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ON DISTANCES IN SIERPIŃSKI GRAPHS:

ALMOST-EXTREME VERTICES AND METRIC

DIMENSION

Sandi Klavžar, Sara Sabrina Zemljič

Sierpiński graphs Sn
p form an extensively studied family of graphs of fractal

nature applicable in topology, mathematics of the Tower of Hanoi, computer
science, and elsewhere. An almost-extreme vertex of Sn

p is introduced as a
vertex that is either adjacent to an extreme vertex of Sn

p or is incident to
an edge between two subgraphs of Sn

p isomorphic to Sn−1
p . Explicit formulas

are given for the distance in Sn
p between an arbitrary vertex and an almost-

extreme vertex. The formulas are applied to compute the total distance
of almost-extreme vertices and to obtain the metric dimension of Sierpiński
graphs.

1. INTRODUCTION

Sierpiński graphs Sn
p were introduced for at least three reasons. In [18], they

were motivated by topological studies of universal spaces (cf. [17]) and the fact
that the base-3 Sierpiński graphs Sn

3
are isomorphic to the Tower of Hanoi graphs

on 3 pegs. Independently, a class of graphs called WK-recursive networks was
introduced in computer science in [3], see also [5]. WK-recursive networks are very
similar to Sierpiński graphs, they can be obtained from Sierpiński graphs by adding
a link (an open edge) to each of its extreme vertices.

Graphs Sn
p were studied by now from numerous points of view, the reader is

invited to read the recent paper [12] about colorings of these graphs and references
therein; see also [6] for more coloring results. Of the many other investigations,
we only mention a few explicitly. An appealing application of Sierpiński graphs is
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due to Romik [23] who designed, based on Sierpiński labelings, a finite automa-
ton particularly useful for the Tower of Hanoi problem. In [19] the structure of
Sierpiński graphs was the key to determine for the first time the exact genus of in-
finite families of fractal graphs. Recently, the hub number of Sierpiński-like graphs
was determined in [15].

Metric issues received a special attention on Sierpiński graphs. This is in par-
ticular due to the fact that shortest paths in the base-3 Sierpiński graphs correspond
to optimal solutions in the Tower of Hanoi puzzle. In the seminal paper [18] a for-
mula for the distance between vertices in Sn

p was proved, we state it as Theorem 2.
Then, in [11], additional metric properties of these graphs were investigated, in
particular establishing a connection with Stern’s diatomic sequence. Parisse [20]
followed with a paper in which he studied, among other matters, the diameter,
the eccentricity, the radius, and the center of these graphs. Wiesenberger [25]
obtained a formula for the average distance in Sn

p . The formula is far from being
trivial, it extends over several lines! Very recently, Hinz and Parisse [13] suc-
ceeded in determining the average eccentricity and its standard deviation for all
Sierpiński graphs.

The metric dimension of a graph turned out to be a natural concept while
studying several different problems and was consequently also reinvented in numer-
ous disguises. (An impressive list of its applications can be found in [10]) It is thus
clear that this dimension presents an intrinsic graph invariant. For the first time it
was independently introduced in 1974 and 1975 by Harary and Melter [9] and
Slater [24], respectively. We refer to the recent semi-survey paper of Bailey and
Cameron [1] for a great source on historical developments, connections to other
invariants, non-standard terminology, and a long list of references. Another survey
source for the dimension is [7]. Here we just recall that the metric dimension has
been studied on Cartesian products of graphs [2, 22], distance-regular graphs [8],
and circulant graphs [14].

Our paper is organized as follows. In the next section definitions, concepts,
and results needed in this paper are given. Then, in Section 3, we obtain distances
between almost-extreme vertices and other vertices. The advantage of the new
formulas compared to Theorem 2 is that we do not need to compute the minima of
related expressions. As a by-product the metric dimension of the Sierpiński graphs
is determined. We point out here that in general it is very difficult to determine
the exact metric dimension, see [10] and references therein for complexity issues
on metric dimension. In the final section we use the derived formulas to compute
the total distance of almost-extreme vertices.

2. PRELIMINARIES

The graphs considered are simple and connected. The distance dG(u, v) be-
tween vertices u and v in a graph G is the standard shortest path distance. For a

vertex u of G the total distance dG(u) of u is dG(u) =
∑

v∈V (G)

dG(u, v). Whenever G
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is clear from the context we write d(u, v) and d(u) instead of dG(u, v) and dG(u),
respectively.

The set {1, 2, . . . , n} is shortly denoted by [n] and the set {0, 1, . . . , n− 1} by
[n]0.

Let G be a graph, then R ⊆ V (G) is a resolving set if each vertex of G
is uniquely determined by the distances to the vertices of R. More precisely,
let R = {u1, . . . , uk}, k ≥ 1, then R is resolving if (d(x, u1), . . . , d(x, uk)) 6=
(d(y, u1), . . . , d(y, uk)) holds for any two distinct vertices x, y ∈ V (G). In other
words, any two distinct vertices x, y ∈ V (G) are resolved by some vertex of R, that
is, there exists a vertex ui ∈ R such that d(x, ui) 6= d(y, ui). The metric dimension

of G, denoted µ(G), is the size of a minimum resolving set.

Let p ∈ N, p ≥ 2, throughout. For n ∈ N0 the Sierpiński graph Sn
p is defined

on the vertex set [p]n. Two vertices, written as s = sn . . . s1 and t = tn . . . t1, are
adjacent if and only if they are of the form s = ssδt

δ−1

δ , t = stδs
δ−1

δ with δ ∈ [n],
s ∈ [p]n−δ, and sδ 6= tδ.

Note that S0
p
∼= K1, S

1
p
∼= Kp for any p and that Sn

2
∼= P2n for every n. For S3

5

see Figure 1. For i ∈ [p], let iSn
p be the subgraph of Sn+1

p induced by the vertices
of the form s = isn . . . s1; this subgraph is isomorphic to Sn

p .

Let n ∈ N. Then Sn
p contains p extreme vertices of the form i . . . i = in; they

have degree p − 1, while all the other vertices are of degree p. We also introduce
almost-extreme vertices of Sn+1

p as those vertices which are either of the form inj
or ijn, where i 6= j. In Figure 1 the extreme vertices of S3

5 are emphasized with
filled circles and the almost-extreme vertices are emphasized as triangles (vertices
of the form ij2) and as diamonds (vertices of the form i2j).

Obviously, for n ≥ 2 the graph Sn+1
p contains p(p−1) vertices of the form inj

and also p(p−1) vertices of the form ijn. The almost-extreme vertex inj is adjacent
to the extreme vertex in+1 and the almost-extreme vertex ijn is incident with the
edge between iSn

p and jSn
p . Thus, there are 2p(p− 1) almost-extreme vertices. For

n = 1 the vertices inj and ijn coincide, hence in S2
p there are exactly p(p − 1)

almost-extreme vertices and any vertex is either extreme or almost-extreme.

The distance between a vertex of Sn
p and an extreme vertex can be computed

as follows, where we use Iverson’s convention that (X) = 1, if statement X is true,
and (X) = 0, if X is false.

Lemma 1. [18] For any j ∈ [p] and any vertex s = sn . . . s1 of Sn
p ,

d(s, jn) =

n∑

d=1

(sd 6= j) · 2d−1 .

Moreover, there is exactly one shortest path between s and jn.

An immediate consequence of Lemma 1 is that for any vertex s of Sn
p ,

(1)

p∑

i=1

d(s, in) = (p− 1)(2n − 1) .
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(Cf. also [20, Proposition 2.5].) It follows that {in | i ∈ [p− 1]} is a resolving set
for Sn

p (cf. [21, Lemme 3.5]): let s and t be vertices with d(s, in) = d(t, in) for all
i ∈ [p− 1], such that by (1) also d(s, pn) = d(t, pn) holds; but then, by the formula
in Lemma 1, s = t.
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Figure 1. S3
5 with its extreme and almost-extreme vertices emphasized

Note further that d(in, jn) = 2n − 1 for any i 6= j. More generally, the
distance between arbitrary vertices of Sn

p can be determined in the following way:

Theorem 2. [18] For i, j ∈ [p], i 6= j, δ ∈ [n], s, t ∈ [p]δ−1, and s ∈ [p]n−δ, let

d0(sis, sjt) = d(s, jδ−1) + 1 + d(t, iδ−1),

∀ℓ ∈ [p] : dℓ(sis, sjt) = d(s, ℓδ−1) + 1 + 2δ−1 + d(t, ℓδ−1).

Then,

d(sis, sjt) = min
{
dℓ(sis, sjt) | ℓ ∈ [p+ 1]0

}
.

Remark 3. The above minimum can be equivalently written as

min
{
dℓ(sis, sjt) | ℓ ∈ [p+ 1]0 \ {i, j}

}
.
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The respective paths realizing the values dℓ(sis, sjt) are unique. The minimum can be
obtained by at most one ℓ ∈ [p]. Therefore, there are at most two shortest paths between
any two vertices.

It is clear from the theorem that the distance between two vertices does not
depend on a common prefix; in particular, for i ∈ [p], n ∈ N0, and s, t ∈ [p]n,

(2) d(is, it) = d(s, t).

3. DISTANCES TO ALMOST-EXTREME VERTICES

In this section we apply Theorem 2 to the case of almost-extreme vertices
and begin with the almost-extreme vertices that are adjacent to extreme vertices.

Proposition 4. Let i, j, k ∈ [p], i 6= j, n ∈ N0, and s ∈ [p]n. Then

dSn+1

p
(is, jnk) = d(s, jn) + 2n − (i = k) .

Proof. We may assume that n ∈ N. By the definition of the almost-extreme
vertices, j 6= k. Then, for ℓ ∈ [p] \ {j} and using Lemma 1,

d0(is, j
nk) = d(s, jn) + 1 + d(jn−1k, in) = d(s, jn) + 2n − (i = k)

≤ 2n+1 − 1 ≤ 1 + 2n + d(jn−1k, ℓn) ≤ dℓ(is, j
nk) .

(Here equality holds if and only if i 6= k = ℓ, d(s, jn) = 2n − 1, and d(s, ℓn) = 0,
i.e. for s = kn and dk. Only in this case there are two shortest paths between is
and jnk.)

Remark 5. It follows immediately from Proposition 4 that d(is, jnk) = d(is, jn+1) if
|{i, j, k}| = 3.

This observation now allows us to approach the question of metric dimension.

Corollary 6. For any n ∈ N0,

µ(Sn+1

p ) = p− 1 .

Moreover, if R is a minimum resolving set, then |R∩jSn
p | ≤ 1 holds for any j ∈ [p].

Proof. Let R ⊂ V (Sn+1
p ). Assume that R ∩ jSn

p = ∅ = R ∩ kSn
p for some j 6= k.

It then follows from Remark 5 that for each r ∈ R we have d(r, jnk) = d(r, jn+1),
such that R cannot be a resolving set for Sn+1

p . Hence each resolving set must
contain at least p− 1 elements. Since we have seen earlier that (any) p− 1 extreme
vertices form a resolving set, we deduce that µ(Sn+1

p ) = p − 1 and, with recourse
to the pigeonhole principle, that no jSn

p can contain more than one element of a
minimal resolving set.
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The first assertion of Corollary 6 has been found independently and at the
same time by Aline Parreau [21, Théorème 3.6].

We now turn to the other class of almost-extreme vertices of Sn+1
p . To fa-

cilitate the formulation of a formula for d(is, jkn), we call s ∈ [p]n special (with
respect to i, j, k ∈ [p], |{i, j, k}| = 3, i.e. if p ≥ 3), if there is a δ ∈ [n] such that
s = sks with s ∈ ([p] \ {j, k})n−δ and s ∈ [p]δ−1. Then the following holds.

Proposition 7. Let i, j, k ∈ [p], i 6= j, j 6= k, n ∈ N, and s ∈ [p]n. Then

dSn+1

p
(is, jkn) =

{
d(s, kn) + 2n + 1, if s is special,

d(s, jn) + 2n − (i = k)(2n − 1), otherwise.

Proof. We have

d0(is, jk
n) = d(s, jn) + 1 + d(in, kn) = d(s, jn) + 2n − (i = k)(2n − 1)

and for ℓ ∈ [p] \ {i, j},

dℓ(is, jk
n) = d(s, ℓn) + 1 + 2n + d(ℓn, kn) .

This is strictly larger than d0(is, jk
n), if ℓ 6= k. So we may assume that k 6= i and

have to compare d0(is, jk
n) with

dk(is, jk
n) = d(s, kn) + 1 + 2n

i.e. we look at the sign of

ρ(s) := d0(is, jk
n)− dk(is, jk

n)

= d(s, jn)− d(s, kn)− 1

=

n∑

d=1

((sd = k)− (sd = j)) · 2d−1 − 1 .

Now
n∑

d=1

τd · 2d−1 ≥ 1, if and only if τ = τn . . . τ1 ∈ {−1, 0, 1}n has the special

form 0n−δ1τ with τ ∈ {−1, 0, 1}δ−1 for some δ ∈ [n] (with equality if and only
if τ = (−1)δ−1). This is equivalent to s being special. (Note that there are two
shortest paths if and only if s = skjδ−1.)

Proposition 7 is illustrated in Figure 2 on S4
6
. The subgraph 1S3

6
is drawn

explicitly and special vertices with respect to i = 1, j = 2, k = 5 are drawn with
filled circles.
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Figure 2. Illustration of Proposition 7 on S4
6

4. TOTAL DISTANCE OF ALMOST-EXTREME VERTICES

The total distance of a vertex in particular plays an important role in math-
ematical chemistry, cf. [16], because it is a building block for the extensively inves-
tigated Wiener index of a graph. In this section we determine the total distance of
almost-extreme vertices of Sierpiński graphs. To make the paper self-contained we
first reprove the following result that can be found in [25] as well as in the proof
of [20, Corollary 2.6].

Lemma 8. For any n ∈ N and each i ∈ [p],

dSn
p
(in) = pn−1(p− 1)(2n − 1).

Proof. Since for every d ∈ [p] there are pn−1(p − 1) vertices s = sn . . . s1 with
sd 6= i, i ∈ [p], it follows by Lemma 1

∑

s∈[p]n

d(s, in) =
∑

s∈[p]n

n∑

d=1

(sd 6= i) · 2d−1 =

n∑

d=1

(
∑

s∈[p]n

(sd 6= i)

)
· 2d−1
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= pn−1(p− 1)
n∑

d=1

2d−1 = pn−1(p− 1) (2n − 1) .

Theorem 9. Let j, k ∈ [p], j 6= k, and n ∈ N0. Then

dSn+1

p
(jnk) =

p− 1

p
(2p)n+1 −

(
1 +

1

p(p− 1)

)
pn+1 +

p

p− 1
.

Proof. Set x0 = 1 and xn+1 = dSn+1

p
(jnk), n ≥ 0. Then, using (2), Proposition 4,

and Lemma 8,

xn+1 =
∑

i∈[p]

∑

s∈[p]n

d(is, jnk)

=
∑

s∈[p]n

d(js, jnk) +
∑

s∈[p]n

d(ks, jnk) +
∑

i∈[p]\{j,k}

∑

s∈[p]n

d(is, jnk)

= xn +
2p− 1

p
pn(2n − 1) + (p− 2)

(
2p− 1

p
(2p)n −

p− 1

p
pn
)

= xn +
(2p− 1)(p− 1)

p
(2p)n −

(
1 +

(p− 1)2

p

)
pn.

A straightforward calculation leads to the desired result.

Remark 10. The expression of Theorem 9 can be further transformed as follows:

d
S
n+1

p
(jnk) =

p− 1

p
(2p)n+1 −

(
1 +

1

p(p− 1)

)
pn+1 +

p

p− 1

= pn(p− 1)2n+1 − pn(p− 1) + pn(p− 1)− pn+1 −
pn

p− 1
+

p

p− 1

= pn(p− 1)(2n+1 − 1)− p ·
pn − 1

p− 1

= d
S
n+1
p

(jn+1)−

n∑

ℓ=1

pℓ .

This alternative way to calculate d
S
n+1
p

(jnk) can be interpreted as d
S
n+1
p

(jn+1) minus the

additional step to all the vertices reachable directly from jnk and there are p+ p2 + p3 +
· · ·+ pn such vertices.

Based on (2), Lemma 8, and Proposition 7, the corresponding result for the
other almost-extreme vertices reads as follows.

Theorem 11. Let j, k ∈ [p], j 6= k, and n ∈ N0. Then

dSn+1

p
(jkn) =

p2 − 2

p(p+ 2)
(2p)n+1 −

p− 2

2p
pn+1 −

p

2(p+ 2)
(p− 2)n+1 .
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Proof. Let us first calculate

d0(jk
n) :=

∑

is∈[p]n+1

d0(is, jk
n) = d(kn) + d(jn) + pn + (p− 2)(d(jn) + (2p)n)

= (2p− 3)(2p)n − (p− 2)pn .

However, if p ≥ 3, this value over-estimates d(jkn), because we did not take into
account the smaller distance between is and jkn if s is special with respect to
i, j, k. We therefore have to calculate the sum P :=

∑
ρ(s) over all such special s

and, for symmetry reasons, a fixed i ∈ [p] \ {j, k} with ρ defined as in the proof of
Proposition 7. We get

P =

n∑

δ=1

(
(p− 2)n−δpδ−1(2δ−1 − 1) +

∑

s∈[p]δ−1

δ−1∑

d=1

((sd = k)− (sd = j)) · 2d−1

)
.

The sum inside the large brackets is zero, because sd is equal to k as often as it is
equal to j. Therefore,

P =

n∑

δ=1

(p−2)n−δ(2p)δ−1−

n∑

δ=1

(p−2)n−δpδ−1 =
1

p+ 2
(2p)n−

1

2
pn+

p

2(p+ 2)
(p−2)n .

The statement of the theorem now follows from d(jkn) = d0(jk
n)− (p− 2)P.

Note that for n = 2, both kinds of almost-extreme vertices coincide and their
total distances must be equal. Indeed, for n = 2, Theorems 9 and 11 both give the
value dS2

p
(jk) = p(3p− 4). We also add that the expression of Theorem 11 can be

rewritten as follows:

dSn+1

p
(jkn) =

1

2
pn(p− 2)(2n+1 − 1) +

p

2

n∑

ℓ=0

(2p)n−ℓ(p− 2)ℓ .

In this case, however, we have no interpretation for the formula such as in Re-
mark 10.

For the classical case p = 3, where Sn
3 is isomorphic to the Hanoi graph Hn

3

with extreme vertices mapped onto perfect ones and almost-extreme vertices being
transformed into vertices of the same form, we finally obtain from Lemma 8 and
Theorems 9 and 11:

Corollary 12. Let i, j, k ∈ [p], j 6= k, and n ∈ N0. Then

dSn
3
(in) =

2

3
3n(2n − 1) = dHn

3
(in) .

dSn+1

3

(jnk) =
2

3
· 6n+1 −

7

6
· 3n+1 +

3

2
= dHn+1

3

(jnk) ,

dSn+1

3

(jkn) =
7

15
· 6n+1 −

1

6
· 3n+1 −

3

10
= dHn+1

3

(jkn) .
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