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1. Introduction. The concept of the displacement derivative of a function or a vector

field relative to a moving surface was introduced by Hayes [1] and Thomas [2] and [4]

in discussions of the propagation of waves in solids and fluids. Both Hayes [1, Sec. 3]

and Thomas [2, Sec. 4] and [4, Chap. II] stated, in effect, that the displacement derivative

is the time derivative following the normal trajectory of a moving surface. Using this

concept, Hayes and Thomas obtained a formula for the displacement derivative of the

unit normal n of a moving surface:

5nl/5t = —aTAx,lrun,A , (1.1)

where 5/St denotes the displacement derivative, un denotes the normal speed of the

moving surface, ari denotes the components of the induced surface metric, and x

denotes the 8patial coordinates of the moving surface. Of course, xk is given by functions

of the surface coordinates yr and the time t, viz.

xk = x\y\ y\ t). (1.2)

As usual, the partial derivative with respect to a spatial coordinate or a surface coordinate

is denoted by a comma followed by the index of the coordinate—the index of a spatial

coordinate is a Latin minuscule having range from 1 to 3, while the index of a surface

coordinate is a Greek majuscule having range from 1 to 2.

Neither Thomas nor Hayes gave a formula for the displacement derivative of a

surface vector field or a surface tensor field. However, following Hayes and Thomas'

concept, Truesdell and Toupin [3, Sec. 179] presented a generalization to displacement

derivatives for arbitrary mixed spatial-surface tensor fields. Specifically, Truesdell and

Toupin gave the formula [3, Eq. (179.5)]:

, (1.3)

where SjSt denotes the Truesdell and Toupin generalization of the displacement deriva-

tive, denotes the usual partial derivative of the components of with

respect to t, denotes the components of the spatial gradient of 'Jr, and

denotes the Lie derivative of Sl> with respect to the tangential velocity u. For any

function or any spatial vector field, the Truesdell-Toupin formula reduces to a formula

for the displacement derivative as defined by Hayes and Thomas. In particular, Truesdell

and Toupin [3, Eq. (179.19)] recovered the Hayes-Thomas formula (1.1) for the dis-

placement derivative of the unit normal of the moving surface.
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The aims of this paper are two: (i) to determine the geometric meaning, the usefulness,

and the limitation of the Truesdell-Toupin formula (1.3), and (ii) to give a new general-

ization of the concept of displacement derivative different from that of Truesdell and

Toupin for mixed spatial-surface tensor fields. Of course, for functions and spatial

vector fields, our generalization, like that of Truesdell and Toupin, reduces again to the

original concept of Hayes and Thomas. In particular, we shall give also a simple proof

of the Hayes-Thomas formula (1.1).

In order to motivate our generalization of the Hayes-Thomas displacement derivative

for surface tensor fields, we consider the following example: Let S, be a moving cylindrical

surface characterized by the condition

x1 = t sin 9, x2 = t cos 6, xz = z, (1.4)

where x' denotes the Cartesian spatial coordinates of S, , and where (r, 9, z) denotes

the usual cylindrical coordinate system whence (9, z) is a surface coordinate system on

the cylinder. Clearly S, moves in such a way that

r = t (1.5)

for all (6, z). Hence the unit normal n has the components (sin 9, cos 9, 1) relative to (a:'),

the normal speed un is equal to 1, and the tangential velocity u vanishes.

Now we consider a vector field v whose components in (xl) are given by

v1 = —i2, v2 = x1, v3 = 0, (1.6)

for all t. Relative to the cylindrical coordinate system (r, 9, z), the components of v are

given by

vr = 0, Vs = 1, v' = 0, (1.7)

so that v is tangent to S, for all t. Indeed, v coincides with the natural basis vector in

the 0-direction of the surface coordinate system (6, z). Now if we regard v as a spatial

vector, then the Truesdell-Toupin displacement derivative of v with respect to S, is

given by

S„ v"/St = (dvk/dx<)ni, (1.8)

or more specifically

5d v1/St = — cos 6, Sj v2/5t = sin 6, dd v3/St = 0. (1.9)

On the other hand, if we regard v as a surface vector, then we have

SdvT/8t = 0, (1.10)

since the surface components vT of v relative to (9, z) are constant fields. This example

shows clearly that the Truesdell-Toupin displacement derivative of v depends critically

on the status of v as a spatial vector or as a surface vector.

In the next section, we shall determine the geometric meaning of the Truesdell-Toupin

displacement derivative corresponding to the two possible cases illustrated in the

preceding example. Then in Sec. 3, we introduce the new concept of the total displacement

derivative of a tensor field relative to a moving surface. We require that the total dis-

placement derivative of a tensor field ^ be the time derivative of ^ along the normal

trajectory of the moving surface, the parallel transport along the normal trajectory
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being the spatial one. Clearly, this definition reduces to the Hayes-Thomas original

definition when S? is a function or a spatial vector field, since the total displacement

derivative in general does not depend on the status of its argument as a spatial tensor

field or as a surface tensor field. Further, for a spatial tensor field the total displacement

derivative coincides with the Truesdell-Toupin displacement derivative, but for a surface

tensor field the two displacement derivatives are generally different.

In application to mechanics, especially to the consideration of wave propagation,

the total displacement derivative seems to be a more useful concept than the Truesdell-

Toupin displacement derivative, since it always gives the time rate of spatial change

of a tensor relative to the moving surface even if the tensor is a surface tensor. For

instance, it is the total displacement derivative, not the Truesdell-Toupin displacement

derivative, of the surface amplitude vector of a transverse wave that determines the

growth or decay of the wave.

For simplicity, we carry out the analysis for the total displacement derivative of

tensor fields relative to a two-dimensional moving surface in a three-dimensional

Euclidean space only. The generalization to the total displacement derivative relative

to a moving hypersurface in an n-dimensional Riemannian space is given in the Appendix.

2. The geometric meaning of the Truesdell-Toupin displacement derivative. As

explained in the introduction, a moving surface S, in space can be characterized by the

relations

xh = x\y\ y\ i), k = 1, 2, 3, (1.2)

where x* denotes the Cartesian coordinates and yT the surface coordinates of a generic

point in S, . We write e* and fr for the natural basis vectors of x and yv respectively.

Then the component form of fr relative to et is

fr = {dxk/dyv)ek . (2.1)

Since {fi , fa) spans the tangent space of S, , the unit normal n of S, is given by

n = fxXf2/|fiXf2| . (2.2)

Clearly, {f, , f2 , n} forms a basis in space. We denote the dual basis of jf: , fa, n) by

If1, f2, n}, so that

fr-f4 = 6$ , r, A = 1,2, (2.3)

and

f4-n = 0, A =1,2. (2.4)

We define the velocity of S, relative to (yr) by

c - (dx'/dfje, . (2.5)

Then c can be decomposed uniquely into a normal component uan and a tangential

component — u, viz.

c = u„n — u, (2.6)

where un is called the normal speed and is given by

un = c-n. (2.7)
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It can be verified easily that the normal speed is, but the tangent velocity u is not,

independent of the choice of the surface coordinate system. Further, relative to a change

of coordinates from (yr) to (yr), the corresponding tangential velocities u and u satisfy

the relation

u — u = (dyT/dt)fr , (2.8)

where the coordinate transformation from (yT) to (yr) is given by

yT = yT(y\ y, t). (2.9)

A coordinate system (zT) on S, is a convected system if the tangential velocity relative

to (zr) vanishes. Clearly, the trace of a surface point with constant coordinates in a

convected system is a normal trajectory of S, . From (2.8), we see that the tangential

velocity u of S, relative to (yr) is equal to the velocity of the (?/r)-surface points relative

to the convected surface points. We denote the natural basis of the convected coordinate

system (zr) by {gr| and its surface dual basis by {gr}. As usual, we have the trans-

formation rules

gr = (dy*/dzT)fA , (2.10)

and

fr = (dyT/dzA)g\ (2.11)

Now let ^ be a surface vector field. Then we can express ^ in component form relative

to gr , say

* = *r(z\ z2, t)gr • (2.12)

Substituting this component form into the general formula (1.3), we see that the

Truesdell-Toupin displacement derivative of ^ is given by

8d<fr/8t = (d*r(z, t)/dt)gr . (2.13)

Naturally, we call ^ a convected surface vector if its displacement derivative vanishes.

From (2.13), we see that is a convected surface vector if and only if it has constant

components relative to a convected coordinate system. In particular, the basis vectors

gr are ipso facto convected surface vectors.

The same analysis applies to surface covectors. In this case, the convected basis

is the dual basis {grj of {gr}- In general, the natural product basis of a convected

coordinate system forms the convected basis for surface tensors, and the components

of the displacement derivative of a surface tensor are equal to the partial derivative with

respect to the t of the components of the tensor relative to a convected coordinate

system.

It should be noted, however, that the induced surface metric is not necessarily a

convected surface tensor, since the spatial inner product of the convected basis vectors gr ,

aTA = gr-gi , (2.14)

may depend explicitly on t. Of course, if the surface metric a is not a convected surface

tensor, then the usual operations of raising and lowering of indices with respect to a

do not commute with the operation of the displacement derivative. In particular, the

dual basis jgr} of jgr) is a convected surface covecior basis but is generally not a con-

vected surface vector basis.
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Now we derive the general formula for the displacement derivative in component

form relative to an arbitrary surface coordinate system (yT). Let ^ be a surface vector

field as before. Then from (2.10) the components ^(y1, y2, t) of ^ relative to (yT) are

related to ^(z1, z2, t) by

*V, y\ t) = *V, z2, t)(dyT/dzA). (2.15)

Taking the partial derivative with respect to t holding zr constant, we obtain

dV(y,t) d*T(y,t)dyA d*\z,t)dyT A d2yT
+ + <2'I6>

Substituting this relation into (2.13), we see that the displacement derivative 5d^/5t has

the component form

M = (™T(y. 0 . t) & _ ^ _dY_\ . -
« \ dt dy> at {y't] dya dz* J r ( )

relative to (yr). But from (2.8), the tangential velocity u relative to (yT) has the com-

ponent form

u = fr • (2.18)

Consequently we can rewrite the component form of 8d^/8t as

f - • <219>
where the components of the Lie derivative £u^r relative to (yv) are given by

£»*r(y, t) = u\y, t) - t) ■ (2.20)
dy dy

Eq. (2.20) is a special version of the Truesdell-Toupin formula (1.1). If we select for ¥

the surface vector field fr , then (2.19) and (2.20) yield

8dir/8t = ~{duA/dyT)it . (2.21)

Given (2.21) and (1.1) it is possible to use (2.3) and (2.4) to show that

8dir/8t = (duT/dyA)f\ (2.22)

Clearly, if we are given (2.21) and (2.22), the Truesdell-Toupin formula for surface

tensor fields in general can be derived in a standard way.

Next we consider the geometric meaning of the displacement derivative of a spatial

vector field. According to (1.3), if ^ has components ^'(^i 0 relative to (x*), then Sd~ir/8t

has the component form

8d*/8t = (0*'(x, t)/dt + (d**'(x, t)/dx")uDnk)e, . (2.23)

This formula shows that the displacement derivative of a spatial vector field is equal to

the time derivative of the vector field along the normal trajectory of the moving surface.

In particular, ^ is a convected spatial vector with respect to S, if and only if it remains

constant on each normal trajectory of S, . Clearly the same holds for convected spatial

tensor fields in general.
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Comparing (2.23) with (2.13), we see that there is a basic difference between a con-

vected spatial vector and a convected surface vector. Indeed, the example in the intro-

duction shows that a convected surface vector is not necessarily a convected spatial

vector. Conversely, we can give examples of convected spatial vectors that can be

regarded as surface vectors but which are not convected surface vectors.

For spatial-surface mixed tensors, the convected mixed tensor basis relative to the

moving surface, of course, is formed by the tensor products of the convected spatial

basis vectors and the convected surface basis vectors. Thus the displacement derivative

of a mixed tensor is strictly a two-point tensor which is not invariant under the spatial-

surface conversion operations on the mixed tensor.

As explained in the introduction, in consideration of wave propagation it is desirable

to know the spatial derivative of some surface vectors or tensors along the normal

trajectory of the wave. The lack of the spatial-surface convertibility of the Truesdell-

Toupin general formula (1.3) prompts us to introduce the new concept of the total

displacement derivative in the next section.

3. The total displacement derivative. Let S, be a moving surface with convected

surface point z as explained in the preceding section, and let ^ be a spatial, surface,

or spatial-surface mixed tensor field whose domain at any time t contains the surface St ■

Then the restriction of ^ to S, can be expressed as a field $(z, t). We define the total

displacement derivative of V relative to St by

«*/« = d%(z, t)/dt, (3.1)

where the partial derivative on the right-hand side is based upon the usual Euclidean

parallel transport. Since the definition (3.1) does not depend upon the many possible

component representations ^ might have, 5^/6t does not depend upon the choices. For

convenience only, it is often desirable to apply (3.1) when is represented by spatial

components, since the components of 3'5r(2, t)/dt are then equal to partial derivatives of

the components of %r(z, <)• For example, if ¥ is a vector field, then

8$(z, t)/St = (dV\z, t)/dt)e{ , (3.2)

where ^'(z, t) are the components of ¥(z, t) relative to the rectangular Cartesian spatial

coordinate system (x"), viz.

■$•(2, t) = t)e, . (3.3)

Notice that we can always use the components of ^ relative to the spatial coordinate

system (x') in (3.2) regardless of the status of & as a spatial vector or as a surface vector.

If *(z, t) is a surface vector with components ^(z, t) relative to the surface coordinate

system (zr), then its spatial components ^f\z, t) can be determined by

^'(2, t) = $T(z, t) dx'/dz7, (3.4)

where

X1' = x\z\ z\ t) (3.5)

characterizes the relation between the spatial coordinates 2* and the surface coordinates

zr of a generic convected surface point 2 t S, . In particular, if ^(z, t) is equal to the

surface vector gr , then

5g,,/5/ = (d/dt)(dxi/dzT)ei . (3.6)
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For a smooth moving surface, the partial derivative on the right-hand side can be

expressed as

— (_ _d_ tda'\ _ dunn' .

dt\dzTl ~ dzT \dt) ~ dzr '

Hence by Weingarten's formula (cf. [3, App. Eq. (21.6)])

dn/dzr = -brAgA, (3.8)

where bTtk denotes the components of the second fundamental form b of S, , we obtain

5gr/St = (dun/dzT)n - bTAungA. (3.9)

This formula shows that the total displacement derivative of the surface basis vector gr

need not vanish in general. More specifically, the normal component of ogr/ot is produced

by the nonunijormity of the normal speed uB on S, and the tangential component of

5gr/bt is produced by the curvature of S, .

From (3.2), it is easily seen that the total displacement derivative satisfies the usual

product rule with respect to the spatial inner product. Hence from the condition

n-gr = 0, (3.10)

we obtain

(Sn/5f)-gr + n-(Sgr/«<) = 0. (3.11)

Now since n is the unit tangent of the normal trajectory of S, , its total displacement

derivative is necessarily a tangential vector, i.e.,

(5n/50-n = O. (3.12)

Combining (3.11) and (3.12) and using the formula (3.9), we then obtain

dn /St = -(dujdz7) gr. (3.13)

This is the Hayes-Thomas formula (cf. (1.2)) relative to the coordinate system (zT).

Finally, from the conditions

gr-g4-«f, n-gA = 0, (3.14)

we obtain

(8gr/8t)-gA + gr-(5gA / St) = 0, (3.15)

and

(5n/«)-g4 +n-(5g A/St) = 0. (3.16)

Substituting (3.9) and (3.13) into (3.15) and (3.16), we obtain the formula

SgA/St = aA\dua/dzv)n + bATuagT . (3.17)

The formulae (3.13), (3.9) and (3.13), (3.17) give completely the total displacement

derivatives of the basis jgj , g2 , n) and the dual basis jg\ g1, n}.

Now we consider the total displacement derivative of the bases {£t , f2 , n} and

{f1, f2, n} corresponding to an arbitrary surface coordinate system (yr) on S, . Since

the normal speed wn does not depend on the choice of the surface coordinate system,
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we obtain from (3.13)

5n/5t = -(dun/dyT) fr. (3.18)

This is the Hayes-Thomas fonnula relative to the coordinate system (yT). Next, from

(2.10) we have

Since dy^/dz7 is a function of (z1, z2, t), its total displacement derivative is equal to its

partial time derivative, viz.

Hence (3.19) imphes

Sh _ d£_ 5gr _ duT{y, t) , ,

St dy* 51 dy* r ' (3,21)

where uT(y, t) denotes the tangential velocity relative to (yT) (cf. (2.18)). Substituting

(3.9) into (3.21), we obtain

dun 7 / a fr du (y, t) . nn.
~ . a n — Oar(2/, t)Uut — fr , (3.22)

6C dy dy

where bAT(y, t) denotes the components of the second fundamental form b relative

to (yT). By a similar argument, we have also

^ = a'T(y, 0 + b*T(y< Ownfr + duyr' t] fr, (3.23)
ot dy dy

where aTA(y, f) denotes the components of the surface metric a relative to (yT). The

formulae (3.18), (3.22) and (3.18), (3.23) give completely the total displacement deriva-

tive of the bases {ft , f2 , nj and {f1, f2, nj.

Having determined the total displacement derivatives of the basis vectors, we can

now derive a general formula for the total displacement derivative of an arbitrary vector

field First, we express ^ in component form relative to the basis {fx , f2 , n}, viz.

* = *n(y, i)n + ¥T(y, t)fr . (3.24)

Computing the total displacement derivative and using the product rule, we find

= ft *)n) + ft ̂ T(y' <))fr + ^r(2/' ̂ It' (3-25)

The total displacement derivative of the function ^(y, t) can be calculated in the usual

way by

| (*r(y, 0) = u*(y> 0- (3-26)

It follows from (1.1), (1.3) and (3.18) that for the vector ^ra(y, 0n

(8/8t)Q>n(y, t)n) = (Sd/6t)Qrn(y, t)n). (3.27)
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Substituting (3.26), (3.27) and (3.22) into (3.25) we find

f -^ «'<*«- *'<*■»*^4'
+ *r(y, - &ra(y, OwJA)* (3.28)

\dyT >

If we now use (2.19), (2.20), and (3.24), (3.28) can be written

= 17 + *r(y' n ~~ 6ri(y'f)Wnf4) ' (3'29)

which shows clearly the difference between the total displacement derivative and the

displacement derivative in Truesdell-Toupin's sense.

The total displacement derivative of a tensor field in general, of course, can be

determined in a similar way. The basic rules are the following four:

(i) The total displacement derivative obeys the product rule with respect to the

tensor product and the spatial inner product.

(ii) The total displacement derivatives of the spatial basis vectors e, of the Cartesian

coordinate system (x') vanish identically.

(iii) The total displacement derivatives of the bases (fx , f2 , n} and jf1 , f2 , nj are

given by (3.18), (3.22) and (3.18), (3.23), respectively.

(iv) The total displacement derivative of a function f(x, y, t) is given by

5f dj(x,y,t) dj(x, y, t) ,■ , df(x, y, t) A
Jt - at + dx' u°n + eyr iy' (3'30)

In fact, (3.30) is a valid equation even if / is a spatial-surface tensor field.

As an application of the above rules we consider the total displacement derivative

of the surface metric a whose component form relative to (yT) may be written either as

a = ara(y, t)tr ® fA (3.31)

or as

a = fr (x) fr. (3.32)

As we have mentioned earlier, the total displacement derivative of a does not depend

on the choice of the component form of a. Applying the basic rules (i)— (iv) successively

on (3.32), we obtain

6a/8t = {duJdyA){n 0 fA + i* ® n). (3.33)

Of course, this result is also a consequence of the identity

a = 1 — n 0 n. (3.24)

Indeed, from (3.18) we have

f " "(I ®" + ° ® I) " <f* ®11 +11 ® f°>- <3-35>

We can deduce a formula for the Truesdell-Toupin displacement derivative of the
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surface metric a from the formula (3.33). First, we write the surface metric in the com-

ponent form

a = ar4(z, t)gr ® g*. (3.36)

The tensorial status of a now is important. By definition (cf. (2.13)) we have

^ , *) 8r 0 gA- (3.37)

But from (3.36) we have also

f = dar£' ° gr ® g* + ® gr + gr 0 ^ (3.38)

Hence

+ (3S9)

Substituting (3.33) and (3.17) into this equation, we then obtain

8da/St = — 2brA(z, t)ungr (x) g*. (3.40)

This formula agrees with [3, Eq. (179.10)i].
Appendix. Total displacement derivative relative to a moving hypersurface in an re-

dimensional Riemannian manifold. Let M be an n-dimensional Riemannian manifold

and let S, be a moving hypersurface in M. Then for any tensor field ^ (spatial, surface,

or spatial-surface mixed) whose domain at any time t contains the surface S, we define

the total displacement derivative of ¥ by

S*/« = D*{z, t)/Dt, (A.l)

where z denotes a generic convected surface point on S, , and ^(z, t) denotes the value
of along the normal trajectory of St at the point z. The operation D/Dt is the usual

covariant derivative along a curve with respect to the Riemannian connection of M.

Hence if $ (z, t) is a vector field with components ^*(z, t) relative to a spatial coordinate

system (x', i = 1, • • • , n), then

f - <a-2>

where denotes the Christofell's symbols of the Riemannian metric relative to (x'),

and where e, denotes the natural basis vectors of (z'). Notice that e, is not necessarily

a convected field in this general case.

According to the general formula (A.2), the total displacement derivative of the basis

vector gr is still given by a formula of the form (3.9), viz. .

Sgr/Si = (dun/dzT)n — br^ungA- (A.3)

Consequently the formulae (3.13), (3.17), (3.18), (3.22), and (3.23) are also valid in

general, since the spatial Riemannian metric is a convected field with respect to the

Riemannian parallel transport along the normal trajectory of S, .

By the same argument as before, we can compute the total displacement derivative

of a tensor field in general by applying the four basic rules successively as explained
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in Sec. 3, except that the total displacement derivatives of the spatial basis vectors e( no

longer vanish in general but are given by

5e, Ji
St \ik

an e, . (A .4)
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