
Technical Report 2011-10
Institut für Programmierung und Reaktive Systeme
Technical University of Braunschweig

c© R.J. van Glabbeek, U. Goltz & J.-W. Schicke-Uffmann
This work is licensed under the
Creative Commons Attribution License.

On Distributability of Petri Nets ∗

Rob van Glabbeek
NICTA, Sydney, Australia

School of Computer Science and Engineering
Univ. of New South Wales, Sydney, Australia

rvg@cs.stanford.edu

Ursula Goltz Jens-Wolfhard Schicke-Uffmann
Institute for Programming and Reactive Systems

TU Braunschweig, Germany

goltz@ips.cs.tu-bs.de drahflow@gmx.de

We formalise a general concept of distributed systems as sequential components interacting asyn-
chronously. We define a corresponding class of Petri nets, called LSGA nets, and precisely char-
acterise those system specifications which can be implemented as LSGA nets up to branching ST-
bisimilarity with explicit divergence.

1 Introduction

The aim of this paper is to contribute to a fundamental understanding of the concept of a distributed
reactive system and the paradigms of synchronous and asynchronous interaction. We start by giving
an intuitive characterisation of the basic features of distributed systems. In particular we assume that
distributed systems consist of components that reside on different locations, and that any signal from one
component to another takes time to travel. Hence the only interaction mechanism between components
is asynchronous communication.

Our aim is to characterise which system specifications may beimplemented as distributed systems.
In many formalisms for system specification or design, synchronous communication is provided as a
basic notion; this happens for example in process algebras.Hence a particular challenge is that it may be
necessary to simulate synchronous communication by asynchronous communication.

Trivially, any system specification may be implemented distributedly by locating the whole system
on one single component. Hence we need to pose some additional requirements. One option would be
to specify locations for system activities and then to ask for implementations satisfying this distribution
and still preserving the behaviour of the original specification. This is done in [1]. Here we pursue
a different approach. We add another requirement to our notion of a distributed system, namely that
its components only allow sequential behaviour. We then askwhether an arbitrary system specification
may be implemented as a distributed system consisting of sequential components in an optimal way,
that is without restricting the concurrency of the originalspecification. This is a particular challenge
when synchronous communication interacts with concurrency in the specification of the original system.
We will give a precise characterisation of the class of distributable systems, which answers in particular
under which conditions synchronous communication may be implemented in a distributed setting.

For our investigations we need a model which is expressive enough to represent concurrency. It is also
useful to have an explicit representation of the distributed state space of a distributed system, showing
in particular the local control states of components. We choose Petri nets, which offer these possibilities
and additionally allow finite representations of infinite behaviours. We work within the class ofstructural
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conflict nets[7]—a proper generalisation of the class of one-safe place/transition systems, where conflict
and concurrency are clearly separated.

For comparing the behaviour of systems with their distributed implementation we need a suitable
equivalence notion. Since we think of open systems interacting with an environment, and since we do
not want to restrict concurrency in applications, we need anequivalence that respects branching time and
concurrency to some degree. Our implementations use transitions which are invisible to the environment,
and this should be reflected in the equivalence by abstracting from such transitions. However, we do not
want implementations to introduce divergence. In the lightof these requirements we work with two
semantic equivalences.Step readiness equivalenceis one of the weakest equivalences that captures
branching time, concurrency and divergence to some degree;whereasbranching ST-bisimilarity with
explicit divergencefully captures branching time, divergence, and those aspects of concurrency that can
be represented by concurrent actions overlapping in time. We obtain the same characterisation for both
notions of equivalence, and thus implicitly for all notionsin between these extremes.

We model distributed systems consisting of sequential components as an appropriate class of Petri
nets, calledLSGA nets. These are obtained by composing nets with sequential behaviour by means of
an asynchronous parallel composition. We show that this class corresponds exactly to a more abstract
notion of distributed systems, formalised asdistributed nets[6].

We then consider distributability of system specificationswhich are represented as structural conflict
nets. A netN is distributable if there exists a distributed implementation ofN, that is a distributed net
which is semantically equivalent toN. In the implementation we allow unobservable transitions,and
labellings of transitions, so that single actions of the original system may be implemented by multiple
transitions. However, the system specifications for which we search distributed implementations are
plain nets without these features.

We give a precise characterisation of distributable nets interms of a semi-structural property. This
characterisation provides a formal proof that the interplay between choice and synchronous communica-
tion is a key issue for distributability.

To establish the correctness of our characterisation we develop a new method for rigorously proving
the equivalence of two Petri nets, one of which known to be plain, up to branching ST-bisimilarity with
explicit divergence.

2 Basic Notions

In this paper we employsigned multisets, which generalise multisets by allowing elements to occur in it
with a negative multiplicity.

Definition 1 Let X be a set.
– A signed multisetoverX is a functionA: X→ Z, i.e.A∈ ZX.

It is amultisetiff A∈NX, i.e. iff A(x)≥ 0 for all x∈ X.
– x∈ X is anelement ofa signed multisetA∈NX, notationx∈ A, iff A(x) 6= 0.
– For signed multisetsA andB overX we writeA≤ B iff A(x)≤ B(x) for all x∈X;

A∪B denotes the signed multiset overX with (A∪B)(x) := max(A(x),B(x)),
A∩B denotes the signed multiset overX with (A∩B)(x) := min(A(x),B(x)),
A+B denotes the signed multiset overX with (A+B)(x) := A(x)+B(x),
A−B denotes the signed multiset overX with (A−B)(x) := A(x)−B(x), and
for k∈N the signed multisetk ·A is given by(k ·A)(x) := k ·A(x).

– The function /0:X→N, given by /0(x) := 0 for all x∈X, is theemptymultiset overX.
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– If A is a signed multiset overX andY ⊆ X thenA↾Y denotes the signed multiset overY defined by
(A↾Y)(x) := A(x) for all x∈Y.

– The cardinality|A| of a signed multisetA overX is given by|A| := ∑x∈X |A(x)|.
– A signed multisetA overX is finite iff |A|< ∞, i.e., iff the set{x | x∈A} is finite.

We writeA∈ f ZX or A∈ f NX to indicate thatA is a finite (signed) multiset overX.
– Any function f : X → Z or f : X → ZY from X to either the integers or the signed multisets over

some setY extends to the finite signed multisetsA overX by f (A) = ∑x∈X A(x) · f (x).

Two signed multisetsA: X→ Z andB: Y→ Z areextensionally equivalentiff A↾(X∩Y) = B↾(X∩Y),
A↾(X \Y) = /0, andB↾(Y \X) = /0. In this paper we often do not distinguish extensionally equivalent
signed multisets. This enables us, for instance, to useA+B even whenA andB have different underlying
domains. A multisetA with A(x) ∈ {0,1} for all x is identified with the set{x | A(x) = 1}. A signed
multiset with elementsx andy, having multiplicities−2 and 3, is denoted as−2· {x}+3· {y}.

We consider here general labelled place/transition systems with arc weights. Arc weights are not
necessary for the results of the paper, but are included for the sake of generality.

Definition 2 Let Act be a set ofvisible actionsandτ 6∈Act be aninvisible action. Let Actτ :=Act
.
∪ {τ}.

A (labelled) Petri net(overActτ ) is a tupleN = (S,T,F,M0, ℓ) where
– SandT are disjoint sets (ofplacesandtransitions),
– F : (S×T ∪T×S)→N (theflow relationincludingarc weights),
– M0 : S→N (the initial marking), and
– ℓ : T→ Actτ (the labelling function).

Petri nets are depicted by drawing the places as circles and the transitions as boxes, containing their label.
Identities of places and transitions are displayed next to the net element. WhenF(x,y)> 0 for x,y∈S∪T
there is an arrow (arc) from x to y, labelled with thearc weight F(x,y). Weights 1 are elided. When a
Petri net represents a concurrent system, a global state of this system is given as amarking, a multisetM
of places, depicted by placingM(s) dots (tokens) in each places. The initial state isM0.

To compress the graphical notation, we also allow universalquantifiers of the form∀x.φ(x) to appear
in the drawing (cf. Figure 4). A quantifier replaces occurrences ofx in element identities with all concrete
values for whichφ(x) holds, possibly creating a set of elements instead of the depicted single one. An arc
of which only one end is replicated by a given quantifier results in a fan of arcs, one for each replicated
element. If both ends of an arc are affected by the same quantifier, an arc is created between pairs of
elements corresponding to the samex, but not between elements created due to differing values ofx.

The behaviour of a Petri net is defined by the possible moves between markingsM andM′, which
take place when a finite multisetG of transitionsfires. In that case, each occurrence of a transitiont in G
consumesF(s, t) tokens from each places. Naturally, this can happen only ifM makes all these tokens
available in the first place. Next, eacht producesF(t,s) tokens in eachs. Definition 4 formalises this
notion of behaviour.

Definition 3 Let N = (S,T,F,M0, ℓ) be a Petri net andx∈S∪T.
The multisets•x, x• : S∪T →N are given by•x(y) = F(y,x) andx•(y) = F(x,y) for all y∈S∪T. If
x∈ T, the elements of•x andx• are calledpre- andpostplacesof x, respectively, and ifx∈ Swe speak
of pre-andposttransitions. Thetoken replacement functionJ K : T→ ZS is given byJtK = t•− •t for all
t ∈ T. These functions extend to finite signed multisets as usual (see Definition 1).

Definition 4 Let N=(S,T,F,M0, ℓ) be a Petri net,G∈NT, G non-empty and finite, andM,M′ ∈NS.
G is astepfrom M to M′, writtenM [G〉N M′, iff
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– •G≤M (G is enabled) and
– M′ = (M− •G)+G• = M+ JGK.

Note that steps are (finite) multisets, thus allowing self-concurrency, i.e. the same transition can oc-
cur multiple times in a single step. We writeM [t〉N M′ for M [{t}〉N M′, whereasM[G〉N abbreviates
∃M′. M [G〉N M′. We may omit the subscriptN if clear from context.

In our nets transitions are labelled withactionsdrawn from a set Act
.
∪ {τ}. This makes it possible

to see these nets as models ofreactive systemsthat interact with their environment. A transitiont can
be thought of as the occurrence of the actionℓ(t). If ℓ(t)∈Act, this occurrence can be observed and
influenced by the environment, but ifℓ(t)=τ , it cannot andt is aninternalor silenttransition. Transitions
whose occurrences cannot be distinguished by the environment carry the same label. In particular, since
the environment cannot observe the occurrence of internal transitions at all, they are all labelledτ .

The labelling functionℓ extends to finite multisets of transitionsG∈ZT by ℓ(G) :=∑t∈T G(t) ·{ℓ(t)}.
For A,B∈ ZActτ we writeA≡ B iff ℓ(A)(a) = ℓ(B)(a) for all a∈ Act, i.e. iff A andB contain the same
(numbers of) visible actions, allowingℓ(A)(τ) 6= ℓ(B)(τ). Henceℓ(G)≡ /0 indicates thatℓ(t) = τ for all
transitionst ∈ T with G(t) 6= 0.

Definition 5 Let N = (S,T,F,M0, ℓ) be a Petri net.
– The set[M0〉N of reachable markings of Nis defined as the smallest set containingM0 that is closed

under[G〉N, meaning that ifM ∈ [M0〉N andM [G〉N M′ thenM′ ∈ [M0〉N.
– N is one-safeiff M ∈ [M0〉N⇒∀s∈ S. M(s)≤ 1.
– Theconcurrency relation⌣⊆ T2 is given byt ⌣ u⇔∃M∈ [M0〉. M[{t}+{u}〉.
– N is astructural conflict netiff for all t,u∈ T with t ⌣ u we have•t ∩ •u= /0.

We use the termplain netsfor Petri nets whereℓ is injective and no transition has the labelτ , i.e.
essentially unlabelled nets.

This paper first of all aims at studying finite Petri nets: netswith finitely many places and transitions.
However, our work also applies to infinite nets with the properties that•t 6= /0 for all transitionst ∈ T, and
any reachable marking (a) is finite, and (b) enables only finitely many transitions. Henceforth, we call
such netsfinitary. Finitariness can be ensured by requiring|M0|<∞∧∀t ∈T.•t 6= /0∧∀x∈S∪T. |x•|<∞,
i.e. that the initial marking is finite, no transition has an empty set of preplaces, and each place and
transition has only finitely many outgoing arcs.

3 Semantic Equivalences

In this section, we give an overview on some semantic equivalences for reactive systems. Most of these
may be defined formally for Petri nets in a uniform way, by firstdefining equivalences for transition sys-
tems and then associating different transition systems with a Petri net. This yields in particular different
non-interleaving equivalences for Petri nets.

Definition 6 LetAct be a set ofvisible actionsandτ 6∈Act be aninvisible action. LetActτ :=Act
.
∪ {τ}.

A labelled transition system(LTS) (overActτ ) is a tripleL= (S,T,M0) with
– S a set ofstates,
– T⊆S×Actτ ×S a transition relation
– andM0 ∈S the initial state.

Given an LTS(S,T,M0) with M,M′ ∈S andα ∈ Actτ , we writeM
α
−→M′ for (M,α ,M′) ∈ T. We

write M
α
−→ for ∃M′. M

α
−→M′ andM X

α
−→ for ∄M′. M

α
−→M′. Furthermore,M

(α )
−→M′ denotes
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M
α
−→M′ ∨ (α = τ ∧M=M′), meaning that in caseα = τ performing aτ-transition is optional. For

a1a2 · · ·an ∈ Act
∗ we writeM

a1a2···an=====⇒M′ when

M=⇒
a1−→=⇒

a2−→=⇒ ···=⇒
an−→=⇒M

′

where=⇒ denotes the reflexive and transitive closure of
τ
−→. A stateM ∈S is said to bereachableiff

there is aσ ∈Act∗ such thatM0

σ
=⇒M. The set of all reachable states is denoted by[M0〉. In case there

areMi ∈ [M0〉 for all i ≥ 1 withM1
τ
−→M2

τ
−→ ·· · the LTS is said to displaydivergence.

Many semantic equivalences on LTSs that in some way abstractfrom internal transitions are defined
in the literature; an overview can be found in [4]. On divergence-free LTSs, the most discriminating
semantics in the spectrum of equivalences of [4], and the only one that fully respects the branching
structure of related systems, isbranching bisimilarity, proposed in [10].

Definition 7 Two LTSs(S1,T1,M01) and(S2,T2,M02) arebranching bisimilariff there exists a rela-
tion B ⊆S1×S2—abranching bisimulation—such that, for allα ∈Actτ :

1. M01BM02;

2. if M1BM2 andM1
α
−→M′

1 then∃M†
2,M

′
2 such thatM2 =⇒M

†
2

(α )
−→M′

2, M1BM
†
2 andM′

1BM′
2;

3. if M1BM2 andM2
α
−→M′

2 then∃M†
1,M

′
1 such thatM1 =⇒M

†
1

(α )
−→M′

1, M†
1BM2 andM′

1BM′
2.

Branching bisimilaritywith explicit divergence[10, 8], is a variant of branching bisimilarity that fully
respects the diverging behaviour of related systems. Sincein this paper we mainly compare systems of
which one admits no divergence at all, the definition simplifies to the requirement that the other system
may not diverge either.

One of the semantics reviewed in [4] that respects branchingtime and divergence only to a small
extent, isreadiness equivalence, proposed in [13].

Definition 8 LetL= (S,T,M0) be an LTS,σ ∈ Act
∗ andX ⊆ Act. 〈σ ,X〉 is aready pairof L iff

∃M. M0

σ
=⇒M∧M X

τ
−→∧X = {a∈Act |M

a
−→}.

We writeR(L) for the set of all ready pairs ofL.
Two LTSsL1 andL2 arereadiness equivalentiff R(L1) =R(L2).

As indicated in [5], see in particular the diagram on Page 317(or 88), equivalences on LTSs have
been ported to Petri nets and other causality respecting models of concurrency chiefly in five ways: we
distinguishinterleaving semantics, step semantics, split semantics, ST-semanticsandcausal semantics.
Causal semantics fully respect the causal relationships between the actions of related systems, whereas
interleaving semantics fully abstract from this information. Step semantics differ from interleaving se-
mantics by taking into account the possibility of multiple actions to occur simultaneously (inone step);
this carries a minimal amount of causal information. ST-semantics respect causality to the extent that it
can be expressed in terms of the possibility of durational actions to overlap in time. They are formalised
by executing a visible actiona in two phases: its starta+ and its terminationa−. Moreover, terminating
actions are properly matched with their starts. Split semantics are a simplification of ST-semantics in
which the matching of starts and terminations is dropped.

Interleaving semantics on Petri nets can be formalised by associating to each netN = (S,T,F,M0, ℓ)
the LTS(S,T,M0) with S the set of markings ofN andT given by

M1
α
−→M2 :⇔∃ t∈T. α = ℓ(t)∧M1 [t〉 M2.



6 On Distributability of Petri Nets

Here we takeAct := Act. Now each equivalence on LTSs from [4] induces a corresponding interleaving
equivalence on nets by declaring two nets equivalent iff theassociated LTSs are. For example,interleav-
ing branching bisimilarityis the relation of Definition 7 with theM’s denoting markings, and theα ’s
actions from Actτ .

Step semantics on Petri nets can be formalised by associating another LTS to each net. Again we
takeS to be the markings of the net, andM0 the initial marking, but this timeAct consists of thesteps
over Act, the non-empty, finite multisetsA of visible actions from Act, and the transition relationT is
given by

M1
A
−→M2 :⇔∃G∈ f NT . A= ℓ(G)∧M1 [G〉 M2

with τ-transitions defined just as in the interleaving case. In particular, the step version of readiness
equivalence would be the relation of Definition 8 with theM’s denoting markings, thea’s steps over
Act, and theσ ’s sequences of steps. However, variations in this type of definition are possible. In this
paper, following [6], we employ a form of step readiness semantics that is a bit closer to interleaving
semantics:σ is a sequence of single actions, whereas the menuX of possible continuations afterσ is a
set of steps.

Definition 9 Let N = (S,T,F,M0, ℓ) be a Petri net,σ ∈ Act∗ andX ⊆NAct. 〈σ ,X〉 is astep ready pair
of N iff

∃M.M0
σ

=⇒M∧M X
τ
−→∧X = {A∈NAct |M

A
−→}.

We writeR(N) for the set of all step ready pairs ofN.
Two Petri netsN1 andN2 arestep readiness equivalent, N1≈R N2, iff R(N1) = R(N2).

Next we propose a general definition on Petri nets of ST-versions of each of the semantics of [4].
Again we do this through a mapping from nets to a suitable LTS.An ST-markingof a net(S,T,F,M0, ℓ)
is a pair(M,U)∈NS×T∗ of a normal marking, together with a sequence of transitionscurrently firing.
The initial ST-marking isM0 := (M0,ε). The elements of Act± := {a+, a−n | a∈Act, n>0} are called
visible action phases, andAct±τ := Act±

.
∪ {τ}. ForU ∈ T∗, we writet ∈(n) U if t is thenth element of

U . FurthermoreU−n denotesU after removal of thenth transition.

Definition 10 Let N = (S,T,F,M0, ℓ) be a Petri net, labelled over Actτ .
TheST-transition relations

η
−→ for η ∈Act±τ between ST-markings are given by

(M,U)
a+
−→ (M′,U ′) iff ∃t ∈T. ℓ(t) = a∧M[t〉∧M′ = M− •t ∧U ′ =Ut.

(M,U)
a−n

−→ (M′,U ′) iff ∃t ∈(n) U. ℓ(t) = a∧U ′ =U−n∧M′ = M+ t•.
(M,U)

τ
−→ (M′,U ′) iff M

τ
−→M′∧U ′ =U .

Now the ST-LTS associated to a netN is (S,T,M0) with S the set of ST-markings ofN, Act := Act±,
T as defined in Definition 10, andM0 the initial ST-marking. Again, each equivalence on LTSs from
[4] induces a corresponding ST-equivalence on nets by declaring two nets equivalent iff their associated
LTSs are. In particular,branching ST-bisimilarityis the relation of Definition 7 with theM’s denoting
ST-markings, and theα ’s action phases from Act±τ . We writeN1 ≈

∆
bSTbN2 iff N1 andN2 are branching

ST-bisimilar with explicit divergence.
ST-bisimilaritywas originally proposed in [9]. It was extended to a setting with internal actions in

[17], based on the notion ofweak bisimilarityof [12], which is a bit less discriminating than branching
bisimilarity. The above can be regarded as a reformulation of the same idea; the notion of weak ST-
bisimilarity defined according to the recipe above agrees with the ST-bisimilarity of [17].

The next proposition says that branching ST-bisimilarity with explicit divergence is more discrimi-
nating than (i.e.strongerthan,finer than, or included in) step readiness equivalence.
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Proposition 1 Let N1 andN2 be Petri nets. IfN1≈
∆
bSTbN2 thenN1≈R N2.

Proof: SupposeN1≈
∆
bSTbN2 and〈σ ,X〉 ∈R(N1). By symmetry it suffices to show that〈σ ,X〉 ∈R(N2).

There must be a branching bisimulationB between the ST-markings ofN1 = (S1,T1,F1,M01, ℓ1)
and N2 = (S2,T2,F2,M02, ℓ2). In particular, (M01,ε)B (M02,ε). Let σ := a1a2 · · ·an ∈ Act∗. Then
M01 =⇒

a1−→=⇒
a2−→=⇒ ···=⇒

an−→=⇒M′1 for a markingM′1∈NS1 with X = {A∈NAct |M′1
A
−→} and

M′1 X
τ
−→. Hence(M01,ε) =⇒

a+1−→
a−1

1−→=⇒
a+2−→

a−1
2−→=⇒ ··· =⇒

a+n−→
a−1

n−→=⇒ (M′1,ε). Thus, using the prop-
erties of a branching bisimulation on the ST-LTSs associated to N1 andN2, there must be a marking

M′2∈NS2 such that(M02,ε)=⇒
a+1−→

a−1
1−→=⇒

a+2−→
a−1

2−→=⇒···=⇒
a+n−→

a−1
n−→=⇒(M′2,ε) and(M′1,ε)B (M′2,ε).

Since(M′1,ε) X
τ
−→, the ST-marking(M′1,ε) admits no divergence. As≈∆

bSTbrespects this property, also

(M′2,ε) admits no divergence, and there must be anM′′2 ∈NS2 with M′′2 X
τ
−→ and (M′2,ε) =⇒ (M′′2 ,ε).

Clause 3. of a branching bisimulation gives(M′1,ε)B (M′′2 ,ε), and Definition 10 yieldsM02
σ
=⇒M′′2 .

Now let B= {b1, . . . ,bn} ∈ X. ThenM′1
B
−→, so(M′1,ε)

b+1−→
b+2−→ ·· ·

b+m−→. Property 2. of a branching

bisimulation implies(M′′2 ,ε)
b+1−→

b+2−→ ·· ·
b+m−→ and henceM′′2

B
−→. Likewise, with Property 3.,M′′2

B
−→

impliesM′1
B
−→ for all B∈NAct. It follows that〈σ ,X〉 ∈R(N2). �

In this paper we employ both step readiness equivalence and branching ST-bisimilarity with explicit
divergence. Fortunately it will turn out that for our purposes the latter equivalence coincides with its split
version (since always one of the compared nets is plain, see Proposition 2).

A split markingof a netN = (S,T,F,M0, ℓ) is a pair(M,U) ∈ NS×NT of a normal markingM,
together with a multiset of transitions currently firing. The initial split marking isMo := (M0, /0). A split
marking can be regarded as an abstraction from an ST-marking, in which the total order on the (finite)
multiset of transitions that are currently firing has been dropped. Let Act±split := {a+, a− | a∈ Act}.

Definition 11 Let N = (S,T,F,M0, ℓ) be a Petri net, labelled over Actτ .
Thesplit transition relations

ζ
−→ for ζ ∈Act±split

.
∪ {τ} between split markings are given by

(M,U)
a+
−→ (M′,U ′) iff ∃t ∈T. ℓ(t) = a∧M[t〉∧M′ = M− •t ∧U ′ =U +{t}.

(M,U)
a−
−→ (M′,U ′) iff ∃t ∈U. ℓ(t) = a∧U ′ =U −{t}∧M′ = M+ t•.

(M,U)
τ
−→ (M′,U ′) iff M

τ
−→M′∧U ′ =U .

Note that(M,U)
a+
−→ iff M

a
−→, whereas(M,U)

a−
−→ iff a ∈ ℓ(U). With induction on reachability of

markings it is furthermore easy to check that(M,U) ∈ [M0〉 iff ℓ(U) ∈NAct andM+•U ∈ [M0〉.
The split LTS associated to a netN is (S,T,M0) with S the set of split markings ofN, Act := Act±,

T as defined in Definition 11, andM0 the initial split marking. Again, each equivalence on LTSs from
[4] induces a corresponding split equivalence on nets by declaring two nets equivalent iff their associated
LTSs are. In particular,branching split bisimilarityis the relation of Definition 7 with theM’s denoting
split markings, and theα ’s action phases from Act±split

.
∪ {τ}.

ForM= (M,U)∈NS×T∗ an ST-marking, letM= (M,U)∈NS×NT be the split marking obtained
by converting the sequenceU into the multisetU , whereU(t) is the number of occurrences of the
transitiont ∈ T in U . Moreover, defineℓ(M) by ℓ(M,U) := ℓ(U) andℓ(t1t2 · · · tk) := ℓ(t1)ℓ(t2) · · ·ℓ(tk).
Furthermore, forη ∈ Act±τ , let η ∈ Act±split

.
∪ {τ} be given bya+ := a+, a−n := a− andτ := τ .

Observation 1 LetM,M′ be ST-markings,M† a split marking,η ∈Act±τ andζ ∈ Act±split∪{τ}. Then
– M ∈NS×T∗ is the initial ST-marking ofN iff M ∈NS×NT is the initial split marking ofN;
– if M

η
−→M′ thenM

η
−→M′;

– if M
ζ
−→M† then there is aM′ ∈NS×T∗ andη ∈ Act±τ such thatM

η
−→M′, η = ζ andM′ =M†;

– if M
(η )
−→M′ thenM

(η )
−→M′;
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– if M
(ζ )
−→M† then there is aM′ ∈NS×T∗ andη ∈ Act±τ such thatM

(η )
−→M′, η = ζ andM′ =M†;

– if M=⇒M′ thenM=⇒M′;
– if M=⇒M† then there is aM′ ∈NS×T∗ such thatM=⇒M′ andM′ =M†. �

Lemma 1 Let N1 = (S1,T1,F1,M01, ℓ) and N2 = (S2,T2,F2,M02, ℓ2) be two nets,N2 being plain; let
M1,M

′
1 be ST-markings ofN1, andM2,M

′
2 ST-markings ofN2. If ℓ(M2) = ℓ(M1), M1

η
−→M′

1 and
M2

(η ′)
−→M′

2 with η ′ = η , then there is anM′′
2 with M2

(η )
−→M′′

2, ℓ(M′′
2) = ℓ(M′

1), andM′′
2 =M′

2.

Proof: If M
η
−→M′ orM

(η )
−→M′ thenℓ(M′) is completely determined byℓ(M) andη . For this reason

the requirementℓ(M′′
2) = ℓ(M′

1) will hold as soon as the other requirements are met.
First supposeη is of the formτ or a+. Thenη = η and moreoverη ′ = η impliesη ′ = η . Thus we

can takeM′′
2 :=M′

2.
Now supposeη := a−n for somen> 0. Thenη ′ = a−m for somem> 0. AsM1

η
−→, thenth element

of ℓ(M1) must (exist and) bea. Sinceℓ(M2) = ℓ(M1), also thenth element ofℓ(M2) must bea, so
there is anM′′

2 with M2
(η )
−→M′′

2. Let M2 := (M2,U2). ThenU2 is a sequence of transitions of which
thenth and themth elements are both labelleda. Since the netN2 is plain, those two transitions must be
equal. LetM′

2 := (M′2,U
′
2) andM′′

2 := (M′′2 ,U
′′
2 ). We find thatM′′2 =M′2 andU ′′2 =U ′2. It follows that

M′′
2 =M′

2. �

Observation 2 If M=⇒M′ for ST-markingsM,M′ thenℓ(M′) = ℓ(M).

Observation 3 If ℓ(M1) = ℓ(M2) andM2
a−n

−→ for somea∈ Act andn> 0, thenM1
a−n

−→.

Observation 4 If M
a−n

−→M′ andM
a−n

−→M′′ for somea∈ Act andn> 0, thenM′
1 =M′

2.

Proposition 2 Let N1 = (S1,T1,F1,M01, ℓ) and N2 = (S2,T2,F2,M02, ℓ2) be two nets,N2 being plain.
ThenN1 andN2 are branching ST-bisimilar (with explicit divergence) iffthey are branching split bisimilar
(with explicit divergence).

Proof: SupposeB is a branching ST-bisimulation betweenN1 andN2. Then, by Observation 1, the
relationB split := {(M1,M2) | (M1,M2) ∈B } is a branching split bisimulation betweenN1 andN2.

Now let B be a branching split bisimulation betweenN1 andN2. Then, using Observation 1, the
relation B ST := {(M1,M2) | ℓ1(M1) = ℓ2(M2)∧ (M1,M2) ∈ B } turns out to be a branching ST-
bisimulation betweenN1 andN2:

1. M01B STM02 follows from Observation 1, using thatM01BM02 andℓ(M01)= ℓ(M02)= ε .

2. SupposeM1B STM2 andM1
η
−→M′

1. ThenM1BM2 andM1
η
−→M′

1. Hence∃M†
2,M

‡
2 such that

M2 =⇒M
†
2

(η)
−→M

‡
2, M1BM

†
2 andM′

1BM
‡
2. As N2 is plain,M†

2 =M2. By Observation 1, using
thatM2

(η )
−→M

‡
2, ∃M′

2, η ′ such thatM2
(η ′)
−→M′

2, η ′ = η andM′
2 = M

‡
2. By Lemma 1, there is

an ST-markingM′′
2 such thatM2

(η )
−→M′′

2, ℓ(M′′
2) = ℓ(M′

1), andM′′
2 = M′

2 = M
‡
2. It follows that

M′
1B STM

′′
2.

3. SupposeM1B STM2 andM2
η
−→M′

2. ThenM1BM2 andM2
η
−→M′

2. Hence∃M†
1,M

‡
1 such that

M1 =⇒M
†
1

(η )
−→M

‡
1, M

†
1BM2 andM‡

1BM′
2. By Observation 1,∃M∗

1 such thatM1 =⇒M∗
1 and

M∗
1 =M

†
1. By Observation 2,ℓ(M∗

1) = ℓ(M1) = ℓ(M2), soM∗
1B STM2. SinceN2 is plain,η 6= τ .

• Let η = a+ for somea ∈ Act. Using thatM∗
1

(η)
−→M

‡
1, by Observation 1∃M′

1, η ′ such that
M∗

1
(η ′)
−→M′

1, η ′ = η andM′
1 = M

‡
1. It must be thatη ′ = η = a+ andℓ(M′

1) = ℓ(M∗
1)a =

ℓ(M2)a= ℓ(M′
2). HenceM′

1B STM
′
2.
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• Let η = a−n for somea∈ Act andn> 0. By Observation 3,∃M′
1 with M∗

1
η
−→M′

1. By Part
2. of this proof,∃M′′

2 such thatM2
(η )
−→M′′

2 andM′
1B STM

′′
2. By Observation 4M′′

2 =M′
2.

Since the netN2 is plain, it has no divergence. In such a case, the requirement “with explicit divergence”
requiresN1 to be free of divergence as well, regardless of whether splitor ST-semantics is in used. �

In this paper we will not consider causal semantics. The reason is that our distributed implementations
will not fully preserve the causal behaviour of nets. We willfurther comment on this in the conclusion.

4 Distributed Systems

In this section, we stipulate what we understand by a distributed system, and subsequently formalise a
model of distributed systems in terms of Petri nets.

– A distributed system consists of components residing on different locations.
– Components work concurrently.
– Interactions between components are only possible by explicit communications.
– Communication between components is time consuming and asynchronous.

Asynchronous communication is the only interaction mechanism in a distributed system for exchanging
signals or information.

– The sending of a message happens always strictly before its receipt (there is a causal relation between
sending and receiving a message).

– A sending component sends without regarding the state of thereceiver; in particular there is no
need to synchronise with a receiving component. After sending the sender continues its behaviour
independently of receipt of the message.

As explained in the introduction, we will add another requirement to our notion of a distributed system,
namely that its components only allow sequential behaviour.

Formally, we model distributed systems as nets consisting of component nets with sequential be-
haviour and interfaces in terms of input and output places.

Definition 12 Let N=(S,T,F,M0, ℓ) be a Petri net,I ,O⊆S, I ∩O= /0 andO• = /0.
1. (N, I ,O) is acomponent with interface(I ,O).
2. (N, I ,O) is asequentialcomponent with interface(I ,O) iff
∃Q⊆S\(I ∪O) with ∀t ∈ T.|•t ↾Q|= 1∧ |t•↾Q|= 1 and|M0↾Q|= 1.

An input placei∈ I of a componentC =(N, I ,O) can be regarded as a mailbox ofC for a specific type
of messages. An output placeo∈O, on the other hand, is an address outsideC to which C can send
messages. Moving a token intoo is like posting a letter. The conditiono• = /0 says that a message, once
posted, cannot be retrieved by the component.

A set of places likeQ above is called anS-invariant. The requirements guarantee that the number
of tokens in these places remains constant, in this case 1. Itfollows that no two transitions can ever fire
concurrently (in one step). Conversely, whenever a net is sequential, in the sense that no two transitions
can fire in one step, it is easily converted into a behaviourally equivalent net with the requiredS-invariant,
namely by adding a single marked place with a self-loop to alltransitions. This modification preserves
virtually all semantic equivalences on Petri nets from the literature, including≈∆

bSTb.
Next we define an operator for combining components with asynchronous communication by fusing

input and output places.
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Definition 13 LetK be an index set.
Let ((Sk,Tk,Fk,M0k, ℓk), Ik,Ok) with k∈ K be components with interface such that(Sk∪Tk)∩ (Sl ∪Tl ) =
(Ik∪Ok)∩ (Il ∪Ol ) for all k, l ∈ K with k 6= l (components are disjoint except for interface places) and
Ik∩ Il = /0 for all k, l ∈ K with k 6= l (mailboxes cannot be shared; any message has a unique recipient).
Then theasynchronous parallel compositionof these components is defined by

∥

∥

∥

i∈K
((Sk,Tk,Fk,M0k, ℓk), Ik,Ok) = ((S,T,F,M0, ℓ), I ,O)

with S=
⋃

k∈K Sk, T=
⋃

k∈KTk, F=
⋃

k∈K Fk, M0=∑k∈K M0k, ℓ=
⋃

k∈K ℓk (componentwise union of all
nets),I=

⋃

k∈K Ik (we accept additional inputs from outside), andO=
⋃

k∈K Ok \
⋃

k∈K Ik (once fused with
an input,o∈OI is no longer an output).

Observation 5 ‖ is associative.

This follows directly from the associativity of the (multi)set union operator. �

We are now ready to define the class of nets representing systems of asynchronously communicating
sequential components.

Definition 14 A Petri netN is anLSGA net(a locally sequential globally asynchronous net) iff there
exists an index setK and sequential components with interfaceCk, k∈K, such that(N, I ,O) = ‖k∈KCk

for someI andO.

Up to ≈∆
bSTb—or any reasonable equivalence preserving causality and branching time but abstracting

from internal activity—the same class of LSGA systems wouldhave been obtained if we had imposed,
in Definition 12, thatI , O andQ form a partition ofSand that•I = /0. However, it is essential that our
definition allows multiple transitions of a component to read from the same input place.

In the remainder of this section we give a more abstract characterisation of Petri nets representing
distributed systems, namely asdistributedPetri nets, which we introduced in [6]. This will be useful
in Section 5, where we investigate distributability using this more semantic characterisation. We show
below that the concrete characterisation of distributed systems as LSGA nets and this abstract character-
isation agree.

Following [1], to arrive at a class of nets representing distributed systems, we associatelocalities to
the elements of a netN = (S,T,F,M0, ℓ). We model this by a functionD : S∪T→ Loc, with Loc a set of
possible locations. We refer to such a function as adistributionof N. Since the identity of the locations
is irrelevant for our purposes, we can just as well abstract from Loc and representD by the equivalence
relation≡D on S∪T given byx≡D y iff D(x) = D(y).

Following [6], we impose a fundamental restriction on distributions, namely that when two tran-
sitions can occur in one step, they cannot be co-located. This reflects our assumption that at a given
location actions can only occur sequentially.

In [6] we observed that Petri nets incorporate a notion of synchronous interaction, in that a transition
can fire only by synchronously taking the tokens from all of its preplaces. In general the behaviour of a
net would change radically if a transition would take its input tokens one by one—in particular deadlocks
may be introduced. Therefore we insist that in a distributedPetri net, a transition and all its input places
reside on the same location. There is no reason to require thesame for the output places of a transition,
for the behaviour of a net would not change significantly if transitions were to deposit their output tokens
one by one [6].
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This leads to the following definition of a distributed Petrinet.

Definition 15 [6] A Petri netN = (S,T,F,M0, ℓ) is distributediff there exists a distributionD such that
(1) ∀s∈ S, t ∈ T. s∈ •t⇒ t ≡D s,
(2) ∀t,u∈ T. t ⌣ u⇒ t 6≡D u.

A typical example of a net which is not distributed is shown inFigure 1 on Page 13. Transitionst and
v are concurrently executable and hence should be placed on different locations. However, both have
preplaces in common withu which would enforce putting all three transitions on the same location. In
fact, distributed nets can be characterised in the following semi-structural way.

Observation 6 A Petri net is distributed iff there is no sequencet0, . . . , tn of transitions witht0 ⌣ tn and
•ti−1∩

•ti 6= /0 for i = 1, . . . ,n. �

We proceed to show that the classes of LSGA nets and distributable nets essentially coincide. That
every LSGA net is distributed follows because we can place each sequential component on a separate
location. The following two lemmas constitute a formal argument. Here we call a component with
interface(N, I ,O) distributed iffN is distributed.

Lemma 2 Any sequential component with interface is distributed.

Proof: As a sequential component displays no concurrency, it suffices to co-locate all places and transi-
tions. �

Lemma 3 states that the class of distributed nets is closed under asynchronous parallel composition.

Lemma 3 Let Ck = (Nk, Ik,Ok), k∈K, be components with interface, satisfying the requirements of
Definition 13, which are all distributed. Then‖k∈KCk is distributed.

Proof: We need to find a distributionD satisfying the requirements of Definition 15.
Every componentCk is distributed and hence comes with a distributionDk. Without loss of generality

the codomains of allDk can be assumed disjoint.
Considering eachDk as a function from net elements onto locations, a partial function D′k can be

defined which does not map any places inOk, denoting that the element may be located arbitrarily, and
behaves asDk for all other elements. As an output place has no posttransitions within a component, any
total function larger than (i.e. a superset of)D′k is still a valid distribution forNk.

Now D′ =
⋃

k∈K D′k is a (partial) function, as every place shared between components is an input
place of at most one. The required distributionD can be chosen as any total function extendingD′; it
satisfies the requirements of Definition 15 since theDk’s do. �

Corollary 1 Every LSGA net is distributed. �

Conversely, any distributed netN can be transformed in an LSGA net by choosing co-located transitions
with their pre- and postplaces as sequential components anddeclaring any place that belongs to multiple
components to be an input place of componentNk if it is a preplace of a transition inNk, and an output
place of componentNl if it is a postplace of a transition inNl and not an input place ofNl . Furthermore,
in order to guarantee that the components are sequential in the sense of Definition 12, an explicit control
place is added to each component—without changing behaviour—as explained below Definition 12. It
is straightforward to check that the asynchronous parallelcomposition of all so-obtained components is
an LSGA net, and that it is equivalent toN (using≈R ,≈∆

bSTb, or any other reasonable equivalence).
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Theorem 1 For any distributed netN there is an LSGA netN′ with N′ ≈∆
bSTbN.

Proof: Let N = (S,T,F,M0, ℓ) be a distributed net with a distributionD. Then an equivalent LSGA net
N′ can be constructed by composing sequential components withinterfaces as follows.

For each equivalence class[x] of net elements according toD a sequential component(N[x], I[x],O[x])
is created. Each such component contains one new and initially marked placep[x] which is connected
via self-loops to all transitions in[x]. The interface of the component is formed byI[x] := (S∩ [x])1 and
O[x] := ([x]∩T)• \ [x]. Formally,N[x] := (S[x],T[x],F[x],M0[x], ℓ[x]) with

• S[x] = ((S∩ [x])∪O[x]∪{p[x]},

• T[x] = T ∩ [x],

• F[x] = F ↾(S[x] ∪T[x])
2∪{(p[x], t),(t, p[x]) | t ∈ T[x]},

• M0[x] = (M0↾[x])∪{p[x]}, and

• ℓ[x] = ℓ↾[x].

All components overlap at interfaces only, as the sole places not in an interface are the newly createdp[x].
The I[x] are disjoint as the equivalence classes[x] are, so(N′, I ′,O′) := ‖[x]∈(S∪T)/D(N[x],O[x], I[x]) is well-
defined. It remains to be shown thatN′ ≈∆

bSTbN. The elements ofN′ are exactly those ofN plus the new
placesp[x], which stay marked continuously except when a transition from [x] is firing, and never connect
two concurrently enabled transitions. Hence there exists abijection between the ST-markings ofN′ and
N that preserves the ST-transition relations between them, i.e. the associated ST-LTSs are isomorphic.
From this it follows thatN′ ≈∆

bSTbN. �

Observation 7 Every distributed Petri net is a structural conflict net. �

Corollary 2 Every LSGA net is a structural conflict net. �

Further on, we use a more liberal definition of a distributed net, calledessentially distributed. We will
show that up to≈∆

bSTbany essentially distributed net can be converted into a distributed net. In [6] we
employed an even more liberal definition of a distributed net, which we call hereexternally distributed.
Although we showed that up to step readiness equivalence anyexternally distributed net can be converted
into a distributed net, this does not hold for≈∆

bSTb.

Definition 16 A net N = (S,T,F,M0, ℓ) is essentially distributediff there exists a distributionD satisfy-
ing (1) of Definition 15 and
(2′) ∀t,u∈ T. t ⌣ u∧ ℓ(t) 6= τ⇒ t 6≡D u.

It is externally distributediff there exists a distributionD satisfying (1) and
(2′′) ∀t,u∈ T. t ⌣ u∧ ℓ(t), ℓ(u) 6= τ⇒ t 6≡D u.

Instead of ruling out co-location of concurrent transitions in general, essentially distributed nets permit
concurrency of internal transitions—labelledτ—at the same location. Externally distributed nets even
allow concurrency between external and internal transitions at the same location. If the transitionst and
v in the net of Figure 1 would both be labelledτ , the net would be essentially distributed, although not
distributed; in case onlyv would be labelledτ the net would be externally distributed but not essentially
distributed. Essentially distributed nets need not be structural conflict nets; in fact,any net without
external transitions is essentially distributed.

The following proposition says that up to≈∆
bSTbany essentially distributed net can be converted into

a distributed net.
1Alternatively, we could takeI[x] := (T\[x])• ∩ [x].



R.J. van Glabbeek, U. Goltz & J.-W. Schicke-Uffmann 13

Proposition 3 For any essentially distributed netN there is a distributed netN′ with N′ ≈∆
bSTbN.

Proof: The same construction as in the proof of Theorem 1 applies:N′ differs fromN by the addition,
for each location[x], of a marked placep[x] that is connected through self-loops to all transitions at that
location. This time there exists a bijection between thereachableST-markings ofN′ andN that preserves
the ST-transition relations between them. This bijection exists because a reachable ST-marking is a pair
(M,U) with U a sequence ofexternaltransitions only; this follows by a straightforward induction on
reachability by ST-transitions. From this it follows thatN′ ≈∆

bSTbN. �

Likewise, up to≈R any externally distributed net can be converted into a distributed net.

Proposition 4 [6] For any externally distributed netN there is a distributed netN′ with N′ ≈R N.

Proof: Again the same construction applies. This time there existsa bijection between the markings
of N′ andN that preserves the step transition relations between them,i.e. the associated step transition
systems are isomorphic. Here we use that the transitions in the associated LTS involve either a multiset
of concurrently firingexternaltransitions, or a single internal one. From this, step readiness equivalence
follows. �

The counterexample in Figure 2 shows that up toN′ ≈∆
bSTbN not any externally distributed net can be

converted into a distributed net. Sequentialising the component with actionsa, b andτ would disable the
execution

a+
−→=⇒

c+
−→.

p q

a t b u c v

Figure 1: A fully markedM.

p q

a t b u τ
v r

c
w

Figure 2: Externally distributed, but not distributable.

Definition 17 Given any Petri netN, the canonical co-location relation≡C on N is the equivalence
relation on the places and transitions ofN generatedby Condition (1) of Definition 15, i.e. the smallest
equivalence relation≡D satisfying (1). Thecanonical distributionof N is the distributionC that maps
each place or transition to its≡C-equivalence class.

Observation 8 A Petri net that is distributed (resp. essentially or externally distributed) w.r.t. any distri-
butionD, is distributed (resp. essentially or externally distributed) w.r.t. its canonical distribution.

Hence a net is distributed (resp. essentially or externallydistributed) iff its canonical distributionD
satisfies Condition (2) of Definition 15 (resp. Condition (2′) or (2′′) of Definition 16).

5 Distributable Systems

We now consider Petri nets as specifications of concurrent systems and ask the question which of those
specifications can be implemented as distributed systems. This question can be formalised as

Which Petri nets are semantically equivalent to distributed nets?
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Of course the answer depends on the choice of a suitable semantic equivalence. Here we will answer this
question using the two equivalences discussed in the introduction. We will give a precise characterisation
of those nets for which we can find semantically equivalent distributed nets. For the negative part of this
characterisation, stating that certain nets are not distributable, we will use step readiness equivalence,
which is one of the simplest and least discriminating equivalences imaginable that abstracts from internal
actions, but preserves branching time, concurrency and divergence to some small degree. As explained in
[6], giving up on any of these latter three properties would make any Petri net distributable, but in a rather
trivial and unsatisfactory way. For the positive part, namely that all other nets are indeed distributable,
we will use the most discriminating equivalence for which our implementation works, namely branching
ST-bisimilarity with explicit divergence, which is finer than step readiness equivalence. Hence we will
obtain the strongest possible results for both directions and it turns out that the concept of distributability
is fairly robust w.r.t. the choice of a suitable equivalence: any equivalence notion between step readiness
equivalence and branching ST-bisimilarity with explicit divergence will yield the same characterisation.

Definition 18 A Petri netN is distributableup to an equivalence≈ iff there exists a distributed netN′

with N′ ≈ N.

Formally we give our characterisation of distributabilityby classifying which finitary plain structural
conflict nets can be implemented as distributed nets, and hence as LSGA nets. In such implementations,
we use invisible transitions. We study the concept “distributable” for plain nets only, but in order to get
the largest class possible we allow non-plain implementations, where a given transition may be split into
multiple transitions carrying the same label.

It is well known that sometimes a global protocol is necessary to implement synchronous interaction
present in system specifications. In particular, this may beneeded for deciding choices in a coherent
way, when these choices require agreement of multiple components. The simple net in Figure 1 shows
a typical situation of this kind. Independent decisions of the two choices might lead to a deadlock. As
remarked in [6], for this particular net there exists no satisfactory distributed implementation that fully re-
spects the reactive behaviour of the original system. Indeed suchM-structures, representing interference
between concurrency and choice, turn out to play a crucial rˆole for characterising distributability.

Definition 19 Let N = (S,T,F,M0, ℓ) be a Petri net.N has afully reachable pureM iff
∃t,u,v∈ T.•t ∩ •u 6= /0∧ •u∩ •v 6= /0∧ •t ∩ •v= /0∧∃M ∈ [M0〉.

•t ∪ •u∪ •v⊆M.

Note that Definition 19 implies thatt 6= u, u 6= v andt 6= v.

We now give an upper bound on the class of distributable nets by adopting a result from [6].

Theorem 2 Let N be a plain structural conflict Petri net. IfN has a fully reachable pureM, thenN is not
distributable up to step readiness equivalence.

Proof: In [6] this theorem was obtained for plain one-safe nets.2 The proof applies verbatim to plain
structural conflict nets as well. �

Since≈∆
bSTbis finer than≈R, this result holds also for distributability up to≈∆

bSTb(and any equivalence
between≈R and≈∆

bSTb).
In the following, we establish that this upper bound is tight, and hence a finitary plain structural

conflict net is distributable iff it has no fully reachable pure M. For this, it is helpful to first introduce
macros in Petri nets for reversibility of transitions.

2In [6] the theorem was claimed and proven only for plain nets with a fully reachablevisiblepureM; however, for plain
nets the requirement of visibility is irrelevant.



R.J. van Glabbeek, U. Goltz & J.-W. Schicke-Uffmann 15

5.1 Petri nets with reversible transitions

A Petri net with reversible transitionsgeneralises the notion of a Petri net; its semantics is givenby
a translation to an ordinary Petri net, thereby interpreting the reversible transitions as syntactic sugar
for certain net fragments. It is defined as a tuple(S,T,Ω, ı,F,M0, ℓ) with S a set of places,T a set
of (reversible) transitions, labelled byℓ : T→ Act

.
∪ {τ}, Ω a set ofundo interfaceswith the relation

ı⊆Ω×T linking interfaces to transitions,M0∈NS an initial marking, and

F : (S×T×{in, early, late, out, far}→N)

the flow relation. WhenF(s, t, type) > 0 for type∈ {in, early, late, out, far}, this is depicted by drawing an
arc from s to t, labelled with its arc weightF(s, t, type), of the form , , , ,

, respectively. Fort ∈T and type∈ {in, early, late, out, far}, the multiset of placest type∈NS is given
by t type(s) = F(s, t, type). Whens∈ t type for type∈ {in, early, late}, the places is called apreplaceof t of
type type; whens∈ t type for type∈ {out, far}, s is called apostplaceof t of type type. For each undo interface
ω∈Ω and transitiont with ı(ω , t) there must be placesundoω(t), resetω(t) andackω(t) in S. A transition
with a nonempty set of interfaces is calledreversible; the other (standard) transitions may have pre- and
postplaces of typesin andout only—for these transitionst in = •t andtout= t•. In caseΩ = /0, the net is
just a normal Petri net.

A global state of a Petri net with reversible transitions is given by a markingM∈NS, together with
the state of each reversible transition “currently in progress”. Each transition in the net can fire as usual.
A reversible transition can moreover take back (some of) itsoutput tokens, and beundoneand reset.
When a transitiont fires, it consumes∑type∈{in, early, late}F(s, t, type) tokens from each of its preplacess
and produces∑type∈{out, far}F(s, t, type) tokens in each of its postplacess. A reversible transitiont that has
fired can start its reversal by consuming a token fromundoω(t) for one of its interfacesω . Subsequently,
it can take back one by one a token from its postplaces of typefar. After it has retrieved all its output of
type far, the transition is undone, thereby returningF(s, t,early) tokens in each of its preplacess of type
early. Afterwards, by consuming a token fromresetω(t), for the same interfaceω that started the undo-
process, the transition terminates its chain of activitiesby returningF(s, t, late) tokens in each of itslate

preplacess. At that occasion it also produces a token inackω(t). Alternatively, two tokens inundoω(t)
andresetω(t) can annihilate each other without involving the transitiont; this also produces a token in
ackω(t). The latter mechanism comes in action when trying to undo a transition that has not yet fired.

Figure 3 shows the translation of a reversible transitiont with ℓ(t)=a into an ordinary net fragment.
The arc weights on the green (or grey) arcs are inherited fromthe untranslated net; the other arcs have
weight 1. Formally, a net(S,T,Ω, ı,F,M0, ℓ) with reversible transitions translates into the Petri net con-
taining all placesS, initially marked as indicated byM0, all standard transitions inT, labelled according
to ℓ, along with their pre- and postplaces, and furthermore all net elements mentioned in Table 1. Here
T← denotes the set of reversible transitions inT.

Transition label Preplaces Postplaces for all

t ·fire ℓ(t) t in, tearly, t late fired(t), tout, t far t ∈ T←

t ·undoω τ undoω(t), fired(t) ρω(t), take( f , t) t ∈ T←, ı(ω , t), f ∈ t far

t ·undo( f ) τ take( f , t), f took( f , t) t ∈ T←, f ∈ t far

t ·undone τ took( f , t) ρ(t), tearly t ∈ T←, f ∈ t far

t · resetω τ resetω(t), ρω(t), ρ(t) t late, ackω(t) t ∈ T←, ı(ω , t)
t · elideω τ undoω(t), resetω(t) ackω(t) t ∈ T←, ı(ω , t)

Table 1: Expansion of a Petri net with reversible transitions into a place/transition system.
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(in)(late) (early)

undoω(t)

resetω(t)

ackω(t)( f ar)

(out)

a

t
ω

f

o

i l e

take( f , t)

τ
t ·undo( f ) took( f , t)

τ
t ·undoω

τ t ·undone

fired(t) ρ(t)

a

t ·fire

τ
t · resetω

undoω(t)

ρω(t)

τt · elideω

ackω(t)

resetω(t)

∀ f ∈ t far

∀o∈ tout

∀i ∈ t in ∀l ∈ t late ∀e∈ tearly

∀ω. ı(ω, t)

Figure 3: A reversible transition and its macro expansion.

5.2 The conflict replicating implementation

Now we establish that a finitary plain structural conflict netthat has no fully reachable pureM is dis-
tributable. We do this by proposing theconflict replicating implementationof any such net, and show that
this implementation is always (a) essentially distributed, and (b) equivalent to the original net. In order
to get the strongest possible result, for (b) we use branching ST-bisimilarity with explicit divergence.

To define the conflict replicating implementation of a netN = (S,T,F,M0, ℓ) we fix an arbitrary
well-ordering< on its transitions. We letb,c,g,h, i, j,k, l range over these ordered transitions, and write

– i # j iff i 6= j ∧ •i∩ • j 6= /0 (transitionsi and j arein conflict), andi
#
= j iff i # j ∨ i = j,

– i <# j iff i < j ∧ i # j, andi ≤# j iff i <# j ∨ i = j.
Figure 4 shows the conflict replicating implementation ofN. It is presented as a Petri net

I (N) = (S′,T ′,F ′,Ω, ı,M′0, ℓ
′)

with reversible transitions. The setΩ of undo interfaces isT, and fori∈Ω we haveı(i, t) iff t∈Ωi, where
the sets of transitionsΩi ∈NT ′ are specified in Figure 4. The implementationI (N) inherits the places
of N (i.e. S′ ⊇ S), and we postulate thatM′0↾S= M0. Given this, Figure 4 is not merely an illustration
of I (N)—it provides a complete and accurate description of it, thereby defining the conflict replicating
implementation of any net. In interpreting this figure it is important to realise that net elements are
completely determined by their name (identity), and exist only once, even if they show up multiple
times in the figure. For instance, the placeπh# j with h=2 and j=5 (when using natural numbers for the
transitions inT) is the same as the placeπ j#l with j=2 andl=5; it is a standard preplace ofexecutei

2 (for
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∀ j ∈ T ′

∀p∈ • j
∀h<# j
∀i ≤# j
∀k≥# j
∀l ># j
∀q∈ •i
∀c∈ q•

∀r ∈ i •

∀t ∈Ωi := {initialisec | c
#
= i}+

{transferbc | b<# c
#
= i}

∀u
#
= j

F(p, j)

F(i, r)

F(q, i)

p

τdistributep

p j

pre
j
k

π j

τinitialise j
u

undou(initialise j)

resetu(initialise j)

acku(initialise j)

transhj -in
πh# j

τtransferhj
u

undou(transfer
h
j )

resetu(transfer
h
j )

acku(transfer
h
j )

transhj -outprei
j

π j#l

ℓ(i)
executei

j

undoi(t)

fetch
q,c
i, j -in

qc τ fetch
q,c
i, j

fetch
q,c
i, j -out

τfetchedi
j

acki(t)reseti(t)

τfinalisei

r

Figure 4: The conflict replicating implementation
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all i ≤#2), a standard postplace offetchedi
2, as well as a late preplace oftransfer25. A description of this

net after expanding the macros for reversible transitions appears in Table 2 on Page 29.
The rôle of the transitionsdistributep for p∈S is to distribute a token inp to copiesp j of p in the

localities of all transitionsj ∈T with p∈ • j. In case j is enabled inN, the transitioninitialise j will
become enabled inI (N). These transitions put tokens in the placespre

j
k, which are preconditions for all

transitionsexecute j
k, which model the execution ofj at the location ofk. When two conflicting transitions

h and j are both enabled inN, the first stepsinitialiseh and initialise j towards their execution inI (N)
can happen in parallel. To prevent them from executing both,execute

j
j (of j at its own location) is only

possible aftertransferhj , which disablesexecuteh
h.

The main idea behind the conflict replicating implementation is that a transitionh∈T is primarily
executed by a sequential component of its own, but when a conflicting transition j gets enabled, the
sequential component implementingj may “steal” the possibility to executeh from the home component
of h, and keep the options to doh and j open until one of them occurs. To preventh and j from stealing
each other’s initiative, which would result in deadlock, a global asymmetry is built in by ordering the
transitions. Transitionj can steal the initiative fromh only whenh< j.

In casej is also in conflict with a transitionl , with j < l , the initiative to performj may subsequently
be stolen byl . In that case eitherh andl are in conflict too—thenl takes responsibility for the execution
of h as well—orh and l are concurrent—in that caseh will not be enabled, due to the absence of fully
reachable pureMs in N. The absence of fully reachable pureMs also guarantees that it cannot happen
that two concurrent transitionsj andk both steal the initiative from an enabled transitionh.

After the firing of executei
j all tokens that were left behind in the process of carefully orchestrat-

ing this firing will have to be cleaned up, in order to prepare the net for the next activity in the same
neighbourhood. This is the reason for the reversibility of the transitions preparing the firing ofexecutei

j .
Hence there is an undo interface for each transitioni ∈ T ′, cleaning up the mess made in preparation of
firing executei

j for some j ≥# i. Ωi is the multiset of all transitionst that could possibly have contributed
to this. For each of them the undo interfacei is activated, byexecutei

j depositing a token inundoi(t).
After all preparatory transitions that have fired are undone, tokens appear in the placespc for all p∈ •i
andc∈ p•. These are collected byfetchp,c

i, j , after which all transitions inΩi get a reset signal. Those
that have fired and were undone are reset, and those that neverfired performelidei(t). In either case a
token appears inacki(t). These are collected byfinalisei , which finishes the process of executingi by
depositing tokens in its postplaces.

p
q

r
s

v
x

y z

a 1 b 2 c 3 d4 e 5

Figure 5: An example net.
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p q r s v x y z

τ distributep τ distributeq τ distributer τ distributes τ distributev τ distributex τ distributey τ distributez

p1 q1 q2 r2 s2 s3 v3 x3 x4 y4 x5 z5

τ initialise1 τ initialise2 τ initialise3 τ initialise4 τ initialise5

trans12-in trans23-in trans34-in trans35-in trans45-in

τ transfer12 τ transfer23 τ transfer34 τ transfer35 τ transfer45

trans12-out trans23-out trans34-out trans35-out trans45-outπ1#2 π2#3 π3#4 π3#5 π4#5

a execute1
1 aexecute1

2 b execute2
2 bexecute2

3 c execute3
3 cexecute3

4 d execute4
4 cexecute3

5 d execute4
5 e execute5

5

pre1
1 pre1

2 pre2
2 pre2

3 pre3
3 pre3

4 pre4
4 pre3

5 pre4
5 pre5

5

Figure 6: The (relevant parts of the) conflict replicating implementation of the net in Figure 5.



20 On Distributability of Petri Nets

The conflict replicating implementation is illustrated by means of the finitary plain structural conflict
net N of Figure 5. The places and transitionsa-q-b-s-c-x-d in this net constitute aLongM: for each
pair a-b, b-c andc-d of neighbouring transitions, as well as for the paira-d of extremal transitions, there
exists a reachable marking enabling them both. Moreover, neighbouring transitions in the longM are in
conflict: a#b, b#c andc#d, whereas the extremal transitions are concurrent:a⌣ d. However,N has
no fully reachable pureM: noM-shaped triple of transitionsa-b-c, b-c-d or b-c-e is ever simultaneously
enabled.

In [6] we gave a simpler implementation, thetransition-controlled choice implementation, that works
for all finitary plain 1-safe Petri nets without such a longM. HenceN constitutes an example where that
implementation does not apply, yet the conflict replicatingimplementation does. In fact, when leaving
out thez-e-branch it may be the simplest example with these properties. We have added this branch to
illustrate the situation where three transitions are pairwise in conflict.

Figure 6 presents relevant parts of the conflict replicatingimplementationI (N) of N. The ten
places ofN return inI (N), but the transitions ofN are replaced by more complicated net fragments. In
Figure 6 we have simplified the rendering ofI (N) by simply just copying the five topmost transitions
of N, instead of displaying the net fragments replacing them. This simplification is possible since the top
half of N is already distributed. To remind the reader of this, we leftthose transitions unlabelled.

In order to fix a well-ordering< on the remaining transitions, we named them after the first five
positive natural numbers. The ordered conflicts between those transitions now are 1≤#2, 2≤#3, 3≤#4,
3≤#5 and 4≤#5. In Figure 6 we have skipped all places, transitions and arcs involved in the cleanup of
tokens after firing of a transition. In this example the cleanup is not necessary, as no place ofN is visited
twice. Thus, we displayed only the non-reversible part of the transitionsinitialise j and transferhj —i.e.
initialise j · fire and transferhj ·fire—as well as the transitionsdistributep and executei

j . Likewise, we
omitted the outgoing arcs ofexecutei

j , the placesπ j , and those places that have arcs only to omitted
transitions. We leave it to the reader to check this net against the definition in Figure 4, and to play the
token game on this net, to see that it correctly implementsN.

In Section 7 we will show, for any finitary plain structural conflict net without a fully reachable
pureM, that I (N) ≈∆

bSTbN, and thatI (N) is essentially distributed. HenceI (N) is an essentially
distributed implementation ofN. By Proposition 3 this implies thatN is distributable up to≈∆

bSTb.
Together with Theorem 2 it follows that, for any equivalencebetween≈R and≈∆

bSTb, a finitary plain
structural conflict net is distributable iff it has no fully reachable pureM.

Given the complexity of our construction, no techniques known to us were adequate for performing
the equivalence proof. We therefore had to develop an entirely new method for rigorously proving the
equivalence of two Petri nets up to≈∆

bSTb, one of which known to be plain. This method is presented in
Section 6.

6 Proving Implementations Correct

This section presents a method for establishing the equivalence of two Petri nets, one of which known
to be plain, up to branching ST-bisimilarity with explicit divergence. It appears as Theorem 3. First
approximations of this method are presented in Lemmas 5 and 6. The progression from Lemma 5 to
Lemma 6 and to Theorem 3 makes the method more specific (so lessgeneral) and more powerful. By
means of a simplification a similar method can be obtained, also in three steps, for establishing the
equivalence of two Petri nets up to interleaving branching bisimilarity with explicit divergence. This is
elaborated at the end of this section.
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Definition 20 A labelled transition system(S,T,M0) is calleddeterministicif for all reachable states
M ∈ [M0〉 we haveM X

τ
−→ and ifM

a
−→M′ andM

a
−→M′′ for somea∈ Act thenM′ =M′′.

Deterministic systems may not have reachableτ-transitions at all; this way, ifM
σ
=⇒M′ andM

σ
=⇒M′′

for someσ ∈Act
∗ thenM′ =M′′. Note that the labelled transition system associated to a plain Petri net

is deterministic; the same applies to the ST-LTS, the split LTS or the step LTS associated to such a net.

Lemma 4 Let (S1,T1,M01) and(S2,T2,M02) be two labelled transition systems, the latter being de-
terministic. Suppose there is a relationB ⊆S1×S2 such that

(a) M01BM02,

(b) if M1BM2 andM1
τ
−→M′

1 thenM′
1BM2,

(c) if M1BM2 andM1
a
−→M′

1 for somea∈ Act then∃M′
2. M2

a
−→M′

2∧M
′
1BM′

2,

(d) if M1BM2 andM2
a
−→ for somea∈ Act then eitherM1

a
−→ or M1

τ
−→

(e) and there is no infinite sequenceM1
τ
−→M′

1
τ
−→M′′

1
τ
−→ ·· · with M1BM2 for someM2.

ThenB is a branching bisimulation, and the two LTSs are branching bisimilar with explicit divergence.

Proof: It suffices to show thatB satisfies Conditions 1–3 of Definition 7; the condition on explicit
divergence follows immediately from (e), using that a deterministic LTS admits no divergence at all.

1. By (a).

2. In caseα = τ this follows directly from (b), and otherwise from (c). In both casesM†
2 :=M2 and

whenα = τ alsoM′
2 :=M2.

3. SupposeM1BM2 andM2
α
−→M′

2. Since(S2,T2,M02) is deterministic,α = a ∈ Act. By
(d) we have eitherM1

a
−→M1

1 or M1
τ
−→M1

1 for someM1
1 ∈ S1. In the latter case (b) yields

M1
1BM2, and using (d) again, eitherM1

1
a
−→M2

1 or M1
1

τ
−→M2

1 for someM2
1 ∈S1. Repeating

this argument, if the choice betweena andτ is madek times in favour ofτ (with k≥ 0), we obtain
Mk

1BM2 (whereM0
1 :=M1) and eitherMk

1
a
−→M

k+1
1 orMk

1
τ
−→M

k+1
1 . By (e), at some point the

choice must be made in favour ofa, say atMk
1. ThusM1 =⇒Mk

1
a
−→M

k+1
1 , with Mk

1BM2. We
takeM†

1 andM′
1 from Definition 7 to beMk

1 andMk+1
1 . It remains to show thatMk+1

1 BM′
2. By

(c) there is anM′′
2 ∈S2 with M2

a
−→M′′

2 andMk+1
1 BM′′

2. Since(S2,T2,M02) is deterministic,
M′

2 =M′′
2. �

Lemma 5 Let N = (S,T,F,M0, ℓ) andN′ = (S′,T ′,F ′,M′0, ℓ
′) be two nets,N′ being plain. Suppose there

is a relationB ⊆ (NS×NT)× (NS′×NT ′) such that

(a) (M0, /0)B (M′0, /0),

(b) if (M1,U1)B (M′1,U
′
1) and(M1,U1)

τ
−→ (M2,U2) then(M2,U2)B (M′1,U

′
1),

(c) if (M1,U1)B (M′1,U
′
1) and(M1,U1)

η
−→ (M2,U2) for someη ∈ Act±

then∃(M′2,U
′
2). (M

′
1,U

′
1)

η
−→ (M′2,U

′
2)∧ (M2,U2)B (M′2,U

′
2),

(d) if (M1,U1)B (M′1,U
′
1) and(M′1,U

′
1)

η
−→ with η ∈ Act± then either(M1,U1)

η
−→ or (M1,U1)

τ
−→

(e) and there is no infinite sequence(M,U)
τ
−→ (M1,U1)

τ
−→ (M2,U2)

τ
−→ ·· · with (M,U)B (M′,U ′)

for some(M′,U ′).

ThenB is a branching split bisimulation, andN≈∆
bSTbN′.
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Proof: ThatN andN′ are branching split bisimilar with explicit divergence follows directly from Lemma
4 by taking(S1,T1,M01) and(S2,T2,M02) to be the split LTSs associated toN andN′ respectively.
Here we use that the split LTS associated to a plain net is deterministic. The final conclusion follows by
Proposition 2. �

Lemma 5 provides a method for provingN ≈∆
bSTbN′ that can be more efficient than directly checking

the definition. In particular, the intermediate statesM† and the sequence ofτ-transitions=⇒ from
Definition 7 do not occur in Lemma 4, and hence not in Lemma 5. Moreover, in Condition (d) one no
longer has the match the targets of corresponding transitions. Lemma 6 below, when applicable, provides
an even more efficient method: it is no longer needed to specify the branching split bisimulationB , and
the targets have disappeared from the transitions in Condition 2c as well. Instead, we have acquired
Condition 1, but this is structural property, which is relatively easy to check.

Lemma 6 Let N = (S,T,F,M0, ℓ) be a net andN′ = (S′,T ′,F ′,M′0, ℓ
′) be a plain net withS′ ⊆ S and

M′0 = M0 ↾ S′. Suppose:

1. ∀t∈T, ℓ(t) 6= τ . ∃t ′∈T′, ℓ(t ′) = ℓ(t). ∃G∈ f NT , ℓ(G)≡ /0. Jt ′K = Jt +GK.

2. For anyG∈ f ZT with ℓ(G)≡ /0, M′∈NS′ , U ′∈NT ′ and U ∈NT with ℓ′(U ′)=ℓ(U), M′+ •U ′ ∈
[M′0〉N′ and M := M′+ •U ′+(M0−M′0)+ JGK− •U ∈NS with M+ •U ∈ [M0〉N, it holds that:

(a) there is no infinite sequenceM
τ
−→M1

τ
−→M2

τ
−→ ·· ·

(b) if M′
a
−→ with a∈ Act thenM

a
−→ or M

τ
−→

(c) and ifM
a
−→ with a∈Act thenM′

a
−→.

ThenN≈∆
bSTbN′.

Proof: DefineB ⊆ (NS×NT)×(NS′×NT ′) by (M,U)B (M′,U ′) :⇔ ℓ′(U ′)=ℓ(U)∧M′+•U ′∈ [M′0〉N′
∧∃G ∈ f ZT . ℓ(G) ≡ /0∧M + •U = M′+ •U ′+(M0−M′0)+ JGK ∈ [M0〉N. It suffices to show thatB
satisfies Conditions (a)–(e) of Lemma 5.

(a) TakeG= /0.

(b) Suppose(M1,U1)B (M′1,U
′
1) and(M1,U1)

τ
−→ (M2,U2). Thenℓ′(U ′1)= ℓ(U1)∧M′1+

•U ′1∈ [M
′
0〉N′

∧∃G∈ f ZT . ℓ(G)≡ /0∧M1=M′1+
•U ′1+(M0−M′0)+JGK−•U1∧M1+

•U ∈ [M0〉N and moreover
M1

τ
−→M2∧U2 =U1. SoM1[t〉M2 for somet ∈T with ℓ(t)= τ . HenceM2 = M1+ JtK = M′1+

•U ′1 + (M0−M′0) + JG+ tK−•U1. Since(M1 +
•U1)[t〉(M2 +

•U1), we haveM2 +
•U1 ∈ [M0〉N.

Since alsoℓ(G+ t)≡ /0 it follows that(M2,U1)B (M′1,U
′
1).

(c) Suppose(M1,U1)B (M′1,U
′
1) and (M1,U1)

η
−→ (M2,U2), with η ∈ Act±. Thenℓ′(U ′1) = ℓ(U1),

M′1+
•U ′1∈ [M

′
0〉N′ and

∃G∈ f ZT . ℓ(G)≡ /0∧M1+
•U1 = M′1+

•U ′1+(M0−M′0)+ JGK ∈ [M0〉N. (1)

First supposeη = a+. Then∃t ∈T. ℓ(t)=a∧M1[t〉∧M2 = M1−
•t ∧U2 =U1+ {t}. Using that

M1
a
−→ with a∈ Act, by Condition 2c we haveM′1

a
−→, i.e.M′1[t

′〉 for somet ′ ∈ T with ℓ′(t ′) = a.
Let M′2 := M′1−

•t andU ′2 := U ′1+ {t
′}. Then(M′1,U

′
1)

a+
−→ (M′2,U

′
2). Moreover,ℓ(U2) = ℓ(U ′2),

M′2+
•U ′2 = M′1+

•U ′1∈ [M
′
0〉N′ andM2+

•U2 = M1+
•U1. In combination with (1) this yields

M2+
•U2 = M1+

•U1 = M′1+
•U ′1+(M0−M′0)+ JGK = M′2+

•U ′2+(M0−M′0)+ JGK,

so(M2,U2)B (M′2,U
′
2).
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Now supposeη = a−. Then∃t∈U1. ℓ(t)=a∧U2=U1−{t}∧M2 = M1+ t•. Sinceℓ′(U ′1)= ℓ(U1)
there is at ′∈U ′1 with ℓ(t ′)=a. LetM′2 :=M′1+t ′• andU ′2 :=U ′1−{t

′}. Then(M′1,U
′
1)

a−
−→ (M′2,U

′
2).

By construction,ℓ(U2) = ℓ(U ′2). Moreover,M2+
•U2 = M1+ t•+ •U1−

•t = (M1+
•U1)+ JtK,

and likewise
M′2+

•U ′2 = (M′1+
•U ′1)+ Jt ′K (2)

so(M′1+
•U ′1)[t

′〉(M′2+
•U ′2). SinceM′1+

•U ′1∈ [M
′
0〉N′ , this yieldsM′2+

•U ′2∈ [M
′
0〉N′ . Moreover,

M2+
•U2 =M1+ t•+•U1−

•t =M1+
•U1+JtK∈ [M0〉N. Furthermore, combining (1) and (2) gives

∃G∈ f ZT . ℓ(G)≡ /0∧M2+
•U2− JtK= M′2+

•U ′2− Jt ′K+(M0−M′0)+ JGK. (3)

By Condition 1 of Lemma 6,∃t ′′∈T′, ℓ(t ′′) = ℓ(t). ∃Gt ∈ f NT , ℓ(Gt)≡ /0. JtK= Jt ′′−GtK. Since
N′ is a plain net, it has only one transitiont† with ℓ(t†)=a, sot ′′= t ′. Substitution ofJt ′−GtK for t
in (3) yields

∃G∈ f ZT . ℓ(G)≡ /0∧M2+
•U2 = M′2+

•U ′2+(M0−M′0)+ JG−GtK.

Sinceℓ(G−Gt)≡ /0 we obtain(M2,U2)B (M′2,U
′
2).

(d) Follows directly from Condition 2b and Definition 11.

(e) Follows directly from Condition 2a and Definition 11. �

In Lemma 6 a relation is explored between markingsM andM+ JHK (whereM is M′+•U ′+(M0−M′0)
of Lemma 6,H := G, andM + JHK is M +•U of Lemma 6). In such a case, we can think ofM as an
“original marking”, and ofM + JHK as a modification of this marking by the token replacementJHK.
The next lemma provides a method to trace certain placess marked byM + JHK (or transitionst that
are enabled underM+ JHK) back to places that must have been marked byM before taking into account
the token replacementJHK. Such places are calledfaithful origins of s (or t). In tracking the faithful
origins of places and transitions, we assume that the placesmarked byM are taken from a setS+ and
the transitions inH from a setT+. In Lemma 7 we furthermore assume that the flow relation restricted
to S∪T+ is acyclic. We will need this lemma in proving the correctness of our final method of proving
N ≈∆

bSTbN′.

Definition 21 Let N = (S,T,F,M0, ℓ) be a Petri net,T+ ⊆ T a set of transitions andS+ ⊆ S a set of
places.

• A path in N is an alternating sequenceπ = x0x1x2 · · ·xn ∈ (S∪T)∗ of places and transitions, such
thatF(xi ,xi+1)> 0 for 0≤ i<n. Thearc weight F(π) of such a path is the productΠn−1

0 F(xi ,xi+1).

• A places∈ S is calledfaithful w.r.t. T+ andS+ iff |{s}∩S+|+∑t∈T+ F(t,s) = 1.

• A pathx0x1x2 · · ·xn ∈ (S∪T)∗ from x0 to xn is faithful w.r.t. T+ andS+ iff all intermediate nodes
xi for 0≤ i < n are either transitions inT+ or faithful places w.r.t.T+ andS+.

• Forx∈ S∪T, theinfinitary multiset∗x∈ (N∪{∞})S+ of faithful originsof x is given by
∗x(s) = sup{F(π) | π is a faithful path froms∈ S+ to x}. (So∗x(s) = 0 if no such path exists.)

Suppose a markingM2 is reachable from a markingM1 ∈NS+ by firing transitions fromT+ only. Then,
if a faithful places bears a token underM2—i.e. M2(s)> 0—this token has a unique source: ifs∈ S+ it
must stem fromM1 and otherwise it must be produced by the unique transitiont∈T+ with F(t,s)=1.

In a net without arc weights,∗x is always a set, namely the set of placess in S+ from which the flow
relation of the net admits a path tox that passes only through faithful places and transitions from T+

(with the possible exception ofx itself). For nets with arc weights, the underlying set of∗x is the same,
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and the multiplicity ofs∈ ∗x is obtained by multiplying all arc weights on the qualifyingpath froms
to x; in case of multiple such paths, we take the upper bound over all such paths (which could yield the
value∞).

Observation 9 Let (S,T,F,M0, ℓ) be a Petri net,T+ ⊆ T a set of transitions andS+ ⊆ Sa set of places.
For faithful placessand transitionst ∈ T we have

∗s=

{

{s} if s∈ S+
∗t if t ∈ T+∧F(t,s) = 1

∗t =
⋃

{F(s, t) · ∗s | s∈ •t ∧s faithful}.

Lemma 7 Let (S,T,F,M0, ℓ) be a Petri net,T+ ⊆ T a set of transitions such thatF ↾ (S∪T+) is acyclic,
andS+ ⊆ Sa set of places. LetM ∈NS+ andH ∈ f NT+

, such thatM+ JHK ∈NS. Then

(a) for any faithful placesw.r.t. T+ andS+ we have(M+ JHK)(s) · ∗s≤M;

(b) for anyk∈N, and any transitiont with (M+ JHK)[k · {t}〉, we havek · ∗t ≤M.

Proof: We apply induction on|H|.

(a). When(M+JHK)(s)= 0 it trivially follows that(M+JHK)(s) ·∗s≤M. So suppose(M+JHK)(s)> 0.
Then eithers∈ S+ or there is a uniquet ∈ T+ with H(t)> 0 andF(t,s) = 1. In the first case, using that
s∈ u• for nou∈ T+, we have(M+ JHK)(s)≤M(s), so(M+ JHK)(s) · ∗s≤M(s) · {s} ≤M.

In the latter case,(M+ JHK)(s)≤M(s)+∑u∈T+ H(u) ·F(u,s) = H(t) and∗s= ∗t.
Let U := {u∈ T+ | H(u) > 0∧uF+t} be the set of transitions occurring inH from which the flow

relation of the net offers a non-empty path tot. As F ↾ (S∪T+) is acyclic,t /∈U , soH ↾U < H. Let
s′ be any place withs′ ∈ •u for some transitionu ∈U . Then, by construction ofU , it cannot happen
that s′ ∈ v• for some transitionv /∈U with H(v) > 0. Hence(M + JH ↾UK)(s′) ≥ (M + JHK)(s′) ≥ 0.
Moreover, for any other places′′ we have•(H ↾U)(s′′) = 0 and thus(M+ JH ↾UK)(s′′)≥M(s′′) ≥ 0. It
follows thatM+ JH ↾UK ∈NS.

For eachs′′′ ∈ •t we have(H−H ↾U)•(s′′′) = 0 and•(H−H ↾U)(s′′′)≥ H(t) · •t(s′′′) and therefore
0≤ (M + JHK)(s′′′) ≤ (M+ JH ↾UK)(s′′′)−H(t) · •t(s′′′), and henceH(t) · •t ≤M+ JH ↾UK. It follows
that(M+ JH ↾UK)[H(t) · {t}〉. Thus, by induction,(M+ JHK)(s) · ∗s≤ H(t) · ∗t ≤M.

(b). Let(M+ JHK)[k· {t}〉. For any faithfuls∈ •t we have(M+ JHK)(s)≥ k·F(s, t), and thus, using (a),

k ·F(s, t) · ∗s≤ (M+ JHK)(s) · ∗s≤M .

Therefore, by Observation 9,k · ∗t =
⋃

{k ·F(s, t) · ∗s | s∈ •t ∧s faithful} ≤M. �

The following theorem is the main result of this section. It presents a method for provingN ≈∆
bSTbN′

for N a net andN′ a plain net. Its main advantage w.r.t. directly using the definition, or w.r.t. application
of Lemma 5 or 6, is the replacement of requirements on the dynamic behaviour of nets by structural
requirements. Such requirements are typically easier to check. Replacing the requirement “M + •U ∈
[M0〉N” in Condition 5 by “M + •U ∈ NS” would have yielded an even more structural version of this
theorem; however, that version turned out not to be strong enough for the verification task performed in
Section 7.

Theorem 3 Let N = (S,T,F,M0, ℓ) be a net andN′ = (S′,T ′,F ′,M′0, ℓ
′) be a plain net withS′ ⊆ Sand

M′0 = M0 ↾ S′. Suppose there exist setsT+ ⊆ T andT− ⊆ T and a classNF⊆ ZT , such that

1. F ↾ (S∪T+) is acyclic.

2. F ↾ (S∪T−) is acyclic.
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3. ∀t∈T, ℓ(t) 6= τ . ∃t ′∈T′, ℓ(t ′) = ℓ(t).
(•t ′ ≤ ∗t ∧∃G∈ f NT , ℓ(G)≡ /0. Jt ′K = Jt +GK

)

.
Here∗t is the multiset of faithful origins oft w.r.t. T+ andS′∪{s∈ S|M0(s)> 0}.

4. There exists a functionf : T →N with f (t) > 0 for all t ∈T, extended toZT as in Definition 1,
such that for eachG ∈ f ZT with ℓ(G) ≡ /0 there is anH ∈ f NF with ℓ(H) ≡ /0, JHK = JGK and
f (H) = f (G).

5. For everyM′ ∈NS′, U ′ ∈NT ′ andU ∈NT with ℓ(U) = ℓ′(U ′) andM′+ •U ′ ∈ [M′0〉N′ , there is an
HM′,U ∈ f NT+

with ℓ(HM′,U)≡ /0, such that for eachH ∈ f NF with M := M′+ •U ′+(M0−M′0)+
JHK− •U ∈NS andM+ •U ∈ [M0〉N:

(a) MM′,U := M′+ •U ′+(M0−M′0)+ JHM′,UK− •U ∈NS,

(b) if M′
a
−→ with a∈ Act thenMM′,U

a
−→,

(c) H ≤ HM′,U .

(d) if H(u)< 0 thenu∈ T−,

(e) if H(u)< 0 andH(t)> 0 then•u∩ •t = /0,

(f) if H(u)< 0 and(M+•U)[t〉 with ℓ(t) 6= τ then•u∩ •t = /0,

(g) if (M+•U)[{t}+{u}〉 and andt ′,u′ ∈T ′ with ℓ′(t ′)= ℓ(t) andℓ′(u′) = ℓ(u), then•t ′∩•u′= /0.

ThenN≈∆
bSTbN′.

Proof: It suffices to show that Condition 2 of Lemma 6 holds (for Condition 1 of Lemma 6 is part of
Condition 3 above). So letG∈ f ZT with ℓ(G)≡ /0, M′∈NS′ , U ′∈NT ′ andU ∈NT with ℓ′(U ′)= ℓ(U),
M′+•U ′ ∈ [M′0〉N′ , M := M′+•U ′+(M0−M′0)+JGK−•U ∈NS andM+ •U ∈ [M0〉N.

(a) SupposeM
τ
−→ M1

τ
−→ M2

τ
−→ ·· ·. Then there are transitionsti ∈ T with ℓ(ti) = τ , for all i≥ 1,

such thatM[t1〉M1[t2〉M2[t3〉 · · ·. As also(M +•U)[t1〉(M1+
•U)[t2〉(M2+

•U)[t3〉 · · ·, it follows that
(Mi +

•U)∈ [M0〉N for all i ≥ 1. LetG0 := G and for alli ≥ 1 let Gi+1 := Gi +{ti}. Thenℓ(Gi)≡ /0
and Mi = M′+•U ′+ (M0−M′0) + JGiK−

•U . Moreover, f (Gi+1) = f (Gi) + f (ti) > f (Gi). For
all i ≥ 1, using Condition 4, letHi ∈ f NF be so thatJHiK= JGiK and f (Hi) = f (Gi). ThenMi =
M′+•U ′+(M0−M′0)+ JHiK−

•U and f (H0)< f (H1)< f (H2)< · · ·. However, from Condition 5c
we get f (Hi)≤ f (HM′) for all i ≥ 1. The sequenceM

τ
−→M1

τ
−→M2

τ
−→ ·· · therefore must be finite.

(b) Now supposeM′
a
−→with a∈Act. By Condition 4 above there exists anH ∈ f NF such thatℓ(H)≡ /0

andJHK= JGK, and henceM = M′+•U ′+(M0−M′0)+ JHK−•U . Let H− := {u∈ T | H(u)< 0}.

• First supposeH− 6= /0. By Condition 5d,H− ⊆ T−. By Condition 2,<−:= (F ↾ (S∪T−))+ is
a partial order onS∪T−, and hence onH−. Let u be a minimal transition inH− w.r.t.<−. By
definition, for alls∈ S,

M(s) = M′(s)+•U ′(s)+(M0−M′0)(s)+∑
t∈T

H(t) ·F(t,s)+∑
t∈T
−H(t) ·F(s, t)+∑

t∈U
−U(t) ·F(t,s). (4)

As M′0 =M0 ↾S′, we haveM′0≤M0. Hence the first three summands in this equation are always
positive (or 0). Now assumes∈ •u. Sinceu is minimal w.r.t.<−, there is not ∈T with H(t)< 0
andF(t,s) 6= 0. Hence also all summandsH(t) ·F(t,s) are positive. By Condition 5e, there is
no t ∈ T with H(t)> 0 andF(s, t) 6= 0, so all summands−H(t) ·F(s, t) are positive as well. By
Condition 5f, there is not ∈ T with U(t)> 0 andF(s, t) 6= 0, for this would imply thatℓ(t) 6= τ
and(M+•U)[t〉, so no summands in (4) are negative. Thus 0≤−H(u) ·F(s,u) ≤M(s). Since
H(u)≤−1, this impliesM(s)≥F(s,u). Henceu is enabled inM. Asℓ(u) = τ , we haveM

τ
−→.
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• Next supposeH−= /0 butH 6=HM′,U . LetH⌣ := {u∈ T |HM′,U (u)−H(u)> 0}. ThenH⌣ 6= /0
by Condition 5c. SinceHM′,U ∈ f NT+

, H⌣ ⊆ T+. By Condition 1,<+:= (F ↾ (S∪T+))+ is a
partial order onS∪T+, and hence onH⌣. Let u be a minimal transition inH⌣ w.r.t.<+. We
haveM =M′+•U ′+(M0−M′0)+JHM′,U +(H−HM′,U)K−

•U =MM′,U +JH−HM′,UK. Hence,
for all s∈ S,

M(s) = MM′,U (s)+ ∑
t∈T

(H−HM′,U)(t) ·F(t,s)+ ∑
t∈T

−(H−HM′,U)(t) ·F(s, t) . (5)

By Condition 5a,MM′,U ∈NS. By Condition 5c,H−HM′,U ≤ 0. Fors∈ •u there is moreover no
t ∈H⌣ with s∈ t•, so not ∈T with (H−HM′,U )(t)< 0 andF(t,s) 6= 0. Hence no summands in
(5) are negative. It follows that 0≤−(H−MM′,U)(u) ·F(s, t) ≤M(s). Since(H−HM′,U)(u) ≤
−1, this impliesM(s)≥ F(s,u). Henceu is enabled inM. As ℓ(u) = τ , we haveM

τ
−→.

• Finally supposeH = HM′,U . ThenM = MM′,U andM
a
−→ follows by Condition 5b.

(c) Next supposeM
a
−→ with a∈ Act. Then there is at ∈ T with ℓ(t) = a 6= τ andM[t〉. So(M+•U)[t〉.

We will first show that(M′+•U ′)
a
−→. By Condition 4 there exists anH0 ∈ f NF⊆ NT such that

ℓ(H0)≡ /0 andJH0K= JGK, and henceM+•U = M′+•U ′+(M0−M′0)+ JH0K ∈ [M0〉N. For our first
step, it suffices to show that wheneverH ∈ f NF with MH := M′+•U ′+ (M0−M′0) + JHK∈ [M0〉
and MH [t〉, then (M′ +•U ′)

a
−→. We show this by induction onf (HM′,U −H), observing that

f (HM′,U −H) ∈N by Conditions 5c (with emptyU ) and 4.

We consider two cases, depending on the emptiness ofH− := {u∈ T | H(u)< 0}.

First assumeH−= /0. ThenH ∈ f NT. By Condition 5c (with emptyU ) we even haveH ∈ f NT+
.

Let ∗t denote the multiset of faithful origins oft w.r.t. T+ andS+ := S′ ∪{s∈ S | M0(s) > 0}. By
Lemma 7(b), takingk=1, substitutingM′+•U ′+(M0−M′0) for the “M” of that lemma, and using
Condition 1 of Theorem 3,∗t ≤ M′+•U ′+(M0−M′0). So by Condition 3 of Theorem 3 there is
a t ′ ∈ T ′ with ℓ(t ′) = ℓ(t) and•t ′ ≤ M′+•U ′+(M0−M′0). Since•t ′ ∈NS′ andM′0 = M0 ↾S′, this
implies•t ′ ≤M′+•U ′. It follows that(M′+•U ′)[t ′〉N′ and hence(M′+•U ′)

a
−→.

Now assumeH− 6= /0. By the same proof as for (b) above, caseH− 6= /0, there is a transitionu∈ H−

that is enabled inMH . SoMH [u〉M1 for someM1∈ [M0〉N, andM1 =M′+•U ′+(M0−M′0)+JH+uK.
By Condition 5f of Theorem 3 (still with emptyU ), •u∩ •t = /0, and thusM1[t〉. By Condition 4 of
Theorem 3 there exists anH1∈ f NF such thatℓ(H1)≡ /0, JH1K= JH +uK, and f (H1)= f (H +u)>
f (H). ThusM1 = MH1 and f (HM′,U −H1)< f (HM′,U −H). By induction we obtain(M′+•U ′)

a
−→.

By the above reasoning, there is at ′ ∈ T ′ such thatℓ′(t ′) = ℓ(t) and(M′+•U ′)[t ′〉. Now take any
u′ ∈U ′. Then there must be anu∈U with ℓ′(u′) = ℓ(u). SinceM[t〉, we have(M+•U)[{t}+{u}〉
and by Condition 5g we obtain•t ′∩ •u′ = /0. It follows thatM′[t ′〉, and henceM′

a
−→. �

Digression: Interleaving semantics

Above, a method is presented for establishing the equivalence of two Petri nets, one of which known
to be plain, up to branching ST-bisimilarity with explicit divergence. Here, we simplify this result into
a method for establishing the equivalence of the two nets up interleaving branching bisimilarity with
explicit divergence. This result is not applied in the current paper.

Lemma 8 Let N = (S,T,F,M0, ℓ) andN′ = (S′,T ′,F ′,M′0, ℓ
′) be two nets,N′ being plain. Suppose there

is a relationB ⊆NS×NS′ such that

(a) M0B M′0,
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(b) if M1B M′1 andM1
τ
−→M2 thenM2B M′1,

(c) if M1B M′1 andM1
a
−→M2 for somea∈ Act then∃M′2. M′1

a
−→M′2∧M2B M′2,

(d) if M1B M′1 andM′1
a
−→ for somea∈ Act then eitherM1

a
−→ or M1

τ
−→

(e) and there is no infinite sequenceM
τ
−→M1

τ
−→M2

τ
−→ ·· · with MB M′ for someM′.

ThenN andN′ are interleaving branching bisimilar with explicit divergence.

Proof: This follows directly from Lemma 4 by taking(S1,T1,M01) and(S2,T2,M02) to be the inter-
leaving LTSs associated toN andN′ respectively. Here we use that the LTS associated to a plain net is
deterministic. �

Lemma 9 Let N = (S,T,F,M0, ℓ) be a net andN′ = (S′,T ′,F ′,M′0, ℓ
′) be a plain net withS′ ⊆ S and

M′0 = M0 ↾ S′. Suppose:

1. ∀t∈T, ℓ(t) 6= τ . ∃t ′∈T′, ℓ(t ′) = ℓ(t). ∃G∈ f NT , ℓ(G)≡ /0. Jt ′K = Jt +GK.

2. For anyG∈ f ZT with ℓ(G)≡ /0, M′∈ [M′0〉N′ andM := M′+(M0−M′0)+JGK∈ [M0〉N, it holds that:

(a) there is no infinite sequenceM
τ
−→M1

τ
−→M2

τ
−→ ·· ·,

(b) if M′
a
−→ with a∈ Act thenM

a
−→ or M

τ
−→

(c) and ifM
a
−→ with a∈ Act thenM′

a
−→.

ThenN andN′ are interleaving branching bisimilar with explicit divergence.

Proof: DefineB ⊆NS×NS′ by MB M′ :⇔M′∈ [M′0〉N′ ∧∃G∈ f ZT . M =M′+(M0−M′0)+JGK∈ [M0〉N
∧ ℓ(G)≡ /0. It suffices to show thatB satisfies Conditions (a)–(e) of Lemma 8.

(a) TakeG= /0.

(b) SupposeM1B M′1 andM1
τ
−→M2. Then∃G∈ f ZT. M1 = M′1+(M0−M′0)+ JGK∧ ℓ(G) ≡ /0 and

∃t ∈T. ℓ(t) = τ ∧M2 = M1+ JtK = M′1+(M0−M′0)+ JG+ tK. Moreover,M1 ∈ [M0〉N and hence
M2 ∈ [M0〉N. Furthermore,M′1 ∈ [M′0〉N′ andℓ(G+ t)≡ /0, soM2B M′1.

(c) SupposeM1B M′1 andM1
a
−→M2. Then∃G∈ f ZT. M1 = M′1+(M0−M′0)+ JGK∧ ℓ(G) ≡ /0 and

∃t ∈T. ℓ(t) = a 6= τ ∧M2 = M1+ JtK = M′1+(M0−M′0)+ JG+ tK. Moreover,M1 ∈ [M0〉N and
henceM2 ∈ [M0〉N. Furthermore,M′1 ∈ [M′0〉N′ . By Condition 1 of Lemma 9,∃t ′∈T ′, ℓ(t ′)= ℓ(t).
∃Gt ∈ f NT , ℓ(Gt) ≡ /0. JtK = Jt ′−GtK. Substitution ofJt ′−GtK for t yields M2 = M′1 + Jt ′K+
(M0−M′0)+ JG−GtK. By Condition 2c,M′1

a
−→, so M′1

a
−→ M′2 for someM′2 ∈ [M′0〉N′ . As t ′

is the only transition inT ′ with ℓ′(t ′) = a, we must haveM′1[t
′〉M′2. So M′1+ Jt ′K = M′2. Since

ℓ(G−Gt)≡ /0 it follows thatM2B M′2.

(d) Follows directly from Condition 2b.

(e) Follows directly from Condition 2a. �

The above is a variant of this Lemma 6 that requires Condition2 only for U = U ′ = /0, and allows to
conclude thatN and N′ are interleaving branching bisimilar (instead of branching ST-bisimilar) with
explicit divergence. Likewise, the below is a variant of Theorem 3 that requires Condition 5 only for
U =U ′ = /0, and misses Condition 5g.

Theorem 4 Let N = (S,T,F,M0, ℓ) be a net andN′ = (S′,T ′,F ′,M′0, ℓ
′) be a plain net withS′ ⊆ Sand

M′0 = M0 ↾ S′. Suppose there exist setsT+ ⊆ T andT− ⊆ T and a classNF⊆ ZT , such that

1–4. Conditions 1–4 from Theorem 3 hold, and
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5. For every reachable markingM′ ∈ [M′0〉N′ there is anHM′ ∈ f NT+
with ℓ(HM′) ≡ /0, such that for

eachH ∈ f NF with M := M′+(M0−M′0)+ JHK ∈ [M0〉N one has:

(a) MM′ := M′+(M0−M′0)+ JHM′K ∈NS,
(b) if M′

a
−→ with a∈ Act thenMM′

a
−→,

(c) H ≤ HM′ ,
(d) if H(u)< 0 thenu∈ T−,
(e) if H(u)< 0 andH(t)> 0 then•u∩ •t = /0,
(f) if H(u)< 0 andM[t〉 with ℓ(t) 6= τ then•u∩ •t = /0.

ThenN andN′ are interleaving branching bisimilar with explicit divergence.

Proof: A straightforward simplification of the proof of Theorem 3. �

7 The Correctness Proof

We now apply the preceding theory to prove the correctness ofthe conflict replicating implementation.

Theorem 5 Let N be a finitary plain structural conflict net without a fully reachable pureM.
ThenI (N)≈∆

bSTbN.

Proof: In this proof the given finitary plain structural conflict netwithout a fully reachable pureM will
beN′= (S′,T ′,F ′,M′0, ℓ

′), and its conflict replicated implementationI (N′) is calledN = (S,T,F,M0, ℓ).
This convention matches the one of Section 6, but is the reverse of the one used in Section 5; it pays off
in terms of a significant reduction in the number of primes in this paper.

For future reference, Table 2 provides a place-oriented representation of the conflict replicating im-
plementation of a given netN′ = (S′,T ′,F ′,M′0, ℓ

′), with the macros for reversible transitions expanded.
HereT← = {initialise j | j ∈T′}∪ {transferhj | h<# j ∈T′}, whereas(transferhj )

far = {transh
j -out} and

(initialise j)
far = {pre j

k | k≥
# j}∪{transhj -in | h<# j}.

We will obtain Theorem 5 as an application of Theorem 3. Following the construction ofN described
in Section 5.2, we indeed haveS′ ⊆ SandM′0 = M0 ↾ S′. Let T+ ⊆ T be the set of transitions

distributep initialise j ·fire transferhj ·fire (6)

for any applicable values ofp∈S′ andh, j∈T ′. Furthermore,T− := (T \(T+∪{executei
j | i ≤

# j ∈ T ′})).
We start with checking Conditions 1, 2 and 3 of Theorem 3.

1. Let <+ be the partial order onT+ given by the order of listing in (6)—soinitialisei · fire <
+

transferhj ·fire, for anyi ∈T ′ andh<# j ∈ T ′, but the transitionstransferhj ·fire andtransferkl ·fire for
(i, j) 6= (k, l) are unordered. By examining Table 2 we see that for any place with a pretransitiont
in T+, all its posttransitionsu in T+ appear higher in the<+-ordering:t <+ u. From this it follows
thatF ↾ (S∪T+) is acyclic.

2. Let<−be the partial order onT−given by the row-wise order of the following enumeration ofT−:

t ·undoi transferhj ·undo( f ) transferhj ·undone initialise j ·undo( f ) initialise j ·undone

fetch
p,c
i, j fetchedi

j t · reseti t · elidei finalisei

for any t ∈ {initialise j , transfer
h
j} and any applicable values off ∈S, p∈S′, andh, i, j,c∈T ′. By

examining Table 2 we see that for any place with a pretransition t in T−, all its posttransitionsu in
T− appear higher in the<−-ordering:t <− u. From this it follows thatF ↾ (S∪T−) is acyclic.
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Place Pretransitions arc weights Posttransitions arc weights for all
p finalisei

F ′(i, p) distributep (if p• 6= /0) p∈S′, i ∈ •p

pc

{

distributep

initialisec ·undone F ′(p,c)

initialisec ·fire F ′(p,c)

fetch
p,c
i, j F ′(p, i)

p∈S′, c∈ p•

j ≥# i ∈ p•

πc (marked) initialisec · reseti initialisec ·fire i
#
=c∈ T ′

prei
j

{

initialisei ·fire
executei

j

executei
j

initialisei ·undo(pre
i
j)

j ≥# i ∈ T ′

transhj -in

{

initialise j ·fire

transferhj ·undone

transferhj ·fire

initialise j ·undo(trans
h
j -in)

h<# j ∈ T ′

transhj -out

{

transferhj ·fire

executei
j

executei
j

transferhj ·undo(trans
h
j -out)

h<# j ∈ T ′, i ≤# j

π j#l (marked)

{

fetchedi
j

transfer
j
l · resetc

executei
j

transfer
j
l ·fire

i ≤# j <# l ∈ T ′, c
#
= l

fetch
p,c
i, j -in executei

j fetch
p,c
i, j j ≥# i∈T′, p∈ •i, c∈ p•

fetch
p,c
i, j -out fetch

p,c
i, j fetchedi

j j ≥# i∈T′, p∈ •i, c∈ p•

undoi(t) executei
j ·fire t ·undoi, t · elidei j ≥# i ∈ T ′, t ∈Ωi

reseti(t) fetchedi
j t · reseti , t · elidei j ≥# i ∈ T ′, t ∈Ωi

acki(t) t · reseti , t · elidei finalisei i ∈ T ′, t ∈Ωi

fired(t) t ·fire t ·undoi t ∈ T←, Ωi ∋ t
ρi(t) t ·undoi t · reseti t ∈ T←, Ωi ∋ t
take( f , t) t ·undoi t ·undo( f ) t ∈ T←, Ωi ∋ t, f ∈ t far

took( f , t) t ·undo( f ) t ·undone t ∈ T←, f ∈ t far

ρ(t) t ·undone t · reseti t ∈ T←, Ωi ∋ t

Table 2: The conflict replicating implementation.

3. The only transitionst ∈T with ℓ(t) 6= τ areexecutei
j , with i ≤# j ∈T ′. So takei≤# j ∈T ′. Then the

only transitiont ′∈T ′ with ℓ′(t ′)= ℓ(executei
j) is i. Now two statements regardingi andexecutei

j

need to be proven. For the first, note that, for anyp∈ •i, the placesp, pi andprei
j are faithful w.r.t.

T+ andS′ ∪{s∈ S | M0(s) > 0}. Hence p distributep pi initialisei · fire prei
j executei

j is a
faithful path fromp to executei

j . The arc weight of this path isF ′(p, i). Thus•i ≤ ∗executei
j .

The second statement holds because, for alli ≤# j ∈ T ′,

JiK = Jexecutei
j +∑

p∈•i

(

F ′(p, i) ·distributep+∑
c∈p•

fetch
p,c
i, j

)

+ fetchedi
j +finalisei + ∑

t∈Ωi

t · elideiK.

(7)
To check that these equations hold, note that

JdistributepK = −{p}+{pc | c∈ p•},
Jexecutei

jK = −{π j#l | l ≥# j}+{fetchp,c
i, j -in | p∈

•i, c∈ p•}+{undoi(t) | t ∈Ωi},

Jfetchp,c
i, j K = −{fetchp,c

i, j -in}−F ′(p, i) · {pc}+{fetch
p,c
i, j -out},

Jfetchedi
jK = −{fetchp,c

i, j -out | p∈
•i, c∈ p•}+{π j#l | l ≥# j}+{reseti(t) | t ∈Ωi},

Jt · elideiK = −{undoi(t), reseti(t) | t ∈Ωi}+{acki(t) | t ∈Ωi},

JfinaliseiK = −{acki(t) | t ∈Ωi}+ ∑
r∈i•

F ′(i, r) · {r}.
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Before we define the classNF⊆ ZT of signed multisets of transitions in normal form, and verify condi-
tions 4 and 5, we derive some properties of the conflict replicating implementationN = I (N′).

Claim 1 For anyM′ ∈ ZS′ andG∈ f ZT such thatM := M′+(M0−M′0)+ JGK ∈NS we have

G(t · elidei)+G(t ·undoi) ≤ ∑
j≥#i

G(executei
j) (8)

G(finalisei)≤G(t · elidei)+G(t · reseti) ≤ ∑
j≥#i

G(fetchedi
j) (9)

G(t · reseti) ≤ G(t ·undoi) (10)

for eachi ∈ T ′ andt∈Ωi. Moreover, for eacht ∈ T← and f ∈ t far,

∑
{ω |t∈Ωω}

G(t · resetω)≤G(t ·undone)≤G(t ·undo( f ))≤ ∑
{ω |t∈Ωω}

G(t ·undoω)≤G(t ·fire) (11)

and for each appropriatec,h, i, j, l ∈ T ′ andp∈ S′:

G(fetchedi
j)≤G(fetchp,c

i, j ) ≤ G(executei
j) (12)

G(initialise j ·fire) ≤ 1+∑
ω

G(initialise j · resetω) (13)

G(transferhj ·fire)−G(transferhj ·undone) ≤ G(initialise j ·fire)−G(initialise j ·undo(trans
h
j -in)) (14)

G(transfer j
l ·fire)+ ∑

i≤#j

G(executei
j) ≤ 1+∑

ω
G(transfer j

l · resetω)+ ∑
i≤#j

G(fetchedi
j) (15)

if M[executei
j〉 then 1≤ G(initialisei ·fire)−G(initialisei ·undo(pre

i
j)) (16)

if ∃i. M[executei
j〉 then 1≤ G(transferhj ·fire)−G(transferhj ·undo(trans

h
j -out)) (17)

F ′(p,c)·
(

G(initialisec·fire)−G(initialisec·undone)
)

+ ∑
j≥#i∈p•

F ′(p, i) ·G(fetchp,c
i, j )≤G(distributep) (18)

G(distributep) ≤ M′(p)+ ∑
{i∈T ′|p∈i•}

G(finalisei). (19)

Proof: For anyi ∈ T ′ andt ∈Ωi, we have

M(undoi(t)) =
(

∑
j≥#i

G(executei
j)
)

−G(t · elidei)−G(t ·undoi)≥ 0,

given thatM′(undoi(t)) = (M0−M′0)(undoi(t)) = /0. In this way, the placeundoi(t) gives rise to the
inequation (8) aboutG. Likewise, the placesacki(t), reseti(t) and ρi(t), respectively, contribute (9)
and (10), whereasρ(t), took(t), take(t) andfired(t) yield (11). The remaining inequations arise from
fetch

p,c
i, j -out, fetch

p,c
i, j -in, π j , transhj -in, π j#l , prei

j , trans
h
j -out, pc andp, respectively.

(15) can be rewritten asT j
l +∑i≤#j E

i
j ≤ 1, whereT j

l := G(transfer j
l ·fire)−∑ω G(transfer j

l · resetω) and

Ei
j := G(executei

j)−G(fetchedi
j). By (11) ∑ω G(transfer j

l · reseti) ≤ G(transfer j
l ·fire), soT j

l ≥ 0, and
likewise, by (12),Ei

j ≥ 0 for all i ≤# j. Hence, for alli ≤# j <# l ∈ T ′,

0≤ T j
l ≤ 1 0≤ Ei

j ≤ 1 T j
l + ∑

i≤#j

Ei
j ≤ 1. (20)

In our next claim we study triples(M,M′,G) with
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(A) M ∈ [M0〉N, M′ ∈ [M′0〉N′ andG∈ f ZT ,

(B) M = M′+(M0−M′0)+ JGK,

(C) G(finalisei) = 0 for all i ∈ T ′,

(D) G(distributep)≤M′(p) for all p∈ S′,

(E) G(fetchedk
l )≥ 0 for all k≤# l ∈ T ′,

(F) G(distributep)≥ F ′(p, i) ·G(executei
j) for all i ≤# j ∈ T ′ andp∈ •i,

(G) 0≤G(executei
j)≤ 1 for all i ≤# j ∈ T ′,

(H) G(distributep)≥ F ′(p, j) ·G(executei
j) for all i ≤# j ∈ T ′ andp∈ • j,

(I) (in the notation of (20)) ifEi
j = 1 with i ≤# j ∈ T ′ thenTh

j = 1 for all h<# j,

(J) there are noj ≥# i
#
=k≤# l ∈ T ′ with (i, j) 6= (k, ℓ), G(executei

j)> 0 andG(executek
l )> 0,

(K) there are noi ≤# j
#
=k≤# l ∈ T ′ with (i, j) 6= (k, ℓ), G(executei

j)> 0 andG(executek
l )> 0.

Given such a triple(M1,M′1,G1) and a transitiont ∈ T, we definenext(M1,M′1,G1, t) =: (M,M′,G) as
follows: Let G2 := G1 + {t}. TakeM := M1+ JtK = M′1 +(M0−M′0)+ JG2K. In caset is not of the
form finalisei we takeM′ := M′1 ∈ [M′0〉N′ andG := G2 ∈ f ZT . In caset =finalisei for somei ∈ T ′ we
have 1= G2(finalise

i)≤∑ j≥#i G2(execute
i
j) = ∑ j≥#i G1(execute

i
j) by (C), (9) and (12), so by (G) and

(J) there is a uniquej ≥# i with G1(execute
i
j) = 1. We takeM′ := M′1+ JiK andG := G2−Gi

j , whereGi
j

is the right-hand side of (7).

Claim 2 (1) If M1[t〉 and(M1,M′1,G1) satisfies (A)-(K), then so doesnext(M1,M′1,G1, t).

(2) For anyM ∈ [M0〉N there existM′ andG such that (A)-(K) hold.

Proof: (2) follows from (1) via induction on the reachability ofM. In caseM = M0 we takeM′ := M′0
andG := /0. Clearly, (A)–(K) are satisfied.

Hence we now show (1). Let(M,M′,G) := next(M1,M′1,G1, t). We check that(M,M′,G) satisfies
the requirements (A)–(K).

(A) By construction,M ∈ [M0〉N andG∈ f ZT . If t is not of the formfinalisei we haveM′=M1∈ [M′0〉N′ .
Otherwise, by (D) and (F) we haveM′1(p) ≥ G1(distributep) ≥ F ′(p, i) for all p ∈ •i, and hence
M′1[i〉. This in turn implies thatM′ = M′1+ JiK ∈ [M′0〉N′ .

(B) In caset is not of the formfinalisei we have

M = M1+ JtK = M′1+(M0−M′0)+ JG1+ tK = M′+(M0−M′0)+ JGK.

In caset = finalisei we haveM = M′1 + (M0−M′0) + JG2K = M′+ (M0−M′0) + JGK, using that
JiK = JGi

j K.

(C) In caset = finalisei we haveG(finalisei) = G1(finalise
i)+1−Gi

j (finalise
i) = 0+1−1= 0.

OtherwiseG(finalisei) = G1(finalise
i)+0= 0+0= 0.

(D) This follows immediately from (C) and (19).

(E) The only time that this invariant is in danger is whent = finalisei . ThenG= G1+ {finalise
i}−Gi

j

for a certain j ≥# i with G1(execute
i
j) = 1. By (J)3 G1(execute

i
l ) ≤ 0 for all l ≥# i with l 6= j.

3We use (J) and (E) forG1 only, making use of the induction hypothesis.
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Hence by (12)G1(fetched
i
l ) ≤ 0 for all suchl . By (C) G2(finalise

i) = G1(finalise
i)+1= 1, so by

(9) ∑l≥#i G1(fetched
i
l ) = ∑l≥#i G2(fetched

i
l ) > 0; hence it must be thatG1(fetched

i
j) > 0. By (E)3

G1(fetched
k
l ) ≥ 0 for all k ≤# l ∈ T ′. Given thatGi

j (fetched
i
j) = 1 andGi

j (fetched
k
l ) = 0 for all

(k, l) 6= (i, j), we obtainG(fetchedk
l )≥ 0 for all k≤# l ∈ T ′.

(F) Take i≤# j ∈T ′ and p∈ •i. There are two occasions where the invariant is in danger: when t =
executei

j and whent = finalisek with k∈ T ′. First lett = executei
j . ThenM1[execute

i
j〉. Thus,

G(distributep)

≥ F ′(p, i) ·
(

G(initialisei ·fire)−G(initialisei ·undone)
)

+ ∑
h≥#g∈p•

F ′(p,g) ·G(fetchp,i
g,h) (by (18))

≥ F ′(p, i) ·
(

G(initialisei ·fire)−G(initialisei ·undone)
)

+ ∑
h≥#g∈p•

F ′(p,g) ·G(fetchedg
h) (by (12))

≥ F ′(p, i) ·
(

G(initialisei ·fire)−G(initialisei ·undone)
)

+F ′(p, i) ·G(fetchedi
j) (by (E))

≥ F ′(p, i) ·
(

(

G(initialisei ·fire)−G(initialisei ·undo(pre
i
j))

)

+G(fetchedi
j)
)

(by (11))

≥ F ′(p, i) ·
(

1+G(fetchedi
j)
)

(by (16))
≥ F ′(p, i) ·G(executei

j) (by (20)).

Now lett = finalisek with k∈ T ′. By (11)G(initialisei ·fire)−G(initialisei ·undone)≥ 0. So by (18),
(E), and (12)G(distributep)≥ 0. For this reason we may assume, w.l.o.g., thatG(executei

j)≥ 1.

We haveG=G1+{finalise
k}−Gk

l for certainl ≥# k with G1(execute
k
l )=1. SinceGi

j (execute
i
j)≥0,

we also haveG1(execute
i
j)≥ 1. By (J) this implies that¬(i

#
=k) or (i, j) = (k, l). In the latter case

we haveG(executei
j) = G1(execute

i
j)−Gi

j (execute
i
j) = 1−1= 0, contradicting our assumption.

In the former casep /∈ •k, so Gk
l (distributep) = 0 and henceG(distributep) = G1(distributep) ≥

F ′(p, i) ·G1(execute
i
j) = F ′(p, i) ·G(executei

j).

(G) ThatG(executei
j) ≥ 0 follows from (E) and (12). IfG(executei

j) ≥ 2 for somei ≤# j ∈ T ′ then
M′(p)≥G(distributep)≥ 2·F ′(p, i) for all p∈ •i, using (D) and (F), soM′[2· {i}〉N′ . SinceN′ is a
finitary structural conflict net, it has no self-concurrency, so this is impossible.

(H) Take i≤# j ∈T′ and p∈ • j. The casei = j follows from (F), so assumei <# j. By (11) we have
G(initialisei ·fire)−G(initialisei ·undone)≥ 0. So by (18), (E), and (12)G(distributep)≥ 0. Hence,
using (G), we may assume, w.l.o.g., thatG(executei

j) = 1. We need to investigate the same two
cases as in the proof of (F) above. First lett = executei

j . ThenM1[execute
i
j〉. Thus,

G(distributep)

≥ F ′(p, j) ·
(

G(initialise j ·fire)−G(initialise j ·undone)
)

+ ∑
h≥#g∈p•

F ′(p,g) ·G(fetch
p, j
g,h) (by (18))

≥ F ′(p, j) ·
(

G(initialise j ·fire)−G(initialise j ·undone)
)

(by (E) and (12))
≥ F ′(p, j) ·

(

G(initialise j ·fire)−G(initialise j ·undo(trans
i
j -in))

)

(by (11))
≥ F ′(p, j) ·

(

G(transferij ·fire)−G(transferij ·undone) (by (14))
≥ F ′(p, j) ·

(

G(transferij ·fire)−G(transferij ·undo(trans
i
j -out))

)

(by (11))
≥ F ′(p, j) (by (17)).

Now let t = finalisek with k ∈ T ′. We haveG = G1 + {finalise
k} −Gk

l for certain l ≥# k with
G1(execute

k
l ) = 1. SinceGi

j (execute
i
j)≥ 0, we also haveG1(execute

i
j) ≥ 1. By (K) this implies

that ¬( j
#
= k) or (i, j) = (k, l). In the latter caseG(executei

j) = G1(execute
i
j)−Gi

j (execute
i
j) =

1− 1 = 0, contradicting our assumption. In the former casep /∈ •k, so Gk
l (distributep) = 0 and

henceG(distributep) = G1(distributep)≥ F ′(p, j) ·G1(execute
i
j) = F ′(p, j) ·G(executei

j).
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(I) Let i≤# j∈T ′ andh<# j. Since, for allk≤#l ∈T ′, Gk
l (transfer

h
j ·fire)=∑ω Gk

l (transfer
h
j · resetω)=0

andGk
l (execute

i
j) = Gk

l (fetched
i
j), the invariant is preserved whent has the formfinaliseb. Using

(20), it is in danger only whent = executei
j or t = transferhj · resetω for someω with transferhj ∈Ωω .

First assumeM1[execute
i
j〉 andTh

j = G1(transfer
h
j ·fire)−∑ω G1(transfer

h
j · resetω) = 0. Then

1 ≤ G1(transfer
h
j ·fire)−G1(transfer

h
j ·undo(trans

h
j -out)) (by (17))

≤ G1(transfer
h
j ·fire)−∑ω G1(transfer

h
j · resetω) = 0 (by (11)),

which is a contradiction.

Next assumet = transferhj · resetk with k
#
= j, andEi

j = 1. By (E) and (G) the latter implies that
G1(execute

i
j) = 1 andG1(fetched

i
j) = 0. Then

0 = G1(finalise
k) (by (C))

≤ G1(transfer
h
j · elidek)+G1(transfer

h
j · resetk) (by (9))

< G(transferhj · elidek)+G(transferhj · resetk)

≤ ∑l≥#k G(fetchedk
l ) (by (9)).

HenceG1(fetched
k
l ) = G(fetchedk

l )> 0 for somel ≥# k, and by (12) alsoG1(execute
k
l )> 0. Using

(K) we obtain(i, j)=(k, l), thereby obtaining a contradiction (0=G1(fetched
i
j)=G1(fetched

k
l )>0).

(J) Let j ≥# i
#
= k≤# l ∈ T ′ with (i, j) 6= (k, ℓ). The invariant is in danger only whent = executei

j or
t = executek

l . W.l.o.g. lett = executek
l , with G1(execute

k
l )=0 andG1(execute

i
j)≥1.

Making a case distinction, first assumeG(fetchedi
j)≥1. Using (D), (F) and thatG(executek

l ) = 1,
M′(p) ≥ G(distributep) ≥ F ′(p,k) for all p∈ •k. Likewise,M′(p) ≥ G(distributep) ≥ F ′(p, i) for
all p∈ •i. Moreover, just as in the proof of (F), we derive, for allp∈ •i∩ •k,

M′(p)≥G(distributep) (by (D))
≥ F ′(p,k) ·

(

G(initialisek ·fire)−G(initialisek ·undone)
)

+ ∑
h≥#g∈p•

F ′(p,g) ·G(fetchp,k
g,h) (by (18))

≥ F ′(p,k) ·
(

G(initialisek ·fire)−G(initialisek ·undone)
)

+ ∑
h≥#g∈p•

F ′(p,g) ·G(fetchedg
h) (by (12))

≥ F ′(p,k) ·
(

G(initialisek ·fire)−G(initialisek ·undone)
)

+F ′(p, i) ·G(fetchedi
j) (by (E))

≥ F ′(p,k) ·
(

G(initialisek ·fire)−G(initialisek ·undo(pre
k
l ))

)

+F ′(p, i) ·G(fetchedi
j) (by (11))

≥ F ′(p,k)+F ′(p, i) (by (16)).

It follows thatM′[{k}+{i}〉. As i
#
= k andN′ is a finitary structural conflict net, this is impossible.

(Note that this argument holds regardless whetheri = k.)

Now assumeG(fetchedi
j)≤ 0. Then, in the notation of (20),Ei

j = 1. SinceG1(execute
k
l ) = 0, (E)

and (12) yieldG1(fetched
k
l ) = 0. HenceG(executek

l ) = 1 andG(fetchedk
l ) = 0, soEk

l = 1. We will
conclude the proof by deriving a contradiction fromEi

j = Ek
l = 1. In casej = l this contradiction

emerges immediately from (20). By symmetry it hence sufficesto consider the casej < l .

By (D) and (H) we haveM′(p)≥G(distributep)≥ F ′(p, j) for all p∈ • j, soM′[ j〉. LikewiseM′[l〉
and, using (F),M′[i〉 andM′[k〉. Since j

#
= i

#
=k andN′ has no fully reachable pureM, j

#
= k. Since

j
#
=k

#
= l andN′ has no fully reachable pureM, j

#
= l . So j <# l . By (20), using thatEi

j = 1, T j
l = 0.

This is in contradiction withEk
l = 1 and (I).

(K) Suppose thatG(executei
j)> 0 andG(executek

l ) > 0, with i ≤# j
#
=k≤# l ∈ T ′. By (D) and (H) we

haveM′(p)≥G(distributep)≥F ′(p, j) for all p∈ • j, soM′[ j〉. Likewise, using (F),M′[i〉 andM′[k〉.
Sincei

#
= j

#
=k andN′ has no fully reachable pureM, i

#
=k. Using this, the result follows from (J).
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Claim 3 For anyM ∈ [M0〉N there existM′ ∈ [M′0〉N′ andG∈ f ZT satisfying (A)–(K) from Claim 2, and

(L) there are noj ≥# i
#
=k≤# l ∈ T ′ with M[executei

j〉 andG(executek
l )> 0,

(M) there are noi ≤# j
#
=k≤# l ∈ T ′ with M[executei

j〉 andG(executek
l )> 0,

(N) if M[executei
j〉 for i ≤# j ∈ T ′ thenM′[ j〉.

Proof: GivenM, by Claim 2(2) there areM′ andG so that the triple(M,M′,G) satisfies (A)–(K). As-
sumeM[executei

j〉 for somei ≤# j ∈ T ′. Let M1 := M+ Jexecutei
jK andG1 := G+ {executei

j}. By (G)
G(executei

j)≥ 0, soG1(execute
i
j)> 0. By Claim 2(1) the triple (M1,M′,G1) satisfies (A)–(K).

(L) SupposeG(executek
l )> 0 for certainl ≥# k

#
= i. In case(i, j) = (k, ℓ) we haveG1(execute

i
j) ≥ 2,

contradicting (G). In case(i, j) 6= (k, ℓ), G1 fails (J), also a contradiction.

(M) SupposeG(executek
l )> 0 for certainl ≥# k

#
= j. ThenG1 fails (G) or (K), a contradiction.

(N) By (D) and (H)M′(p)≥G1(distributep)≥ F(p, j) for all p∈ • j, soM′[ j〉.

Claim 4 If M[{executei
j}+{execute

k
l }〉 for someM ∈ [M0〉N then¬(i

#
=k).

Proof: SupposeM[{executei
j}+{execute

k
l }〉 for someM ∈ [M0〉N. By Claim 2(2) there existM′ ∈ [M′0〉N′

andG∈ f ZT satisfying (A)–(K). LetM1 := M+ Jexecutek
l K andG1 := G+{executek

l }. By Claim 2(1)
the triple(M1,M′,G1) satisfies (A)–(K). LetM2 := M1+ Jexecutei

jK andG2 := G1+{execute
i
j}. Again

by Claim 2(1), also the triple(M2,M′,G2) satisfies (A)–(K). By (G)G(executei
j)≥0, so in case(i, j)=

(k, l) we obtainG2(execute
i
j)≥2, contradicting (G). Hence(i, j) 6=(k, l). Moreover,G2(execute

k
l ) > 0

andG2(execute
i
j)> 0. Now (J) implies¬(i

#
=k).

For anyt ∈ {initialise j , transfer
h
j} with h, j ∈T ′, and anyω ∈Ω with t ∈Ωω , we write

t(ω) := t ·fire+ t ·undoω +
(

∑
f∈t far

t ·undo( f )
)

+ t ·undone+ t · resetω .

The transitiont has no preplaces of typein, nor postplaces of typeout. By checking in Table 1 or Figure 3
that each other place occurs as often in•u(ω)+ (u· elideω)

• as inu(ω)•+ •(u· elideω), one verifies, for
anyω ∈Ω with t ∈Ωω , that

Jt(ω)K = Jt · elideωK. (21)

Let≡ be the congruence relation on finite signed multisets of transitions generated by

t(ω) ≡ t · elideω (22)

for all t ∈ {initialise j , transfer
h
j | h, j∈T ′} andω ∈Ω with Ωω ∋ t. Herecongruencemeans thatG1≡G2

implies k ·G1≡ k ·G2 andG1+H ≡G2+H for all k∈Z andH ∈ f ZT . Using (21)G1 ≡ G2 implies
JG1K = JG2K.

Claim 5 If M′ = JGK for M′ ∈ ZS′ andG ∈ f ZT such that for alli ∈ T ′ we haveG(finalisei) = 0 and
either∀ j ≥# i. G(executei

j)≥ 0 or∀ j ≥# i. G(executei
j)≤ 0, thenG≡ /0.

Proof: Let M′ andG be as above. W.l.o.g. we assumeG(t ·elideω) = 0 for all t ∈ {initialise j , transfer
h
j}

and allω ∈Ω with t ∈Ωω , for anyGcan be brought into that form by applying (22). For eachs∈S\S′ we
haveM′(s) = 0, and using this the inequations (8)–(12) and (18) of Claim 1turn into equations. For each
i ∈ T ′ we haveG(∑ j≥#i execute

i
j) = 0, using (the equational form of) (8)–(10), and thatG(finalisei) = 0.

SinceG(executei
j)≥ 0 (or ≤ 0) for all j ≥# i, this implies thatG(executei

j) = 0 for eachi≤# j ∈T ′. With
(12) we obtainG(fetchedi

j) = G(fetchp,c
i, j ) = 0 for each applicablep,c, i, j. Using thatG(t · elideω) = 0

for each applicablet andω , with (9)–(11) and (18) we findG(t) = 0 for all t ∈ T.
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Claim 6 Let M := M′+(M0−M′0)+ JHK ∈ [M0〉N for M′∈ [M′0〉N′ andH ∈ f ZT with H(executei
j)=0

for all i ≤# j ∈ T ′.

(a) If H(finalisei)< 0 andH(finalisek)< 0 for certaini,k∈ T ′ then¬(i # k).

(b) If M[executei
j〉 andH(finalisek)< 0 for certaini,k∈ T ′ then¬(i

#
=k) and¬( j

#
=k).

(c) H(distributep)≥ 0 for all p∈ S′ (with p• 6= /0).

(d) Letc
#
= i ∈ T ′. If H(distributep)≥ F ′(p,c) for all p∈ •c, thenH(finalisei) = 0.

(e) If M[executei
j〉 with i ≤# j ∈ T ′ thenM′[ j〉.

Proof: By Claim 3 there existM′1∈ [M
′
0〉N′ andG1∈ f ZT satisfying (B)–(N) (withM, M′1 andG1 playing

the rôles ofM, M′ andG). In particular,M = M′1+(M0−M′0)+ JG1K, G1(finalise
i) = 0 for all i ∈ T ′,

andG1(execute
i
j) ≥ 0 for all i ≤# j ∈ T ′. Using (J), for eachi ∈ T ′ there is at most onej ≥# i with

G1(execute
i
j)> 0; we denote thisj by f (i), and let f (i) := i when there is no suchj. This makes

f : T ′→ T ′ a function, satisfyingG1(execute
i
j) = 0 for all j ≥# i with j 6= f (i).

Given thatH(executei
j)=0 for all i ≤# j ∈ T ′, (8)–(10) (or (9) and (12)) implyH(finalisei) ≤ 0

for all i ∈ T ′. Let M′2 := M′+∑i∈T ′H(finalisei) · JiK andG2 := H −∑i∈T ′H(finalisei) ·Gi
f (i), whereGi

j

is the right-hand side of (7). ThenM = M′+(M0−M′0)+ JHK = M′2+(M0−M′0)+ JG2K, using that
JiK = JGi

f (i)K. Moreover,G2(finalise
i) = 0 for all i∈T′, using thatGi

f (i)(finalise
i) = 1.

It follows that M′1−M′2 = JG2−G1K. Moreover, we have(G2−G1)(finalise
i) = 0 for all i ∈ T ′.

We proceed to show thatG2−G1 satisfies the remaining precondition of Claim 5. So leti ∈ T ′. In
caseH(finalisei) = 0, for all j ≥# i we haveG2(execute

i
j) = 0, andG1(execute

i
j) ≥ 0 by (G). Hence

(G2−G1)(execute
i
j)≤ 0. In caseH(finalisei)< 0, we haveG2(execute

i
f (i))≥ 1, and hence, using (G),

(G2−G1)(execute
i
f (i))≥ 0. Furthermore, for allj 6= f (i), G2(execute

i
j)≥ 0 andG1(execute

i
j) = 0, so

again(G2−G1)(execute
i
j)≥ 0.

Thus we may apply Claim 5, which yieldsG2≡G1. It follows thatM′2 = M′1 ∈ [M′0〉N′ .

(a) Suppose thatH(finalisei)< 0 andH(finalisek)< 0 for certaini # k ∈ T ′. ThenG2(execute
i
f (i))> 0

andG2(execute
k
f (k))> 0, soG1(execute

i
f (i))> 0 andG1(execute

k
f (k))> 0, contradicting (J).

(b) Suppose thatM[executei
j〉 andH(finalisek)< 0 for certaink

#
= i or k

#
= j. ThenG1(execute

k
f (k)) =

G2(execute
k
f (k))> 0, contradicting (L) or (M).

(c) By (a), for any givenp∈S′ there is at most onei ∈ p• with H(finalisei)< 0. For alli ∈ T ′ with i /∈ p•

we haveGi
f (i)(distributep) = 0. First supposek∈ p• satisfiesH(finalisek)< 0. Then

G1(execute
k
f (k)) = G2(execute

k
f (k))

= H(executek
f (k))−∑i∈T ′H(finalisei) ·Gi

f (i)(execute
k
f (k))

= 0−H(finalisek),

so by (F)G1(distributep)≥−F ′(p,k) ·H(finalisek). Hence

H(distributep) = G2(distributep)+∑i∈T ′ H(finalisei) ·Gi
f (i)(distributep)

= G1(distributep)+H(finalisek) ·Gk
f (k)(distributep)

≥ −F ′(p,k) ·H(finalisek)+H(finalisek) ·F ′(p,k) = 0.

In case there is noi ∈ p• with H(finalisei)< 0 we have

H(distributep) = G2(distributep)+ ∑
i∈T ′

H(finalisei) ·Gi
f (i)(distributep) = G1(distributep)≥ 0

by (F) and (G).
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(d) SinceH(finalisei)≤ 0 and Gi
f (i)(distributep)≥ 0 for all i ∈ T ′, also using (c), all summands in

H(distributep)+∑i∈T ′−H(finalisei) ·Gi
f (i)(distributep) are positive. Now supposeH(finalisei)< 0

for certaini∈T′. Then, using (D), for allp∈ •i,

M′1(p)≥G1(distributep) = G2(distributep)≥Gi
f (i)(distributep) = F ′(p, i).

Furthermore, letc
#
= i and supposeH(distributep)≥ F ′(p,c) for all p∈ •c. Then, using (D),

M′1(p)≥G1(distributep) = G2(distributep)≥ H(distributep)≥ F ′(p,c)

for all p∈ •c. Moreover, ifp∈ •c∩ •i then

M′1(p)≥G2(distributep)≥ H(distributep)+Gi
f (i)(distributep)≥ F ′(p,c)+F ′(p, i).

HenceM′2[{c}+{i}〉. However, sincec
#
= i andN′ is a structural conflict net, this is impossible.

(e) SupposeM[executei
j〉with i ≤# j ∈T ′. ThenM′1[ j〉 by (N). NowM′=M′1+∑k∈T ′−H(finalisek) ·JkK,

with −H(finalisek) ≥ 0 for all k ∈ T ′. Whenever−H(finalisek) > 0 then¬( j
#
= k) by (b). Hence

M′[ j〉.

We now define the classNF ⊆ ZT of signed multisets of transitions innormal formby H ∈ NF iff
ℓ(H)≡ /0 and, for allt ∈ {initialise j , transfer

h
j | h, j ∈T′}:

(NF-1) H(t · elideω)≤ 0 for eachω ∈Ω,

(NF-2) H(t ·undoω)≥ 0 for eachω ∈Ω, or H(t ·fire)≥ 0,

(NF-3) and ifH(t · elideω)< 0 for anyω ∈Ω, thenH(t ·undoω)≤ 0 andH(t ·fire)≤ 0.

We proceed verifying the remaining conditions of Theorem 3.

4. By applying (22), each signed multisetG ∈ f ZT with ℓ(G) ≡ /0 can be converted into a signed
multisetH ∈ f NF with ℓ(H)≡ /0, such thatJHK= JGK. Namely, for anyt ∈ {initialise j , transfer

h
j |

h, j ∈T′}, first of all perform the following three transformations, until none is applicable:

(i) correct a positive count of a transitiont · elideω in G by addingt(ω)− t · elideω to G;

(ii) if both H(t ·undoω)< 0 for someω andH(t ·fire)< 0, correct this in the same way;

(iii) and if, for someω , t·elideω has a negative andt·undoω a positive count, addt ·elideω− t(ω).

Note that transformation (iii) will never be applied to the sameω as (i) or (ii), so termination is
ensured. Properties (NF-1) and (NF-2) then hold fort. After termination of (i)–(iii), perform

(iv) if, for someω , H(t · elideω)< 0 andH(t ·fire)> 0, addt · elideω − t(ω).

This will ensure that also (NF-3) is satisfied, while preserving (NF-1) and (NF-2).

Define the functionf : T → N by f (u) := 1 for all u ∈ T not of the formu = t · elideω , and
f (t · elideω) := f (t(ω)) (applying the last item of Definition 1). Then surelyf (G) = f (H).

5. Let M′ ∈ NS′ , U ′ ∈ NT ′ andU ∈ NT with ℓ(U) = ℓ′(U ′) andM′+•U ′ ∈ [M′0〉N′ . SinceN′ is a
finitary structural conflict net, it admits no self-concurrency, so, as•U ′ ≤ M′+•U ′ ∈ [M′0〉N′ , the
multisetU ′ must be a set. AsN′ is plain, this implies that the multisetℓ′(U ′) is a set. Since
ℓ(U) = ℓ′(U ′), alsoℓ(U), and henceU , must be a set. All its elements have the formexecutei

j for
i ≤# j ∈ T ′, since these are the only transitions inT with visible labels. Note thatU ′ is completely
determined byU , namely byU ′ = {i | ∃ j. executei

j ∈U}. We take
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HM′,U := ∑
p∈S′

(M′+•U ′)(p) · {distributep}+ ∑
(M′+•U ′)[ j〉



{initialise j ·fire}+ ∑
h<# j, ∄executeg

h∈U

{transferhj ·fire}





SinceN′ is finitary,HM′,U ∈ f NT+
. Moreover,ℓ(HM′,U)≡ /0.

LetH∈ f NFwith M :=M′+•U ′+(M0−M′0)+JHK−•U ∈NS andM+•U ∈ [M0〉N. SinceH∈NF,
and thusℓ(H)≡ /0, H(executei

j) = 0. From here on we apply Claim 1 and Claim 6 withM+ •U
andM′+ •U ′ playing the rôles ofM andM′. Note that the preconditions of these claims are met.

ThatH(executei
j) = 0 for all i ≤# j∈T′, together with (8) and the requirements (NF-1) and (NF-3)

for normal forms, yieldsH(t · elidei) ≤ 0 as well asH(t ·undoi) ≤ 0. Using this, (9)–(12) imply
that

H(u)≤ 0 for eachu∈ T−. (23)

Claim 7 Let c∈T ′ andp∈ •c. Then

• if H(initialisec ·fire)> 0 thenH(fetchp,c
i, j ) = 0 for all i ∈ p• and j ≥# i, and

• if H(transferbc ·fire)> 0 for someb<# c thenH(fetchp,c
i, j ) = 0 for all i ∈ p• and j ≥# i.

Proof: Suppose thatH(t ·fire)> 0, for t = initialisec or t = transferbc. Then (13) resp. (20) together
with (23) implies thatH(t ·resetω) = 0 for eachω with t ∈Ωω . In order words,H(t ·reseti) = 0 for
eachi

#
=c, so in particular for eachi ∈ p•. Furthermore,H(t · elidei) ≥ 0, by requirement (NF-3)

of normal forms. With (9), this yields∑ j≥#i H(fetchedi
j) ≥ 0, and (23) impliesH(fetchedi

j) = 0
for each j ≥# i. Now (12, 23) givesH(fetchp,c

i, j ) = 0 for eachj ≥# i ∈ p•.

We proceed to verify the requirements (5a)–(5g) of Theorem 3.

(5a) To show thatMM′,U ∈NS, it suffices to apply it to the preplaces of transitions inHM′,U +U :

MM′,U (p) = 0 for all p∈ S′ ;

MM′,U (p j) =

{

(M′+•U ′)(p)−F ′(p, j) if (M′+•U ′)[ j〉
(M′+•U ′)(p) otherwise

for p∈S′, j ∈ p•;

MM′,U (π j) =

{

0 if (M′+•U ′)[ j〉
1 otherwise

for j ∈ T ′;

MM′,U (pre
j
k) =







1 if (M′+•U ′)[ j〉∧ execute j
k /∈U

−1 if ¬(M′+•U ′)[ j〉∧ execute j
k ∈U

0 otherwise
for j ≤#k∈ T ′;

MM′,U (πh# j) =

{

0 if ∃executeg
h ∈U ∨ (M′+•U ′)[ j〉

1 otherwise
for h<# j ∈ T ′

MM′,U (trans
h
j -in) =

{

1 if (M′+•U ′)[ j〉∧∃executeg
h ∈U

0 otherwise
for h<# j ∈ T ′;

MM′,U (trans
h
j -out) =







1 if (M′+•U ′)[ j〉∧∄executeg
h ∈U ∧∄executei

j ∈U
−1 if

(

¬(M′+•U ′)[ j〉∨∃executeg
h ∈U

)

∧∃executei
j ∈U

0 otherwise for h<# j ∈ T ′.

For all these placesswe indeed have thatMM′,U(s)≥ 0, for the circumstances yielding the two
exceptions above cannot occur:
• Supposeexecute j

k ∈U with j ≤#k∈ T ′. Then j ∈U ′, so• j ⊆M′+•U ′ and(M′+•U ′)[ j〉.
Consequently,MM′,U(pre

j
k) 6=−1 for all j ≤#k∈ T ′.
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• Supposeexecutei
j ∈U with i ≤# j ∈ T ′. Then

•
executei

j ≤
•U , so (M +•U)[executei

j〉.
Claim 6(e) withM+•U andM′+•U ′ in the rôles ofM andM′ yields(M′+ •U ′)[ j〉.
If moreoverexecuteg

h∈U with g≤#h<# j, then{g}+{i} ⊆U ′, so•{g}+•{i} ⊆M′+•U ′

and(M′+ •U ′)[{g}+{i}〉. In particular,g ⌣ i, and sinceN′ is a structural conflict net,
•g∩ •i = /0. By Claim 6(e)—as above—(M′+•U ′)[h〉, so •g∪ •h∪ • j ∪ •i ⊆ M′+•U ′ ∈
[M′0〉N′ . Moreover, sinceg≤#h<# j ≥# i, we have•g∩ •h 6= /0, •h∩ •i 6= /0 and•i∩ • j 6= /0.
Now in case also•h∩ •i 6= /0, the transitionsg, h andi constitute a fully reachable pureM;
otherwiseh⌣ i andh, j andi constitute a fully reachable pureM. Either way, we obtain
a contradiction. Consequently,MM′,U(trans

h
j -out) 6=−1 for all h<# j ∈ T ′.

(5b) SupposeM′
a
−→; sayM′[i〉 with ℓ′(i) = a. Let j be the largest transition inT ′ w.r.t. the well-

ordering< on T such thati ≤# j and(M′+•U ′)[ j〉. It suffices to show thatMM′,U [execute
i
j〉,

i.e. thatMM′,U (pre
i
j)=1, MM′,U(trans

h
j -out)=1 for all h<# j, andMM′,U(π j#l )=1 for all l ># j.

If executei
j ∈U we would havei ∈U ′ and hence(M′+•U ′)[2 · {i}〉. SinceN′ is a finitary

structural conflict net, this is impossible. Thereforeexecutei
j 6∈U and, using the calculations

from (a) above,MM′,U (pre
i
j) = 1.

Leth<# j. To establish thatMM′,U(trans
h
j -out)= 1 we need to show that there is nok≤# j with

executek
j ∈U and nog≤# h with execute

g
h ∈U . First supposeexecutek

j ∈U for somek≤# j.
Thenk ∈U ′ and hence(M′+•U ′)[{i}+{k}〉. This impliesi ⌣ k, and, asN′ is a structural
conflict net,•i∩ •k= /0. Hence the transitionsi, j andk are all different, with•i∩ • j 6= /0 and
• j∩•k 6= /0 but•i∩•k= /0. Moreover, the reachable markingM′+•U ′ enables all three of them.
HenceN′ contains a fully reachable pureM, which contradicts the assumptions of Theorem 5.
Next supposeexecuteg

h ∈U for someg≤# h. Then(M +•U)[executeg
h〉, so(M′+•U ′)[h〉 by

Claim 6(e). Moreover,g∈U ′, so(M′+•U ′)[{i}+{g}〉. This impliesg⌣ i, and•g∩ •i = /0.
Moreover, •g∩ •h 6= /0, •h∩ • j 6= /0 and• j ∩ •i 6= /0, while the reachable markingM′+•U ′

enables all these transitions. Depending on whether•h∩ •i = /0, eitherh, j andi, or g, h andi
constitute a fully reachable pureM, contradicting the assumptions of Theorem 5.
Let l ># j. To establish thatMM′,U(π j#l ) = 1 we need to show that there is nok ≤# j with
executek

j ∈U—already done above—and that¬(M′+•U ′)[l〉. Suppose(M′+•U ′)[l〉. Con-
sidering thatj was the largest transition withi ≤# j and(M′+•U ′)[ j〉, we cannot havei <# l .
Hence the transitionsi, j andl are all different, with•i∩ • j 6= /0 and• j ∩ •l 6= /0 but•i∩ •l = /0.
Moreover, the reachable markingM′+•U ′ enables all three of them. HenceN′ contains a
fully reachable pureM, which contradicts the assumptions of Theorem 5.

(5c) We have to show thatH(t)≤HM′,U(t) for eacht ∈ T.
• In caset ∈ T− this follows from (23) andHM′,U ∈NT+

.
• In caset = executei

j it follows sinceℓ(H)≡ /0.
• In caset = distributep it follows from (19) and (23).
• Next lett = initialisec ·fire for somec∈ T ′. In caseH(initialisec ·fire)≤ 0 surely we have

H(initialisec · fire) ≤ HM′,U(initialisec · fire). So without limitation of generality we may
assume thatH(initialisec · fire) > 0. By (13, 23) we haveH(initialisec· fire) = 1. Using
(18), Claim 7, (23) and (19) we obtain, for allp∈ •c,

F ′(p,c) ·H(initialisec ·fire)≤H(distributep)≤ (M′+•U ′)(p).

Hencec is enabled underM′+•U ′, which impliesHM′,U(initialisec ·fire) = 1.
• Let t=transferbc ·fire for someb<#c∈T′. As above, we may assumeH(transferbc·fire)>0.

By (20, 23) we haveH(transferbc ·fire) = 1. Using (23) and thatH(executeg
b) = 0 for all
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g≤#b, it follows that(M+•U)(πb#c) = 0. Hence¬(M+•U)[executeg
b〉 for all g≤#b, and

thus∄executeg
b ∈U . For all p∈ •c we derive

F ′(p,c) ·H(transferbc ·fire)

≤ F ′(p,c) ·
(

H(transferbc ·fire)−H(transferbc ·undone)
)

(23)
≤ F ′(p,c) ·

(

H(initialisec ·fire)−H(initialisec ·undo(trans
b
c-in))

)

(14)
≤ F ′(p,c) ·

(

H(initialisec ·fire)−H(initialisec ·undone)
)

(11)
= [the same as above]+ ∑

j≥#i∈p•
F ′(p, i) ·H(fetchp,c

i, j ) (Claim 7)
≤ H(distributep) (18)
≤ (M′+•U ′)(p)+ ∑

{i∈T ′|p∈i•}

H(finalisei) (19)
≤ (M′+•U ′)(p) (23).

Hence(M′+•U ′)[c〉, and thusHM′,U (transfer
b
c) = 1.

(5d) If u /∈T−, yetH(u) 6= 0, thenu is eitherdistributep, initialise j ·fire or transferhj ·fire for suitable
p ∈ S′ or h, j ∈ T ′. For u = distributep the requirement follows from Claim 6(c); otherwise
Property (NF-2), together with (11), guarantees thatH(u)≥ 0.

(5e) If H(t)>0 andH(u)<0, thent ∈T+ andu∈T−. The only candidates for•t∩ •u 6= /0 are
• pc ∈

•(initialisec ·fire)∩
•
(fetchp,c

i, j ) for p∈ S′, c, i ∈ p• and j ≥# i,
• transbc-in ∈

•
(transferbc ·fire)∩

•
(initialisec ·undo(trans

b
c-in)) for b≤#c∈ T ′.

We investigate these possibilities one by one.
• H(initialisec ·fire)> 0∧H(fetchp,c

i, j )< 0 cannot occur by Claim 7.

• SupposeH(transferbc ·fire)> 0. By (20, 23) we haveH(transferbc ·fire) = 1. Through the
derivation above, in the proof of requirement (c), using (23, 14, 11), Claim 7 and (18), we
obtainH(distributep) ≥ F ′(p,c) for all p∈ •c. Now Claim 6(d) yieldsH(finalisei) = 0
for all i

#
= c. By (9) and (23) we obtainH(initialisec· reseti)= 0 for each suchi. Hence

∑
i

#
=c

H(initialisec· reseti)=0, and thusH(initialisec ·undo(trans
b
c-in)) = 0 by (11, 23).

(5f) If H(u)< 0 and(M+•U)[t〉 with ℓ(t) 6= τ , thent = executei
j for somei ≤# j ∈ T ′ andu∈T−.

The only candidates for•t ∩ •u 6= /0 are
• prei

j ∈
•
(executei

j)∩
•
(initialise j ·undo(pre

i
j)) and

• transhj -out ∈
•
(executei

j)∩
•
(transferhj ·undo(trans

h
j -out)) for h<# j.

We investigate these possibilities one by one.
• Suppose(M+•U)[executei

j〉. By Claim 6(b),H(finalisek)≥ 0 for eachk
#
= i. By (9) and

(23) we obtainH(initialisei·resetk)=0 for each suchk. Hence∑
k

#
=i

H(initialisei · resetk)=0,
and thusH(initialisei ·undo(pre

i
j)) = 0 by (11, 23).

• Suppose(M+•U)[executei
j〉 andh<# j. By Claim 6(b),H(finalisek)≥ 0 for eachk

#
= j.

By (9) and (23)H(transferhj · resetk)=0 for each suchk. So ∑
k

#
= j

H(transferhj · resetk)=0,
andH(transferhj ·undo(trans

h
j -out)) = 0 by (11, 23).

(5g) Suppose(M+•U)[{t}+{u}〉N, andi,k∈ T ′ with ℓ′(i) = ℓ(t) andℓ′(k) = ℓ(u). Since the netN′

is plain,t andu must have the formexecutei
j andexecutek

j for somej ># i andl ># k. Claim 4
yields¬(i

#
=k) and hence•i∩ •k= /0. �

Thus, we have established that the conflict replicating implementationI (N′) of a finitary plain structural
conflict netN′ without a fully reachable pureM is branching ST-bisimilar with explicit divergence toN′.
It remains to be shown thatI (N′) is essentially distributed.
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Lemma 10 Let N be the conflict replicating implementation of a finitary netN′ = (S′,T ′,F ′,M′0, ℓ
′);

let j, l ∈ T ′, with l ># j. Then no two transitions from the set{executei
j | i ≤

# j}∪{transfer j
l ·fire}∪

{transfer j
l ·undo(trans

j
l -out)}∪{execute

k
l | k≤

# l} can fire concurrently.

Proof: For eachi≤# j pick an arbitrary preplaceqi of i. The set{fetchqi ,i
i, j -in, fetch

qi ,i
i, j -out | i ≤

# j}∪
{π j#l , trans

j
l -out, took(trans

j
l -out,transfer

j
l ), ρ(transfer j

l } is an S-invariant: there is always exactly
one token in this set. This is the case because each transition fromN has as many preplaces as postplaces
in this set. The transitions from{executei

j | i ≤
# j}∪{transfer j

l ·fire}∪{transfer
j
l ·undo(trans

j
l -out)}∪

{executek
l | k≤

# l} each have a preplace in this set. Hence no two of them can fire concurrently. �

Lemma 11 Let N be the conflict replicating implementationI (N′) of a finitary plain structural con-
flict net N′ = (S′,T ′,F ′,M′0, ℓ

′) without a fully reachable pureM. Then for anyi ≤# j
#
= c ∈ T ′ and

f ∈ (initialisec)
far, the transitionsexecutei

j andinitialisec ·undo( f ) cannot fire concurrently.

Proof: Suppose these transitions can fire concurrently, say from the markingM ∈ [M0〉N. By Claim 3,
there areM′ ∈ [M′0〉N′ andG∈ f ZT such that (B)–(N) hold. Lett := initialisec, G1 := G+{t ·undo( f )}
andM1 :=M+ Jt·undo( f )K. Then (11), applied to the triples(M,M′,G) and(M1,M′,G1), yields

∑
{ω |t∈Ωω}

G(t · resetω)≤G(t ·undo( f ))< G1(t ·undo( f ))≤∑
{ω |t∈Ωω}

G1(t ·undoω) = ∑
{ω |t∈Ωω}

G(t ·undoω).

Hence, there is anω with t ∈ Ωω andG(t · resetω) < G(t ·undoω). This ω must have the formk ∈ T ′

with k
#
=c. We now obtain

0 = G(finalisek) (by (C))
≤ G(t · elidek)+G(t · resetk) (by (9))
< G(t · elidek)+G(t ·undok)
≤ ∑l≥#k G(executek

l ) (by (8)).

Hence, there is anl ≥# k
#
=c with G(executek

l )> 0. By (M) we obtain¬( j
#
=k), so• j∩ •k= /0. Addition-

ally, we have• j∩•c 6= /0 and•c∩•k 6= /0. By (N) we obtainM′[ j〉, and by (D) and (F)M′[k〉. Furthermore,
by (11),G(t ·undo( f ))< G1(t ·undo( f ))≤G1(t ·fire) = G(t ·fire), so, for allp∈ •c,

F ′(p,c) ≤ F ′(p,c) ·
(

G(t ·fire)−G(t ·undo( f ))
)

≤ F ′(p,c) ·
(

G(t ·fire)−G(t ·undone)
)

(by (11))
≤ G(distributep)−∑ j≥#i∈p• F ′(p, i) ·G(fetchp,c

i, j ) (by (18))
≤ G(distributep) (by (E) and (12))
≤ M′(p) (by (D).

It follows thatM′[c〉. ThusN′ contains a fully reachable pureM, which contradicts the assumptions of
Lemma 11. �

Theorem 6 Let N be the conflict replicating implementationI (N′) of a finitary plain structural conflict
netN′ without a fully reachable pureM. ThenN is essentially distributed.

Proof: We take the canonical distributionD of N, in which≡D is the equivalence relation on places and
transitions generated by Condition (1) of Definition 15. We need to show that this distribution satisfies
Condition (2′) of Definition 16. A given transitiont with ℓ(t) 6= τ must have the formexecutei

j for some
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i ≤# j ∈ T ′. By following the flow relation ofN one finds the places and transitions that, under the
canonical distribution, are co-located withexecutei

j :

π j#l → transfer
j
l ·fire← trans

j
l -in→ initialisel ·undo(trans

j
l -in)← take(trans j

l -in, initialisel )
↓

executei
j

↑

transhj -out→ transferhj ·undo(trans
h
j -out)← take(transh

j -out,transfer
h
j )

↓
execute

g
j

↑
pre

g
j → initialiseg ·undo(pre

g
j )← take(preg

j , initialiseg)

for all l ># j, h<# j andg≤# j. We need to show that none of these transitions can happen concurrently
with executei

j . For transitionstransfer j
l · fire andexecuteg

j this follows directly from Lemma 10. For
transferhj ·undo(trans

h
j -out) this also follows from Lemma 10, in whichj, k and l play the rôle of the

currenth, i and j. For the transitionsinitialisel ·undo(trans
j
l -in) andinitialiseg ·undo(pre

g
j ) this has been

established in Lemma 11. �

Our main result follows by combining Theorems 5 and 6 and Proposition 3:

Theorem 7 Let N be a finitary plain structural conflict net without a fully reachable pureM. ThenN is
distributable up to≈∆

bSTb.

Corollary 3 Let N be a finitary plain structural conflict net. ThenN is distributable iff it has no fully
reachable pureM.

8 Conclusion

In this paper, we have given a precise characterisation of distributable Petri nets in terms of a semi-
structural property. Moreover, we have shown that our notion of distributability corresponds to an intu-
itive notion of a distributed system by establishing that any distributable net may be implemented as a
network of asynchronously communicating components.

In order to formalise what qualifies as a valid implementation, we needed a suitable equivalence
relation. We have chosen step readiness equivalence for showing the impossibility part of our char-
acterisation, since it is one of the simplest and least discriminating semantic equivalences imaginable
that abstracts from internal actions but preserves branching time, concurrency and divergence to some
small degree. For the positive part, stating that all other nets are implementable, we have introduced
a combination of several well known rather discriminating equivalences, namely a divergence sensitive
version of branching bisimulation adapted to ST-semantics. Hence our characterisation is rather robust
against the chosen equivalence; it holds in fact for all equivalences between these two notions. However,
ST-equivalence (and our version of it) preserves the causalstructure between action occurrences only as
far as it can be expressed in terms of the possibility of durational actions to overlap in time. Hence a
natural question is whether we could have chosen an even stronger causality sensitive equivalence for our
implementability result, respecting e.g. pomset equivalence or history preserving bisimulation. Our con-
flict replicating implementation does not fully preserve the causal behaviour of nets; we are convinced
that we have chosen the strongest possible equivalence for which our implementation works. It is an
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open problem to find a class of nets that can be implemented distributedly while preserving divergence,
branching time and causality in full. Another line of research is to investigate which Petri nets can be
implemented as distributed nets when relaxing the requirement of preserving the branching structure.
If we allow linear time correct implementations (using a step trace equivalence), we conjecture that all
Petri nets become distributable. However, also in this caseit is problematic, in fact even impossible in
our setting, to preserve the causal structure, as has been shown in [16]. A similar impossibility result has
been obtained in the world of theπ-calculus in [14].

The interplay between choice and synchronous communication has already been investigated in quite
a number of approaches in different frameworks. We refer to [6] for a rather comprehensive overview
and concentrate here on recent and closely related work.

The idea of modelling asynchronously communicating sequential components by sequential Petri
nets interacting though buffer places has already been considered in [15]. There Wolfgang Reisig intro-
duces a class of systems, represented as Petri nets, where the relative speeds of different components are
guaranteed to be irrelevant. His class is a strict subset of our LSGA nets, requiring additionally, amongst
others, that all choices in sequential components are free,i.e. do not depend upon the existence of buffer
tokens, and that places are output buffers of only one component. Another quite similar approach was
taken in [3], where transition labels are classified as beingeither input or output. There, asynchrony is
introduced by adding new buffer places during net composition. This framework does not allow multiple
senders for a single receiver.

Other notions of distributed and distributable Petri nets are proposed in [11, 1, 2]. In these works,
given a distribution of the transitions of a net, the net is distributable iff it can be implemented by a
net that is distributed w.r.t. that distribution. The requirement that concurrent transitions may not be
co-located is absent; given the fixed distribution, there isno need for such a requirement. These papers
differ from each other, and from ours, in what counts as a valid implementation. A comparison of our
criterion with that of Hopkins [11] is provided in [6].

In [6] we have obtained a characterisation similar to Corollary 3, but for a much more restricted
notion of distributed implementation (plain distributability), disallowing nontrivial transition labellings
in distributed implementations. We also proved that fully reachable pureMs are not implementable in a
distributed way, even when using transition labels (Theorem 2). However, we were not able to show that
this upper bound on the class of distributable systems was tight. Our current work implies the validity of
Conjecture 1 of [6]. While in [6] we considered only one-safeplace/transition systems, the present paper
employs a more general class of place/transition systems, namely structural conflict nets. This enables
us to give a concrete characterisation of distributed nets as systems of sequential components interacting
via non-safe buffer places.
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