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Abstract 

We compare discriminative and generative learning as typified by 
logistic regression and naive Bayes. We show, contrary to a widely
held belief that discriminative classifiers are almost always to be 
preferred, that there can often be two distinct regimes of per
formance as the training set size is increased, one in which each 
algorithm does better. This stems from the observation- which 
is borne out in repeated experiments- that while discriminative 

learning has lower asymptotic error, a generative classifier may also 
approach its (higher) asymptotic error much faster. 

1 Introduction 

Generative classifiers learn a model of the joint probability, p( x, y), of the inputs x 
and the label y, and make their predictions by using Bayes rules to calculate p(ylx), 
and then picking the most likely label y. Discriminative classifiers model the pos
terior p(ylx) directly, or learn a direct map from inputs x to the class labels. There 
are several compelling reasons for using discriminative rather than generative clas

sifiers, one of which, succinctly articulated by Vapnik [6], is that "one should solve 
the [classification] problem directly and never solve a more general problem as an 
intermediate step [such as modeling p(xly)]." Indeed, leaving aside computational 
issues and matters such as handling missing data, the prevailing consensus seems 
to be that discriminative classifiers are almost always to be preferred to generative 
ones. 

Another piece of prevailing folk wisdom is that the number of examples needed to 

fit a model is often roughly linear in the number of free parameters of a model. 
This has its theoretical basis in the observation that for "many" models, the VC 
dimension is roughly linear or at most some low-order polynomial in the number 
of parameters (see, e.g., [1, 3]), and it is known that sample complexity in the 
discriminative setting is linear in the VC dimension [6]. 

In this paper, we study empirically and theoretically the extent to which these 
beliefs are true. A parametric family of probabilistic models p(x, y) can be fit either 
to optimize the joint likelihood of the inputs and the labels, or fit to optimize the 
conditional likelihood p(ylx), or even fit to minimize the 0-1 training error obtained 



by thresholding p(ylx) to make predictions. Given a classifier hGen fit according 
to the first criterion, and a model hDis fit according to either the second or the 
third criterion (using the same parametric family of models) , we call hGen and 
hDis a Generative-Discriminative pair. For example, if p(xly) is Gaussian and p(y) 
is multinomial, then the corresponding Generative-Discriminative pair is Normal 
Discriminant Analysis and logistic regression. Similarly, for the case of discrete 
inputs it is also well known that the naive Bayes classifier and logistic regression 
form a Generative-Discriminative pair [4, 5]. 

To compare generative and discriminative learning, it seems natural to focus on 
such pairs. In this paper, we consider the naive Bayes model (for both discrete and 
continuous inputs) and its discriminative analog, logistic regression/linear classifi
cation, and show: (a) The generative model does indeed have a higher asymptotic 
error (as the number of training examples becomes large) than the discriminative 
model, but (b) The generative model may also approach its asymptotic error much 
faster than the discriminative model- possibly with a number of training examples 
that is only logarithmic, rather than linear, in the number of parameters. This 
suggests-and our empirical results strongly support-that, as the number of train
ing examples is increased, there can be two distinct regimes of performance, the 
first in which the generative model has already approached its asymptotic error and 
is thus doing better, and the second in which the discriminative model approaches 
its lower asymptotic error and does better. 

2 Preliminaries 

We consider a binary classification task, and begin with the case of discrete data. 
Let X = {O, l}n be the n-dimensional input space, where we have assumed binary 
inputs for simplicity (the generalization offering no difficulties). Let the output 
labels be Y = {T, F}, and let there be a joint distribution V over X x Y from which 

a training set S = {x(i) , y(i) }~1 of m iid examples is drawn. The generative naive 

Bayes classifier uses S to calculate estimates p(xiIY) and p(y) of the probabilities 
p(xi IY) and p(y), as follows: 

P' (x- = 11Y = b) = #s{xi=l ,y=b}+1 (1) 
, #s{y-b}+21 

(and similarly for p(y = b),) where #s{-} counts the number of occurrences of an 
event in the training set S. Here, setting l = ° corresponds to taking the empirical 
estimates of the probabilities, and l is more traditionally set to a positive value such 
as 1, which corresponds to using Laplace smoothing of the probabilities. To classify 
a test example x, the naive Bayes classifier hGen : X r-+ Y predicts hGen(x) = T if 
and only if the following quantity is positive: 

(rr ~-d) (x i ly = T))p(y = T) ~ p(xilY = T) p(y = T) 
IGen(x ) = log (rrn ' ( _I _ F)) '( _ F) = L..,log ' ( _I _ F) + log ' ( _ F)' (2) 

i=1 P X, Y - P Y - i=1 P X, Y - P Y -

In the case of continuous inputs , almost everything remains the same, except that 

we now assume X = [O,l]n, and let p(xilY = b) be parameterized as a univariate 
Gaussian distribution with parameters {ti ly=b and if; (note that the j1's, but not 

the if's , depend on y). The parameters are fit via maximum likelihood, so for 
example {ti ly=b is the empirical mean of the i-th coordinate of all the examples in 
the training set with label y = b. Note that this method is also equivalent to Normal 
Discriminant Analysis assuming diagonal covariance matrices. In the sequel, we also 

let J.t ily=b = E[Xi IY = b] and a; = Ey[Var(xi ly)] be the "true" means and variances 

(regardless of whether the data are Gaussian or not). 

In both the discrete and the continuous cases, it is well known that the discrimina
tive analog of naive Bayes is logistic regression. This model has parameters [,8, OJ, 
and posits that p(y = Tlx; ,8, O) = 1/(1 +exp(-,8Tx - 0)). Given a test example x, 



the discriminative logistic regression classifier hois : X I-t Y predicts hOis (x) = T if 
and only if the linear discriminant function 

lDis(x) = L~ =l (3ixi + () (3) 

is positive. Being a discriminative model, the parameters [(3, ()] can be fit either to 

maximize the conditionallikelikood on the training set L~ = llogp(y(i) Ix(i); (3, ()), or 

to minimize 0-1 training error L~ = ll{hois(x(i)) 1- y(i)}, where 1{-} is the indicator 
function (I{True} = 1, I{False} = 0) . Insofar as the error metric is 0-1 classification 
error, we view the latter alternative as being more truly in the "spirit" of discrim
inative learning, though the former is also frequently used as a computationally 
efficient approximation to the latter. In this paper, we will largely ignore the differ
ence between these two versions of discriminative learning and, with some abuse of 
terminology, will loosely use the term "logistic regression" to refer to either, though 
our formal analyses will focus on the latter method. 

Finally, let 1i be the family of all linear classifiers (maps from X to Y); and given a 
classifier h : X I-t y, define its generalization error to be c(h) = Pr( x,y)~v [h(x) 1- y]. 

3 Analysis of algorithms 

When V is such that the two classes are far from linearly separable, neither logistic 
regression nor naive Bayes can possibly do well, since both are linear classifiers. 
Thus, to obtain non-trivial results, it is most interesting to compare the performance 
of these algorithms to their asymptotic errors (cf. the agnostic learning setting). 

More precisely, let hGen,oo be the population version of the naive Bayes classifier; i.e. 
hGen,oo is the naive Bayes classifier with parameters p(xly) = p(xly),p(y) = p(y). 
Similarly, let hOis ,oo be the population version of logistic regression. The following 
two propositions are then completely straightforward. 

Proposition 1 Let hGen and hDis be any generative-discriminative pair of clas
sifiers, and hGen,oo and hois, oo be their asymptotic/population versions. Thenl 

c(hDis,oo) :S c(hGen,oo). 

Proposition 2 Let hDis be logistic regression in n-dimensions. Then with high 
probability 

c(hois ) :S c(hois,oo) + 0 (J ~ log ~) 

Thus, for c(hOis) :S c(hOis,oo) + EO to hold with high probability (here, EO > 0 is some 
fixed constant), it suffices to pick m = O(n). 

Proposition 1 states that aymptotically, the error of the discriminative logistic re
gression is smaller than that of the generative naive Bayes. This is easily shown 
by observing that, since c(hDis) converges to infhE1-l c(h) (where 1i is the class of 
all linear classifiers), it must therefore be asymptotically no worse than the linear 
classifier picked by naive Bayes. This proposition also provides a basis for what 
seems to be the widely held belief that discriminative classifiers are better than 
generative ones. 

Proposition 2 is another standard result, and is a straightforward application of 
Vapnik's uniform convergence bounds to logistic regression, and using the fact that 
1i has VC dimension n. The second part of the proposition states that the sample 
complexity of discriminative learning- that is, the number of examples needed to 
approach the asymptotic error- is at most on the order of n. Note that the worst 
case sample complexity is also lower-bounded by order n [6]. 

lUnder a technical assumption (that is true for most classifiers, including logistic re
gression) that the family of possible classifiers hOis (in the case of logistic regression, this 
is 1l) has finite VC dimension. 



The picture for discriminative learning is thus fairly well-understood: The error 
converges to that of the best linear classifier , and convergence occurs after on the 

order of n examples. How about generative learning, specifically the case of the 
naive Bayes classifier? We begin with the following lemma. 

Lemma 3 Let any 101,8 > ° and any l 2: ° be fixed. Assume that for some fixed 
Po > 0, we have that Po :s: p(y = T) :s: 1 - Po. Let m = 0 ((l/Ei) log(n/8)). Then 
with probability at least 1 - 8: 

1. In case of discrete inputs, IjJ(XiIY = b) - p(xilY = b)1 :s: 101 and IjJ(y = 
b) - p(y = b) I :s: 101, for all i = 1, ... ,n and bEY. 

2. In the case of continuous inputs, IPi ly=b - f-li ly=b I :s: 101, laT - O"T I :s: 101, and 

IjJ(y = b) - p(y = b) I :s: 101 for all i = 1, ... ,n and bEY. 

Proof (sketch). Consider the discrete case, and let l = ° for now. Let 101 :s: po/2. 
By the Chernoff bound, with probability at least 1 - 81 = 1- 2exp(-2Eim) , the 

fraction of positive examples will be within 101 of p(y = T) , which implies IjJ(y = 

b) - p(y = b)1 :s: 101, and we have at least 1 m positive and 1m negative examples, 
where I = Po - 101 = 0(1). So by the Chernoff bound again , for specific i, b, the 

chance that IjJ(XiIY = b) - p(xilY = b)1 > 101 is at most 82 = 2exp(-2Ehm). Since 
there are 2n such probabilities, the overall chance of error, by the Union bound, is 
at most 81 + 2n82 . Substituting in 81 and 8/s definitions , we see that to guarantee 

81 + 2n82 :s: 8, it suffices that m is as stated. Lastly, smoothing (l > 0) adds at most 
a small, O(l/m) perturbation to these probabilities , and using the same argument 

as above with (say) 101/2 instead of 101, and arguing that this O(l/m) perturbation 
is at most 101/2 (which it is as m is at least order l/Ei) , again gives the result. The 

result for the continuous case is proved similarly using a Chernoff-bounds based 
argument (and the assumption that Xi E [0,1]). D 

Thus, with a number of samples that is only logarithmic, rather than linear, in n, the 

parameters of the generative classifier hGen are uniformly close to their asymptotic 

values in hGen ,oo . Is is tempting to conclude therefore that c(hGen), the error of the 

generative naive Bayes classifier, also converges to its asymptotic value of c(hGen,oo) 
after this many examples, implying only 0 (log n) examples are required to fit a 

naive Bayes model. We will shortly establish some simple conditions under which 
this intuition is indeed correct. Note that this implies that, even though naive Bayes 

converges to a higher asymptotic error of c(hGen,oo) compared to logistic regression's 
c: (hDis, oo ), it may also approach it significantly faster-after O(log n), rather than 
O(n), training examples. 

One way of showing c(hGen) approaches c(hGen,oo) is by showing that the parame
ters' convergence implies that hGen is very likely to make the same predictions as 

hGen,oo . Recall hGen makes its predictions by thresholding the discriminant func

tion lGen defined in (2). Let lGen,oo be the corresponding discriminant function 

used by hGen,oo. On every example on which both lGen and lGen ,oo fall on the same 

side of zero, hGen and hGen,oo will make the same prediction. Moreover, as long as 
lGen,oo (x) is , with fairly high probability, far from zero, then lGen (x), being a small 
perturbation of lGen ,oo(x), will also be usually on the same side ofzero as lGen ,oo (x). 

Theorem 4 Define G(T) = Pr(x,y)~v[(lG e n ,oo(x ) E [O,Tn] A y = T) V (lGen,oo(X) E 

[-Tn, O]A Y = F)]. Assume that for some fixed Po > 0, we have Po :s: p(y = T) :s: 
1 - Po, and that either Po :s: P(Xi = 11Y = b) :s: 1 - Po for all i, b (in the case of 
discrete inputs), or O"T 2: Po (in the continuous case). Then with high probability, 

c:( hGen ) :s: c:(hGen,oo) + G (0 (J ~ logn)) . (4) 

Proof (sketch). c(hGen) - c(hGen,oo) is upperbounded by the chance that 

hGen,oo correctly classifies a randomly chosen example, but hGen misclassifies it. 



Lemma 3 ensures that, with high probability, all the parameters of hGen are within 

O( j(log n)/m) of those of hGen ,oo . This in turn implies that everyone of the n + 1 

terms in the sum in lGen (as in Equation 2) is within O( j(1ogn)/m) of the corre

sponding term in lGen ,oo , and hence that IlGen(x) -lGen,oo(x)1 :S O(nj(1ogn)/m). 

Letting T = O( j(logn)/m), we therefore see that it is possible for hGen,oo to be cor
rect and hGen to be wrong on an example (x , y) only if y = T and lGen,oo(X) E [0, Tn] 
(so that it is possible that lGen,oo(X) ::::: 0, lGen (x) :S 0), or if y = F and 
lGen,oo(X) E [-Tn, 0]. The probability of this is exactly G(T), which therefore up
perbounds c(hGen) - c(hGen,oo ). D 

The key quantity in the Theorem is the G(T) , which must be small when T is 
small in order for the bound to be non-trivial. Note G(T) is upper-bounded by 

Prx[lGen,oo(x) E [-Tn, Tn]]-the chance that lGen,oo(X) (a random variable whose 
distribution is induced by x ""' V) falls near zero. To gain intuition about the scaling 
of these random variables, consider the following: 

Proposition 5 Suppose that, for at least an 0(1) fraction of the features i (i = 

1, ... ,n), it holds true that IP(Xi = 11Y = T) - P(Xi = 11Y = F)I ::::: 'Y for some 
fixed'Y > 0 (or IJLi ly=T - JLi ly=FI ::::: 'Y in the case of continuous inputs). Then 

E[lGen ,oo(x)ly = T] = O(n), and -E[lGen,oo (x)ly = F] = O(n). 

Thus, as long as the class label gives information about an 0(1) fraction of the 
features (or less formally, as long as most of the features are "relevant" to the class 
label), the expected value of IlGen, oo(X) I will be O(n). The proposition is easily 
proved by showing that, conditioned on (say) the event y = T, each of the terms 
in the summation in lGen,oo(x) (as in Equation (2), but with fi's replaced by p's) 
has non-negative expectation (by non-negativity of KL-divergence), and moreover 
an 0(1) fraction of them have expectation bounded away from zero. 

Proposition 5 guarantees that IlGen,oo (x)1 has large expectation, though what we 
want in order to bound G is actually slightly stronger, namely that the random 
variable IlGen,oo (x)1 further be large/far from zero with high probability. There 
are several ways of deriving sufficient conditions for ensuring that G is small. One 
way of obtaining a loose bound is via the Chebyshev inequality. For the rest of 
this discussion, let us for simplicity implicitly condition on the event that a test 

example x has label T. The Chebyshev inequality implies that Pr[lGen ,oo(x) :S 
E[lGen ,oo(X)] - t] :S Var(lGen,oo(x))/t2 . Now, lGen,oo (X) is the sum of n random 
variables (ignoring the term involving the priors p(y)). If (still conditioned on y), 
these n random variables are independent (i.e. if the "naive Bayes assumption," 
that the xi's are conditionally independent given y, holds), then its variance is O(n); 
even if the n random variables were not completely independent, the variance may 
still be not much larger than 0 (n) (and may even be smaller, depending on the 
signs of the correlations), and is at most O(n2). So, if E[lGen ,oo (x)ly = T] = an (as 
would be guaranteed by Proposition 5) for some a > 0, by setting t = (a - T)n, 
Chebyshev's inequality gives Pr[lGen,oo(x) :S Tn] :S O(l/(a - T)2n1/) (T < a), where 
1} = 0 in the worst case, and 1} = 1 in the independent case. This thus gives 
a bound for G(T), but note that it will frequently be very loose. Indeed, in the 
unrealistic case in which the naive Bayes assumption really holds , we can obtain 
the much stronger (via the Chernoff bound) G(T):S exp(-O((a - T)2n)) , which is 
exponentially small in n. In the continuous case, if lGen,oo (x) has a density that, 
within some small interval [-m,mJ, is uniformly bounded by O(l/n), then we also 
have G(T) = O(T). In any case, we also have the following Corollary to Theorem 4. 

Corollary 6 Let the conditions of Theorem 4 hold, and suppose that G(T) :S Eo/2+ 
F(T) for some function F(T) (independent of n) that satisfies F(T) -+ 0 as T -+ 0, 

and some fixed EO > O. Then for €(hGen) :S c(hGen,oo) + EO to hold with high 
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Figure 1: Results of 15 experiments on datasets from the VCI Machine Learning 
repository. Plots are of generalization error vs. m (averaged over 1000 random 
train/test splits). Dashed line is logistic regression; solid line is naive Bayes. 



probability, it suffices to pick m = O(log n). 

Note that the previous discussion implies that the preconditions of the Corollary 
do indeed hold in the case that the naive Bayes (and Proposition 5's) assumption 
holds , for any constant fa so long as n is large enough that fa ::::: exp( -O(o:2n)) 
(and similarly for the bounded Var(lGen,oo (x)) case, with the more restrictive fa ::::: 

O(I/(o:2n17))). This also means that either ofthese (the latter also requiring T) > 0) 
is a sufficient condition for the asymptotic sample complexity to be 0 (log n). 

4 Experiments 

The results of the previous section imply that even though the discriminative logis
tic regression algorithm has a lower asymptotic error, the generative naive Bayes 
classifier may also converge more quickly to its (higher) asymptotic error. Thus, as 
the number of training examples m is increased, one would expect generative naive 
Bayes to initially do better, but for discriminative logistic regression to eventually 
catch up to, and quite likely overtake, the performance of naive Bayes. 

To test these predictions, we performed experiments on 15 datasets, 8 with contin
uous inputs, 7 with discrete inputs, from the VCI Machine Learning repository.2 

The results ofthese experiments are shown in Figure 1. We find that the theoretical 
predictions are borne out surprisingly well. There are a few cases in which logistic 
regression's performance did not catch up to that of naive Bayes, but this is observed 
primarily in particularly small datasets in which m presumably cannot grow large 
enough for us to observe the expected dominance of logistic regression in the large 
m limit. 

5 Discussion 

Efron [2] also analyzed logistic regression and Normal Discriminant Analysis (for 
continuous inputs) , and concluded that the former was only asymptotically very 
slightly (1/3- 1/2 times) less statistically efficient. This is in marked contrast to our 
results, and one key difference is that, rather than assuming P(xly) is Gaussian with 
a diagonal covariance matrix (as we did), Efron considered the case where P(xly) is 
modeled as Gaussian with a full convariance matrix. In this setting, the estimated 
covariance matrix is singular if we have fewer than linear in n training examples, so 
it is no surprise that Normal Discriminant Analysis cannot learn much faster than 
logistic regression here. A second important difference is that Efron considered 
only the special case in which the P(xly) is truly Gaussian. Such an asymptotic 
comparison is not very useful in the general case, since the only possible conclu

sion, if €(hDis,oo) < €(hGen,oo), is that logistic regression is the superior algorithm. 
In contrast, as we saw previously, it is in the non-asymptotic case that the most 
interesting "two-regime" behavior is observed. 

Practical classification algorithms generally involve some form of regularization- in 
particular logistic regression can often be improved upon in practice by techniques 

2To maximize the consistency with the theoretical discussion, these experiments avoided 
discrete/continuous hybrids by considering only the discrete or only the continuous-valued 

inputs for a dataset where necessary. Train/test splits were random subject to there being 
at least one example of each class in the training set, and continuous-valued inputs were also 

rescaled to [0 , 1] if necessary. In the case of linearly separable datasets, logistic regression 

makes no distinction between the many possible separating planes. In this setting we used 
an MCMC sampler to pick a classifier randomly from them (i.e., so the errors reported 

are empirical averages over the separating hyperplanes) . Our implementation of Normal 
Discriminant Analysis also used the (standard) trick of adding € to the diagonal of the 

covariance matrix to ensure invertibility, and for naive Bayes we used I = 1. 



such as shrinking the parameters via an L1 constraint, imposing a margin constraint 
in the separable case, or various forms of averaging. Such regularization techniques 
can be viewed as changing the model family, however, and as such they are largely 
orthogonal to the analysis in this paper, which is based on examining particularly 
clear cases of Generative-Discriminative model pairings. By developing a clearer 
understanding of the conditions under which pure generative and discriminative 
approaches are most successful, we should be better able to design hybrid classifiers 
that enjoy the best properties of either across a wider range of conditions. 

Finally, while our discussion has focused on naive Bayes and logistic regression, it is 
straightforward to extend the analyses to several other models , including generative
discriminative pairs generated by using a fixed-structure , bounded fan-in Bayesian 
network model for P(xly) (of which naive Bayes is a special case). 
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