begin with a simple example which we will build up to the final result. Consider

the U(1)-restricted Tate model presented in [33] given by the hypersurface PT in P231

PT = y2 + a1xyz + a3yz
3 − x3 − a2x

2z2 − a4xz
4 = 0 . (A.1)

This fibration is a specialization of the Weierstrass model (3.1), (3.2), (3.3) with no double-

charged singlets. It exhibits two independent sections and a set of points with conifold sin-

gularities TII where matter with charge one with respect to the associated U(1) symmetry

resides,

TII : a3 = a4 = 0 . (A.2)

One can resolve these singularities through a blow-up in the ambient variety, involving the

fibre co-ordinates by sending (x, y) → (xs, ys) and imposing the scaling relation (x, y, s) ∼
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(

λ−1x, λ−1y, λs
)

. The blowup divisor S : s = 0 acts as a rational section, in addition to the

zero section Z : z = 0. The resulting manifold is smooth and over the locus a3 = a4 = 0

the fibre is of type I2.

Let us now consider starting from the singular fibration but instead of resolving we blow

up the base over the locus TII by sending (a3, a4) → (a3t, a4t) and introducing the relation

(a3, a4, t) ∼
(

λ−1a3, λ
−1a4, λt

)

. The resulting geometry now has an SU(2) singularity over

the exceptional divisor

T : t = 0. (A.3)

Note that after this replacement t does not factor from PT , which means that the proper

transform of the hypersurface equation has non-vanishing fist Chern class, i.e. is not

Calabi-Yau any more. Nonetheless the space is Kähler and we can proceed, though dy-

namically this configuration is unlikely to be stable due to the absence of supersymmetry.

It merely serves as a birational auxiliary geometry which allows us to identify the torsional

cycles. We can resolve the SU(2) singularity in the standard way of resolving non-abelian

singularities over divisors by performing a second blow-up involving now the fibre coor-

dinates (x, y, t) → (xs, ys, ts) and identifying (x, y, t, s) ∼
(

λ−1x, λ−1y, λ−1t, λs
)

. The

resolved fibration takes the form

P̂T = y2 + a1xyz + a3tyz
3 − sx3 − a2x

2z2 − a4txz
4 = 0 . (A.4)

This is a smooth space. The fibre over a generic point on T is of type I2 with the two

components

AII : T ∩ P̂T ∩ {Cbase} ,

BII : S ∩ P̂T ∩ {Cbase} ,
(A.5)

where {Cbase} is some curve in the base intersecting intersecting T at a generic point.

These two components intersect at two points.

Over two sets of special points along the divisor t = 0 in the base the fibre changes.

The first set DII corresponds to the locus DII : {t = 0} ∩
{

4a2 + a21 = 0
}

. Over this

locus the fibre becomes of type III. There is no symmetry enhancement or matter states

associated to this locus. The second more interesting locus is given by ĈII : {t = 0} ∩
{

a2a
2
3 − a1a3a4 − a24 = 0

}

. Over this locus of points the B components of the fibre splits

into 2 components

BII |ĈII
→ BII,1 +BII,2. (A.6)

The fibre becomes type I3 which signals the presence of matter transforming in the funda-

mental of SU(2).

There are two important ways that this toy example differs from the singular Weier-

straß model we are interested in. The first, quantitative, difference is that the matter

point locus TII in the example is very simple while the corresponding locus CII in the full

model (3.1), (3.2), (3.3) is very complicated. This makes performing the blow-up in the

base, though conceptually equivalent, technically difficult. We will return to this later.

The second, qualitative, difference is that in the full model there are two rather than one

matter loci, CI and CII . We can proceed by blowing up CII → T as in the example above.
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However the key point is that the resolution (x, y, t) → (xs, ys, ts) will only resolve the

SU(2) singularity over T but not the singularity of CI .

We will therefore require a further resolution. Importantly this will introduce another

independent homology class for the components of the fibre independent of the Cartan

of the SU(2). Therefore now in the Kähler cone we will have an additional degeneration

possibility where the CI locus becomes singular while the T divisor remains smooth. In

this limit we can then deform the CI locus and reach the smooth geometry with the Z2

discrete symmetry and torsion. Alternatively we can perform the deformation first and

then blow up the base in the deformed model, since the blow-up is localised away from the

deformation locus this should lead to the same result.

In the main text we have identified the torsional 2-cycles by studying the intersection

numbers of the sections with the resolved Weierstraß model. This is equivalent to looking

at their U(1) charges. The intersection of the section with the components of the fibre

over the CI locus remain unchanged by a blow-up in the base over the CII locus. Indeed

it is clear that the component BI of the fibre over CI which shrinks and is then deformed

must have vanishing intersection with U , since this remains as the zero section after the

deformation; furthermore since the intersection with S−U is the 6-dimensional U(1) charge

(of the massless Higgs), it is independentof the resolution. Therefore it must be that the

shrinking component intersects S with +2 and so the argument for the existence of the 3-

chains goes through for the blown-up base geometry as long as we can identify components

of the fibre which have the same intersection numbers as BII in table 1. Since this would

mean they cannot intersect the Cartan of the SU(2) they can only arise as combinations

of the fibre components over the analogue of the matter points ĈII in the full Weierstrass

model PW . They therefore will induce the 3-chains as described in the main text.

Let us now turn to applying this procedure to the full model PW (3.1). As analysed

in [12, 14, 16], the single-charged locus CII is given by a complicated prime ideal. We shall

use the particular form given in [12] where it is given by the (non-transversal) intersection

of the 7 polynomials

H1 = e1b
4 − 2e2e3b

2 + 2e33,

H2 = 2e0b
4 − 2e22b

2 + e1e3b
2 + 2e2e

2
3,

H3 = −e1e2b
2 + 2e0e3b

2 + e1e
2
3,

H4 = −e21b
2 + 4e0e

2
3,

H5 = 2e0e1b
2 + e21e3 − 4e0e2e3,

H6 = 4e20b
2 + e21e2 − 4e0e

2
2 + 2e0e1e3,

H7 = e31 − 4e0e1e2 + 8e20e3 .

(A.7)

Here the ei are as in (3.2) and we are working with the singular geometry corresponding

to c4 ≡ 0, which implies e4 = 1

4
b2 (after relabeling b2 → b). To blow up the zero-locus of

this ideal we can introduce new coordinates fi and t and write the blown-up space as the

variety corresponding to the vanishing locus of the ideal

(PW , f1t−H1, . . . , f7t−H7). (A.8)
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We further impose the scaling relation associated to the new coordinate t

(f1, f2, . . . , t) ∼
(

λf1, λf2, . . . , λ
−1t

)

. (A.9)

We can then resolve the SU(2) singularity over T : t = 0 as before by (x, y, t) → (xr, yr, tr)

and by imposing (x, y, t, r) ∼
(

λ−1x, λ−1y, λ−1t, λr
)

. The resulting space is now smooth

over T with an I2 fibre over a generic point, while over certain points in T , denoted ĈII ,

the fibre will factorise to an I3. The exceptional divisor R : r = 0 forms the Cartan of the

SU(2) on the Coulomb branch.

We can perform this blow-up and resolution in the deformed geometry PW which di-

rectly gives the final smooth space with torsion cycles. This simply amounts to dropping

the restriction e4 = 1

4
b2. However to identify the torsional 2-cycles using the arguments

presented in the main text we need to work with the resolved geometry over CII . Since

the blow-up in the base is localised away from the locus CI , it does not affect this locus.

The crucial information is the intersection numbers of the sections with the fibre compo-

nents over the points ĈII . These will allow us to identify the 3-chains that will, after the

deformation, become the chains with a boundary of twice the torsional two-cycles.

In principle this analysis can be done by using the computer package SINGULAR [34],

leading to a globally valid blowup and resolution of the singularities over CII . However,

it is more instructive to perform a local analysis of the fibre over the CII which will be

sufficient to extract the relevant intersection numbers with the sections. Our approach is

to consider the locus given by H6 = H7 = 0. This can be shown, by a prime decomposition,

to be composed of the locus CII and the separate set of points e0 = e1 = 0. We will ignore

these points in our local analysis though they would lead to SU(2) singularities over points

in the base after the blow-up. Indeed since the set of points CII does not intersect the

curve e0 = 0 [12], we can restrict our attention to the subset e0 6= 0, where in particular we

can allow for functions meromorphic in e0. We can now explicitly solve the two equations

f6t−H6 = 0 , f7t−H7 = 0 , (A.10)

which gives

e3 =
−e31 + 4e0e1e2 + f7t

8e20
, (A.11)

b2 =
e41 − 8e0e

2
1e2 + 16e20e

2
2 + 4e0f6t− e1f7t

16e30
.

Since only b2 appears in PW we can plug this back into the equation to analyse the fibre

structure explicitly. This solution is valid away from e0 = 0 and also away from b = 0,

where the coordinate change (e3, b) → (f6, f7) degenerates. We now redefine

x → x+

(

−3e21 + 8e0e2
)

z2

12e0
(A.12)

to bring the SU(2) singularity over T to x = y = 0. Finally we resolve it by introducing

R : r = 0 as (x, y, t) → (xr, yr, tr). There are then two fibre components over the
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exceptional divisor in the base,

AII : T ∩ P̂W ∩ {Cbase} ,

BII : R ∩ P̂W ∩ {Cbase} . (A.13)

The interesting I3 locus can be identified from the discriminant to lie on

ĈII :
{

−32e2f
2
7 − 16e20f

2
6 + 24e0e1f6f7 + 3e21f

2
7 = 0

}

∩{t = 0} (A.14)

(viewed as a locus on the base), and over this locus the fibre component BII splits into

components

BII,1 : {8f7y − 8f6xz − 6e1f7xz − f2
7 tz

3 = 0} ∩R ∩ P
ĈII

,

BII,2 : {8f7y + 8f6xz + 6e1f7xz + f2
7 tz

3 = 0} ∩R ∩ P
ĈII

with P
ĈII

the divisor associated to the first polynomial in (A.14). Note that we have set

e0 = −1 in the above for simplicity, and have given only the important component of

the intersecting equations defining the fibre. The other component of the fibre over these

points is

AII : {16rf2
2x

3 − 16f2
2 y

2 + 16f2
1x

2z2 + 24e1f6f7x
2z2

+9e21f
2
7x

2z2 = 0} ∩ T ∩ P
ĈII

. (A.15)

We can now intersect these components with the proper transform of the sections U : z = 0

and S : [x, y, z] =
[

e23 −
2

3
b2e2,−e33 + b2e2e3 −

1

2
b4e1, ib

]

[20], given here on the Weierstraß

model before blowup and resolution, which after some calculation eventually yields the

intersection numbers

U ·AII = 1 , U ·BII,1 = 0 , U ·BII,2 = 0 ,

S ·AII = 0 , S ·BII,1 = 1 , S ·BII,2 = 0 . (A.16)

R ·AII = 2 , R ·BII,1 = −1 , R ·BII,2 = −1 .

This identifies the component of the fibre which becomes the torsional 2-cycle after the

deformation as BII,1 −BII,2.
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