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ON DISPLAYING NEGATIVE MODALITIES

Abstract. We extend Takuro Onishi’s result on displaying substructural

negations by formulating display calculi for non-normal versions of impos-

sibility and unnecessity operators, called regular and co-regular negations,

respectively, by Dimiter Vakarelov. We make a number of connections be-

tween Onishi’s work and Vakarelov’s study of negation. We also prove a

decidability result for our display calculus, which can be naturally extended

to obtain decidability results for a large number of display calculi for logics

with negative modal operators.
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1. Introduction

This paper was originally conceived as a study of display systems for
some negative operators. After the early draft of this paper was finished
I was made aware that similar results are contained in Takuro Onishi’s
work [24].1 So this paper in its current form will be presented as a
number of follow-up remarks and results on Onishi’s work. Still, a proper
introduction is in order.

Display calculi are a generalization of Gentzen’s sequent calculi and
were introduced by Nuel Belnap in [1]. Technically, the idea behind
display calculi is to formalize the way we can combine different kinds
of information in our reasoning. While in sequent calculi formulas are
combined using a polyvalent comma, in display calculi one instead uses
an assortment of formal structural connectives. Both the antecedent

1 I would like to thank Prof. Heinrich Wansing for telling me about Onishi’s work.
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and the succedent of a sequent are then formal terms called structures,
which are built from formulas using structural connectives. At the core of
display calculi lies the so-called display property, which, given a sequent
and an occurrence of a structure in it, allows one to pass from it to an
equivalent sequent, in which this occurrence is displayed, meaning it is
the entire antecedent or the entire succedent. There are a number of
benefits of using display calculi: firstly, they are well suited for studying
substructural logics, secondly, they are modular, meaning it is easy to
combine together several different frameworks. Moreover, there is a very
general result proved in [1], which allows one to obtain cut-elimination
for a display calculus quite routinely.

The operators we will be dealing with are the negative modalities of
impossibility and unnecessity which are essentially negative counterparts
of familiar necessity and possibility operators. Traditionally, display
systems for modal logic were classical (see [36] and references therein)
to the point that possibility was mostly interpreted via the well-known
definition using classical negation. My intent is to study a more general
framework and consider these operators over intuitionistic logic instead.

There exist in the literature a number of different approaches to for-
mulating intuitionistic modal logics, each stemming from different prop-
erties of modal logics one might want to preserve, when passing from clas-
sical non-modal base to the intuitionistic one. Thus, for instance, Fisher
Servi’s logic FS (see [14, 15, 16]) aims to preserve in some sense the usual
translation of modal logic into first-order logic as well as Gödel’s trans-
lation, while keeping necessity and possibility dual in some weak sense;
in [23] a minimal logic in which necessity and possibility are dual (albeit
over positive logic) is considered; the investigation in [33] is dedicated to
very abstract modalities over intuitionsitic logic satisfying only the law
of replacement of equivalent formulas. A number of approaches are dis-
cussed in [32] and [39]. The approach we will be using here is the one rem-
iniscent of Kosta Došen’s and Milan Božić’s take on intuitionistic modal
logics [3, 5]. Došen’s and Božić’s goal was to separate treatments of four
types of modal operators  necessity, possibility, unnecessity and impos-
sibility  and to formulate separate systems dealing with each of these
in such a way that Kripke-style semantical interpretation would remain
intact. The natural reason to study four types of modal operators sepa-
rately is that they are simply not interdefinable over intuitionistic logic.

As it turns out in display framework it is more natural to consider
modalities not over intuitionistic logic, but instead over bi-intuitionistic
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logic (also called Heyting-Brouwer logic) defined by Cecylia Rauszer in
[25]. Bi-intutionistic logic is obtained by adding to intuitionistic logic
a new binary operator of dual implication (or subtraction), which is
dual to implication in the same sense that conjunction is dual to dis-
junction. I was delighted to learn that Onishi in his work comes to the
same conclusion and presents a display treatment of impossibility and
unnecessity over bi-intuitionistic logic. Modal bi-intuitionistic logic was
also considered, for instance, in [30].

Bi-intuitionistic logic itself was displayed by both Rajeev Goré in
[19] and Heinrich Wansing in [37]. Notice that before Goré’s work [18]
display calculi for intuitionistic logic made use of the well-known Gödel-
McKinsey-Tarski translation, which was much more complicated than his
calculus and the intuitionistic part of display calculi for bi-intuitionistic
logic mentioned above.

There is one more technical complication which comes with display-
ing modal operators and it has to do with the process of temporalizing
these modal operators. Roughly speaking, every modal operator has
to come with a backward-looking companion, where ‘backward-looking’
refers to the Kripke-style interpretation. The reason for this is to make
sure that the above-mentioned display property is satisfied. In our case
the companion to impossibility is simply a backward-looking impossibil-
ity and the companion to unnecessity is a backward-looking unnecessity.
A pair of such impossibility operators is an example of a Galois connec-
tion, while a pair of unnecessity operators is an example of a dual Galois
connection. These connections exemplify what Michael Dunn in [9] calls
the abstract law of residuation, a concept which lies at the core of his
theory of gaggles, which is closely connected to display calculi as out-
lined by Greg Restall in [28]. Notice also, that a pair of impossibilities
is called split negation in [10] (see also [13]) and briefly considered in
display context by Greg Restall in [28]. The idea of considering a very
general impossibility as a negation has been considered, for example,
by Došen [6], while unnecessity as a negation has been explored, for
instance, in [34].

To summarize, in his work [24] Onishi has introduced and displayed
logic BiN, which is a temporalized modal bi-intuitionistic logic with four
modalities: a pair of impossibility operators and a pair of unnecessity
operators. He has also studied operators obtained by merging impossi-
bility and unnecessity together and used them to describe a generalized
kite of negations. As far as I can tell, term kite of negations was coined
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by Dunn in [12]. Dunn’s kite of negations was also generalized by what
Yaroslav Shramko calls a uniform kite of negations [31].

Now, bi-intuitionistic temporalized modal logic might sound like it
is trying a bit too much to get away from classical logic. Yet there are
a number of benefits. First, this framework does cover classical modal
logics  all we need to do is to add a couple of structural rules. Next,
by providing a display calculus for this system we also provide a display
treatment for all its fragments, including intuitionistic (modal) logics,
dual intuitionistic (modal) logic, as well as distributive logic  a logic in
a language without a conditional, which is algebraically characterized by
the class of distributive lattices. This logic was used by Vakarelov in [35]
to introduce two general kinds of negations called regular and co-regular
negations, which could then be naturally extended to obtain normal and
co-normal negations, respectively. As it turns out normal and co-normal
negations are just the impossibility and unnecessity of Onishi’s logic BiN.
Moreover, bi-intuitionistic logic is naturally a conservative extension of
distributive logic with a couple of conditionals.

This leads me to the purpose of this paper. The main goal is to
build some bridges between Onishi’s work and Vakarelov’s framework
and outline how a bunch of modal and non-modal systems can be dis-
played. There are two main technical results. First, as was already
mentioned (co-)normal negation (under a different name) of Vakarelov
was displayed by Onishi. The interesting part of his display calculus
is that there are no structural rules corresponding to modal operators,
which means there is nothing we can hope to subtract to obtain display
the treatment of (co-)regular negation which is weaker. The question
is then: is this a limitation of the display method? It turns out the
answer is negative, albeit a bit boring as it says more about (co-)regular
negation than it does about display calculi. We will display (co-)regular
negation by treating it as a definable operator in a conservative extension
of Onishi’s system BiN. The second technical result involves providing a
decidability result for all systems outlined in the paper.

The paper is structured as follows. In Section 2 both bi-intuitionistic
logic HB and Onishi’s logic BiN, which is obtained from it by adding two
impossibility operators and two unnecessity operators, are introduced.
The exposition here will be semantical in terms of Kripke-style frames.
Display systems for both these logics are formulated in Section 3 along
with some relevant results. In Section 4 Vakarelov’s work on negations
is outlined, starting with the distributive logic DL and then introduc-
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ing regular, co-regular, normal and co-normal negations. Section 5 is
dedicated to providing a display treatment for regular and co-regular
negations, which boils down to a display calculus δBiRN. The paper is
concluded in Section 6, where the decidability of δBiRN is proved from
which decidability for a number of different display calculi can be derived.

2. Bi-intuitionistic logic and negative modalities

In this section, following Onishi’s [24] we will introduce two systems:
bi-intuitionistic (or Heyting-Brouwer) logic HB of Cecylia Rauszer and
Onishi’s system BiN, which is obtained from it by adding four negative
modal operators: a pair of impossibility operators and a pair of unneces-
sity operators.

The non-modal logical connectives we will work with include con-
junction ∧, disjunction ∨, implication →, dual implication (also called
co-implication or subtraction) ←, as well as logical constants ⊥ and ⊤.
We will also have four modal operators: forward-looking impossibility
⊲, backward-looking impossibility ⊳ as well as forward- and backward-
looking unnecessities ◮ and ◭. Terms forward-looking and backward-
looking simply refer to how these connectives interact on the semantical
level. For a set L of logical connectives ForL denotes the set of all for-
mulas constructed from a countable set of propositional variables Prop
using connectives in L the usual way. We will omit mentions of the
language if it will be clear from the context.

One small difference between our approach and Onishi’s is that we
will be explicitly using truth and falsity constants instead of defining
them through implication and dual implication, as this will be more
convenient.

2.1. Bi-intuitionistic logic

Let us define semantically bi-intuitionistic logic HB in the language
Lb = {∧,∨,→,←,⊥,⊤}. Two different Hilbert-style axiomatizations
of HB were introduced in [25] and [26], which reflects the fact that bi-
intuitionistic logic can be dually characterized by both its set of theorems
and its set of counter-theorems (or anti-theorems [4]).

As usual, we can define intuitionistic negation as ¬A := A→ ⊥ and
dual intuitionistic negation as −A := ⊤ ← A.
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By a frame we call a tuple W = 〈W,≤〉 such that W is a non-
empty set and ≤ is a partial order on W . A model µ = 〈W, v〉 is a
frame together with a valuation v : Prop → 2W satisfying intuitionistic
heredity condition:

∀p ∈ Prop ∀x, y ∈W (x ≤ y ∧ x ∈ v(p)⇒ y ∈ v(p)).

For a model µ = 〈W,≤, v〉 and x ∈W we define inductively valuation
clauses for connectives the following way:

µ, x � ⊤; µ, x 2 ⊥;

µ, x � p ⇐⇒ x ∈ v(p) for p ∈ Prop;

µ, x � A ∧B ⇐⇒ µ, x � A and µ, x � B;

µ, x � A ∨B ⇐⇒ µ, x � A or µ, x � B;

µ, x � A→ B ⇐⇒ ∀y ≥ x (µ, y � A⇒ µ, y � B);

µ, x � A← B ⇐⇒ ∃y ≤ x (µ, y � A and µ, y 2 B).

As usual, the intuitionistic heredity condition can be extended to all
formulas; that is for any model µ = 〈W,≤, v〉 and formula A we have

∀x, y ∈W (µ, x � A ∧ x ≤ y ⇒ µ, y � A).

To keep things uniform we will identify all logics with sets of sequents
of the form A ⊢ B, where A and B are formulas. We say that A ⊢ B
valid in a model µ = 〈W,≤, v〉 if µ, x � A imply µ, x � B for all x ∈ W ;
otherwise, we say that A ⊢ B is refuted in µ. Similarly, we say that
A ⊢ B is valid in a frame W if it is valid in every model µ = 〈W, v〉 over
W; otherwise, it is refuted in W.

Defining logics this way allows us to sidestep one ambiguity concern-
ing dual intuitionistic logic. Because of peculiar nature of dual impli-
cation and the deduction theorem associated with it dual intuitionistic
logic does not fare well with the tradition to identify a logic with its set
of theorems. Namely, the consequence relation of dual intuitionistic logic
cannot be recovered from its set of theorems, but can instead be recov-
ered from its set of counter-theorems, i.e. formulas, which are refuted in
every world of every frame.

That said, let us put

HB := {A ⊢ B | A, B ∈ ForLb and A ⊢ B is valid in every frame}.

Let us outline some logics, which we can get from HB. We can define
intuitionistic logic H as the ←-free fragment of HB (that is with the set
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of all sequents in HB, which do not contain symbol ←) and dual intu-
itionistic logic B as the →-free fragment of HB. From intuitionistic logic
we can also obtain positive logic P by considering its ⊥-free fragment;
Johansson’s minimal logic J by removing the valuation clause for ⊥ and
treating it as a distinguished propositional variable; and classical logic
CL by considering all ←-free sequents, which are valid in every frame
with equality in place of partial order. We will briefly outline later how
these logics can be displayed.

2.2. Negative modalities over HB

We now introduce negative modalities to HB. We put Ln := Lb ∪
{⊲,⊳,◮,◭}. Individually each of ⊲ and ⊳ is just a normal impos-
sibility operator, and each of ◮ and ◭ is just a normal unnecessity
operator. Having some sort of companion for every modal operator is
just a technical peculiarity of display calculi.

Following [9], we can demonstrate how these pairs of operators can
naturally arise. Consider a set X with a binary relation R ⊆ X2 on it
and for a subset A ⊆ X put

⊲A = {x | ∀y (xRy⇒ y /∈ A)}, ⊳A = {x | ∀y (yRx⇒ y /∈ A)},

◮A = {x | ∃y (xRy ∧ y /∈ A)}, ◭A = {x | ∃y (yRx ∧ y /∈ A)}.

Then there are natural relations between them, i.e., for A, B ⊆ X

A ⊆ ⊲B ⇐⇒ B ⊆ ⊳A, ◮A ⊆ B ⇐⇒ ◭B ⊆ A.

A pair (⊲,⊳) thus defined is an example of a Galois connection, while
(◮,◭) is an example of a dual Galois connection [9]. Notice that our
pair of impossibility operators is essentially a pair of split negations for
which a display treatment was suggested by Restall in [29].

Again we provide the semantical characterization of logic BiN, ob-
tained by adding these four modalities to HB. By a normal frame we
call W = 〈W,≤, R⊲, R◮〉, where 〈W,≤〉 is a frame and R⊲, R◮ ⊆ W 2

are two accessibility relations satisfying

≤ ◦R⊲ ⊆ R⊲, ≤ ◦R⊳ ⊆ R⊳, ≤−1 ◦R◮ ⊆ R◮, ≤−1 ◦R◭ ⊆ R◭,

where R⊳ := R−1
⊲ and R◭ := R−1

◮ . A normal model is a normal frame
together with a valuation as above.
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Valuation clauses for modal operators are

µ, x � ⊲A ⇐⇒ ∀y (xR⊲y ⇒ µ, y 2 A),

µ, x � ⊳A ⇐⇒ ∀y (xR⊳y ⇒ µ, y 2 A),

µ, x � ◮A ⇐⇒ ∃y (xR◮y ∧ µ, y 2 A),

µ, x � ◭A ⇐⇒ ∃y (xR◭y ∧ µ, y 2 A).

So, to figure out whether a forward-looking modality is true at a world we
consult all worlds accessible from it, while for backward-looking modal-
ities we do essentially the same thing, but instead go backwards, hence
the terminology.

As before, intuitionistic heredity can be extended to all formulas.
The definition of validity of a sequent A ⊢ B in a normal model (frame)
is exactly the same as before. Then we define

BiN := {A ⊢ B | A, B ∈ ForLn & A ⊢ B is valid in any normal frame}.

3. Display system for BiN

In this section following Onishi we will introduce a display system δBiN

for logic BiN, as well as a display system δHB for bi-intuitionistic logic.
Two slightly different display treatments for bi-intuitionistic logic were
suggested by Wansing [37] and Goré [19]. The difference between those
two does not matter much for our purposes and, following Onishi, we
settle on Goré’s variant.

As was already mentioned, the main difference of display calculi in
comparison with standard sequent calculi is that we will use formal terms
built from formulas using so-called structural connectives in places of
both antecedents and succedents of sequents. To formulate a display
system for logic BiN we will use the following structural connectives:
nullary I, binary connectives ◦ and • and unary ♯ and ♭. Thus, X is
a structure if i) X is a formula; or ii) X = I; or iii) X = (Y × Z) for
some structures Y and Z, where × ∈ {◦, •}; or iv) X = ∗Y for some
structure Y , where ∗ ∈ {♯, ♭}.

A sequent then is an expression X ⊢ Y , where X and Y are struc-
tures.

We will distinguish every occurrence of a structure in a sequent as
either a-part (antecedent part) or s-part (succedent part) the following
way:



On displaying negative modalities 169

1. X is an a-part and Y is an s-part of X ⊢ Y ;
2. if (Z ◦ V ) is an a-part (s-part) of X ⊢ Y , then so are Z and V ;
3. if (Z • V ) is an a-part or an s-part of X ⊢ Y then Z is an a-part and

V is an s-part of X ⊢ Y ;
4. if ♯Z is an a-part (s-part) of X ⊢ Y then Z is an s-part (a-part);
5. if ♭Z is an a-part (s-part) of X ⊢ Y then Z is an s-part (a-part).

To provide some intuition on structural connectives we define the canon-
ical translation τ of sequents with structures into sequents without them.

Definition 1. For structures X and Y put τ(X ⊢ Y ) = τ1(X) ⊢ τ2(Y ),
where

τ1(A) := A; τ2(A) := A;

τ1(I) := ⊤; τ2(I) := ⊥;

τ1(X ◦ Y ) := τ1(X) ∧ τ1(Y ); τ2(X ◦ Y ) := τ2(X) ∨ τ2(Y );

τ1(X • Y ) := τ1(X)← τ2(Y ); τ2(X • Y ) := τ1(X)→ τ2(Y );

τ1(♯X) := ◮τ2(X); τ2(♯X) := ⊲τ1(X);

τ1(♭X) := ◭τ2(X); τ2(♭X) := ⊳τ1(X).

Thus, for example, you can think of X ◦ Y as corresponding to con-
junction if it is an a-part and to disjunction if it is an s-part of a sequent
in much the same way that comma is interpreted in standard sequent
calculi.

The first ingredient of any display calculus is so-called display equiv-
alences. Display equivalences for δBiN are:

X ⊢ (Y • Z)
(de)

(X ◦ Y ) ⊢ Z
(de)

Y ⊢ (X • Z)

(X • Y ) ⊢ Z
(de)

X ⊢ (Y ◦ Z)
(de)

(X • Z) ⊢ Y

X ⊢ ♯Y
(de)

Y ⊢ ♭X

♯X ⊢ Y
(de)

♭Y ⊢ X

The double line means that the rule is invertible  we can pass from
its conclusion to the premiss. We say that two sequents are display
equivalent if we can derive one from the other and vice versa using display
equivalences alone.

Notice that our display equivalences (as well as the set of structural
rules) are very different than the ones originally defined by Belnap in [1].
Relations between different display equivalences were investigated by
Belnap himself in [2] and later by Goré in [17].
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Display equivalences allow us to prove the following crucial theorem

Theorem 1 (Display). If a structure Z is an s-part (a-part) in X ⊢ Y
then there is a display equivalent to X ⊢ Y sequent of the form W ⊢ Z
(Z ⊢W ).

What display theorem tells us is that we can display any structure
occurring in a sequent by making it either the entire antecedent or the
entire succedent of a display equivalent sequent. On the technical level
this theorem is the reason why we had to have backward-looking modal-
ities on top of forward-looking ones  they allow us to formulate display
equivalences, which in turn allow us to prove this theorem.

The axioms of δBiN are (p is an arbitrary propositional variable):

(ap) p ⊢ p, (a⊥) ⊥ ⊢ I, (a⊤) I ⊢ ⊤.

Introduction rules are

I ⊢ X(⊤ ⊢)
⊤ ⊢ X

X ⊢ I(⊢ ⊥)
X ⊢ ⊥

X ⊢ A Y ⊢ B(⊢ ∧)
X ◦ Y ⊢ A ∧B

A ◦B ⊢ X(∧ ⊢)
A ∧B ⊢ X

A ⊢ X B ⊢ Y(∨ ⊢)
A ∨B ⊢ X ◦ Y

X ⊢ A ◦B(⊢ ∨)
X ⊢ A ∨B

X ⊢ A B ⊢ Y(→⊢)
A→ B ⊢ X • Y

X ⊢ A •B(⊢→)
X ⊢ A→ B

X ⊢ A B ⊢ Y(←⊢)
X • Y ⊢ A← B

A • B ⊢ X(⊢←)
A← B ⊢ X

X ⊢ ♯A
(⊢ ⊲)

X ⊢ ⊲A
X ⊢ A(⊲ ⊢)
⊲A ⊢ ♯X

X ⊢ ♭A(⊢ ⊳)
X ⊢ ⊳A

X ⊢ A(⊳ ⊢)
⊳A ⊢ ♭X

♯A ⊢ X
(◮ ⊢)

◮A ⊢ X
A ⊢ X(⊢ ◮)

♯X ⊢ ◮A

♭A ⊢ X(◭ ⊢)
◭A ⊢ X

A ⊢ X(⊢ ◮)
♭X ⊢ ◭A

Finally, the structural rules are

X ⊢ Y(m ⊢)
X ◦ Z ⊢ Y

X ⊢ Y(⊢ m)
X ⊢ Y ◦ Z

X ◦ (Y ◦ Z) ⊢W
(a ⊢)

(X ◦ Y ) ◦ Z ⊢W

W ⊢ X ◦ (Y ◦ Z)
(⊢ a)

W ⊢ (X ◦ Y ) ◦ Z
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X ◦ I ⊢ Y(i ⊢)
X ⊢ Y

X ⊢ Y ◦ I(⊢ i)
X ⊢ Y

X ◦X ⊢ Y(w ⊢)
X ⊢ Y

X ⊢ Y ◦ Y(⊢ w)
X ⊢ Y

We also have the cut rule stated in the following form:

X ⊢ A A ⊢ Y(cut)
X ⊢ Y

We denote by δBiN the system which consists of all rules and axioms
above. From it we can obtain system δHB by considering the non-modal
fragment of δHB (that is by removing all modalities from the logical
language, ♯ and ♭ from the structural language and removing all rules,
which explicitly mention these symbols).

In both systems we can derive the following introduction rules for
intuitionistic and dual intuitionistic negations:

X ⊢ A(¬ ⊢)
¬A ⊢ X • Y

X ⊢ A • I(⊢ ¬)
X ⊢ ¬A

I •A ⊢ X(− ⊢)
−A ⊢ X

A ⊢ Y(⊢ −)
X • Y ⊢ −A

Our system differs slightly from Onishi’s in that we explicitly have
logical constants in our language and thus have introduction rules for
them. Onishi treated ⊤ as a shorthand for (p→ p) and ⊥ as a shorthand
for (p← p).

We can state the following completeness result for HB and BiN

Theorem 2 (weak completeness). [24] For any formulas A, B ∈ ForLn

(ForLb) a sequent A ⊢ B is derivable in δBiN (δHB) iff A ⊢ B ∈ BiN

(A ⊢ B ∈ HB).

The stronger version of this result utilizes the canonical translation
defined above.

Theorem 3 (strong completeness). [24] For any structures X and Y
(without occurrences of ♭, ♯ and modal operators) a sequent X ⊢ Y is
derivable in δBiN (δHB) iff τ1(X) ⊢ τ2(Y ) ∈ BiN (τ1(X) ⊢ τ2(Y ) ∈ HB).

The difference in two flavors of completeness is that weak complete-
ness tells you that display calculus can express everything the logic can,
while strong completeness tells you that logic can express everything the
display calculus can.

Finally, the cut elimination result for display calculi is proved using
eight conditions listed by Belnap in [1]. Out of these only one has to be
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confirmed rigorously rather than by a simple observation. We state it
for future use:

C8 Suppose there are derivable sequents X ⊢ A and A ⊢ Y , derived in
such a way that the last instance of a rule in both is an introduction
rule for A, then either X ⊢ Y is identical to one of X ⊢ A or A ⊢ Y ,
or we can infer X ⊢ Y from premisses of these introduction rules,
while only applying (cut) to proper subformulas of A.

Thus, we have

Theorem 4 (Cut elimination [24]). System δBiN (δHB) admits cut elim-
ination, that is any sequent derivable in δBiN (δHB) has a proof without
applications of cut.

Let us also state another of these conditions, which is essentially the
subformula property:

C1 Suppose (r) is an instance of some rule in δBiN then every formula
in premisses of (r) is a subformula of some formula in the conclusion
of (r).

4. Vakarelov’s study of negations

In this section we connect Onishi’s system to Vakarelov’s study of nega-
tions [35].

Vakarelov has introduced two very general kinds of negation called
regular and co-regular negations, respectively. His motivation was
largely a semantical one. To make his exposition as general as possible
he defined those over the so-called distributive logic  a logic which can
be algebraically characterized by distributive lattices.

The first part of this section is dedicated to distributive logics as
well as some other natural candidates for the non-modal base we might
consider, while the second part is dedicated to regular and co-regular
negations themselves.

4.1. Distributive logic

Thus, let us start with distributive logic DL. It is defined as a sequent
calculus sDL in the language Ll = {∧,∨,⊤,⊥} with axioms

A ⊢ A, ⊥ ⊢ A, A ⊢ ⊤, (A ∧B) ⊢ A, (A ∧B) ⊢ B,

A ⊢ (A ∨B), ; B ⊢ (A ∨B), ; A ∧ (B ∨ C) ⊢ (A ∧B) ∨ (A ∧ C)
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and rules

A ⊢ B B ⊢ C
A ⊢ C

C ⊢ A C ⊢ B
C ⊢ A ∧B

A ⊢ C B ⊢ C
A ∨B ⊢ C

Vakarelov further remarks that this system can be extended to a
sequent calculus for intuitionistic logic sH formulated in the language
Li = Ll ∪ {→} by adding to it the following axiom and rule:

A ∧ (A→ B) ⊢ B
A ∧B ⊢ C

A ⊢ B → C
.

While this was not outlined in [35], we can also extend it with dual
implication by adding the following:

B ⊢ A ∨ (B ← A)
A ⊢ B ∨ C

A← B ⊢ C
.

By adding these to sDL we obtain a system sB for dual intuitionistic
logic in the language Ld = Ll ∪ {←} and by adding those to sH we
obtain a system sHB for bi-intuitionistic logic.

The semantical interpretation of all connectives above is exactly the
same as above, so we can define:

DL := {A ⊢ B | A, B ∈ ForLl and A ⊢ B is valid in every frame},

H := {A ⊢ B | A, B ∈ ForLi and A ⊢ B is valid in every frame},

B := {A ⊢ B | A, B ∈ ForLd and A ⊢ B is valid in every frame}.

Then from the results in [24] and [35], as well as the subformula prop-
erty of display calculi we can obtain the following four-way completeness
result:

Theorem 5. For any formulas A, B ∈ ForLl (ForLi, ForLd, ForLb) the
following are equivalent:

1. A ⊢ B is derivable in sDL (sH, sB, sHB);
2. A ⊢ B lies in DL (H, B, HB);
3. A ⊢ B is valid in every frame;
4. A ⊢ B is derivable in δHB.

The only new part of this theorem involves proving that our axiom
and rule adequately capture the dual implication of HB. This is done
dually to how implication is considered in [35] by making use of what
Vakarelov calls the co-extension lemma.

The last theorem suggests a natural way to define display calculi
for DL, H and B by considering corresponding fragments of HB (←-free
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in case of H and etc.). Notice, though, that defining them this way
only gives us the weaker version of the completeness result (as stated in
Theorem 3). To get the stronger version of completeness we would have
to modify our systems in some way. For instance, a display calculus for H

with a stronger version of completeness (albeit with different structural
connectives and hence different display equivalences) was suggested by
Goré in [18].

As a side note let us mention a couple other ways we could modify
δHB to get some familiar logics over which modal operators were studied
in the literature. A number of different ways to extend δHB to obtain
a display calculus for classical logic are outlined in [19]. In [11] modal
operators (albeit positive) were studied over the positive logic P, which
is simply a ⊥-free fragment of intuitionistic logic. Accordingly we can
obtain a display calculus δP for it by considering the ⊥-free fragment of
δH (that is by removing introduction rules for⊥ and considering formulas
not containing the symbol). Again, this only gives us the weaker version
of the completeness result. In [8] it was shown that KC is the smallest
superintuitionistic logic over which a number of natural modal operators
obtained by composition of intuitionistic negation and basic operators
of necessity, possibility, unnecessity and impossibility behave naturally
in some sense. It is well known that KC can be axiomatized modulo H

by either the weak law of excluded middle ¬A ∨ ¬¬A or by one of De
Morgan’s laws ¬(A ∧B)→ ¬A ∨ ¬B. A display calculus for KC can be
obtained by first extending δHB with the following structural rule:

X ⊢ Y • I
I • (X • I) ⊢ Y • I

and then taking the ←-free fragment of the resulting system.
Here is how the weak law of excluded middle can be derived using it:

A ⊢ A
¬A ⊢ A • I

I • (¬A • I) ⊢ A • I

I • (¬A • I) ⊢ ¬A

I • ¬A ⊢ ¬A • I
I ⊢ ¬A ◦ ¬¬A
I ⊢ ¬A ∨ ¬¬A

The full completeness result can be obtained quite routinely given the se-
mantical interpretation of KC; we leave the details to a interested reader.
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4.2. Regular and co-regular negations

Finally we turn to the regular and co-regular negations of Vakarelov.
Regular negation ⊲r is axiomatized modulo sDL by the following

axiom and rule

⊲rA ∧ ⊲rB ⊢ ⊲r(A ∨B)
A ⊢ B

⊲rB ⊢ ⊲rA
.

While co-regular negation ◮r is axiomatized by

◮r(A ∧B) ⊢ ◮rA ∨ ◮rB
A ⊢ B

◮rB ⊢ ◮rA
.

Let us denote by sBiR a sequent calculus in the language Lr = Lb ∪
{⊲r,◮r} obtained by adding to sHB axioms and rules for regular and
co-regular negation.

From the results of [35] we can infer the following semantical interpre-
tation. By a regular frame we call a tuple W = 〈W,≤, R⊲, R◮, N, N ′〉,
where 〈W,≤, R⊲, R◮〉 is a normal frame and N, N ′ ⊆ W are cones in
〈W,≤〉, that is x ∈ N and x ≤ y implies y ∈ N and similarly for
N ′. Elements of N are called normal worlds and elements of N ′ are
called co-normal worlds. A regular model is a regular frame together
with a valuation as before. Valuations clauses for regular and co-regular
negations are:

µ, x � ⊲rA ⇐⇒ x ∈ N and ∀y (xR⊲y ⇒ µ, y 2 A);

µ, x � ◮rA ⇐⇒ x ∈ N ′ or ∃y (xR◮y ∧ µ, y 2 A).

The notions of the validity of formulas and sequents are defined as above.
Denote

BiR := {A ⊢ B | A, B ∈ ForLr and
A ⊢ B is valid in every regular frame }.

Then, by modifying slightly the result of [35] we can obtain

Theorem 6. For any sequent S in Lr: S ∈ BiR iff S is derivable in sBiR.

Vakarelov has further distinguished two other classes of negations:
normal and co-normal negations are, respectively, regular and co-regular
negations satisfying:

⊤ ⊢ ⊲r⊥ ◮r⊤ ⊢ ⊥.

We call these normality axioms. Notice that normal and co-normal nega-
tions are just the impossibility and unnecessity operators of system BiN.



176 Sergey Drobyshevich

This in turn reveals one interesting feature of δBiN: recall that we did
not have any structural rules governing our structural connectives ♯ and
♭, yet as a result we obtained a system in which normality axioms can be
derived for free. Does it mean then it is impossible to display regular and
co-regular negations, since there is nothing we can hope to remove from
the display calculus for normal and co-normal negations to get there? It
turns out it is possible, but we need to add things instead of removing
them.

We close this section by outlining how one can get a Hilbert-style
axiomatization of BiN:

1. a Hilbert style axiomatization of HB from [25];
2. rules and axioms for ⊲r and ◮r from the beginning of this section

plus similar rules and axioms for backward-looking modalities (obvi-
ously, we need to rename modalities to ⊲ and ◮, respectively);

3. normality axioms for both forward-looking and backward-looking
modalities;

4. axioms A → ⊲⊳A, A → ⊳⊲A, ◮◭A → A and ◭◮A → A  these
formulas express connections between backward- and forward-looking
modalities.

5. Displaying regular and co-regular negations

In this section we will formulate a display calculus for regular and co-
regular negations.

Our solution is slightly roundabout in that we will display regular
versions of these negations through theirs normal versions. This is rem-
iniscent of early display systems for intuitionistic logic which were ob-
tained by displaying classical modal logic S4 and introducing intuition-
istic implication by means of the well-known Gödel-McKinsey-Tarksi
translation.

Thus, we will first introduce and display an extension of BiR denoted
by BiRN and then derive a display calculus for BiR from it. Logic BiRN

is formulated in a language containing excessive amount of connectives,
that is we put Lf = Ln ∪ {⊲r,⊳r,◮r,◭r, n, n′}. Connectives ⊳r and
◭r are just backward-looking variants of ⊲r and ◮r, respectively, while
n and n′ are new constants, which we will use to model normal and
co-normal worlds, respectively.
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5.1. Logic BiRN

We define BiRN semantically by introducing new valuation clauses on
regular models. Thus, for a regular model µ = 〈W,≤, R⊲, R◮, N, N ′〉
put:

µ, x � n ⇐⇒ x ∈ N,

µ, x � n′ ⇐⇒ x ∈ N ′,

µ, x � ⊳rA ⇐⇒ x ∈ N and ∀y (xR⊳y ⇒ µ, y 2 A),

µ, x � ◭rA ⇐⇒ x ∈ N ′ or ∃y (xR◭y ∧ µ, y 2 A).

Then put

BiRN := {A ⊢ B | A, B ∈ ForLf and

A ⊢ B is valid in every regular frame }.

Notice that in this system formulas ⊲rA and ⊲A∧n are semantically
equivalent and similarly for ◮rA and ◮A ∨ n′ and backward-looking
modalities.

5.2. Displaying BiRN

We will now define a display calculus δBiRN for BiRN. First we add two
new nullary structural connectives η and η′ to our structural language.
These will correspond to n and n′, respectively. Since they are nullary
we do not need to add any further display equivalences for them.

Then δBiRN is obtained by adding the following axioms and rules to
δBiN:

η ⊢ n
η ⊢ X

n ⊢ X

X ⊢ η′

X ⊢ n′
n′ ⊢ η′

Introduction rules for ⊲r can be obtained by keeping in mind the se-
mantical equivalence between ⊲rA and ⊲A ∧ n; thus we have

η ⊢ X
(⊲r ⊢ 1)

⊲rA ⊢ X
X ⊢ A(⊲r ⊢ 2)
⊲rA ⊢ ♯X

X ⊢ ♯A
(⊢ ⊲r)

η ◦X ⊢ ⊲rA

Rules for ⊳r are obtained from these by replacing ⊲r with ⊳r and ♯
with ♭.

For ◮r we think of ◮rA as ◮A ∨ n′ and derive

♯A ⊢ X
(◮r ⊢)

◮rA ⊢ X ◦ η′

X ⊢ η′

(⊢ ◮r1)
X ⊢ ◮rA

A ⊢ X(⊢ ◮r2)
♯X ⊢ ◮rA

Again, rules for ◭r are obtained similarly by replacing ◮r with ◭r and
♯ with ♭.
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We do not add any additional structural rules.

Notice that even though n and n′ look virtually the same from the
semantical perspective, we have chosen different rules for them in our
display calculus: n has ⊤-like rules, while n′ has ⊥-like rules. To demon-
strate why, we can show that ⊲rA and ⊲A ∧ n are equivalent on the
syntactic level and similarly for ◮rA and ◮A ∨ n′:

A ⊢ A
⊲rA ⊢ ♯A

⊲rA ⊢ ⊲A

η ⊢ n

⊲rA ⊢ n

⊲rA ◦ ⊲rA ⊢ ⊲A ∧ n
⊲rA ⊢ ⊲A ∧ n

A ⊢ A
⊲A ⊢ ♯A

η ◦ ⊲A ⊢ ⊲rA

n ◦ ⊲A ⊢ ⊲rA
n ∧ ⊲A ⊢ ⊲rA

A ⊢ A
♯A ⊢ ◮A

◮rA ⊢ ◮A ◦ η′

◮rA ⊢ ◮A ◦ n′

◮rA ⊢ ◮A ∨ n′

A ⊢ A
♯A ⊢ ◮rA

◮A ⊢ ◮rA

n′ ⊢ η′

n′ ⊢ ◮nA

◮A ∨ n′ ⊢ ◮rA ◦ ◮rA

◮A ∨ n′ ⊢ ◮rA

Similar equivalences can be proved for ⊳r and ◭r.

Let us show that δBiRN admits cut-elimination. We only need to
prove that C8 (cf. Section 4) is satisfied for it and we only consider
the case of ⊲rA. There are two distinct cases depending on which left
introduction rule for ⊲rA was used in the derivation

X ⊢ ♯A

η ◦X ⊢ ⊲rA

η ⊢ Y

⊲rA ⊢ Y

η ◦X ⊢ Y  

η ⊢ Y

η ◦X ⊢ Y

X ⊢ ♯A

η ◦X ⊢ ⊲rA
Y ⊢ A
⊲rA ⊢ ♯Y

η ◦X ⊢ ♯Y  

Y ⊢ A

X ⊢ ♯A

A ⊢ ♭X
Y ⊢ ♭X
X ⊢ ♯Y

η ◦X ⊢ ♯Y

Thus we have

Theorem 7. Calculus δBiRN admits cut elimination.

Next, we want to show that BiRN is sound and complete with respect
to δBiRN. We follow Onishi’s proof of completeness for BiN.
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Let us expand the canonical translation (see Definition 1) to accom-
modate new structural connectives by putting τ1(η) = τ2(η) = n and
τ1(η′) = τ2(η′) = n′.

For two sets of formulas Γ, ∆ ⊆ ForLf put Γ ⊢ ∆ if a sequent

(. . . (A1 ◦ · · · ) ◦An) ⊢ (. . . (B1 ◦ · · · ) ◦Bm)

is derivable in δBiRN for some A1, . . . , An ∈ Γ, B1, . . . , Bm ∈ ∆. By a
maximal consistent pair we will call a pair (Γ, ∆) of sets of formulas such
that Γ 0 ∆ and Γ ∪∆ = ForLf .

We have:

Lemma 1 (extension [24]). If Γ 0 ∆ for some Γ, ∆ ⊆ ForLf then there
is a maximal consistent pair (Γ′, ∆′) such that Γ ⊆ Γ′ and ∆ ⊆ ∆′.

We can define the canonical model µc = 〈W c,≤c, Rc
⊲

, Rc
◮

, N c, N
′c,

vc〉, where

1. W c = {Γ | (Γ, ForLf \ Γ) is a maximal consistent pair};
2. Γ ≤c ∆ iff Γ ⊆ ∆;
3. ΓRc

⊲
∆ iff ∀A (⊲A ∈ Γ⇒ A /∈ ∆);

4. ΓRc
◮

∆ iff ∃A (◮A ∈ Γ and A /∈ ∆);
5. Γ ∈ N c iff n ∈ Γ;
6. Γ ∈ N

′c iff n′ ∈ Γ;
7. Γ ∈ vc(p) iff p ∈ Γ for propositional variable p.

It is easy to see that the canonical model is a regular model.

Lemma 2 (canonical). For any Γ ∈W c and formula A we have

µc, Γ � A ⇐⇒ A ∈ Γ.

Proof. By induction on complexity of A. For connectives in Ln see [24].
For A = n or A = n′ the result is obtained immediately by definition.

Let us consider the case of ⊲r. We have the following equivalences

µc, Γ � ⊲rA ⇐⇒ µc, Γ ⊢ ⊲A ∧ n ⇐⇒ ⊲A ∧ n ∈ Γ ⇐⇒ ⊲rA ∈ Γ.

The first one is obvious, the second one follows from Onishi’s proof and
the last one is easily obtained using the definition of a maximal consistent
pair and the fact that sequents ⊲rA ⊢ ⊲A ∧ n and ⊲A ∧ n ⊢ ⊲rA are
derivable in δBiRN (see above).

The remaining cases are considered similarly.
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Lemma 3. 1. For any structure X sequents X ⊢ τ1(X) and τ2(X) ⊢ X
are derivable in δBiRN.

2. If τ1(X) ⊢ τ2(Y ) is derivable in δBiRN then so is X ⊢ Y .

Proof. The first item is proved by induction on the complexity of X ,
while the second one follows from the first by a couple application of cuts.

Theorem 8 (completeness). A sequent X ⊢ Y is derivable in δBiRN iff
τ1(X) ⊢ τ2(Y ) ∈ BiRN.

Proof. =⇒. By induction on the complexity of derivation of X ⊢ Y .

⇐=. Assume that X ⊢ Y is not derivable in δBiRN. Then neither
is τ1(X) ⊢ τ2(Y ) by the previous lemma. By the extension lemma there
is a maximal consistent pair (Γ, ∆) such that τ1(X) ∈ Γ and τ2(Y ) /∈ Γ.
Then by the completeness lemma µc, Γ � τ1(X) and µc, Γ 2 τ2(Y ), hence
the sequent τ1(X) ⊢ τ2(Y ) is refuted on the canonical model. Then
τ1(X) ⊢ τ2(Y ) /∈ BiRN by definition.

Notice that this is the stronger version of the completeness result,
from which the weaker version automatically follows. Now we know
exactly how to display regular and co-regular negations by considering
an appropriate fragment of δBiRN, as can be inferred from the following:

Theorem 9. For A, B ∈ ForLr the following are equivalent:

1. A ⊢ B is valid in every regular frame;
2. A ⊢ B is derivable in sBiR;
3. A ⊢ B is derivable in δBiRN.

To summarize, we can display regular and co-regular negations by
taking an appropriate fragment of δBiRN. As before, we will only get
the weaker version of completeness result by doing so.

One last remark here. Looking at δBiRN it is easy to see, how a
display calculus for Johansson’s minimal logic J could be obtained. It
would be enough to take a display calculus for positive logic (as outlined
above) and add to it a nullary connective that has the same introduction
rules as n′ and no additional structural rules.
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5.3. Regaining normality

Here we show how normal and co-normal negations can be regained
from δBiRN in a natural way. Consider a system obtained from δBiRN

by adding the following structural rules.

η ◦X ⊢ Y
(norm ⊢)

X ⊢ Y

X ⊢ Y ◦ η′

(⊢ norm)
X ⊢ Y

In the resulting system we can then prove both normality and co-nor-
mality axioms:

⊥ ⊢ I
⊥ ⊢ ♭I
I ⊢ ♯⊥

η ◦ I ⊢ ⊲r⊥

I ⊢ ⊲r⊥
⊤ ⊢ ⊲r⊥

I ⊢ ⊤
♭I ⊢ ⊤
♯⊤ ⊢ I

◮r⊤ ⊢ I ◦ η′

◮r⊤ ⊢ I

◮r⊤ ⊢ ⊥

Moreover we can prove:

A ⊢ A
⊲rA ⊢ ♯A

⊲rA ⊢ ⊲A

A ⊢ A
⊲A ⊢ ♯A

η ◦ ⊲A ⊢ ⊲rA

⊲A ⊢ ⊲rA

A ⊢ A
♯A ⊢ ◮A

◮rA ⊢ ◮A ◦ η′

◮rA ⊢ ◮A

A ⊢ A
♯A ⊢ ◮rA

◮A ⊢ ◮rA

We omit the details of proving that rules (norm ⊢) and (⊢ norm) corre-
spond exactly to normality and co-normality axioms, respectively.

6. Decidability

In this section we adapt Restall’s method [29] to develop a general de-
cidability recipe for δBiRN and all other systems we have mentioned.

A careful observation shows that there are only four problematic
rules in our system: (i ⊢), (⊢ i), (w ⊢) and (⊢ w). They are problematic
insofar as their premisses contain more information than conclusions.
Basically, the idea behind the proof is to make sure that these rules are
not applied unless absolutely necessary. But to get there we would need
a bunch of preliminary results.
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The first thing to do is to modify the system slightly. Thus, let us
replace rules (w ⊢), (⊢ w), (⊢ ∧), (∨ ⊢), (→⊢) and (⊢←) with the
following new versions:

X ◦X ⊢ Y(w ⊢)′ , X 6= U ◦ V
X ⊢ Y

X ⊢ Y ◦ Y(⊢ w)′ , Y 6= U ◦ V
X ⊢ Y

X ⊢ A X ⊢ B(⊢ ∧)′

X ⊢ A ∧B
A ⊢ X B ⊢ X(∨ ⊢)′

A ∨B ⊢ X
X ⊢ A X ◦B ⊢ Y(→⊢)′

X ◦ (A→ B) ⊢ Y
X ⊢ A ◦ Y B ⊢ Y(⊢←)′

X ⊢ (A← B) ◦ Y

We denote by δBiRN
′ the system obtained by replacing the old rules with

these new ones.

Lemma 4. A sequent S is derivable in δBiRN iff it is derivable in δBiRN
′.

Proof. The only non-trivial part is to show that one can derive (→⊢)
using (→⊢)′ (and similarly for (⊢←)). Notice that every structure can be
presented in the form Y = Y1 • (Y2 • · · · • (Yn •Z) . . . ) with n ≥ 0, where
Z is not of the form Z1 • Z2. Then we can get the following derivation
scheme:

X ⊢ A
X ◦ (Y1 ◦ · · · ◦ Yn) ⊢ A

B ⊢ Y
B ⊢ Y1 • (Y2 • (· · · • (Yn • Z) . . . )

(Y1 ◦ · · · ◦ Yn) ◦B ⊢ Z

(X ◦ (Y1 ◦ · · · ◦ Yn)) ◦ B ⊢ Z
(→⊢′)

(X ◦ (Y1 ◦ · · · ◦ Yn)) ◦ (A→ B) ⊢ Z

X ◦ (A→ B) ⊢ (Y2 • (· · · • (Yn • Z) . . . )

X ◦ (A→ B) ⊢ Y

So technically we will be proving the decidability of δBiRN
′. In

what follows by derivability/derivable sequents we will mean derivability/
derivable sequents in δBiRN

′.
Now onto the proof itself. We say that sequents S1 and S2 are equiv-

alent and write S ∼ S′, if one can be derived from the other using only
display equivalences, (a ⊢) and (⊢ a). We will refer to these rules as
∼-rules. Notice that since all ∼-rules are reversible, we can infer that
equivalent sequents are interderivable.

We say that structures X and X ′ are a-similar (s-similar) if for any
structure V sequents X ⊢ V and X ′ ⊢ V (V ⊢ X and V ⊢ X ′) are
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equivalent. For example, structures A • (B • C) and (A ◦ B) • C are
s-similar, but not a-similar.

Definition 2. We say that a structure occurrence X in sequent S is
congruent to a structure occurrence X ′ in sequent S′ if there is a sequence
of pairs (S1, X1), . . . , (Sn, Xn) such that X1 = X , S1 = S, Sn = S′,
Xn = X ′ and for each i ≤ n Xi is a structure occurrence in Si such that
one of the following conditions holds:

(a) Si+1 is obtained from Si by an application of a ∼-rule and X = X ′

occupy the same position in structure occurrences assigned to some
structure-variable in the definition of this rule;

(b) Si = Xi ⊢ V , Si+1 = Xi+1 ⊢ V and Xi, Xi+1 are a-similar;
(c) Si = V ⊢ Xi, Si+1 = V ⊢ Xi+1 and Xi, Xi+1 are s-similar.

Let us illustrate (a). Consider an instance of a ∼-rule:

X ◦ Y ⊢ Z
X ⊢ Y • Z

For any substructure V of X in the premiss of this rule there is a corre-
sponding V in the succedent, and these two V ’s will be congruent by item
(a) above. Notice that in most cases there is no structure occurrence in
X ⊢ Y •Z, which is congruent to (X ◦ Y ) in X ◦ Y ⊢ Z (in theory some
substructure of Z could be congruent to (X ◦ Y )).

In what follows we will often use the term structure to denote both
structures and structure occurrences as those will hopefully be easy to
tell apart.

Remark 1. If X in S is congruent to X ′ in S′ then S is equivalent to S′.

We say that an occurrence of I in S is a-superfluous (s-superfluous)
if it is congruent to the indicated I in some sequent X ◦ I ⊢ Y (X ⊢
Y ◦ I). We say that an occurrence of structure Z, such that Z 6= I and
Z 6= V ◦W , is a-superfluous (s-superfluous) in S if it is congruent to one
of the indicated Z in Z ◦Z ⊢ X (X ⊢ Z ◦Z). By a superfluous structure
we will sometimes call one which is either a-superfluous or s-superfluous.

Superfluous structures correspond to structures that can be elimi-
nated by an application of one of the ‘problematic’ rules. Observe that
restrictions for (w ⊢)′ and (⊢ w)′ justify our restriction on the form of
superfluous structures.

Remark 2. An a-(s-)superfluous structure is always an a-(s-)part of a
sequent.
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Definition 3. Let us define the result of deleting a structure occurrence
X from a sequent S, which we denote by S \ X (in all cases X is the
indicated occurrence): if S is one of X ⊢ Y ◦ Z, X ⊢ Y • Z, Y ◦ Z ⊢ X
or Y •Z ⊢ X then S \X is Y ⊢ Z; if X is a substructure of (Y ∗Z) in S,
where ∗ ∈ {◦, •} and X = Y then S \X is obtained from S by replacing
the indicated (X ◦ Y ) or (X • Y ) with Y .

Notice that the cases outlined above are not exhaustive, meaning
that the operation of deleting a structure from a sequent only makes
sense in some situations. Where it does make sense we say that X can
be deleted from S.

Lemma 5. Suppose X is superfluous in S. Then X can be deleted
from S. Moreover,

(∗) if S is X ⊢ Y (Y ⊢ X) and X 6= I then there is a proper substructure
X ′ of Y , which is congruent to X (in S).

Proof. We only consider the case of a-superfluous structure X 6= I.
By definition there are pairs F1, . . . , Fn with Fi = (Xi, Si), such that
F1 = (X, S), Fn = (X, X ◦X ⊢ V ) for some V and for each j one of the
conditions (a)–(c) above is satisfied.

For the main part we just have to consider all situations not present in
Definition 3 to show that X cannot be a-superfluous in these situations.
We only outline one such case. Suppose X is a-superfluous in X ⊢ ♯Y .
It is easy to see then that for each i the following holds: either Xi is
the entire antecedent of Si or Xi is a substructure of ♭Xi in Si. Yet
this property does not hold for Fn, thus X could not be a-superfluous in
X ⊢ ♯Y .

To prove (∗) simply observe that it is trivially satisfied for Fn and
that if it is satisfied for some Fi+1 then it is also satisfied for Fi.

Our main goal now is to show that if a structure is superfluous in
some sequent then the result of deleting it is interderivable with the
original sequent.

Lemma 6. Suppose X is a-(s-)superfluous in S and it is congruent to X ′

in S′. Then X ′ is a-(s-)superfluous in S′ and sequents S \X and S′ \X ′

are equivalent.

Proof. We consider the case when X is a-superfluous in S. We use
simple induction argument following the definition of congruent struc-
tures. By definition we have pairs F1, . . . , Fn such that Fi = (Xi, Si),
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F1 = (X, S), Fn = (X ′, S′) and for each i we have one of conditions
(a)–(c) above. Since every Xi in Si is congruent to Xj in Sj and X in S
is congruent to X in X ◦X ⊢ V then all Xj are obviously a-superfluous.
Hence every Xi can be deleted from Si by Lemma 5. Now let us show
that Si \ Xi is equivalent to Si+1 \ Xi+1 for every i. Notice that Fi+1

could not be obtained from Fi by (c). If Fi+1 is obtained from Fi by
(b) then Si \Xi = Si+1 \Xi+1. If Fi+1 is obtained from Fi by (a) then
Si+1 \Xi+1 can be obtained from Si \Xi by an application of the same
rule which leads from Si to Si+1.

Lemma 7. Suppose X is superfluous in S then S \ X and S are inter-
derivable. Moreover, there is a derivation of S\X from S, which contains
only one instance of one of the rules (i ⊢), (⊢ i), (w ⊢), (⊢ w); and a
derivation of S from S \X which does not contain any instances of these
rules.

Proof. Assume that X is a-superfluous in S. Then we have the follow-
ing derivation schemes:

S
(1)

X ◦X ⊢ Y
(2)

X ⊢ Y
(3)

S \X

S
(1)

Z ◦ I ⊢ Y
(2)

Z ⊢ Y
(3)

S \ I

Here, (1) is a number of instances of ∼-rules (see Remark 1); (2) is an
instance of (w ⊢) or (i ⊢) going from top to bottom and an instance of
(m ⊢) the other way around; (3) again consists of ∼-rules and is obtained
by Lemma 6.

We need a number of new notions. For a sequent S by r(S) we
denote the result of deleting every superfluous structure in S starting
with leftmost one and proceeding to the right. We say that a sequent S
is reduced if it does not have superfluous structures. We say that S is
semi-reduced if it either reduced or it can be made reduced by deleting up
to two superfluous structures. Finally, we say that a proof Π is reduced if
i) it does no contain loops (i.e., there no sequent S which appears twice
on some branch) and ii) every sequent in Π is semi-reduced.

Notice that as a corollary of Lemma 7 we immediately obtain

Remark 3. A sequent S is derivable iff r(S) is derivable.

Finally, we get to the main lemma of our proof.

Lemma 8. Every derivable reduced sequent has a reduced proof.
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Proof. The fact that we can eliminate loops from the proof is obvious,
so assume that we have a reduced sequent S with a proof Π, which does
not contain loops. Next, we replace every sequent S′ in Π with r(S′).
Since all axioms of δBiRN

′ are reduced and so is S, it is enough to show
that given any instance of a rule S1, . . . , Sn/S in Π we can derive r(S)
from r(S1), . . . , r(Sn) using only semi-reduced sequents.

Let us first describe the general scheme we will follow in all cases.
Take an instance of a rule (r)

S1 . . . Sn

S0

Step 1. Start simultaneously deleting superfluous structures from
S0, . . . , Sn until we obtain sequents S′

1, . . . , S′

n such that r(Si) = r(S′

i)
for all i and either S′

i = S′

0 for some 1 ≤ i ≤ n or deleting any further
superfluous structure Z results in an expression, which is no longer an
instance of (r).

Step 2. Fill the gaps in the following derivation using only semi-
reduced sequents.

r(S1)

...
S′

1 · · ·

r(Sn)

...
S′

n

S′

0

...
r(S0)

Lemma 7 tells us exactly how to fill in these gaps. More specifically it
tells us that superfluous structures can only appear on branches from
r(Si) to S′

i for 1 ≤ i ≤ n.
Step 3. Count how many superfluous structures are in S′

i for 1 ≤ i ≤
n. If the answer for each i is “no more than two” then we are done.

Let us demonstrate, how the scheme works for some rules.
Rule (a ⊢). Consider X ◦(Y ◦Z) ⊢W and assume U is superfluous in

it. Because of the restriction on the form of superfluous structures U has
to be a substructure of X , Y , Z or W . If it is a proper substructure of one
of those, then deleting it gives us an instance of the same rule. If U is one
of X , Y or Z then deleting it from both premiss and conclusion gives us
the same sequent. If U = W and W 6= I then by (∗) there is a congruent
U ′, which is again a substructure of X , Y or Z and we can delete U ′

instead. On the other hand, reasoning as in the proof of Lemma 5 it
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is easy to show that W cannot be superfluous if W = I. Thus, we can
complete Step 1 by deleting all superfluous structures in X ◦(Y ◦Z) ⊢W .

Rule (⊢ ∧)′. Consider X ⊢ A. By (∗) we know that if Y is super-
fluous in X ⊢ A then there is a structure Z congruent to Y , which is
contained in X . Now, if Z does not contain a part, which is congruent
to the indicated A in X ⊢ A, then it is superfluous in both X ⊢ B and
X ⊢ A∧B and deleting it from all three sequent yields an instance of the
same rule. After deleting all such superfluous structures (denote by X ′

the result of deleting them from X) we complete Step 1 of our scheme.
Naturally, what we are left with is at most one superfluous structure in
each of X ′ ⊢ A, X ′ ⊢ B, which is what we needed.

Rule (∧ ⊢). Again, if some structure Z is superfluous in A ◦ B ⊢ X
but does not involve the indicated A and B, then it is superfluous in
A∧B ⊢ X too and deleting it from both gives as an application of (∧ ⊢)
again. We finish Step 1 by deleting all such superfluous structures. But
now the resulting sequent A ◦B ⊢ X ′ might contain at most two super-
fluous structures  one containing structure congruent to the indicated
A and one containing structure congruent to the indicated B. Yet this
is still within the constraints of semi-reduced sequents. Notice that this
case is the reason for allowing at most two superfluous structures in
semi-reduced sequents.

Rule (→⊢)′. Reasoning as above we assume that X ⊢ A contains
at most one superfluous structure, which has a part congruent to the
indicated A. Now, consider X ◦ B ⊢ A and suppose Z is superfluous in
X ◦B ⊢ Y . If Z is a substructure of Y and does not involve B then it is
superfluous in X ◦ (A→ B) ⊢ Y too and deleting it from both of these
sequents results in an instance of the same rule. If Z is X ◦B then by (∗)
there is a substructure Z ′ of Y , which is congruent to it and we proceed as
above. Now, if Z is a substructure of X , then, given that Y is not of the
form Y1 •Y2, we can reason as in Lemma 5 to show that no substructure
of X can be congruent to substructure of Y . From which is easily follows
that Z has to involve the indicated B, which means that there is at most
one superfluous structure in the resulting sequent X ′ ◦B ⊢ Y ′.

All other rules are considered similarly.

By an atom of some sequent S we will call every structure occurrence
Z in S which is either a formula or a nullary structural connective. We
can define the multiset Atom(S) of atoms of S in a natural way.

Theorem 10. It is decidable whether a sequent S is derivable in δBiRN
′.
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Proof. Consider a sequent S. It follows from Lemma 7 that S is in-
terderivable with the reduced sequent r(S). Thus we can assume that S
is reduced. By Lemma 8 S is derivable iff it has a reduced proof. Then
we want to show that there is only a finite number of candidates for a
reduced proof of S.

Let us define a multiset X(S) the following way: for each formula
occurrence A (including those which are subformulas of other formulas)
in S put into X(S) four instances of A; also put four instances of I (η, η′)
for each occurrence of I (η, η′) in S. Naturally, X(S) is a finite multiset.

Then let Tree(S) be the set of all finite trees T such that i) every
node of T is a sequent S′ such that Atom(S′) ⊆ X(S); ii) T does not
contain loops; iii) branching in T is limited to two. Obviously, Tree(S)
is a finite set.

Finally it is routine to check that if Π is a reduced proof of S then
Π is an element of Tree(S), which concludes our proof.

Why did we multiply everything by four? A sequent S = B ⊢ ((A ◦
A) • C) ◦ ((A ◦ A) • C) is an example of a semi-reduced sequent which
contains four instances of A whereas r(S) = B ⊢ A•C contains only one.

To summarize, our decision procedure for a sequent S in δBiRN is
the following.

I. Compute r(S). By Lemmas 4 and 7 S is derivable in δBiRN iff r(S)
is derivable in δBiRN

′. See also Remark 3.
II. By Lemma 8 r(S) is derivable in δBiRN

′ iff it has a reduced proof.
List all candidates for a reduced proof of r(S) as in Theorem 10.
By the same theorem there is only a finite number of those.

III. If one of the candidates is a reduced proof of r(S) then S is derivable
in δBiRN; it is not derivable otherwise.

Naturally, this procedure is not very effective at all, but our goal here
was the decidability result itself so we leave it at that.

There are some simple consequences of this decision procedure. First,
we have naturally obtained decidability for every fragment of δBiRN, in-
cluding Onishi’s δBiN, bi-intuitionistic logic and so on. Second, we can
automatically extend this result for some extensions of δBiRN. More
specifically, extending it with any structural rule S1, . . . , Sn/S such that
Atom(Si) ⊆ Atom(S) for all i ≤ n preserves this result. The combina-
tion of these two covers most of logics outlined in the paper including
something as obscure as a system obtained by adding a normal modal
unnecessity operator to KC.
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In [20] Marcus Kracht proved that it is undecidable whether a modal
display calculus over classical base is decidable, hence showing that the
cut-elimination and subformula properties are not enough for decidabil-
ity. The possibility of a similar result for our modal logics over a bi-
intuitionistic base is an interesting open question.
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