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We formalise a general concept of distributed systems asesial components interacting asyn-
chronously. We define a corresponding class of Petri neligdceSGA nets, and precisely char-
acterise those system specifications which can be implederst LSGA nets up to branching ST-
bisimilarity with explicit divergence.

1 Introduction

The aim of this paper is to contribute to a fundamental uridedsng of the concept of a distributed
reactive system and the paradigms of synchronous and asymels interaction. We start by giving
an intuitive characterisation of the basic features ofriisted systems. In particular we assume that
distributed systems consist of components that resideffarelit locations, and that any signal from one
component to another takes time to travel. Hence the ondyantion mechanism between components
is asynchronous communication.

Our aim is to characterise which system specifications magnb&emented as distributed systems.
In many formalisms for system specification or design, syoebus communication is provided as a
basic notion; this happens for example in process algebt@sce a particular challenge is that it may be
necessary to simulate synchronous communication by asymohs communication.

Trivially, any system specification may be implementedrifigtedly by locating the whole system
on one single component. Hence we need to pose some addiggp@rements. One option would be
to specify locations for system activities and then to askrfgplementations satisfying this distribution
and still preserving the behaviour of the original specifisa This is done in[[1]. Here we pursue
a different approach. We add another requirement to ouomaif a distributed system, namely that
its components only allow sequential behaviour. We therwdsither an arbitrary system specification
may be implemented as a distributed system consisting afesgigl components in an optimal way,
that is without restricting the concurrency of the origisglecification. This is a particular challenge
when synchronous communication interacts with concuyr@mthe specification of the original system.
We will give a precise characterisation of the class of iligtable systems, which answers in particular
under which conditions synchronous communication may lemented in a distributed setting.

For our investigations we need a model which is expressigagmnto represent concurrency. Itis also
useful to have an explicit representation of the distribugtate space of a distributed system, showing
in particular the local control states of components. Weoskdetri nets, which offer these possibilities
and additionally allow finite representations of infinitdhbeiours. We work within the class sfructural
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conflict netd[7]—a proper generalisation of the class of one-safe pii@reition systems, where conflict
and concurrency are clearly separated.

For comparing the behaviour of systems with their disteduimplementation we need a suitable
equivalence notion. Since we think of open systems intieigetith an environment, and since we do
not want to restrict concurrency in applications, we needdrivalence that respects branching time and
concurrency to some degree. Our implementations usetiarssivhich are invisible to the environment,
and this should be reflected in the equivalence by abstgafitomn such transitions. However, we do not
want implementations to introduce divergence. In the lighthese requirements we work with two
semantic equivalencesStep readiness equivalence one of the weakest equivalences that captures
branching time, concurrency and divergence to some degreereasbranching ST-bisimilarity with
explicit divergencdully captures branching time, divergence, and those asmgconcurrency that can
be represented by concurrent actions overlapping in timeolftain the same characterisation for both
notions of equivalence, and thus implicitly for all notionsbetween these extremes.

We model distributed systems consisting of sequential corapts as an appropriate class of Petri
nets, called.SGA nets These are obtained by composing nets with sequential mhrdyy means of
an asynchronous parallel composition. We show that thssatarresponds exactly to a more abstract
notion of distributed systems, formaliseddistributed net$6].

We then consider distributability of system specificatiarsch are represented as structural conflict
nets. A netN is distributableif there exists a distributed implementation f that is a distributed net
which is semantically equivalent fd. In the implementation we allow unobservable transiticars]
labellings of transitions, so that single actions of thejiodl system may be implemented by multiple
transitions. However, the system specifications for whighsgarch distributed implementations are
plain nets without these features.

We give a precise characterisation of distributable neterims of a semi-structural property. This
characterisation provides a formal proof that the intgrjpletween choice and synchronous communica-
tion is a key issue for distributability.

To establish the correctness of our characterisation welole\a new method for rigorously proving
the equivalence of two Petri nets, one of which known to bapla to branching ST-bisimilarity with
explicit divergence.

2 Basic Notions

In this paper we emplogigned multisetsvhich generalise multisets by allowing elements to ocour i
with a negative multiplicity.

Definition 1 Let X be a set.

— A signed multisebverX is a functionA: X — 7, i.e. A € Z*.
It is amultisetiff Ac NX, i.e. iff A(x) > 0 for all x € X.

— x € X is anelement ofa signed multiseA € N*, notationx € A, iff A(x) # 0.

— For signed multiseté andB over X we write A < B iff A(x) < B(x) for all xe X;
AU B denotes the signed multiset oweémwith (AU B)( ) = max(A(x), B(x)),
AN B denotes the signed multiset oweémwith (AN B)(x) := min(A(x), B(x)),
A+ B denotes the signed multiset ovemwith (A+ B)(x) A(X) + B(x),
A— B denotes the signed multiset ovémwith (A—B)(x) := A(x) — B(x), an
for ke N the signed multiset- Ais given by(k- A)(x) := k- A(X).

— The function 0 X — NN, given by @x) := 0 for all xe X, is theemptymultiset overX.
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— If Ais a signed multiset oveX andY C X thenA[Y denotes the signed multiset ovedefined by
(ATY)(x) :==A(x) for all xe Y.

— The cardinalityA| of a signed multise® over X is given by|A| := ¥ cx |A(X)].

— A signed multisefA over X is finite iff |A| < o, i.e., iff the set{x | xe A} is finite.
We write A € Z* or A € N* to indicate that\ is a finite (signed) multiset ovet.

— Any function f : X — Z or f : X — ZY from X to either the integers or the signed multisets over
some seY extends to the finite signed multisgoverX by f(A) = 3 yex A(X) - T(X).

Two signed multiseté\: X — Z andB: Y — Z areextensionally equivalentf A[(XNY)=B[(XNY),
Al(X\Y) =0, andB (Y \ X)=0. In this paper we often do not distinguish extensionatiyiealent
signed multisets. This enables us, for instance, tcAus® even wherA andB have different underlying
domains. A multiseA with A(x) € {0,1} for all x is identified with the se{x | A(x) = 1}. A signed
multiset with elementg andy, having multiplicities—2 and 3, is denoted as2- {x} + 3-{y}.

We consider here general labelled place/transition syst#ith arc weights. Arc weights are not
necessary for the results of the paper, but are includedhéosdke of generality.

Definition 2 Let Act be a set ofisible actionsandT ¢ Act be aninvisible action Let Act; := Act U {T}.
A (labelled Petri net(overAct;) is a tupleN = (S T,F, Mo, ¢) where

— SandT are disjoint sets (gblacesandtransitions,

— F:(SXTUT x S) — N (theflow relationincluding arc weight$,

— Mp: S— N (theinitial marking), and

— £: T — Act; (thelabelling function.

Petri nets are depicted by drawing the places as circleshartdansitions as boxes, containing their label.
Identities of places and transitions are displayed nextamet element. Whdn(x,y) > 0 forx,ye SUT
there is an arrowg(c) from x to y, labelled with thearc weight Kx,y). Weights 1 are elided. When a
Petri net represents a concurrent system, a global statésafyitstem is given asraarking a multisetvi
of places, depicted by placifg(s) dots (oken$ in each place. The initial state i3Vlo.
To compress the graphical notation, we also allow univemsahtifiers of the fornvx.¢(x) to appear
in the drawing (cf. Figurgl4). A quantifier replaces occucesnofx in element identities with all concrete
values for whichp(x) holds, possibly creating a set of elements instead of thietejpsingle one. An arc
of which only one end is replicated by a given quantifier rssiml a fan of arcs, one for each replicated
element. If both ends of an arc are affected by the same dji@anéin arc is created between pairs of
elements corresponding to the saxbut not between elements created due to differing valugs of
The behaviour of a Petri net is defined by the possible movergdem markingsvi andM’, which
take place when a finite multis& of transitionsfires In that case, each occurrence of a transitionG
consumes-(s,t) tokens from each place Naturally, this can happen only M makes all these tokens
available in the first place. Next, eatlproducesF (t,s) tokens in eacts. Definition[4 formalises this
notion of behaviour.

Definition 3 LetN = (ST,F, M, /) be a Petri net andc SUT.

The multisets’x, x* : SUT — N are given by*x(y) = F(y,x) andx®(y) = F(x,y) for allye SUT. If
x € T, the elements ofx andx® are calledpre- andpostplacef x, respectively, and ik € Swe speak
of pre-andposttransitions Thetoken replacement functidn] : T — Z%is given by[t] =t* — °t for all
t € T. These functions extend to finite signed multisets as useal Definitiod11).

Definition 4 LetN= (S T,F,Mo,/) be a Petri netG e N', G non-empty and finite, ankll, M’ € NS,
G is astepfrom M to M’, writtenM [G)n M/, iff
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— *G< M (Gisenabled and
-M=(M-"G)+G*=M+[G].

Note that steps are (finite) multisets, thus allowing selieurrency, i.e. the same transition can oc-
cur multiple times in a single step. We wriké [t)y M’ for M [{t})n M’, whereasM[G)y abbreviates
IM’. M [G)ny M’. We may omit the subscripd if clear from context.

In our nets transitions are labelled witlstionsdrawn from a set Ao {}. This makes it possible
to see these nets as modelsedictive systemthat interact with their environment. A transitiorcan
be thought of as the occurrence of the actigr). If /(t) € Act, this occurrence can be observed and
influenced by the environment, butift) =7, it cannot and is aninternal or silenttransition. Transitions
whose occurrences cannot be distinguished by the envinncaery the same label. In particular, since
the environment cannot observe the occurrence of interaasitions at all, they are all labellad

The labelling functior! extends to finite multisets of transitio@sc Z" by £(G) := Y1 G(t) - {£(t)}.
For A,B € Z"° we write A= B iff £(A)(a) = ¢(B)(a) for all a € Act, i.e. iff A andB contain the same
(numbers of) visible actions, allowingfA)(7) # ¢(B)(1). Hencel(G) = 0 indicates that(t) = T for all
transitionst € T with G(t) # 0.

Definition 5 LetN = (S T,F,M,/¢) be a Petri net.
— The sefMp)n of reachable markings of & defined as the smallest set containmMgthat is closed
under[G)n, meaning that iM € [Mg)n andM [G)y M’ thenM’ € [Mo)n.
— Nis one-safaff M € [Mg)n = Vse€ S M(s) < 1.
— Theconcurrency relation— C T2 is given byt — u < 3IM € [Mg). M[{t}+{u}).
— N is astructural conflict netff for all t,u € T witht — uwe have’tn®u=0.

We use the ternplain netsfor Petri nets wherée is injective and no transition has the labeli.e.
essentially unlabelled nets.

This paper first of all aims at studying finite Petri nets: nets finitely many places and transitions.
However, our work also applies to infinite nets with the prtips that't = 0 for all transitiong € T, and
any reachable marking (a) is finite, and (b) enables onlyelyinany transitions. Henceforth, we call
such netdinitary. Finitariness can be ensured by requiriby| <o AVt € T.*t ZDAYXE SUT. |X*| < oo,

i.e. that the initial marking is finite, no transition has anmy set of preplaces, and each place and
transition has only finitely many outgoing arcs.

3 Semantic Equivalences

In this section, we give an overview on some semantic eqgmeas for reactive systems. Most of these
may be defined formally for Petri nets in a uniform way, by fitefining equivalences for transition sys-
tems and then associating different transition systents avRetri net. This yields in particular different
non-interleaving equivalences for Petri nets.

Definition 6 Let2lct be a set ofisible actionsand ¢ 2ct be aninvisible action Letct; := Act U {1}.
A labelled transition systerfLTS) (over2ct;) is a triple£ = (&, T, 9, ) with

— G aset ofstates

— T C 6 xAct; x G atransition relation

— and, € G theinitial state

Given an LTS(6, T, 90, ) with 01,91 € & anda € Act,, we write I — MY for (M, a, M) € T. We
write 9t -%s for 300, M L MY and M -2 for IOV, 9 -<5 9. Furthermored %% 9t denotes
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M -L5 MV (o =T AM=N0), meaning that in case = T performing ar-transition is optional. For
Qap- - a, € Act" we write M =22 9" when

a a;
M=y By . = O

where= denotes the reflexive and transitive closure-bf. A state9)t € G is said to beeachableiff
there is a0 € 2ct* such thabit, == M. The set of all reachable states is denotedy). In case there
are; € [9,) for all i > 1 with My — M» — --- the LTS is said to displagivergence

Many semantic equivalences on LTSs that in some way ab$toaatinternal transitions are defined
in the literature; an overview can be found in [4]. On diverge-free LTSs, the most discriminating
semantics in the spectrum of equivalences[0f [4], and thg oné that fully respects the branching
structure of related systems,iganching bisimilarity proposed in[10].

Definition 7 Two LTSs(&1,%1,M,1) and(S2, T2, 9M,2) arebranching bisimilariff there exists a rela-
tion 8 C &1 x G,—abranching bisimulation-such that, for alr € Act;:

1. S)ﬁolf@gﬁoz;
2. if M. B M, andy —L5 MY, thenIN, M, such thaddt, —> MI < 9, 901 B9 and9n 2 M);
3. if M. B My andM, -2 M, thenIMT, 90t such thadity = ! % oy, oml 2 9m, ando, 9.

Branching bisimilaritywith explicit divergencdl10, (8], is a variant of branching bisimilarity that fully
respects the diverging behaviour of related systems. Sinites paper we mainly compare systems of
which one admits no divergence at all, the definition simggifio the requirement that the other system
may not diverge either.

One of the semantics reviewed [f [4] that respects branciiing and divergence only to a small
extent, isreadiness equivalenceroposed in[[13].

Definition 8 Let £ = (&,%,M,) be an LTSo € Act™ andX C Act. (0, X) is aready pairof £ iff
M. M, == MAM 5 AX = {acAct | M -1

We writeR(£) for the set of all ready pairs df.
Two LTSs£; and £, arereadiness equivaleriff R3(£1) = R(Lz).

As indicated in[[5], see in particular the diagram on Page @tM88), equivalences on LTSs have
been ported to Petri nets and other causality respectingli®iofl concurrency chiefly in five ways: we
distinguishinterleaving semanti¢step semanti¢csplit semanticsST-semanticand causal semantics
Causal semantics fully respect the causal relationshipsees the actions of related systems, whereas
interleaving semantics fully abstract from this infornoati Step semantics differ from interleaving se-
mantics by taking into account the possibility of multiplgians to occur simultaneously (one stejy
this carries a minimal amount of causal information. ST-setics respect causality to the extent that it
can be expressed in terms of the possibility of durationt@as to overlap in time. They are formalised
by executing a visible actioain two phases: its stag™ and its terminatioa~. Moreover, terminating
actions are properly matched with their starts. Split sdiosare a simplification of ST-semantics in
which the matching of starts and terminations is dropped.

Interleaving semantics on Petri nets can be formalised &ycesting to each néd = (S T,F, Mo, /)
the LTS(S,%T, Mp) with S the set of markings dil and¥ given by

M; 55 My JteT. a=£(t) AMy [t) Ma.
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Here we takect := Act. Now each equivalence on LTSs from [4] induces a corredp interleaving
equivalence on nets by declaring two nets equivalent ifeifsociated LTSs are. For exampigerleav-
ing branching bisimilarityis the relation of Definitiofi]7 with th&t's denoting markings, and the’s
actions from Act.

Step semantics on Petri nets can be formalised by assacitiother LTS to each net. Again we
take & to be the markings of the net, afil, the initial marking, but this timé@l(ct consists of thesteps
over Act, the non-empty, finite multisefsof visible actions from Act, and the transition relatiGnis
given by A
M; — Mz := 3G ef NT. A=/(G) AMy [G) My

with t-transitions defined just as in the interleaving case. Itiqdar, the step version of readiness
equivalence would be the relation of Definitibh 8 with th&s denoting markings, tha’s steps over
Act, and theg’s sequences of steps. However, variations in this type fifiitlen are possible. In this
paper, following [6], we employ a form of step readiness saia that is a bit closer to interleaving
semanticsio is a sequence of single actions, whereas the nxenfipossible continuations after is a
set of steps.

Definition 9 LetN = (S,T,F, Mo, /) be a Petri netg € Act* andX C NA%, (g, X) is astep ready pair
of N iff
IMMo=Z MAM -5 AX = {Ac NAt | M 251
We write Z(N) for the set of all step ready pairs Nf
Two Petri netdN; andN, arestep readiness equivaleM; ~4 No, iff Z(N1) = Z(Ny).

Next we propose a general definition on Petri nets of ST-wassof each of the semantics of [4].
Again we do this through a mapping from nets to a suitable LAISST-markingof a net(S T, F, Mo, /)
is apair(M,U) e NSxT* of a normal marking, together with a sequence of transitmngently firing
Theinitial ST-marking i, := (Mo, €). The elements of Aét:= {a*,a™" | ac Act, n> 0} are called
visible action phasesandActf := Act* U {r}. ForU e T*, we writet (™ U if t is then™ element of
U. FurthermoredJ ~" denotedJ after removal of the™ transition.

Definition 10 LetN = (S T,F,Mo,¢) be a Petri net, labelled over Act
The ST-transition relations-- for n € Act? between ST-markings are given by
(M,U) 25 (MU' iff Tt T. £(t) =aAMt) AM' = M —*t AU’ = Ut.
(M,U) 2= (M, U") iff IteMU. ((t)=arU’ =U "AM =M+t°.
(M,U) = (M",U") iff M 5 M'AU’ =U.

Now the ST-LTS associated to a r¢ts (&,T,0,) with & the set of ST-markings dfl, 2ct := Act™,

% as defined in Definition 10, ariiit, the initial ST-marking. Again, each equivalence on LTSsrfro
[4] induces a corresponding ST-equivalence on nets by diegléwo nets equivalent iff their associated
LTSs are. In particularanching ST-bisimilarityis the relation of Definition]7 with th&t's denoting
ST-markings, and the’s action phases from Agt We write Ny ~551, N2 iff Ny andN, are branching
ST-bisimilar with explicit divergence.

ST-bisimilaritywas originally proposed in [9]. It was extended to a settinthnternal actions in
[17], based on the notion afeak bisimilarityof [12], which is a bit less discriminating than branching
bisimilarity. The above can be regarded as a reformulatiothhe same idea; the notion of weak ST-
bisimilarity defined according to the recipe above agredk thie ST-bisimilarity of [17].

The next proposition says that branching ST-bisimilariithvexplicit divergence is more discrimi-
nating than (i.estrongerthan,finer than, or included in) step readiness equivalence.
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Proposition 1 Let N; andN, be Petri nets. [Ny ~f¢7, N2 thenN; ~ No.

Proof: Supposé\; ~bs1,N2 and(a, X) € Z(N;). By symmetry it suffices to show thétr, X) € Z(N,).
There must be a branching bisimulatiof between the ST-markings &f = (S;, T1, F1,Mog, ¢1)
and N, = (Sg T2,F2,M02,€2) In particular, (Mo, €)% (Mo, €). Let o :=aax---a, € Act* Then

Moz :>—>:>—>:> e M for a markingM; € }Nsl with X = {Ac N~ | M} —>} and

Mj . Hence(Moy, & ):—>—>:>2>a2—>: L T PN (M1, €). Thus, using the prop-

erties of a branching b|S|muIat|on on the+ST 1I_TSs assoutlabd\ll and N, there must be a marking
M) € N2 such tha{Mo;, € ):>—>—>:>1>a2—>:> :>i>a”—>:>(M2, g) and(M1, €)% (Mj, €).
Since(My, €) A5 the ST- marking M1, €) admits no divergence. AesbSTbrespects this property, also

(M, €) admits no divergence, and there must beMghe N with MY -~ and (M4, ) = (M7, ).
Clause 3. of a branching bisimulation giv@d;, €)% (M3, €), and DefmmorE[D yield$/g, = MJ.
by

Now letB = {by,...,by} € X. ThenMi 5, so(Mg,€) —>—> N Property 2. of a branchlng

- L by
bisimulation implies(M5, &) ——2» - b—> and hencevij . Likewise, with Property 3.M%
impliesM] —25 for all B € NA®, |t follows that(o,X) € ,@(Nz) D

In this paper we employ both step readiness equivalence ramgling ST-bisimilarity with explicit
divergence. Fortunately it will turn out that for our purpsghe latter equivalence coincides with its split
version (since always one of the compared nets is plain, sg@Bition2).

A split markingof a netN = (ST,F,Mo, /) is a pair(M,U) € NSx NT of a normal marking,
together with a multiset of transitions currently firing.€élihitial split marking istt, := (Mo, 0). A split
marking can be regarded as an abstraction from an ST-maikinghich the total order on the (finite)
multiset of transitions that are currently firing has beespged. Let Aq;fpm ={a",a  |a€eAct}.

Definition 11 LetN = (S T,F, Mg, ¢) be a Petri net, labelled over Act
Thespllt transmon relatlonsi> for eAct it U {1} between split markings are given by
(M, U) — (M",U") iff SteT. E()—aAM[)AM’ M—°*tAU =U +{t}.
(M, U) (M’U’) iff teU.(t)=anlU’ =U—{t} AM =M-+t°.
(M,U) = (M",U") iff M 5 M'AU’ =U.

Note that(M,U) A it M-, whereasM,U) 2 iff a e ¢(U). With induction on reachability of
markings it is furthermore easy to check tiit,U) € [90%,) iff /(U) € N andM +-°*U € [Mo).

The split LTS associated to a nétis (&, T,91,) with & the set of split markings df, 2ct := Act™,
< as defined in Definition 11, artiit, the initial split marking. Again, each equivalence on LT&gf
[4] induces a corresponding split equivalence on nets biadag two nets equivalent iff their associated
LTSs are. In particularanching split bisimilarityis the relation of Definitiofi]7 with th@&1’s denoting
split markings, and the’s action phases from A§;ﬁt U {1}

Fordt = (M,U) € NSx T* an ST-marking, lef)i = (M,U) € NSx N be the split marking obtained
by converting the sequendg into the multisetU, whereU (t) is the number of occurrences of the
transitiont € T in U. Moreover, defineﬁ( 1) by {(M,U) :={(U) and{(tatz - t) := £(t)€(t2) - - £(t).
Furthermore, fon € Actr, letT] € Actg, U{r} begivenbya” :=a",a":=a andT:=T.

Observation 1 Let 9, M’ be ST-markingsi" a split marking,) € Actf and{ € Actspmu {t}. Then
- Me }Nsx T* is the |n|t|aI ST-marking ofN iff M € NSx NT is the initial split marking oN;
— if 9 s 9 thendn —L DV
— it M -5 9m' then there is &Y € NSx T* andn € Actt such thatit -1 0V, 77 = ¢ andv’ = o'
— if 2 o thendt B 97
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— if 3 9 9T then there is Y € NSx T* andn € Act® such thaont 2% = and9V = mT;
— if M = M’ then9t = M';
— if M = MmT then there is @& € N° x T* such thabit = 9 and = <M. O

Lemmal Let Ny = (S;,T1,F1,Moq,¢) and Ny = (S, T2, F2, Moy, £2) be two nets,N, belng- let
2y, MY be ST- markings ofNy, and,, MY, ST-markings oiNg If £(92) = £(9My), My N o) and
M, iy M, with 7 =177, then there is aft with M, ™ oy, (M) = £(9N}), andDT = M.

Proof: If M L5 90" or M L5 901 then/(90) is completely determined b4(1) andn. For this reason
the requirement(215) = ¢(9t}) will hold as soon as the other requirements are met.

First supposey is of the formt or a*. Thenij = np and moreoven’ = 7] impliesn’ = n. Thus we
can takey := M.

Now suppose) := a " for somen > 0. Thenn’ = a ™ for somem> 0. As9; -1, then™ element
of £(91) must (exist and) be. Sincel(My) = £(M;), also then™ element of/(M,) must bea, so
there is artty with M1, SUN My, Let 9y := (M2,Uyp). ThenUs; is a sequence of transitions of which
the n™ and them™ elements are both labelled Since the neN, is plain, those two transitions must be
equal. Lett, := (M5,Uj) andd”, := (Mjy,U%). We find thatM} = M}, andUj =U,. It follows that
MY = M. O

2 2

Observation 2 If 9t = M for ST-markingst, M’ thens (M) = £(M).
Observation 3 If £(My) = £(M) andMt, 2 for somea € Act andn > 0, thendit; 2.
Observation 4 If 91 ﬂ M’ anddn ﬂ 9" for somea € Act andn > 0, thendt; = Mi5.

Proposition 2 Let Ny = (S, T1, F1,Mo1,¢) and Nz = (S, T2, F2, Mo, £2) be two netsN, being[plain.
ThenN; andN; are branching ST-bisimilar (with explicit divergence)ttity are branching split bisimilar
(with explicit divergence).

Proof: SupposeZ is a branching ST-bisimulation betwed&h andN,. Then, by Observationl 1, the
relation Z spiit := { (M1, My) | (M1, 9M2) € £} is a branching split bisimulation betwesh andN,.

Now let # be a branching split bisimulation betwebh andN,. Then, using Observatidd 1, the
relation Z st := {(M1,M2) | (1(M1) = L2(M2) A (M1, Mz) € £} turns out to be a branching ST-
bisimulation betweeiN; andNo:

1. M,1.% s790,5 follows from Observatiofnll, using thaItolﬂimog and/(My1) =L(Myp) =€.

2. Supposén, A STsmz and; L ;. Theni)ﬁl% My and Mty ., sm’ HenceEIim smz such that
My — -0 o, 9)@%’9)12 and Mt 2 ;. As N, is plain, Mt} = 901,. By Observatloml using

that 7, -2 m M5, M, n’ such thatémz T oy, 7 =17 and M, = . By Lemmall, there is
an ST-markingtj such thatt, T é(im”) — ((9}), and9NG = M, = M. It follows that
mle@ STm//

3. SupposeN; Z s, andM, —L M. ThenDy 2 M, anddN, —» M. HenceIM], M such that
0 = o Dot ol a0, andi))tj‘%im’ By Observatlorifllﬂim* such thatit; = 9} and
N = sm* By Observatiofi2/(9t;) = (M) = £(M2), SOM; A s192. SinceNy is plain,n # 1.

o Letn = a+ for somea € Act. Using thatht; ™ 9!, by ObservatiofiJE91;, n’ such that
;I ony, 7 = 7 and T, = M. It must be tha’ = n = a* and /(M) = £(M)a =
B(i))tg)a 6(9)1’2). Hence%i%Sng.
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e Letn = a " for somea ¢ Act andn > 0. By Observatiof]3390; with 0t; 1+ 9t;. By Part
2. of this proof, 395 such thadit, % 9 and9t, % s190%. By Observatiofit = 9.

Since the nelN, is plain, it has no divergence. In such a case, the requiretnéh explicit divergence”
requiresN; to be free of divergence as well, regardless of whether apBT-semantics is in used. [J

In this paper we will not consider causal semantics. Theoreasthat our distributed implementations
will not fully preserve the causal behaviour of nets. We fitther comment on this in the conclusion.

4 Distributed Systems

In this section, we stipulate what we understand by a digeib system, and subsequently formalise a
model of distributed systems in terms of Petri nets.

— Addistributed system consists of components residing dergift locations.

— Components work concurrently.

— Interactions between components are only possible byaixptimmunications.
— Communication between components is time consuming amtthsynous.

Asynchronous communication is the only interaction me@@mann a distributed system for exchanging
signals or information.

— The sending of a message happens always strictly befoecigot (there is a causal relation between
sending and receiving a message).

— A sending component sends without regarding the state ofebeiver; in particular there is no
need to synchronise with a receiving component. After senttie sender continues its behaviour
independently of receipt of the message.

As explained in the introduction, we will add another regment to our notion of a distributed system,
namely that its components only allow sequential behaviour

Formally, we model distributed systems as nets consistfngpmponent nets with sequential be-
haviour and interfaces in terms of input and output places.

Definition 12 LetN= (S T,F, M, /) be a Petrinet,, OC S INO=0 andO* = 0.
1. (N,1,0) is acomponent with interfacd, O).
2. (N,1,0) is asequentiacomponent with interfacd , O) iff
JQCS\(IUO)withVt e T.|°t Q| =1A[t*[Q] =1 and|Mo | Q| =1.

An input placei €| of a componen% = (N, 1,0) can be regarded as a mailbox#@ffor a specific type
of messages. An output placec O, on the other hand, is an address outsitdé& which % can send
messages. Moving a token inbas like posting a letter. The condition? = 0 says that a message, once
posted, cannot be retrieved by the component.

A set of places likeQ above is called a®-invariant The requirements guarantee that the number
of tokens in these places remains constant, in this casddllolvs that no two transitions can ever fire
concurrently (in one step). Conversely, whenever a netjaesgtial, in the sense that no two transitions
can fire in one step, itis easily converted into a behavityegjuivalent net with the requiregtinvariant,
namely by adding a single marked place with a self-loop térafisitions. This modification preserves
virtually all semantic equivalences on Petri nets from ttezdture, including=fsy,,

Next we define an operator for combining components with @symous communication by fusing
input and output places.
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Definition 13 Let £ be an index set.

Let ((S, Tk, Fx, Mok, k), Ik, Ok) with k € & be components with interface such th&tUT,) N (SUT)) =
(IkUOK) N (huO) for all k,I € 8 with k # | (components are disjoint except for interface places) and
kNl =0 for allk,| € & with k # | (mailboxes cannot be shared; any message has a uniqueerggipi
Then theasynchronous parallel compositiar these components is defined by

Hieﬁ((S(’Tk’ Fka M0k7€k)7 Ika Ok) = ((ST> F> Mng)v I ) O)

With S=Ukea S T=UkeaTks F=Ukea Fi, Mo=Skeg Mok, ¢=Ukeslk (componentwise union of all
nets),l = Uy Ik (We accept additional inputs from outside), e .z Ok \ Uke s Ik (0nce fused with
an input,0€ O, is no longer an output).

Observation 5 || is associative.

This follows directly from the associativity of the (mui&t union operator. O
We are now ready to define the class of nets representingnsysiéasynchronously communicating
sequential components.

Definition 14 A Petri netN is anLSGA net(a locally sequential globally asynchronous hét there
exists an index set and sequential components with interfagige k€ &, such thatN,I,0) = ||xca%k
for somel andO.

Up to mﬁSTb—or any reasonable equivalence preserving causality asmcbing time but abstracting
from internal activity—the same class of LSGA systems wddde been obtained if we had imposed,
in Definition[12, thatl, O andQ form a partition ofS and that'l = 0. However, it is essential that our
definition allows multiple transitions of a component toddgm the same input place.

In the remainder of this section we give a more abstract chenigation of Petri nets representing
distributed systems, namely dsstributed Petri nets, which we introduced in![6]. This will be useful
in Sectionb, where we investigate distributability usihgstmore semantic characterisation. We show
below that the concrete characterisation of distributesiesys as LSGA nets and this abstract character-
isation agree.

Following [1], to arrive at a class of nets representingriisted systems, we associddealities to
the elements of an&t = (S T,F, Mo, ¢). We model this by a functioB : SUT — Loc, with Loc a set of
possible locations. We refer to such a function akistribution of N. Since the identity of the locations
is irrelevant for our purposes, we can just as well abstrachfLoc and represem by the equivalence
relation=p on SUT given byx =p y iff D(x) = D(y).

Following [6], we impose a fundamental restriction on digttions, namely that when two tran-
sitions can occur in one step, they cannot be co-locateds rHffliects our assumption that at a given
location actions can only occur sequentially.

In [6] we observed that Petri nets incorporate a notion otbyonous interaction, in that a transition
can fire only by synchronously taking the tokens from all sfgteplaces. In general the behaviour of a
net would change radically if a transition would take itsuhfokens one by one—in particular deadlocks
may be introduced. Therefore we insist that in a distribiRetti net, a transition and all its input places
reside on the same location. There is no reason to requirgathe for the output places of a transition,
for the behaviour of a net would not change significantlyafisitions were to deposit their output tokens
one by one([5].
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This leads to the following definition of a distributed Peteit.

Definition 15 [6] A Petri netN = (S T,F, Mo, ¢) is distributediff there exists a distributio® such that
(1) VseSteT.set=t=ps,
(2) Yt,ueT.t—u=t#pu.

A typical example of a net which is not distributed is showrFigure[1 on Page 13. Transitiohsnd

v are concurrently executable and hence should be placedfferedi locations. However, both have
preplaces in common with which would enforce putting all three transitions on the sdatation. In
fact, distributed nets can be characterised in the follgveiami-structural way.

Observation 6 A Petri net is distributed iff there is no sequerge. . ,t, of transitions withy — t, and
t_in°t#£Ofori=1,....n. O

We proceed to show that the classes of LSGA nets and digtblaiinets essentially coincide. That
every LSGA net is distributed follows because we can plach saquential component on a separate
location. The following two lemmas constitute a formal argunt. Here we call a component with
interface(N, I, O) distributed iffN is distributed.

Lemma 2 Any sequential component with interface is distributed.

Proof: As a sequential component displays no concurrency, it gsffic co-locate all places and transi-
tions. 0

Lemmad3 states that the class of distributed nets is closéerasynchronous parallel composition.

Lemma 3 Let %k = (Nk, Ik, Ok), k€ R, be components with interface, satisfying the requiresefit
Definition[13, which are all distributed. Thépc s % is distributed.

Proof: We need to find a distributioD® satisfying the requirements of Definitibn]15.

Every componertty is distributed and hence comes with a distributi Without loss of generality
the codomains of alDx can be assumed disjoint.

Considering eacldy as a function from net elements onto locations, a partiattfan D; can be
defined which does not map any place$n denoting that the element may be located arbitrarily, and
behaves aby for all other elements. As an output place has no posttiansitwithin a component, any
total function larger than (i.e. a superset Bf)is still a valid distribution foN.

Now D' = Uy Dy is a (partial) function, as every place shared between caes is an input
place of at most one. The required distributidbrcan be chosen as any total function extendiipit

satisfies the requirements of Definition 15 since@i&s do. O
Corollary 1 Every LSGA net is distributed. O

Conversely, any distributed nittcan be transformed in an LSGA net by choosing co-locateditians
with their pre- and postplaces as sequential componentdesidring any place that belongs to multiple
components to be an input place of componnif it is a preplace of a transition i, and an output
place of componer| if it is a postplace of a transition iN; and not an input place &f. Furthermore,

in order to guarantee that the components are sequentla sense of Definition 12, an explicit control
place is added to each component—without changing behaviasi explained below Definitidn 112. It
is straightforward to check that the asynchronous paredlgiposition of all so-obtained components is
an LSGA net, and that it is equivalentfb(using~, ’“ﬁsm or any other reasonable equivalence).
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Theorem 1 For any distributed nell there is an LSGA néll’ with N’ ~f¢1N.

Proof: LetN = (ST,F,Mp,¥) be a distributed net with a distributidd. Then an equivalent LSGA net
N’ can be constructed by composing sequential componentsnigttiaces as follows.

For each equivalence claps of net elements according @ a sequential compone(i’t\l[x %O
is created. Each such component contains one new andlynitiairked placep,; which is connected
via self-loops to all transitions ifx]. The interface of the component is formed Igy:= (SN [x )E| and
O[x] = ([ ]ﬁT). \[ ] Formally, N[x = %X T[x x]aMO[X] ﬁ[ ]) with

o S[x— Uo[x U{p[x}

° T[x] =TnNIX [ ]

o Fiy =F [(SxUTx)?U{(pw,), () [t € T}

e Moy = (Mo [[X]) U{py }, and

o ly ="LI[X.
All components overlap at interfaces only, as the sole glac¢in an interface are the newly creafegl.
Thely, are disjoint as the equivalence claspésare, So(N',1',0’) := ||y (sum)/0(N; Opg, 11 ) is well-

defined. It remains to be shown thét~f<;, N. The elements dfl’ are exactly those dfl plus the new
placespy, which stay marked continuously except when a transitiomf] is firing, and never connect
two concurrently enabled transitions. Hence there exisigeation between the ST-markings Ef and

N that preserves the ST-transition relations between themnthie associated ST-LTSs are isomorphic.

From this it follows thatN’ ~551 N. O
Observation 7 Every distributed Petri net is[a structural conflict| net. O
Corollary 2 Every LSGA net is a structural conflict net. O

Further on, we use a more liberal definition of a distributeti nalledessentially distributedWe wiill
show that up tmbSTbany essentially distributed net can be converted into aillised net. In[[6] we
employed an even more liberal definition of a distributed nétich we call hereexternally distributed
Although we showed that up to step readiness equivalencexaesnally distributed net can be converted
into a distributed net, this does not hold fefs,,

Definition 16 A netN = (S T,F, My, /) is essentially distributedff there exists a distributioD satisfy-
ing (1) of DefinitionI% and
(2) Viue T.t —uAl(t) AT=tZpu.
It is externally distributedff there exists a distributio satisfying (1) and
(2") Vt,ueT.t—uAl(t),l(u) #T=tZpu.

Instead of ruling out co-location of concurrent transigan general, essentially distributed nets permit
concurrency of internal transitions—labelled—at the same location. Externally distributed nets even
allow concurrency between external and internal transstiat the same location. If the transitidresnd
v in the net of Figuréll would both be labelledthe net would be essentially distributed, although not
distributed; in case only would be labelled the net would be externally distributed but not essentially
distributed. Essentially distributed nets need not bectiral conflict nets; in factany net without
external transitions is essentially distributed.

The following proposition says that up mﬁSTbany essentially distributed net can be converted into
a distributed net.

LAlternatively, we could také,; := (T\[X])* N [x].
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Proposition 3 For any essentially distributed niitthere is a distributed nét’ with N’ ~5¢1,N.

Proof: The same construction as in the proof of Theokém 1 apphéstiffers fromN by the addition,

for each locatiorx], of a marked place, that is connected through self-loops to all transitionsat t
location. This time there exists a bijection betweenrgaehableST-markings of\’ andN that preserves
the ST-transition relations between them. This bijectigists because a reachable ST-marking is a pair
(M,U) with U a sequence oéxternaltransitions only; this follows by a straightforward indiact on
reachability by ST-transitions. From this it follows tHeét~5sr N. 0

Likewise, up tox, any externally distributed net can be converted into aitisted net.

Proposition 4 [6] For any externally distributed nét there is a distributed nét’ with N’ =~ N.

Proof: Again the same construction applies. This time there exidi§ection between the markings
of N’ andN that preserves the step transition relations between thenthe associated step transition
systems are isomorphic. Here we use that the transitiofeiagsociated LTS involve either a multiset
of concurrently firingexternaltransitions, or a single internal one. From this, step meesti equivalence
follows. 0

The counterexample in Figuré 2 shows that umtmﬁSTbN not any externally distributed net can be
converted igto a di+stributed net. Sequentialising the acomept with actions, b andt would disable the

execution®s— .
t u t u

a b clv a b T O Cc
v r w
Figure 1: A fully markedM. Figure 2: Externally distributed, but not distributable.

Definition 17 Given any Petri nelN, the canonical co-location relatior=c on N is the equivalence
relation on the places and transitionshofyeneratecby Condition (1) of Definitiod 15, i.e. the smallest
equivalence relatioa=p satisfying (1). Thecanonical distributionof N is the distributionC that maps
each place or transition to itsc-equivalence class.

Observation 8 A Petri net that is distributed (resp. essentially or exayrdistributed) w.r.t. any distri-
butionD, is distributed (resp. essentially or externally disttéul) w.r.t. its canonical distribution.

Hence a net is distributed (resp. essentially or externdikyributed) iff its canonical distributio
satisfies Condition (2) of Definitidn 15 (resp. Conditior) @ (2’) of Definition[186).

5 Distributable Systems

We now consider Petri nets as specifications of concurrestesys and ask the question which of those
specifications can be implemented as distributed systehis.gliestion can be formalised as

Which Petri nets are semantically equivalent to distriloutets?



14 On Distributability of Petri Nets

Of course the answer depends on the choice of a suitable ereguivalence. Here we will answer this
guestion using the two equivalences discussed in the inttah. We will give a precise characterisation
of those nets for which we can find semantically equivalestrifiuted nets. For the negative part of this
characterisation, stating that certain nets are not digable, we will use step readiness equivalence,
which is one of the simplest and least discriminating edeivees imaginable that abstracts from internal
actions, but preserves branching time, concurrency aredgince to some small degree. As explained in
[6], giving up on any of these latter three properties woulikenany Petri net distributable, but in a rather
trivial and unsatisfactory way. For the positive part, nhntkat all other nets are indeed distributable,
we will use the most discriminating equivalence for which moplementation works, namely branching
ST-bisimilarity with explicit divergence, which is finerdah step readiness equivalence. Hence we will
obtain the strongest possible results for both directiomkieturns out that the concept of distributability
is fairly robust w.r.t. the choice of a suitable equivalenagy equivalence notion between step readiness
equivalence and branching ST-bisimilarity with explictergence will yield the same characterisation.

Definition 18 A Petri netN is distributableup to an equivalence: iff there exists a distributed nét’
with N’ ~ N.

Formally we give our characterisation of distributabillly classifying which finitary plain structural
conflict nets can be implemented as distributed nets, ancelesLSGA nets. In such implementations,
we use invisible transitions. We study the concept “distable” for plain nets only, but in order to get
the largest class possible we allow non-plain implemematiwhere a given transition may be split into
multiple transitions carrying the same label.

It is well known that sometimes a global protocol is necgssarmplement synchronous interaction
present in system specifications. In particular, this mayédeded for deciding choices in a coherent
way, when these choices require agreement of multiple coegs. The simple net in Figuré 1 shows
a typical situation of this kind. Independent decisionshaf two choices might lead to a deadlock. As
remarked in[[6], for this particular net there exists nosattory distributed implementation that fully re-
spects the reactive behaviour of the original system. ldndeehM-structures, representing interference
between concurrency and choice, turn out to play a cruclalfor characterising distributability.

Definition 19 LetN = (ST,F, Mo, /) be a Petri netN has afully reachable pureM iff
JuveT tNUADOAUNVADAtNV=0DATIM € [Mg).*tUuU*vC M.

Note that Definitiod 19 implies that# u, u # v andt # v.
We now give an upper bound on the class of distributable netsibpting a result from [6].

Theorem 2 LetN be a plain structural conflict Petri net.Nfhas a fully reachable puid, thenN is not
distributable up to step readiness equivalence.

Proof: In [6] this theorem was obtained for plain one-safe Retne proof applies verbatim to plain
structural conflict nets as well. O

Since~fsryis finer thanr 4, this result holds also for distributability up tefs,(and any equivalence
betweerr, and~bsr)).

In the following, we establish that this upper bound is tigimid hence a finitary plain structural
conflict net is distributable iff it has no fully reachablerpiM. For this, it is helpful to first introduce
macros in Petri nets for reversibility of transitions.

2In [B] the theorem was claimed and proven only for plain neith & fully reachablevisible pure M; however, for plain
nets the requirement of visibility is irrelevant.
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5.1 Petri nets with reversible transitions

A Petri net with reversible transitiongeneralises the notion of a Petri net; its semantics is dien
a translation to an ordinary Petri net, thereby interpgetime reversible transitions as syntactic sugar
for certain net fragments. It is defined as a tufeT,Q,1,F,Mp,¢) with S a set of placesT a set

of (reversible) transitions, labelled Wy, T — Act U {1}, Q a set ofundo interfaceswith the relation

I € Q x T linking interfaces to transition®g € NS an initial marking, and

F: (SxT X {in, early, late, out far} — N)

the flow relation. WherF (s;t,type) > O for type € {in, early, late, out far}, this is depicted by drawing an
arc fromsto t, labelled with its arc weighF (s,t,type), of the form ,

<~ respectively. Fot € T andtype € {in, early, late, out far}, the multiset of placeﬁypee INS is glven
by tYP¥(s) = F(s,t,type). Whense tYPe for type € {in, early, late}, the places is called apreplaceof t of
typetyps whense t¥Pefor ype € {out far}, sis called gpostplaceof t of typetype For each undo interface
we Q and transitiort with 1(cw,t) there must be placesdo,(t), reset,(t) andack,(t) in S A transition
with a nonempty set of interfaces is callex/ersible the other $tandard transitions may have pre- and
postplaces of types andout only—for these transitions” = °t andt®“t=t°*. In caseQ = 0, the net is
just a normal Petri net.

A global state of a Petri net with reversible transitionsiieeg by a marking\l € NS, together with
the state of each reversible transition “currently in pesgf. Each transition in the net can fire as usual.
A reversible transition can moreover take back (some ofpuiiput tokens, and bendoneandreset
When a transitiort fires, it CONSUMES yypec(in, early, late} F (S,t;type) tokens from each of its preplacss
and produces ype- {out far} F (S, 1, type) tokens in each of its postplacesA reversible transitiot that has
fired can start its reversal by consuming a token frordo,(t) for one of its interfaceso. Subsequently,
it can take back one by one a token from its postplaces oftypafter it has retrieved all its output of
type far, the transition is undone, thereby returniR¢s,t, early) tokens in each of its preplacef type
early. Afterwards, by consuming a token froreset,(t), for the same interface that started the undo-
process, the transition terminates its chain of activitiggeturningF (s t,late) tokens in each of itste
preplacess. At that occasion it also produces a tokeradthk,(t). Alternatively, two tokens inindo,(t)
andreset,(t) can annihilate each other without involving the transitipthis also produces a token in
ackey(t). The latter mechanism comes in action when trying to undarssttion that has not yet fired.

Figure[3 shows the translation of a reversible transitiaith /(t) =a into an ordinary net fragment.
The arc weights on the green (or grey) arcs are inherited flemuntranslated net; the other arcs have
weight 1. Formally, a netS, T,Q,1,F, Mo, /) with reversible transitions translates into the Petri roet-c
taining all placess, initially marked as indicated bWlg, all standard transitions if, labelled according
to ¢, along with their pre- and postplaces, and furthermore etllefements mentioned in Talile 1. Here
T denotes the set of reversible transitiong'in

Transition label Preplaces Postplaces for all

t-fire ((t) tin, tearly tlate fired(t), tOU t7" tc T+

t-undog, T undoy(t), fired(t) Pw(t), take(f,t) te T, 1(w,t), fet™
t-undo(f) 1T  take(f,t), f took(f,t) te T, fetfr
t-undone T  took(f,t) p(t), teaty teTe, fetfr
t-resety, T resety(t), Pu(t), p(t) t3€ acke(t) teT, 1(wt)
t-elideg T undoy(t), resety(t)  acke(t) teT, 1(wt)

Table 1. Expansion of a Petri net with reversible transgioro a place/transition system.
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(late) (in) (early)

O\ /O undoa(t)
Q/ a 4 O resete(t)

ackg(t)

(far)
(out)
vieth j vl etlate | e Veetealy

O\t~fire M reset, O
o )«»—1a

T
Yo (o ackw(i)/
V. 1(w,t) O

t-elidey | T

f Q\() fired(t)
vietfr

T

t-undow\*Q T O/

take(f,t) t-undo(f) took(f,1)

T |t-undone

Figure 3: A reversible transition and its macro expansion.

5.2 The conflict replicating implementation

Now we establish that a finitary plain structural conflict tiedt has no fully reachable puhé is dis-
tributable. We do this by proposing thenflict replicating implementatioof any such net, and show that
this implementation is always (a) essentially distribytaald (b) equivalent to the original net. In order
to get the strongest possible result, for (b) we use bragcBifbisimilarity with explicit divergence.
To define the conflict replicating implementation of a het= (ST,F, Mo, /) we fix an arbitrary

well-ordering< on its transitions. We Idt, c, g, h;i, j,k,| range over these ordered transitions, and write

—i#jiff 1£JA®IN®)#0 (transitiond and | arein conflicy), andiij iff i#jvi=],

—i<Fjiff i< jAi#], andi <Fjiff i <Fjvi=].
Figure[4 shows the conflict replicating implementatioNofit is presented as a Petri net

f(N) = (S7T/7 F/7Q7 |7 M67£/)

with reversible transitions. The s@tof undo interfaces i$, and fori € Q we have(i,t) iff t € Q;, where
the sets of transition®; e N'' are specified in Figurie 4. The implementatighi{N) inherits the places
of N (i.e. S 2 9), and we postulate thaflj|S= Mo. Given this, Figurél4 is not merely an illustration
of .7 (N)—it provides a complete and accurate description of it,gbgdefining the conflict replicating
implementation of any net. In interpreting this figure it mportant to realise that net elements are
completely determined by their name (identity), and exidly @wnce, even if they show up multiple
times in the figure. For instance, the plagg; with h=2 andj=5 (when using natural numbers for the
transitions inT) is the same as the placgy with j=2 andl=5; it is a standard preplace e»fecutei2 (for
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distributep | T
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Figure 4: The conflict replicating implementation
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all i <*2), a standard postplace fafched), as well as a late preplace *aénsfer%. A description of this
net after expanding the macros for reversible transitigpears in TablE]2 on Pagel29.

The role of the transitiondistributep, for pe Sis to distribute a token i to copiesp; of p in the
localities of all transitionsj € T with pc®j. In casej is enabled inN, the transitioninitialisej will
become enabled it (N). These transitions put tokens in the plapeei, which are preconditions for all
transiti0n$xecuteﬂ(, which model the execution gfat the location ok. When two conflicting transitions
hand j are both enabled i, the first stepsnitialise, andinitialise; towards their execution ioZ (N)
can happen in paraIIeI To prevent them from executing lmﬁcute (of j at its own location) is only
possible aftetransfer which disablegxecute]..

The main idea behlnd the conflict replicating implementai®that a transitiomne T is primarily
executed by a sequential component of its own, but when aicomgl transition j gets enabled, the
sequential component implementipgnay “steal” the possibility to executefrom the home component
of h, and keep the options to doand | open until one of them occurs. To prevérdnd j from stealing
each other’s initiative, which would result in deadlock, labgl asymmetry is built in by ordering the
transitions. Transitior) can steal the initiative frorh only whenh < j.

In casej is also in conflict with a transitioh with j < I, the initiative to performj may subsequently
be stolen by. In that case eithdrandl are in conflict too—thet takes responsibility for the execution
of h as well—orh andl are concurrent—in that casewill not be enabled, due to the absence of fully
reachable pur&s in N. The absence of fully reachable puvks also guarantees that it cannot happen
that two concurrent transitionsandk both steal the initiative from an enabled transition

After the firing of execute‘j all tokens that were left behind in the process of carefulighestrat-
ing this firing will have to be cleaned up, in order to prepdre het for the next activity in the same
neighbourhood. This is the reason for the reversibilityhef transitions preparing the firing e»fecuteij.
Hence there is an undo interface for each transitierT’, cleaning up the mess made in preparation of
firing execute' for somej >#i. Q; is the multiset of all transitionssthat could possibly have contributed
to this. For each of them the undo interfades activated, byexecute depositing a token imndo;(t).
After all preparatory transitions that have fired are undoolkens appear in the places for all pe ®i
andce p°*. These are collected l:fytch{?f, after which all transitions if); get a reset signal. Those
that have fired and were undone are reset, and those thatfiredeperformelide;(t). In either case a
token appears iacki(t). These are collected Hynalise', which finishes the process of executingy
depositing tokens in its postplaces.

! ! } !
IAIAIA
RIATA
a1 b|2 C|3 4|d

Figure 5: An example net.
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The conflict replicating implementation is illustrated bgams of the finitary plain structural conflict
netN of Figure[®. The places and transitioas}-b-s-c-x-d in this net constitute &ong M: for each
pair a-b, b-c andc-d of neighbouring transitions, as well as for the il of extremal transitions, there
exists a reachable marking enabling them both. Moreovéghbeuring transitions in the loniyl are in
conflict: a#b, b#c andc#d, whereas the extremal transitions are concurrant: d. However,N has
no fully reachable pur#: no M-shaped triple of transitior&b-c, b-c-d or b-c-e is ever simultaneously
enabled.

In [6] we gave a simpler implementation, ttransition-controlled choice implementatiaat works
for all finitary plain 1-safe Petri nets without such a lavig HenceN constitutes an example where that
implementation does not apply, yet the conflict replicaiimgplementation does. In fact, when leaving
out thez-e-branch it may be the simplest example with these propertis have added this branch to
illustrate the situation where three transitions are pigevin conflict.

Figure[® presents relevant parts of the conflict replicatmglementation.# (N) of N. The ten
places ofiN return in.# (N), but the transitions dfl are replaced by more complicated net fragments. In
Figure[® we have simplified the rendering.gf(N) by simply just copying the five topmost transitions
of N, instead of displaying the net fragments replacing thenis Simplification is possible since the top
half of N is already distributed. To remind the reader of this, wettadse transitions unlabelled.

In order to fix a well-ordering< on the remaining transitions, we named them after the firet fiv
positive natural numbers. The ordered conflicts betweesethi@nsitions now are<t'2, 2<#3, 3<#4,
3<#5 and 4*5. In Figure[® we have skipped all places, transitions ansl iakolved in the cleanup of
tokens after firing of a transition. In this example the clgais not necessary, as no place\ois visited
twice. Thus, we displayed only the non-reversible part eftiiansitionsinitialise; ar_ldtransfer?—i.e.
initialise; - fire and transfer?-fire—as_ well as the transitiondistribute, and execute'j. Likewise, we
omitted the outgoing arcs @&ecute'j, the placesrt, and those places that have arcs only to omitted
transitions. We leave it to the reader to check this net agdie definition in Figurl4, and to play the
token game on this net, to see that it correctly implemBits

In Section[¥ we will show, for any finitary plain structuralnfbict net without a fully reachable
pure M, that.# (N) ~5<, N, and that# (N) is essentially distributed. Hencé(N) is an essentially
distributed implementation dil. By Proposition[ B this implies thall is distributable up tmﬁsm
Together with Theorernl 2 it follows that, for any equivalemestween~, and zﬁsw a finitary plain
structural conflict net is distributable iff it has no fullgachable puré.

Given the complexity of our construction, no techniquesvikmd®o us were adequate for performing
the equivalence proof. We therefore had to develop an &ntiewv method for rigorously proving the
equivalence of two Petri nets up 457, one of which known to be plain. This method is presented in
Sectior 6.

6 Proving Implementations Correct

This section presents a method for establishing the eauneal of two Petri nets, one of which known
to be[plaif, up to branching ST-bisimilarity with explicilvdrgence. It appears as Theorem 3. First
approximations of this method are presented in Leniohas $lanthé progression from Lemnia 5 to
Lemmal® and to Theorel 3 makes the method more specific (sgdassal) and more powerful. By
means of a simplification a similar method can be obtainesh &l three steps, for establishing the
equivalence of two Petri nets up to interleaving branchiisinblarity with explicit divergence. This is
elaborated at the end of this section.
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Definition 20 A Iabelled transition syster(G T smo) is calleddeterministicif for all reachable states
M € [M,) we haved + and if M -2 M’ and9t = M for somea € Act thenN' = M.

Deterministic systems may not have reachabteansitions at all; this way, #t == 9t and9t == "
for someo € 2Act” thenM' = M”. Note that the labelled transition system associated taig Pletri net
is deterministic; the same applies to the ST-LTS, the splf br the step LTS associated to such a net.

Lemma 4 Let (S1,%1,9MM,1) and(S2,T2,9M,») be two labelled transition systems, the latter being de-
terministic. Suppose there is a relatigh C &1 x &, such that

(a) E)ﬁol<%)9~no21

(b) if M1 B M, andMy — MY, thend, B My,

(c) if M BM, andMy 25 9] for somea € Act thenIN,. My —=5 M, A M, B M,

(d) if M1 29, andM, —=5 for somea € Act then eithett; —5 or My —»

(e) and there is no infinite sequerd® —— M) — MY 5 .- with M. B M, for some,.
Then4 is a branching bisimulation, and the two LTSs are branchisgriilar with explicit divergence.

Proof: It suffices to show thatZ satisfies Conditions 1-3 of Definitidd 7; the condition on leip
divergence follows immediately from (e), using that a daierstic LTS admits no divergence at all.

1. By (a).

2. In casax = T this follows directly from (b), and otherwise from (c). IntbacasedN), := M, and
whena = 1 alsodt, 1= M.

3. Supposeéi, ZMN, and i))tg LN Ny, Since(Gg,‘Zz,ﬂﬁog) is deterministic,a = a € Act. By
(d) we have eithefit; —2» omi or 2))?1 LN sml for somei))tl € G1. In the latter case (b) yields
MEAIM,, and using (d) again, eithen] 2 smz or M} - 92 for someM? € G;. Repeating
this argument, if the choice betwearandr |s madektlmes in favour oft (W|th k > 0), we obtain
MK B M, (wheremM := 9My) and eithentk = ML or ok L kL. By (e), at some point the
ch0|ce must be made in favour afsay ali)ﬁk Thusiml = Mk -5 2 ML, with KB M,. We
take9] and9n) from Defmmonl] to bednk andimk+1 It remains to show thamk+1<%’9ﬁ’ By
(c) there is alﬁm” € &, with M, -2 A andimk*l,@im” Since(S2,%2,M,>) IS determlnlstlc

= M. O
Lemmab5 LetN = (ST,F,Mo,?) andN’' = (S, T’,F’,My, ') be two netsN’ being plain. Suppose there
is a relationZ C (NSx NT) x (NS x NT') such that
@) (Mo,0)% (My,0),
(b) if (M1,U1)% (M;,U) and(My,U1) — (Mo, Uy) then(Ma,Uz)% (M4, U3),

) )
(c) if (My,U1)% (M},U )and(Ml, 1) =5 (M2,U,) for somen e Act™
then3(M5,U). (M3,U7) =5 (M5,U%) A (Ma,U2) 2 (M, U3),

(d) if (M1,U1)% (M}, U}) and(M},U]) 15 with n € Act™ then eithefMy,U;) 5 or (My,U;) —

(e) and there is no infinite sequen@é,U) — (M1,U1) — (Mo,Uy) — --- with (M,U)2 (M’,U’)
for some(M’,U’).

Then is a branching split bisimulation, amd~5q,N'.

|—x\ |—x\
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Proof: ThatN andN’ are branching split bisimilar with explicit divergencel@ms directly from Lemma
4 by taking(S1,%1,M,1) and (S2,%2,9MM,,) to be the split LTSs associated tband N’ respectively.
Here we use that the split LTS associated to a plain net isrdatistic. The final conclusion follows by
Propositior . O

Lemmal5 provides a method for provimgzﬁsTbN’ that can be more efficient than directly checking
the definition. In particular, the intermediate staf¥ and the sequence aftransitions=> from
Definition[7 do not occur in Lemmd 4, and hence not in Leriina Sreddeer, in Condition (d) one no
longer has the match the targets of corresponding transitibemma®b below, when applicable, provides
an even more efficient method: it is no longer needed to sp#wfbranching split bisimulatios, and
the targets have disappeared from the transitions in Gond#d as well. Instead, we have acquired
Condition[1, but this is structural property, which is relaly easy to check.

Lemma 6 Let N = (ST,F,Mo,¢) be a net and\’ = (S,T',F’,M{,¢') be a plain net wittS C Sand
My = Mo | S. Suppose:
1L VEET, L) AT. €T/ L) =£(t). 3G ¢ NT, ¢(G) = 0. [t'] = [t +G].
2. ForanyG e Z' with £(G) =0, M'eN¥, U'eN" andU e N" with ¢/(U")=/((U), M'+°U’ e
M5\ and M := M’ +°U’ + (Mg — MY) + [G] —*U € NS with M +*U & [Mo)n, it holds that:
(a) there is no infinite sequendé —— My —— My — - -
(b) if M’ -2 with a € ActthenM -5 orM —»
(c) and ifM 25 with ac Act thenM’ 25,

ThenN ~bs N

Proof: DefineZ C (NSxINT) x (N xNT') by (M,U)Z (M, U’) 1= /(U =£(U) AM'+°U’ € M)
AIG ¢ Z". £(G) =0AM+°U = M +°U’ + (Mg — M}) + [G] € [Mo)n. It suffices to show thatz
satisfies Conditions (a)—(e) of Lemia 5.
(a) TakeG = 0.
(b) SupposQMl,Ul)%’(Mi,U{) and(Ml,Ul) L} (Mz,Uz). Thené’(Ui) :E(Ul) A Mi —|—.U]/_€ [M6>N/
AIGEs ZT. 4(G)=0AMy = M} +°U] + (Mg —Mp) + [G] —*U1 AM;1 +°U € [Mo)n and moreover
Mi; - My AU, =U;. So My [t)M; for somet € T with £(t) =T1. HenceM; = My + [t] = M] +
.Ui + (Mo—Mé) + [[G—I—t]] —°*U;. Since(Ml + 'Ul)[t>(|\/|2 + 'Ul), we haveM, + °U; € [M0>|\|.
Since als?(G+t) = 0 it follows that(M,U1) % (M1,U7).
() SupposeMy,U;)Z% (M},U;) and (My,U;) 5 (Mp,Up), with n € Act™. Then/(U]) =/(Uy),
M} +°U; € [M{)n and

G s Z". 4(G)=0AMy+°Uy = M} +°U{ + (Mo — Mp) + [G] € [Mo)n. (1)
First suppose) = a’. ThenateT. {(t) =aA My[t) AMa = M; — *t AU, = U; + {t}. Using that
M; —% with a € Act, by Conditior[ZE we havil; -, i.e. M [t') for somet’ € T with £/(t') = a
Let M} := M} —*t andU} := U] + {t'}. Then(M},U!) 2= (M5,Uj). Moreover,/(Up) = £(U3),
M5+ °Uj = M +°Uj € [M{)n andMz + *Up = M1 + *U;. In combination with[{IL) this yields
M2 +°*Uz = My + Uy = My +°U1 + (Mo — Mg) + [G] = Mz +°Uj + (Mo — Mg) +[G,

SO (Mz,Uz)z@ (Mé,Ué).
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Now suppose) =a . Then3teU;. {(t) =aAUy=U;—{t} AMy = M1 +t*. Since/'(U;]) =¢(U1)
there is &’ U] with ((t') =a. LetM}:= M} +t'* andU} :=Uj — {t'}. Then(M},U;) 2= (M5,U}).
By construction,/(Up) = £(Uj). Moreover,M, + *Uy = My +t°* 4+ *Ug — °t = (M +°Uq) + [t],
and likewise ;e ;e ,

Mz + Uz = (M1 +"Up) + [t] (2)
so (M7 + *Up)[t') (M5 +°U3). SinceM; + *U; € [Mg)nr, this yieldsM} + *UJ € [M{)n. Moreover,
Mz +°Up = M1 +t* +°U; —*t = M1 +°U; + [t] € [Mo)n. Furthermore, combiningX(1) ard (2) gives

3G e ZT. U(G) =0 AMz+°Uy — [t] = My +°US — [t'] + (Mg — M) + [G]. (3)

By Condition[1 of Lemmalst” € T/, £(t”) = £(t). 3G, € NT, £(G) = 0. [t] = [t” — G¢]. Since
N’ is net, it has only one transitithwith £(t") =a, sot” =t’. Substitution of[t’ — G] for t
in @) yields

3G er Z'. (G)=0AMa+°Uy = M5 +°US + (Mo — Mp) + [G— Gy].

Since/(G — G;) = 0 we obtain(Mz,Uz) % (M3,U,).
(d) Follows directly from Conditiof 2b and Definitign]11.
(e) Follows directly from Conditioh 2a and Definitibn]11. O

In Lemmd® a relation is explored between markidyandM + [H] (whereM is M’ +°U’ + (Mo — M)
of Lemma®,H := G, andM + [H] is M +°U of Lemma[®). In such a case, we can think\bfas an
“original marking”, and ofM + [H] as a modification of this marking by the token replacenjéti.
The next lemma provides a method to trace certain placearked byM + [H] (or transitionst that
are enabled undévl + [H]) back to places that must have been markeiyefore taking into account
the token replacemerftH]. Such places are callddithful origins of s (or t). In tracking the faithful
origins of places and transitions, we assume that the plaeceked byM are taken from a se®" and
the transitions irH from a sefT . In Lemmd¥ we furthermore assume that the flow relationiotstt
to SUT T is acyclic. We will need this lemma in proving the correcge$our final method of proving
N ~psrpN'-

Definition 21 Let N = (S T,F,Mo,/) be a Petri netT* C T a set of transitions an8" C Sa set of
places.

e A pathin N is an alternating sequenege= Xpx1X2 - - - X € (SUT)* of places and transitions, such
thatF (x;,x+1) > 0 for 0<i < n. Thearc weight F77) of such a path is the produidf; *F (X, X+1).

e Aplacese Sis calledfaithful w.r.t. T andSt iff [{s} N S|+ Y1+ F(t,5) = 1.

e A pathxgXiXz---Xn € (SUT)* from Xg to X, is faithful w.r.t. T* andS" iff all intermediate nodes
x; for 0 <i < nare either transitions i * or faithful places w.r.tT* andS".

e Forxe SUT, theinfinitary multiset‘x € (N U {c0})S" of faithful originsof x is given by
*X(s) = sup{F (m) | ris a faithful path frons € St to x}. (So*x(s) = 0 if no such path exists.)

Suppose a markinhyl, is reachable from a marking, € NS by firing transitions froniT * only. Then,
if a faithful places bears a token unddf,—i.e. Mx(s) > 0—this token has a unique sourcesi S* it
must stem fronM; and otherwise it must be produced by the unique transitoh * with F(t,s) =1.

In a net without arc weightsx is always a set, namely the set of plas@s St from which the flow
relation of the net admits a path fothat passes only through faithful places and transitioam ff ©
(with the possible exception ofitself). For nets with arc weights, the underlying set»fs the same,
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and the multiplicity ofs € *x is obtained by multiplying all arc weights on the qualifyipgth froms
to x; in case of multiple such paths, we take the upper bound dveueh paths (which could yield the
value).

Observation 9 Let (ST,F,Mo,?) be a Petri netff * C T a set of transitions ani* C Sa set of places.
For faithful places and transitiong € T we have

v [{s} ifsest o . . .
s= {*t fte T AF(Ls 1 t=[J{F(st)-*s|se "t Asfaithful}.
Lemma 7 Let (S T,F,Mo,¢) be a Petrineff * C T a set of transitions such thit| (SUT ") is acyclic,
andS" C Sa set of places. Lé#l € NS andH ¢ NT', such thaM + [H] € NS. Then

(@) for any faithful placesw.r.t. T andS" we have(M + [H])(s) - *s < M;
(b) for anyk € N, and any transitioh with (M + [H])[k- {t}), we havek-*t <M.

Proof: We apply induction onH|.

(@). When(M +[H])(s) = O ittrivially follows that(M +[H])(s) - *s< M. So supposéM + [H])(s) > 0.
Then eithels € St or there is a uniquec T with H(t) > 0 andF(t,s) = 1. In the first case, using that
seu* fornoue T, we havelM + [H])(s) < M(s), so(M + [H])(s) - *s< M(s) - {s} <M.

In the latter casgiM + [H])(s) < M(S) + Syet+ H(U) - F(u,s) = H(t) and*s = *t.

LetU :={ueT" |H(u) > 0AUFT't} be the set of transitions occurring kh from which the flow
relation of the net offers a non-empty pathttoAs F | (SUT) is acyclic,t ¢ U, soH [U < H. Let
s be any place witls' € *u for some transitioru € U. Then, by construction df}, it cannot happen
thats € v* for some transitiorv ¢ U with H(v) > 0. Hence(M + [H [U])(s) > (M +[H])(s) > 0.
Moreover, for any other placg’ we have®(H [U)(s") = 0 and thugM + [H [U])(s") > M(s") > 0. It
follows thatM + [H [U] € NS,

For eachs” € *t we have(H —H [U)*(s”) =0and*(H —H [U)(s”) > H(t) - *t(s”) and therefore
0< (M+[H])(E") < (M+[HTU])(S") —H(t)-*t(s”), and hencdd(t) - °t <M+ [H [U]. It follows
that(M + [H [U])[H(t) - {t}). Thus, by induction(M + [H])(s) - *s< H(t) - "t <M.

(b). Let(M+[H])[k-{t}). For any faithfuls € °t we have(M + [H])(s) > k- F(s,t), and thus, using (a),
K-F(st)-"s<(M+[H])(s)-"s<M.
Therefore, by Observatidd B; “t = J{k-F(s;t)-*s| se *t Asfaithful} <M. O

The following theorem is the main result of this section. iégents a method for provirfg ~5q, N’

for N a net and\’ a plain net. Its main advantage w.r.t. directly using therikidin, or w.r.t. application

of Lemma[® ol B, is the replacement of requirements on therdimaehaviour of nets by structural
requirements. Such requirements are typically easier @éslchReplacing the requirement“+ °U €
[Mo)n” in Condition[8 by ‘M + *U € N would have yielded an even more structural version of this
theorem; however, that version turned out not to be strooogigm for the verification task performed in
SectiorlY.

Theorem 3 Let N = (S T,F,Mo,?) be a net andN’ = (S, T',F’,M, ') be a plain net witlf8 C Sand
M{ = Mo | S. Suppose there exist séts C T andT~ C T and a clast\F C 77, such that

1. F [ (SUTT)is acyclic.

2. F 1 (SUT™)is acyclic.
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BVLET, L) AT. 3T/, L(t') =£(t). ("' <*tAIGe; NT, 4(G)=0. [t'] = [t+G]).
Here*t is the multiset of faithful origins of w.r.t. T+ andS U {se S| My(s) > 0}.

4. There exists a functiof: T — N with f(t) > O for allt € T, extended t&" as in Definition 1,
such that for eacks € Z' with £(G) = 0 there is arH ¢ NF with ¢(H) = 0, [H] = [G] and
f(H)=f(G).

5. ForevernyM’ € NS, U’ e N7 andU e NT with £(U) = ¢/(U’) andM’ +°*U’ € [M{)n, there is an
Hwu €f NT" with {(Hwu) = 0, such that for eacH € NF with M := M’ +°*U’ 4+ (Mg — M{) +
[H] —°U € NSandM +°*U € [Mo)n:

(@) Mwry =M 4°U"+ (Mg — M}) + [Hwu] —*U € NS,

(b) if M’ -2 with a € Act thenMy y —,

() H<Hwu.

(d) if H(u) < Othenue T,

(e) ifH(u) <0andH(t) > 0then*un*t =0,

(f) if H(u) < 0and(M +°U)[t) with £(t) # T then®un*t = 0,

(g) if (M+°U)[{t}+{u}) and and’,u’ € T" with ¢'(t') = £(t) and¢’ (1) = £(u), then®t'N°*u = 0.

ThenN wﬁSTbN’.

Proof: It suffices to show that Conditidd 2 of Lemrnh 6 holds (for Cdindi[d of Lemmd® is part of
Condition[3 above). So &b e 7" with £(G) =0, M'e NS, U’e N" andU € N" with #/(U’) = £(U),
M'+°U’ € [M{)nr, M = M/ +°U"+(Mo—MY)+[G]—*U € NS andM +*U € [Mo)n.

(@) SupposéM —s M; — My — ---. Then there are transitiorise T with £(t;) = 1, for all i > 1,
such thatM(t;)M1[t2)Ma[ts) - --. As also(M +°U)[t1) (M1 +°U)[t2) (M2 +°U)]t3) - - -, it follows that
(Mj+°U) € [Mg)N forall i > 1. LetGp:= Gand for alli > 1 letGj 1 := G+ {tj}. Then/(G;) =0
andM; = M’ +°U’ + (Mg — M{) + [Gi] —*U. Moreover, f(Gi11) = f(G) + f(ti) > f(Gi). For
all i > 1, using Conditiori 4, leH; € NF be so that[H;] = [Gi] and f(H;) = f(G;). ThenM; =
M’ +°U’ + (Mg — M{) + [Hi] —*U and f (Ho) < f(H1) < f(H2) < ---. However, from Conditioi B¢
we getf (H;) < f(Hy) foralli > 1. The sequencel — My — M, — - - - therefore must be finite.

(b) Now suppos®!’ -2 with a € Act. By Conditior[@ above there exists Bine ; NF such that(H)=0
and[H] = [G], and hencéM =M’ +°U’ + (Mg — M) + [H] —*U. LetH ™ :={u€ T | H(u) < 0}.

e First supposéd~ # 0. By Conditior 5{H~ C T—. By Condition2,<:= (F | (SUT ")) " is
a partial order or8U T ~, and hence okl ~. Letu be a minimal transition it~ w.r.t. <=. By
definition, for alls€ S,

M(s) = M'(s) +°U’(s) + (Mg — M{)(s) + ZH(t) F(t,9)+ Z_H(t) F(st)+Y —U(t)-F(t,s). (4)
te te

te
As M= Mo | S, we haveMj < My. Hence the first three summands in this equation are always
positive (or 0). Now assunee *u. Sinceu is minimal w.r.t.<~, thereisnd € T withH(t) <0
andF(t,s) # 0. Hence also all summanéit) - F (t,s) are positive. By Condition be, there is
not € T with H(t) > 0 andF(s,t) # 0, so all summandsH (t) - F(s,t) are positive as well. By
Condition[5f, there is nbe T with U (t) > 0 andF(s,t) # 0, for this would imply that(t) # t
and(M +°U)|t), so no summands ifil(4) are negative. Thus OH (u) - F(s,u) < M(s). Since
H(u) < —1, this impliesM (s) > F (s,u). Henceu s enabled itM. As /(u) = T, we haveM —.
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e Nextsupposél™ =0 butH #Hy y. LetH ™ :={ue T |[Hwy(u)—H(u) >0}. ThenH~ #0
by Condition[5¢. Sincély y €+ NT H- CT*. By Condition1,<*:= (FI(SUTT))"isa
partial order orSUT ™, and hence okl —. Letu be a minimal transition itd — w.r.t. <. We
haveM = M'+°U’+ (Mg — M{) + [Hwu + (H —Hw.u)] —*U = Mmu + [H —Hw u]. Hence,
forallse S

M( MM/ —|— Zr H HM/ F(t,S) —+ Z—(H — HM/7u)(t) . F(S,t) . (5)

By Condition5aMw y € NS, By Condition5eH — Hw u < 0. Forse *uthere is moreover no
te H~ withset®, sona € T with (H—Hwy)(t) <0andF(t,s) # 0. Hence no summands in
@) are negative. It follows that @ —(H—Mpwy)(u) - F(s,t) < M(s). Since(H—Hwu)(u) <
—1, this impliesM(s) > F(s,u). Henceu is enabled irM. As /(u) = 1, we haveM —.

e Finally supposéd = Hy y. ThenM = My y andM -2, follows by Conditior{ 5b.

(c) Next suppost! —=s with a € Act. Then there is ac T with £(t) = a# T andM[t). So(M +°U)[t).

We will first show that(M’ +°U’) %5, By Condition[3 there exists aro € NF C N such that
{(Ho) = 0 and[Ho] = [G], and hencé +°U = M’ +°U’ + (Mg — M{) + [Ho] € [Mo)n. For our first
step, it suffices to show that wheneudre ¢ NF with My := M’ +°U’ + (Mo — M{) + [H] € [Mo)
and My[t), then (M’ +°U’) -2, We show this by induction orf (Hyy — H), observing that
f(Hwu —H) € N by Conditiond 5k (with empty) and3.

We consider two cases, depending on the emptines of= {ue T | H(u) < 0}.

First assumed—=0. ThenH ; N'. By Condition[5t (with emptyJ) we even haved < N
Let *t denote the multiset of faithful origins efw.r.t. T™ andS" := SU{se€ S| Mo(s) > 0}. By
LemmaT (b), takind= 1, substitutingV’ +°U’ + (Mg — M) for the “M” of that lemma, and using
Condition[d of Theorerfll3it < M’ +°U’ 4 (Mo — M). So by Conditior B of Theorefd 3 there is
at’ € T with £(t') = £(t) and*t’ < M’ +°U’ + (Mo — M}). Since®t’ € N andM} = Mo | S, this
implies*t’ < M’ +°U’. It follows that(M’ +°U’)[t' )\ and hencéM’ +°U’) -2

Now assumeéd~ # 0. By the same proof as for (b) above, céke £ 0, there is a transition € H~
that is enabled iMy. SoMy [u)M; for someM; € [Mg)n, andM1 = M’ +°U’ + (Mo — Mg) + [H +u].
By Condition[5F of Theorerl3 (still with empty), *un*t = 0, and thudV;[t). By Condition[4 of
Theoren B there exists afy € NF such that’(H1) =0, [H1] = [H +u], and f(H;) = f(H +u) >
f(H). ThusMy = My, and f (Hw y — H1) < f(Hwu — H). By induction we obtaifM’ +°U’) %
By the above reasoning, there i$'a T’ such that/(t') = ¢(t) and (M’ +°U’)[t’). Now take any
u € U’. Then there must be anc U with ¢/(u') = ¢(u). SinceM[t), we have(M +°U)[{t}+{u})
and by Conditiofi 5g we obtal’ N U = 0. It follows thatM'[t’), and hence/’ 2. O

Digression: Interleaving semantics

Above, a method is presented for establishing the equigal@h two Petri nets, one of which known
to be[plaifh, up to branching ST-bisimilarity with expliciivdrgence. Here, we simplify this result into
a method for establishing the equivalence of the two netstgrleaving branching bisimilarity with
explicit divergence. This result is not applied in the catneaper.

Lemma8 LetN = (S T,F,Mo,?) andN’' = (S, T’,F’,My, ') be two netsN’ being plain. Suppose there
is a relationZ C NS x NS such that
(@) MoB My,
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(b) if MyZM; andM; — My thenMaZ M;,
(c) if MpZM] andM; -2 M for somea € Act then3Mj. M; 2 M)A M B Mj,
(d) if MyZM; andM] -2 for somea e Act then eitheM; —> or M; —
(e) and there is no infinite sequende—— M; — M, — - -- with MZ M’ for someM'.
ThenN andN’ are interleaving branching bisimilar with explicit divernge.
Proof: This follows directly from Lemmal4 by takingS,%1,9,1) and(S2, %2, 9,,) to be the inter-

leaving LTSs associated % andN’ respectively. Here we use that the LTS associated to a péiisn
deterministic. O

Lemma9 LetN = (ST,F,Mg,/) be a net and\’ = (S,T’,F’,M{,¢') be a plain net witt§ C S and
My = Mo | S. Suppose:
1LVEET, () # 1. €T, L) =£(t). IGe; NT, £(G) = 0. [t'] = [t +GJ.
2. ForanyGe¢ Z" with £(G) =0, M’ € [M{)nr andM := M+ (Mo—M()+[G] € [Mo)n, it holds that:
(a) there is no infinite sequendé —— M; —— My — -+,
(b) if M’ -2 with a € Act thenM -2 orM
(c) and ifM —25 with a € Act thenM’ 25,

ThenN andN’ are interleaving branching bisimilar with explicit divernge.

Proof: Definez C NSx NS by MZM’ i M’ € [Mi)n AIGEtZT. M = M +(Mo—M)+[G] € [Mo)n
AL(G) = 0. It suffices to show tha® satisfies Conditions (a)—(e) of Lemia 8.

(@) TakeG = 0.

(b) Supposé;ZM; andM; — M. Then3G e Z". My = M, + (Mg — M}) + [G] A £(G) = 0 and
JteT. () = TAMz =M1+ [t] = M)+ (Mg — M) + [G+t]. Moreover,M; € [Mg)n and hence
My € [Mg)n. FurthermoreM] € [M{)n and((G+t) = 0, SoOMa % M].

(c) SupposM1.ZM; andM; =5 M,. Then3G e Z'. My = M} + (Mo — Mp) + [G] A £(G) = 0 and
FeT. (t) =a# TAMy =M1+ [t] = M{+ (Mo — Mp) + [G+t]. Moreover,M; € [Mg)n and
henceM; € [Mo)n. FurthermoreM] € [Mg)n. By Condition[] of Lemmal9t’ e T, 4(t') =£(t).
3G €t NT, (G) = 0. [t] = [t — G]. Substitution of[t’ — G¢] for t yields M, = M} + [t'] +
(Mo—M() + [G— G]. By Condition[2t,M; %5, soM; -5 M), for someM), € [My)nr. As t/
is the only transition ifT” with ¢'(t') = a, we must haveM}[t'’)M5. SoM; + [t'] = M5. Since
(G- Gt) = 0 it follows thatM,2 My,

(d) Follows directly from Conditioa 2b.
(e) Follows directly from Conditioh 2a. O

The above is a variant of this Lemrhh 6 that requires CondBamly forU = U’ = 0, and allows to
conclude thatN and N’ are interleaving branching bisimilar (instead of brangh8iT-bisimilar) with
explicit divergence. Likewise, the below is a variant of ©tem[3 that requires Conditidd 5 only for
U =U’=0, and misses Conditign bg.

Theorem 4 Let N = (ST,F,Mo, /) be a net andN’ = (S, T',F’,Mg,¢) be a plain net witt§ C Sand
M{ = Mo | S. Suppose there exist s&ts C T andT~ C T and a clast\F C 77, such that

1-4. Condition§1134 from Theordm 3 hold, and
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5. For every reachable marking’' € [Mg)n there is arHy €+ NT" with ¢(Hy ) = 0, such that for
eachH € NFwith M := M"+ (Mg — Mp) + [H] € [Mg)n one has:
(@) My =M+ (Mg — M) + [Hw] € N°,
(b) if M' -2 with a € Act thenMyy -2,
(c) H <Hw,
(d) ifH(u) <Othenue T,
(e) ifH(u) <0andH(t) > 0then*un*t =0,
(f) if H(u) < 0andM[t) with £(t) # T then®*un*t = 0.
ThenN andN’ are interleaving branching bisimilar with explicit divernge.

Proof: A straightforward simplification of the proof of Theorém 3. O

7 The Correctness Proof

We now apply the preceding theory to prove the correctnetiseafonflict replicating implementation.

Theorem 5 Let N be a finitary plain structural conflict net without a fully ckeable pureM.
Then.# (N) ~81,N.

Proof: In this proof the given finitary plain structural conflict neithout a fully reachable puri®! will
beN'= (S,T',F',Mg,¢"), and its conflict replicated implementatiofi(N’) is calledN = (S, T,F, Mo, ¢).
This convention matches the one of Secfibn 6, but is the sevefrthe one used in Sectibh 5; it pays off
in terms of a significant reduction in the number of primesis paper.

For future reference, Tablé 2 provides a place-orientetesgmtation of the conflict replicating im-
plementation of a given n&’ = (S, T',F’,M{,¢'), with the macros for reversible transitions expanded.
Here[T]= {initialisej | je T'} U {transfer'j1 |h<*jeT'}, Whel’eas(transfer?)far = {trans?—out} and
(initialisej) ™" = {pre} | k >* jL U {trans?—in lh<*j}.

We will obtain Theorerfl5 as an application of Theotdm 3. Ruilhg the construction dfl described
in Sectior 5.P, we indeed ha®C SandM) =M [ S. Let T+ C T be the set of transitions

distributep initialisej - fire transfer? -fire (6)

for any applicable values gfe S andh, j e T'. FurthermoreT ~ := (T \ (T U {executeij li<#jeT’})).
We start with checking Conditions [, 2 and 3 of Theofém 3.

. Let<* be the partial order o * given by the order of listing in({6)—sitialise; - fire <™
tra nsfer?- fire, for anyi € T' andh <* j € T/, but the transitionsra nsfer? fire andtransferf-fire for
(i,]) # (k1) are unordered. By examining Talle 2 we see that for any pléteanpretransitiort
in T™, all its posttransitionsi in T+ appear higher in the " -ordering:t <™ u. From this it follows
thatF | (SUT™) is acyclic.

2. Let<~ be the partial order o~ given by the row-wise order of the following enumerationTof

t - undo; transfer?-undo(f) transfer?-undone initialisej - undo(f) initialisej - undone
fetchip’jC fetched'j t - reset; t-elide finalise'

for anyt € {initialisej, transfer?} and any applicable values éfc S pe S, andh;i, j,ce T’ By
examining Tabl€I2 we see that for any place with a pretramsitin T, all its posttransitionsi in
T~ appear higher in the~-ordering:t <~ u. From this it follows tha# [ (SUT ™) is acyclic.
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Place Pretransitions arc weights Posttransitions arc weights for all
p finalise' F'(i,p) distributey (if p*#0) pecS,ic*p
distributep initialisec - fire F'(pc) peS,cep’
Pe initialisec - undone F'(p,c) fetchf}c F(pi) ] >#je p*
& (marked) initialisec - reset; initialisec - fire i=ceT
prel |n|t|a||s?, fire .ex.e.cheJ i j S#ie T/
] execute] initialise; - undo(pre})
: initialisej - fire transfer - fire .
transj- C ) . h<tjeT
ransy-in {transfer?'undone initialise; 'undo(transT-m) < e
transfer” - fi executel . g
trans’-out rans erij e h h<#jeT i<#j
execute] transfer; - undo(transj-out)
fetched! execute! #
Ty (marked L b i <*j<HFleT, c=l
i ( ) {transf_erlJ -resetc transfer| - fire =" '
fetchf}c—in execute'j fetchf}c j>*ieT, peri,cep
fetchf}c—out fetchi'[’)}C fetched) j>*ieT, pe*i,cep®
undoj(t) execute_ij -fire t-undoj, t-elide i>*ieT teq
reset;(t) fetched'j t-reseti, t-elide; i>*ieT teq
acki(t) t-resetj, t-elide finalise' ieT teQ
fired(t) t-fire t - undo; teT, Qiot
pi(t) t-undo; t - reset; teT, Qiot
take(f,t) t - undo; t-undo(f) teTe, Qiot, fetfr
took(f,t) t-undo(f) t - undone teTe, fetfr
p(t) t-undone t - reset; teT, Qiot

Table 2: The conflict replicating implementation.

B. The only transitions € T with £(t) # T areexecute!, withi <*j € T". Sotakei <*j € T'. Then the
only transitiont’ € T" with £'(t') = {(execute}) isi. Now two statements regardin@ndexecute
need to be proven. For the first, note that, for any*i, the place9, pi andpre'j are faithful w.r.t.
T andSU{se S| Mo(s) > 0}. Hence p distribute, pi initialise; - fire pre| execute] is a
faithful path fromp to execute|. The arc weight of this path B'(p,i). Thus®i < “execute).

The second statement holds because, fdrg’ﬂj eT,

i = [[executeij + Z (F'(p,i)-distributep + Z fetchf}c) +fetchedij +finalise' + § t-elide;].
pe’i cep® tED;
(7)

To check that these equations hold, note that

[distributep] = —{p} +{pc| c € p°},

[[executeijﬂ = —{mu |1 >%j}+ {fetchf’jc—in | pe®i, ce p*} 4 {undoj(t) |t € Q;},
[[fetchf}c]] = —{fetchf}c—in} —F'(p,i)-{pc}+ {fetchf}c—out},

[fetched|] = —{fetchf}c—out | pe®i, cep*}+ {mu || > j} + {reseti(t) [t € Qi},
[t-elidei] = —{undoj(t), reseti(t) [t € Qi} + {acki(t) |t € Qi},

[finalise'] = —{acki(t) |[t€ Qi}+ > F'(i,r)-{r}.

rer®
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Before we define the cladéE C 7' of signed multisets of transitions in normal form, and wedbndi-
tions[4 andb, we derive some properties of the conflict raptig implementatioN = .7 (N).

Claim 1 For anyM’ € ZS andG e Z" such thai := M’ + (Mo — M}) + [G] € NS we have

G(t-elidej) + G(t-undoj) < Z G(executeij) (8)
j>#i

G(finalise') < G(t - elide;) + Gt - reset;) < Z G(fetchedij) 9)
j>#i

G(t-resetj) < G(t-undoj) (10)

for eachi € T’ andt € Q;. Moreover, for eachc T< andf €t

Z G(t - resety,) < G(t-undone) < G(t-undo(f)) < Z G(t-undog) < G(t -fire) (112)
{w[teQy} {w|teQq}

and for each appropriateh,i, j,| € T"andp € S:

G(fetchedi) < G(fetchpc) < G(execute ) (12)
G(initialise; - fire) < 1—1—26 initialise; - reset,) (13)
G(transfer -fire) — (transfer undone) < G(lmtlallsej fire) — G(initialisej'undo(transh-in)) (14)
G(transfer fire) + (execute'l) 1+ZG transferI resety) + G(fetched ) (15)
|< |<J

if M[executeh) then 1< G(mltlallse, fire) — G(initialise; - undo(pre ) (16)
if 3. M[execute'l> then 1< G(transfer -fire) — G(transfer undo(trans? out)) (17)
F'(p,c)-(G(initialisec- fire) —G(initialisec- undone)) + Z F'( p,i)-G(fetchi'?’jC)§G(distributep) (18)

j>*iep
G(distributep) < M'(p)+ 3 Gffinalise'). (19)

{ieT’|pei*}

Proof: For anyi € T’ andt € Q;, we have

M (undoj (t)) = ( G(executeij)) — G(t-elidej) — G(t - undoj) > 0,
j>"i
given thatM’(undoj(t)) = (Mg — M{)(undoj(t)) = 0. In this way, the placendo;(t) gives rise to the
inequation [(B) abouG. Likewise, the placeack;(t), reseti(t) and pj(t), respectively, contributd 9)

and [10), Whereap( ), took(t), take(t) andﬂred( ) yield (I3). The remaining inequations arise from
fetchf’jc—out, fetch -in, 1, transh in, Thu, pre trans -out, pc andp, respectively. [ |

(I9) can be rewritten a§' + ¥, El <1, whereT,! := G(transfer| - fire) — 5, G(transfer/ - reset,,) and
E} = G(executeij) - G(fetchedij). By (1) 5., G(transfer] - reset;) < G(transfer] -fire), soT,' >0, and
likewise, by KD),E} > 0 for alli <*j. Hence, for ali <*j <*1 T,
0<T/<1 o0<El<1 T+YE<L (20)
i<
In our next claim we study triplegV,M’, G) with
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(A) M € [Mo)n, M € M) andG € Z T,

(B) M =M’ + (Mo—Mp) +[G],

(C) G(finalise') =0 for alli € T,

(D) G(distributep) <M’(p) forall pe S,

(E) G(fetchedf) >0 forallk <*I € T',

(F) G(distributep) > F'(p,i) - G(execute!) for alli <* j € T"andp € *i,
(G) 0< G(executel) < 1foralli <*jeT’,
(H) G(distributep) > F'(p, j) -G(executei-) foralli <*j e T andpe*j,

(1) (in the notation ofIZZD)) i} = 1withi <*j € T thenT" =1 forallh <* j,

() there are ng >*iZk <#1 € T/ with (i, j) # (k. ), G(execute!) > 0 andG(executef) > 0,
(K) there are no <* j £k <#1 € T with (i, j) # (k, £), G(execute!) > 0 andG(executef) > 0.

Given such a tripléM,M7,G1) and a transitiort € T, we definenex(Ml,Mi,Gl, )=:(M,M’",G) a
follows: Let Gy := Gy + {t}. TakeM := My + [t] = M] + (Mg — M) + [Gz]. In caset is not of the
form finalise' we takeM’ := M € M)y andG := G, €¢ Z". In caset = finalise' for somei € T" we
have 1= G;(finalise') < Y > Gz(execute ) =Y > Gl(execute ) by (@), (9) and[(IR), so by (G) and
@) there is a uniqug >* i with Gl(execute ) =1. We takeM’ := M; + [i] andG := G, — G|, whereG

is the right-hand side of7).

Claim 2 (1) If Mq]t) and(M1, M}, Gs) satisfies[(A){(K), then so doeexi(M1,M{,Gy,t).
(2) For anyM € [Mp)y there existM’ andG such that[{A){(K) hold.

Proof: (@) follows from [1) via induction on the reachability . In caseM = M we takeM’ := M
andG := 0. Clearly, [B){K) are satisfied.

Hence we now show [1). LéM,M’,G) := nex{M,M7,Gs,t). We check thatM,M’,G) satisfies
the requirement$ (A)E(K).

(A) By constructionM € [Mo)n andG € Z". If t is not of the formfinalise' we haveM’ =M € [M§)nr
Otherwise, by[(ID) and{F) we hawdj(p) > G;(distributep) > F’(p,i) for all p € *i, and hence
M/ [i). This in turn implies thaM’ = M] + [i] € [M{)nr-

(B) In caset is not of the formfinalise' we have
M = My + [t] = M3+ (Mo — Mg) + [G1+t] = M’ + (Mg — Mg) + [G].
In caset = finalise' we haveM = M} + (Mg — M) + [G2] = M’ + (Mo — M§) + [G], using that
[i1 =[GI.
(C) In caset = finalise' we haveG(finalise') = Gy finalise') + 1 — Gl(finalise') = 0+ 1 1=0.
OtherwiseG(finalise') = Gy (finalise') + 0= 0+ 0= 0.
(D) This follows immediately from{C) and(19).

(E) The only time that this invariant is in danger is whea finalise'. ThenG = G; + {fmahse'} G'
for a certainj >* i with Gy (execute}) = 1. By Of G4 (execute]) < O for all | ># i with | # j.

SWe use[ll) andJE) foB; only, making use of the induction hypothesis.
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Hence by [(IR)G (fetched|) < O for all suchl. By (O) Ga(finalise') = Gy(finalise') + 1= 1, so by
©) 54 Gl(fetched ) = 314 Gy (fetched)) > O; her_lce it must be thﬁl(f_etched'j) > 0. By (Bf
G (fetched) > 0 for all k <*I € T’. Given thatG; (fetched)) = 1 andG (fetched|) = 0 for all
(k1) # (i, ), we obtainG(fetchedf) > 0 for allk <*1 € T'.

Takei g_#J €T andpe®i. There are two occasions where the invariant is in dangeenwh-
execute} and whert = finalise® with k € T'. First lett = execute. ThenM[execute]). Thus,

G(distributep)
> F'(p,i)- (G(initialise; - fire) — G(initialise; - undone)) + Z '(p,9) - (fetchp') (by (I8))
gep*

h>
>F (G initialise; - fire) — G(initialisei-undone)) + Z F’(p,g)-G(fetched%) (by (12))
h>*gep°
> F/(p,i)- (G(initialise; - fire) — G(initialise; - undone)) + F’g([;),i) . G(fetchedij) (by (B))
> F'(p,i)- ( (G(initialise; - fire) — G(initialisei-undo(preij))) —i—G(fetchedij)) (by (@)
> F/(p,i)- (1+ G(fetched))) (by (18))
> F'(p,i)- G(execute ) (by (20))

Now lett = finaliseX with k € T'. By (IT) G(initialise; - fire) — G(initialise; - undone) > 0. So by[(18),
(B), and [I2)G(distributep) > 0. For this reason we may assume, w.l.0.g., @@iecute}) > 1.

We haveG = G1+{f|nal|se } — G for certainl >* k with Gl(execute|) 1. SlnceG' (execute ) >0,

we also haves, (execute) > 1. By () this implies that:(i = k) or(i,j) = (k1). In the Iatter case

we haveG(execute}) = Gl(executej) G'(executej) 1—-1=0, contradicting our assumption.

In the former case ¢ °k, so Gk(dustnbutep) 0 and henceS(distributep) = Gy (distributep) >
F'(p,i)- Gl(execute ) =F'(p,i) - G(execute)).

That G(execute}) > 0 follows from [E) and[(IR). IiG(execute|) > 2 for somei <* j € T’ then
M’(p) > G(distributep) > 2-F'(p,i) for all p € *i, using [D) and[(F), sM’[2- {i})n'. SinceN’ is a
[finitaryjlstructural conflict nét, it has no self-concurrgney this is impossible.

Takei <*j €T/ andpc*j. The casé = | follows from (B), so assume<* j. By (I1) we have
G(initialise; - fire) — G(initialise; -undone) > 0. So by [(18),[(E), ancﬂ:(ll)’:(dlstrlbutep) > 0. Hence,
using [3), we may assume, w.l.0.g., tI@(texecute ) =1. We need to investigate the same two
cases as in the proof dfl(F) above. Firsttlet execute]. Thean[execute ). Thus,

G(distributep)

> F'(p,j)- (G(initialise; - fire) — G(initialise; - undone)) + z F/(p,g)'G(fetchg:rJ]) (by (18))
> F'(p, j)- (G(initialise; - fire) — G(initialise; - undone)) h="gcp* (by (B) and[[(1D))
> F'(p,j)- (G(mltlallsej fire) — G(initialise; - undo(trans'j—in))) (by (1))
> F'(p,j)- (G(transfer -fire) — G(transfer] - undone) (by (14))
> F'(p,j)- (G(transfer) - fire) — (transfer undo(transij—out))) (by (1))
> F'(p.J) (by (L2)).

Now let t = finaliseX with k € T”. We haveG = G; + {finalise*} — GK for certainl >* k with
Gl(execute|) =1. SlnceG' (execute ) >0, we also hav@l(execute ) > 1. By (K)) this implies
that —(j = k) rj)=(k I) In the latter Casé-}(execute )= Gl(execute ) — G'(execute )=
1—-1=0, contradicting our assumption. In the former czp15¢ °k, so Gk(dustnbutep) 0 and
henceG(distributep) = Ga(distributep) > F'(p, j) - Ga(execute) = F'(p, j) - G(execute)).
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0]

)

(K)

Leti <#jeT’ andh <* j. Since, for alk<*l € T, Gk(transfer -fire) = szk(transfer resetw) 0
and Gk(execute )= Gk(fetched ), the invariant is preserved wherhas the form‘rnalrse Using
(20), itisin danger only wheh= execute ort_transfer - reset, for somew with transfer € Q.

First assuli[executej> andTh Gl(transfer -fire) — szl(transferJ reset,) = 0. Then

1< Gl(transferg] fire) — Gl(transfer undo(trans -out)) (by (7))
< Ga(transferj - fire) — ZwGl(transfer resety,) =0 (by (12))

which is a contradiction.

Next assume = transfer -resety with k2 j, and E' = 1. By (B) and[(GB) the latter implies that
Gl(execute )=1 andGl(fetched )=0. Then

0 = Gi(finalise® ) (by (@)
< Gl(transfer eIrdek)+Gl(transfer resety) (by (9))

G(transfer eIrdek) —I—G(transfer resetk)
> 1>#k G(fetched ) (by (9)).

HenceG; (fetchedf) = G(fetched() > 0 for some >*k, and by [12) als@; (executef) > 0. Using
(K) we obtain(i,j) =(k,1), thereby obtaining a contradiction£0G; (fetched) = G (fetchedf) > 0).

Letj >*i= £k <#1e T with (i,]) ;é (k,£). The invariant is in danger only when= execute or
t = executef. W.L.0.g. lett = executef, with Gy (execute[’) =0 andGl(execute )>1.

Making a case distinction, first assu@éfetchedj) > 1. Using [D), ) and thaB(executef) = 1,
M’(p) > G(distributep) > F'(p, k) for all p € °k. Likewise, M’'(p) > G(distributep) > F'(p,i) for
all p € *i. Moreover, just as ip the proof|dfl(F), we derive, for pl& *i N °k,

<
<

M’(p) > G(distributep) (by (D))
> F'(p,k) - (G(initialisey - fire) — G(initialisex - undone)) + Z G(fetchp’rlf) (by (I8))
h> gep
> F'(p,k) - (G(initialise - fire) — G(initialisey - undone)) + z 0) - G(fetched?) (by (12))
h>*gepe
> F'(p,k)- (G(initialisek-fire) — G(initialisek - undone) ) +F'(p,i) fetched ) (by (B))
> F'(p,k)- (G(initialisek-fire) — G(initialise - undo(pre| ))) + F'(p, ) (fetched ) (by (I1))
> F'(p,k)+F'(p,i) (by (I86))
It follows thatM’[{k}+{i}). Asi # kandN’ is a[finitary[structural conflict net, this is impossible.

(Note that this argument holds regardless wheitkek.)

Now assumeG(fetched ) <0. Then, in the notation oﬂIOE' =1. SlnceGl(executel) 0, B)
and [12) yleldGl(fetched ) = 0. HenceG(executef) = 1 andG(fetched ) =0, SOEf = 1. We will
conclude the proof by deriving a contradiction frcEp EI =1. In casej = this contradiction
emerges immediately frorh (R0). By symmetry it hence suffioesonsider the casg< I.

By (D) and [B) we haveM’(p) > G(drstrrbutep) >F'(p,j) forallpe*j, soM'[j). leeW|seM i
and, using[(F)M'[i) andM’[k). Since] #i2 K andN' has nd fully reachable puid] j—k Since
Jikil andN’ has nd fully reachable puid] ji| Soj <*I. By @20), using thaE' =1, TJ 0.
This is in contradiction wrtrEk 1and[]).

Suppose thaG(execute ) > 0 andG(executef) > 0, withi <* | Fr<tleT. By (D) and [B) we
haveMép ) > G( drstrrbutep)>F’(p,J) for all pe*j, soM'[j). Likewise, using[(F)M'[i) andM'[K).
Sincei = | = * kandN’ has ng fully reachable puid], i *k. Using this, the result follows froni](Ji
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Claim 3 For anyM € [Mo)y there exisM’ € [M§)n andG € Z" satisfying [A)-{K) from Claini®2, and
(L) there are ng >*iZk <#1 € T/ with M [execute}) andG(executef) > 0,

(M) there are no <* j 2k <*| € T' with M[execute ) andG(executef) > 0,

(N) if Mlexecute!) for i <* j € T’ thenM'[j).

Proof: GivenM, by Claim[2(2) there art1’ andG so that the triplgM,M’,G) satisfies[(A)H(K). As-

sumeM |execute!) for somei <*jeT. LetMy:=M+ [execute|] andG; := G + {execute| }. By (G)

G(execute!) > 0, s0Gy (execute}) > 0. By Claim2(1) the tripleNl;, M’, Gy) satisfies[A)-HK).

(L) SupposeG(executek) > 0 for certainl ># kZi. In case(i, j) = (k,¢) we haveG; (execute!) > 2,
contradicting[(®). In casf, j) # (k,¢), G fails (J), also a contradiction.

(M) SupposeG(execute}‘) > 0 for certainl ># k2 j- ThenG; fails (G) or [K), a contradiction.
(N) By (D) and (B)M'(p) > Gy (distributep) > F(p, j) forall pe *j, soM’[j). ]
Claim 4 If I\/I[{executei-}+{execute}‘}> for someM € [Mg)n then—(i 2 K).

Proof: Supposév [{execute }+-{execute}) for someM € [Mo)n. By Claim2(2) there exid¥l’ € M)
andG e Z' satisfying KA)—[E) LetM; := M + [execute] andGy := G+ {executef}. By Claim[2(1)
the triple(M1,M’, G;) satisfies[(A)-HK). LeM, := M3 + [[execute JandG; = Gl—l—{execute }. Again
by Claim[2(1), also the tripleM2,M’, G) satisfies[(A)-HK). By[(ZBXB(execute )>0,s0in caseél i)=

(k,1) we ObtalnGz(executeJ) > 2, contradicting[(G). Hencf, j) # (k). Moreoveer(executel) >0
andGp(execute|) > 0. Now (J) implies~(i z K). []

For anyt € {initialise;, transfer} with h, j € T’, and anyw e Q with t € Q,, we write
t(w) :=t-fire+t-undog+ ( Z t-undo(f)) +t-undone+t-reset, .
fettar

The transitiort has no preplaces of type nor postplaces of typ&t. By checking in Tablgll or Figuté 3
that each other place occurs as oftefiuifw) + (u- elide,,)® as inu(w)*® + °*(u-elide,,), one verifies, for

anyw € Q witht € Q, that
Y © [t(w)] = [t - elideq]. 21)

Let = be the congruence relation on finite signed multisets ofttimms generated by
t(w) = t-elidey (22)

for allt € {initialisej, transfer? |h,jeT’'} andw € Q with Q,, > t. Herecongruenceneans thaG; =G,
impliesk-Gy=k- G, andG; +H =G, +H for all ke Z andH ¢ AR Using [21)G; = G, implies
[Ga] = [G2].

Claim5 If M’ = [G] for M’ € ZS andG e; Z" such that for ali € T we haveG(finalise') = 0 and
eithervj >*i. G(execute )>0orvj>#i. G(execute ) <0, thenG = 0.

Proof: LetM’andG be as above. W.1.0.g. we assuf@é - elide,,) = O for allt € {initialise;, transfer?}
and allw € Q with t € Q,,, for anyG can be brought into that form by applyirig {22). For eaetS\ S we
haveM’(s) = 0, and using this the inequations (§)4(12) dnd (18) of CldinrA into equations. For each
i € T" we haveG(y j-# executeij) =0, using (the equational form of)](8)=(10), and tffinalise') = 0.
SinceG(execute}) > 0 (or <0) for all j >*i, this implies thaG(execute! ) = 0 for eachi <*j € T'. With
(12) we obtainG(fetched') = G(fetch) = 0 for each applicablg,c,i, j. Using thatG(t - elide,) = 0
for each applicablé and w, with (@)-(11) and[{18) we fin@G(t) =0 forallt € T. ]



R.J. van Glabbeek, U. Goltz & J.-W. Schicke-Uffmann 35

Claim 6 LetM := M’ + (Mg—M}) + [H] € [Mo)n for M’ € [My)n andH ¢ ZT with H(executeij):O
foralli <#jeT'.

(a) If H(finalise') < 0 andH (finalise®) < O for certaini,k € T’ then—(i #k).

(b) If M[executel) andH (finaliseX) < O for certaini,k & T' then—(i £ k) and—(j £k).

(c) H(distributep) > O for all p € S (with p* # 0).

(d) LetcZie T/ If H(distributep) > F/(p,c) for all p € *c, thenH (finalise') = 0.

(e) If I\/I[executeij> with i <#j € T' thenM'[}).

Proof: By Claim([3 there exisM] € [M{)n andG; € Z" satisfying [B)-{) (withM, M; andG; playing
the roles ofMl, M’ andG). In particular,M = M1 + (Mg — M) + [G1], Ga(finalise') =0 for alli € T/,
and Gl(execute ) >0 foralli <*j e T'. Using [3), for each € T’ there is at most ong >* i with
Gy (execute}) > 0 we denote thig by f(i), and letf(i) := i when there is no sucly. This makes
f:7 -1 afunctlon satisfyings; (executel) = 0 for all j >*i with j  f(i).

Given thatH(execute )=0 for all i <*j € T', (8)-(10) (or [9) and[{12)) implH (fmahse) 0
forallie T'. LetMj := M +z,eT,H(f|naI|se) [i] andGy := H — 51 H(finalise') - G}m, WhereG'
is the right-hand side of7). Thed = M’ + (Mo —Mg) + [H] = M3+ (Mo — Mg) + [G2], using that
[i] = [[G ]] Moreover,G;(finalise') = 0 for all i € T, using thath(l)(fmahse )=1.

It foIIows that M} — M} = [Gz — G1]. Moreover, we havéG, — G;)(finalise') = 0 for all i € T".
We proceed to show tha, — G; satisfies the remaining precondition of Cldiin 5. SoiletT’. In
caseH (finalise') = 0, for all j >*i we haver(execute )=0, andGl(execute ) >0 by (@). Hence
(Go— Gl)(execute ) <0. In caseH (finalise') < 0, we haver(executef i) = 1, and hence, using {G),
(Go— Gl)(executef(l)) > 0. Furthermore, for alf # f(i), Go(execute]) > 0 andGy (execute|) =0, so
again(G; — Gl)(execute )>0.

Thus we may apply Claif 5, which yield3, = G;. It follows thatM}, = M1 € [Mg)n.

(a) Suppose that (flnahse ) <0 andH(fmahse ) < 0 for certaini #k € T'. ThenGz(executef(|>) >0
andGz(executef( )) >0, SoGl(executef( )) >0 andGl(executef( )) > 0, contradicting[{J).

(b) Suppose thati [execute ) andH (finalise®) < O for certaink =i or k£ B ThenGl(executeﬁ(k)) =
Gz(executef( )) >0, contradicting[ﬂ_) or[(W).

(c) By (@), for any giverp € S there is at most oniec p* with H (finalisei) <0. Foralli e T" withi ¢ p*
we haveG} ; (distributep) = 0. First supposé e p* satisfiesH (finalise") < 0. Then

Gl(executeiﬁ(k)) = Gg(executef( k)
= H(executef( ) — Sicr H(finalise') - G'f(i)(execute‘ﬁ(k))
=0-— H(fmallse)
s0 by [F)Gy (distributep) > —F’(p,k) - H (finalise¥). Hence

H (distributep) = Gp(distributep) + Fic1 H (finalise) - G} ; (distributep)
= Gy(distributep) + H (finalise®) - Gy, (distributep)
> —F/(p,k) - H(finalise) + H(finalise®) - F'(p,k) = 0.
In case there is nbe p* with H (finalise') < 0 we have
H (distributep) = Go(distributep) + Z H (finalise') - Gf( ) (distributep) = Gy (distributep) > 0

by (B) and[[®). <
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(d) SinceH (finalise') < 0 and Gif(i)(d_istributep) >0 for all i € T/, also usingrfc), all summands in
H(distributep) + et —H(finalise') - Gy ; (distributep) are positive. Now suppose(finalise') < 0
for certaini € T'. Then, using[(D), for aﬁb €,

M1(p) > Gi(distributep) = Ga(distributep) > Gy ; (distributep) = F'(p, ).

Furthermore, letZi and supposel (distributep) > F’(p,c) for all p € *c. Then, using(D),

Mi(p) > Gy (distributep) = Go(distributep) > H (distributep) > F'(p,c)

for all p € °c. Moreover, ifp € °cn i then

Mi(p) > Gy(distributep) > H (distributep) +G}(i>(distributep) > F'(p,c)+F'(p,i).

HenceMj[{c}+{i}). However, since i andN' is al[Structural Conflict ik, this is impossible.
(e) Suppos®[execute!) withi <#j € T’. ThenMj|[j) by (). NowM’ =M} + 57 —H (finalise*) - [K],

with —H (finaliseX) > 0 for all k € T’. Whenever—H (finaliseX) > 0 then—(j 2 k) by (B). Hence
M'[j). m

We now define the clasSF C 7" of signed multisets of transitions imormal formby H e NF iff
((H) = 0 and, for allt € {initialise;, transfer” | h, j € T'}:

(NF-1) H(t-elidey) < 0 for eachw e Q,

(NF-2) H(t-undog) > 0 for eachwe Q, or H(t - fire) > 0,

(NF-3) and ifH(t-elide) < O for anyw e Q, thenH (t - undog,) < 0 andH (t - fire) < 0.
We proceed verifying the remaining conditions of Theokém 3.

@.

B.

By applying [22), each signed multiste ZT with /(G) = 0 can be converted into a signed
multisetH € NFwith £(H) = 0, such thafH] = [G]. Namely, for anyt € {initialise;, transfer"

h, j e T'}, first of all perform the following three transformationitiinone is applicable:

(i) correct a positive count of a transitidrelide,, in G by addingt(w) —t - elide,, to G;

(if) if both H(t-undo,,) < 0 for somew andH (t - fire) < 0, correct this in the same way;

(iii) and if, for somew, t-elide,, has a negative arteindo,, a positive count, adtt elide,, —t(w).
Note that transformation (iii) will never be applied to therew as (i) or (i), so termination is
ensured. Properties (NF-1) and (NF-2) then hold fakfter termination of (i)—(iii), perform

(iv) if, for somecw, H(t - elidey,) < 0 andH (t - fire) > 0, addt - elides, — t(w).
This will ensure that also (NE-3) is satisfied, while pregeg(NF{1) and (NA=R).

Define the functionf : T — N by f(u) := 1 for all u € T not of the formu =t - elide,,, and
f(t-elidey) := f(t(w)) (applying the last item of Definition 1). Then surelyG) = f(H).

LetM’ € NS, U’ e NT andU e NT with £(U) = ¢(U’) andM’ +°U’ € [M{)nr. SinceN’ is a
finitary][structural conflict nét, it admits no self-concurcg, so, asU’ < M’ +°U’ € [M{)n, the
multisetU’ must be a set. A8’ is [plair, this implies that the multisét(U’) is a set. Since
£U) =¢'(U'), alsof(U), and henc&J, must be a set. All its elements have the fasxacute|, for

i <#j e T, since these are the only transitionsTinvith visible labels. Note thdt’ is completely
determined by, namely byU’ = {i | 3. execute| € U}. We take
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Hwu = Z (M'+°U’)(p) - {distributep} + Z {initialise; - fire} + Z {transfer?-fire}
pel (MUN[j) h<#j, flexecutelcu
SinceN' is[finitany, Hwy €1 N . Moreover,/(Hy y) = 0.

LetH € ¢ NFwith M := M’ +°U’ + (Mo—Mg) + [H] — *U € N®andM+°*U € [Mo). SinceH € NF,
and thus/(H) = 0, H (execute|) = 0. From here on we apply Claii 1 and Cldiin 6 with+*U
andM’ + °U’ playing the roles oM andM’. Note that the preconditions of these claims are met.

ThatH (executeij) =0foralli <*#jeT’, together with[(B) and the requirements (NF-1) and [NF-3)
for normal forms, yielddH (t - elidej) < 0 as well asH (t - undoj) < 0. Using this, [P)-£2) imply
that

H(u) <0 foreachue T. (23)
Claim 7 Letce T’ andpe °c. Then
o if H(initialisec - fire) > O thenH (fetch’) = 0 for alli € p* andj >*i, and
o if H(transferc - fire) > 0 for someb <* ¢ thenH (fetchf’’) = 0 for alli € p* andj >*i.
Proof: Suppose thal (t-fire) > 0, fort = initialise; ort = transfer?. Then [IB) resp[{20) together
with (23) implies thaH (t - reset,,) = 0 for eachw with t € Q. In order wordsH (t - reset;) = 0 for
eachi ic, so in particular for eache p*. FurthermoreH (t - elidej) > 0, by requirement (NE13)

of normal forms. With[(), this yields ;.. H (fetched') > 0, and [2B) impliedH (fetched') = 0
for eachj >*i. Now (12[23B) givesH (fetch) = O for eachj >*i € p°. [

We proceed to verify the requiremenftsi(5g)3(59) of Thedrem 3
(B8) To show thaMy y € N3, it suffices to apply it to the preplaces of transitiongHiy y +U:

Mw u (P) =0 forallpeS;
| M’ +°U%) (p) — F/(p,]) if (M'+°U")j) .
Mwru (P;) { M’ +*U otherwise for peS, jep;
| o Flsuniy —
Muu (75) { 1 otherwise _ forje T
_ 1 if (M'+°U")[j) A execute, ¢U
M u (preg) -1 if 7(M’+°U")[j) Aexecutel U for j <ke T/,
0 otherwise
_ 0 if Jexecute] € U v (M’ +°U)[j) 4 -
M (7o) { 1 otherwise forh<"jeT
. 1 if (M’ +°U")[j) A Jexecutef € U .
, h_ — h # /.
Mwr u (transJ in) { 0 otherwise forh<*jeT
1 if (M'+°U")[j) A flexecute? € U /\ﬂexecute eu
Mw u (trans?—out) =¢-1 if (=(M’+°U’)[j) V Jexecutep € U) /\ElexecuteJ eu
0 otherwise forh<*jeT.

For all these placeswe indeed have thaly y (s) > 0, for the circumstances yielding the two
exceptions above cannot occur:
e Supposexecute] € U with j <¥ke T'. Thenj €U, s0*j C M’ +°U’ and(M’ +°U’)[}).
ConsequentlyMy y (pre}) # —1 for all j <*ke T’
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o Suppos&xecuteij cUwithi<#*jeT. Then'executeij <*U, so(M +’U)[executeij>.
Claim[@(e) withM +°U andM’ +-°U’ in the roles oM andM’ yields (M’ + °*U’)(j).
If moreoverexecutef € U with g<*h<*j, then{g}+{i} CU’, so*{g}+°{i} C M'+°U’
and (M’ +°U")[{g}+{i}). In particular,g — i, and sinceN’ is a[structural conflict nkt,
*gn*®i = 0. By Claim[B(e)—as above{M’'+°U’)[h), so*gu°*hu*ju®i C M'+°U’ ¢
[M{)n'- Moreover, sincg <#h <# j >#i, we have’'gn*h 0, *hN®i # 0 and*in®j # 0.
Now in case als8hn*i + 0, the transitiong, h andi constitute & fully reachable puld}
otherwiseh — i andh, j andi constitute & fully reachable puld, Either way, we obtain
a contradiction. ConsequentiMy u (trans*j‘-out) £ —1forallh<*jcT.
GB) Suppos’ —25; sayM'[i) with /(i) = a. Let j be the largest transition i’ w.r.t. the well-
ordering< on T such thai <* j and (M’ +°U")[j). It suffices to show thatlyy  [execute),
i.e. thatMy u (pre' )=1, My u (trans-out)=1 for all h<*j, andM y (7544 )=1 for all | >’Jj.
If execute! € U we would havel € U’ and hencegM’ +°U")[2- {i}). SinceN’ is a[finitary
[structural conflict nét, th_is is impossible. Therefemecute'j ¢ U and, using the calculations
from (a) aboveMw y (pre}) = 1.
Leth <* j. To establish tha¥ly  (trans-out) = 1 we need to show that there is khe* j with
execute'j‘ €U and nog <*h with executef € U. First Supposexecute'j‘ € U for somek <*j.
Thenk € U" and hencgM’ +°U’)[{i}+{k}). This impliesi — k, and, as\’ is a structural
conflict net,*iN *k = 0. Hence the transitionis j andk are all different, with*in®j £ 0 and
*iN°k+# 0 but®in®k = 0. Moreover, the reachable markiMj+°U’ enables all three of them.
HenceN’ contains & fully reachable puld}, which contradicts the assumptions of Theofém 5.
Next supposesxecutep € U for someg <*h. Then(M +°U)[executef), so (M’ +°U’)[h) by
Claim[@(e). Moreoverg € U’, so(M’+°U")[{i}+{g}). This impliesg— i, and*gn*i = 0.
Moreover,*gN°*h £ 0, *hN*j # 0 and*®*jN°*i # 0, while the reachable marking’ +°U’
enables all these transitions. Depending on whether®i = 0, eitherh, j andi, org, h andi
constitute & fully reachable puld} contradicting the assumptions of Theorgm 5.
Let] >* j. To establish thaMy y (%) = 1 we need to show that there is ko<* j with
executeX € U—already done above—and thatM’+°U’)[1). SupposgM’+°*U’)l). Con-
sidering thatj was the largest transition with<* j and (M’ +°U’)[j), we cannot have <*1.
Hence the transitionis j andl are all different, witt?in®j £ 0 and®jN°l # 0 but®in®l = 0.
Moreover, the reachable markid’ +°U’ enables all three of them. Hend¥ contains a
ffully reachable puré] which contradicts the assumptions of Theofém 5.
(5d) We have to show th&t(t) < Hw y(t) for eacht € T.
In caset € T~ this follows from [28) andHyyy € N7
In caset = execute], it follows since¢(H) = 0.
In caset = distribute, it follows from (19) and[(2B).
Next lett = initialisec - fire for somec € T'. In caseH (initialise; - fire) < O surely we have
H (initialisec - fire) < Hw y (initialisec - fire). So without limitation of generality we may
assume thaH (initialise; - fire) > 0. By (I3[23) we havéH (initialise;- fire) = 1. Using
(@8), ClaimT,[2B) and(19) we obtain, for gl °c,

F'(p,c) - H(initialisec - fire) < H(distributep) < (M'+°U’)(p).

Hencec is enabled undev’ +°*U’, which impliesHy y (initialisec - fire) = 1.
o Lett=transfer?-fire for someb<*cc T'. As above, we may assurktransfer? fire) > 0.
By (Z0/23) we haveH (transfer2- fire) = 1. Using [ZB) and thati (execute]) = 0 for all



R.J. van Glabbeek, U. Goltz & J.-W. Schicke-Uffmann 39

g <*b, it follows that(M +°U ) (Thc) = 0. Hence~(M +°U ) [execute) for all g <*b, and
thusflexecutef € U. For allp € *c we derive

F/(p,c) - H(transfer2- fire)
< F'(p,c)- (H H (transfer? - fire) — H (transfer?. undone)) @3
< F'(p,c)- ( (initialise - fire) — H (initialisec - undo(trans- |n))) (i)
< F’(p,C)-(H(initialisec-fire)—H(|n|t|aI|seC undone)) @
= [the same as above] § F’'(p,i)-H(fetch) (Claim[?)
< H(distributep) j>"iep® @
< (M'+°U")(p) + Z H (finalise') @9
< (WU (p) frBer) @

Hence(M’ 4-°U’)[c), and thusHyy  (transfer?) = 1.

(Gd) Ifug T, yetH(u) #0, thenuis eitherdistributep, initialise; - fire Ortransfer? -fire for suitable
peSorh,jeT. Foru=distribute, the requirement follows from Claifdé(c); otherwise
Property (NF=R), together witl (1.1), guarantees #héat) > 0.

(Ge) IfH(t) >0andH(u) <0, thente T* andue T~. The only candidates fdt N *u +# 0 are

* pc € *(initialisec fire) (fetch'”J )forpe S, c,i € p*andj >*#i,

o transl-in € "(transfer? - fire) N *(initialise; - undo(transt-in)) for b <*c e T’

We investigate these possibilities one by one.

e H(initialisec- fire) > 0/ H (fetchP®) < 0 cannot occur by Claiff 7.

e SupposeH (transfer? - fire) > 0. By (20[23) we havé (transfer®- fire) = 1. Through the
derivation above, in the proof of requirement (c), using (2B 11), Clainil7 and (18), we
ObtalnH(dIStrlbutEp) > F'(p,c) for all p € *c. Now Claim[B[d) yieldsH (finalise') = 0
for all i Zc. By (@) and [(2B) we obtait (initialisec- resetj) = 0 for each such. Hence
3.+ H(initialisec- reset) = 0, and thudH (initialise - undo(trans-in)) = 0 by (T1[23).

G If H(u) <0and(M+°U)|t) with £(t) # 1, thent = execute‘j for somei <#j € T anducT-.
The only candidates fdt N °u # 0 are

° preij € '(executeij) N *(initialise; -undo(preij)) and

° trans?—out € '(executeij) N .(transfer? . undo(trans?—out)) for h <#j.

We investigate these possibilities one by one.

e SupposgM +'U)[executeij>. By Claim[B[B),H (finalise®) > 0 for eachk 2. By (@) and
(23) we obtairH (initialise;- resej:k) 0 for each suck. Hencez H (initialise; - resety) =0,
and thusH (initialise; - undo(pre})) = 0 by (11[23). kZi

e SupposeM +°U)[executel) andh <# j. By Claim[B[B),H (finalise¥) > 0 for eachk = j.
By @) and KZB)H (transferh resetk) 0 for each suclk. So Z H transfer -resety) =0,
andH(transferJ undo(trans -out)) = 0 by (11[23). K

(5d) SupposéM +°U)[{t}+{u})n, andi,ke T’ with £'(i) = e( ) and?’ (k) = ¢(u). Since the nei’
is[plair,t andu must have the formxecute andexecute for somej >*i andl >*k. Claim[4
yields—(i = k) and hencéin*k=10. O

Thus, we have established that the conflict replicating é@mglntation# (N’) of a finitary plain structural
conflict netN’ without a fully reachable pur®l is branching ST-bisimilar with explicit divergence .
It remains to be shown that (N') is essentially distributed.
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Lemma 10 Let N be the conflict replicating implementation of a finitary Mt= (S,T',F’,M{,¢);
let j,I € T/, with | >#j Then no two transitions from the s@éxecuteJ i <#jlu {transferlJ fire} U
{transfer] - undo(trans{-out)} U {executef | k <*I} can fire concurrently.

Proof: For_eachi <#j pick an arbitrary p_replacqi ofi. The Set{fetchq' -in, fetchq' —out |i <#jlu
{4, trans{-out, took(trans/-out, transfer/ ), p(transfer }is anS- mvarlant there |s always exactly
one token in this set. This is the case because each trarfsdio N has as many preplaces as postplaces
in this set. The transitions frorifrsxecuteJ li<*jru {transferlJ fire} U {transfer/ - undo(transI -out) } U
{executef | k <*I} each have a preplace in this set. Hence no two of them can ficuoently. O

Lemma 11 Let N be the conflict replicating implementatios (N’) of a finitary plain structural con-
flict net N’ = (S, T/,F’,M},¢) without a fully reachable pur&. Then for anyi <* | *ceT and
f € (initialisec) "] the transitionexecute!, andinitialise; - undo( f) cannot fire concurrently.

Proof: Suppose these transitions can fire concurrently, say frenmidwrkingM € [Mo)n. By Claim[3,
there areM’ € [M})n andG €4 Z" such that[[B){IN) hold. Let:= initialisec, Gy := G+ {t-undo(f)}
andMy :=M + [t-undo(f)]. Then [11), applied to the triplgd1,M’,G) and(M1,M’,G3), yields

G(t-resety) < G(t-undo(f)) < Gy(t-undo(f)) < ZGl(t -undog) = ZG(t -undog).
{w[teQw} {w[teQu} {w|teQu}

Hence, there is amw with t € Q, andG(t - reset,,) < G(t - undoy). This w must have the fornk € T’
with k2 c. We now obtain

0 = G(finalise¥) (by (@)
G(t - elidey) + G(t - resety)  (by (@))
G(t - elidex) + G(t - undo)

3 1> # G(executef) (by (8)).

VANVANVANI

Hence, there is an>* k2 c with G(executef) > 0. By (M) we obtain—( 2 k), so®jN°*k=0. Addition-
ally, we have® jn*c=# 0 and*cn*k # 0. By (N) we obtainV’[j), and by [D) and(FM'[k). Furthermore,
by (11),G(t - undo(f)) < Gy(t-undo(f)) < Gy(t-fire) = G(t -fire), so, for allpe °c,

F'(p,c) < F'(p,c)- (G(t-fire) — (t undo(f)))
< F'(p,c)- (G(t-fire) — G(t - undone)) (by (A1)
< G(distributep) — ¥ j>#icpe F'(P,1) - G(fetchf}c) (by (I8))
< G(distributep) (by (B) and [(1R))
< M'(p) (by @)

It follows thatM’[c). ThusN’ contains & fully reachable puld], which contradicts the assumptions of
Lemmad11. O

Theorem 6 LetN be the conflict replicating implementatiofi(N’) of a finitary plain structural conflict
netN’ without a fully reachable purkl. ThenN is essentially distributed.

Proof: We take the canonical distributid» of N, in which=p, is the equivalence relation on places and
transitions generated by Condition (1) of Definitlod 15. Véed to show that this distribution satisfies
Condition (2) of Definition[18. A given transition with ¢(t) # T must have the formxecute'j for some
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i <#j e T. By following the flow relation ofN one finds the places and transitions that, under the
canonical distribution, are co-located W'ercute'j:

T — transfer| - fire < trans{-in — initialise| - undo(trans{-in) < take(trans{-in, initialise )
1

execute'j

T

trans

!

execute?

/I\

pre?Yl — initialiseg - undo(prejg) — take(prejg, initialiseg)

h_
i

h_
i

h

J out,transfer?)

out — transfer? -undo(trans™™-out) < take(trans

for all 1 >* j, h<* j andg <* j. We need to show that none of these transitions can happenrcently
with execute}. For transitionstransfer/ - fire andexecute] this follows directly from Lemm&10. For
transfer'j‘-undo(trans?—out) this also follows from Lemm@_10, in which k andl play the role of the
currenth, i andj. For the transitionanitialise; - undo(trans{-in) andinitialiseg - undo(pre?) this has been
established in Lemnialll. O

Our main result follows by combining Theorefds 5 &ahd 6 and &siion[3:

Theorem 7 Let N be a finitary plain structural conflict net without a fully sieable puréM. ThenN is
distributable up tovhsry,

Corollary 3 Let N be a finitary plain structural conflict net. Théhis distributable iff it has no fully
reachable puré.

8 Conclusion

In this paper, we have given a precise characterisation stfilalitable Petri nets in terms of a semi-
structural property. Moreover, we have shown that our motibdistributability corresponds to an intu-
itive notion of a distributed system by establishing that distributable net may be implemented as a
network of asynchronously communicating components.

In order to formalise what qualifies as a valid implementgtiove needed a suitable equivalence
relation. We have chosen step readiness equivalence farrgindhe impossibility part of our char-
acterisation, since it is one of the simplest and least idiscating semantic equivalences imaginable
that abstracts from internal actions but preserves bragditne, concurrency and divergence to some
small degree. For the positive part, stating that all otrets mre implementable, we have introduced
a combination of several well known rather discriminatimgigalences, namely a divergence sensitive
version of branching bisimulation adapted to ST-semantitence our characterisation is rather robust
against the chosen equivalence; it holds in fact for all\ejences between these two notions. However,
ST-equivalence (and our version of it) preserves the catsaiture between action occurrences only as
far as it can be expressed in terms of the possibility of domat actions to overlap in time. Hence a
natural question is whether we could have chosen an evergstrcausality sensitive equivalence for our
implementability result, respecting e.g. pomset equivaeor history preserving bisimulation. Our con-
flict replicating implementation does not fully preserve ttausal behaviour of nets; we are convinced
that we have chosen the strongest possible equivalencehichwur implementation works. It is an
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open problem to find a class of nets that can be implementétibdigdly while preserving divergence,
branching time and causality in full. Another line of resdmars to investigate which Petri nets can be
implemented as distributed nets when relaxing the req@rgrof preserving the branching structure.
If we allow linear time correct implementations (using gpstce equivalence), we conjecture that all
Petri nets become distributable. However, also in this @dseproblematic, in fact even impossible in
our setting, to preserve the causal structure, as has beem s [1€]. A similar impossibility result has
been obtained in the world of thecalculus in[[14].

The interplay between choice and synchronous communichts already been investigated in quite
a number of approaches in different frameworks. We refeB}ddr a rather comprehensive overview
and concentrate here on recent and closely related work.

The idea of modelling asynchronously communicating setiglecomponents by sequential Petri
nets interacting though buffer places has already beendsmes in [15]. There Wolfgang Reisig intro-
duces a class of systems, represented as Petri nets, wheeddtive speeds of different components are
guaranteed to be irrelevant. His class is a strict subsairdf 8GA nets, requiring additionally, amongst
others, that all choices in sequential components areifee€lo not depend upon the existence of buffer
tokens, and that places are output buffers of only one coemtorAnother quite similar approach was
taken in [3], where transition labels are classified as beittger input or output. There, asynchrony is
introduced by adding new buffer places during net compmsitT his framework does not allow multiple
senders for a single receiver.

Other notions of distributed and distributable Petri nees@oposed in[11,/1,2]. In these works,
given a distribution of the transitions of a net, the net wstrithutable iff it can be implemented by a
net that is distributed w.r.t. that distribution. The regunent that concurrent transitions may not be
co-located is absent; given the fixed distribution, themeoisieed for such a requirement. These papers
differ from each other, and from ours, in what counts as alviatiplementation. A comparison of our
criterion with that of Hopkins[[11] is provided in|[6].

In [6] we have obtained a characterisation similar to Cargll3, but for a much more restricted
notion of distributed implementatioml@in distributability), disallowing nontrivial transition labellings
in distributed implementations. We also proved that fudgchable pur&ls are not implementable in a
distributed way, even when using transition labels (Thed2Z®. However, we were not able to show that
this upper bound on the class of distributable systems \ghs ©ur current work implies the validity of
Conjecture 1 of([6]. While in[6] we considered only one-spli@ce/transition systems, the present paper
employs a more general class of place/transition systeamsely structural conflict nets. This enables
us to give a concrete characterisation of distributed reetystems of sequential components interacting
via non-safe buffer places.
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