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On Distributed Averaging Algorithms
and Quantization Effects

Angelia Nedić, Alex Olshevsky, Asuman Ozdaglar, Member, IEEE, and John N. Tsitsiklis, Fellow, IEEE

Abstract—We consider distributed iterative algorithms for the
averaging problem over time-varying topologies. Our focus is on
the convergence time of such algorithms when complete (unquan-
tized) information is available, and on the degradation of perfor-
mance when only quantized information is available. We study a
large and natural class of averaging algorithms, which includes the
vast majority of algorithms proposed to date, and provide tight
polynomial bounds on their convergence time. We also describe
an algorithm within this class whose convergence time is the best
among currently available averaging algorithms for time-varying
topologies. We then propose and analyze distributed averaging al-
gorithms under the additional constraint that agents can only store
and communicate quantized information, so that they can only
converge to the average of the initial values of the agents within
some error. We establish bounds on the error and tight bounds on
the convergence time, as a function of the number of quantization
levels.

Index Terms—Decentralized and distributed control, multi-
agent systems.

I. INTRODUCTION

T HERE has been much recent interest in distributed control
and coordination of networks consisting of multiple, po-

tentially mobile, agents. This is motivated mainly by the emer-
gence of large scale networks, characterized by the lack of cen-
tralized access to information and time-varying connectivity.
Control and optimization algorithms deployed in such networks
should be completely distributed, relying only on local observa-
tions and information, and robust against unexpected changes in
topology such as link or node failures.

A canonical problem in distributed control is the consensus
problem. The objective in the consensus problem is to develop
distributed algorithms that can be used by a group of agents in
order to reach agreement (consensus) on a common decision
(represented by a scalar or a vector value). The agents start with
some different initial decisions and communicate them locally
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A. Nedić is with the Industrial and Enterprise Systems Engineering De-
partment, University of Illinois at Urbana-Champaign, Urbana IL 61801 USA
(e-mail: angelia@uiuc.edu).

A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis are with the Laboratory for
Information and Decision Systems, Electrical Engineering and Computer Sci-
ence Department, Massachusetts Institute of Technology, Cambridge MA 02139
USA (e-mail: alex_o@mit.edu; asuman@mit.edu; jnt@mit.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2009.2031203

under some constraints on connectivity and inter-agent infor-
mation exchange. The consensus problem arises in a number of
applications including coordination of UAVs (e.g., aligning the
agents’ directions of motion), information processing in sensor
networks, and distributed optimization (e.g., agreeing on the es-
timates of some unknown parameters). The averaging problem
is a special case in which the goal is to compute the exact av-
erage of the initial values of the agents. A natural and widely
studied consensus algorithm, proposed and analyzed in [18] and
[19], involves, at each time step, every agent taking a weighted
average of its own value with values received from some of
the other agents. Similar algorithms have been studied in the
load-balancing literature (see for example [8]). Motivated by
observed group behavior in biological and dynamical systems,
the recent literature in cooperative control has studied similar
algorithms and proved convergence results under various as-
sumptions on agent connectivity and information exchange (see
[13]–[15], [17], [20]).

In this paper, our goal is to provide tight bounds on the con-
vergence time (defined as the number of iterations required to
reduce a suitable Lyapunov function by a constant factor) of
a general class of consensus algorithms, as a function of the
number of agents. We focus on algorithms that are designed to
solve the averaging problem. We consider both problems where
agents have access to exact values and problems where agents
only have access to quantized values of the other agents. Our
contributions can be summarized as follows.

In the first part of the paper, we consider the case where agents
can exchange and store continuous values, which is a widely
adopted assumption in the previous literature. We consider a
large class of averaging algorithms defined by the condition that
the weight matrix is a possibly nonsymmetric, doubly stochastic
matrix. For this class of algorithms, we prove that the conver-
gence time is , where is the number of agents and
is a lower bound on the nonzero weights used in the algorithm.
To the best of our knowledge, this is the best polynomial-time
bound on the convergence time of such algorithms . We also
show that this bound is tight. Since all previously studied linear
schemes force to be of the order of , this result implies an

bound on convergence time. In Section IV, we present
a distributed algorithm that selects the weights dynamically,
using three-hop neighborhood information. Under the assump-
tion that the underlying connectivity graph at each iteration is
undirected, we establish an improved upper bound on
convergence time. This matches the best currently available con-
vergence time guarantee for the much simpler case of static con-
nectivity graphs [16].

In the second part of the paper, we impose the additional con-
straint that agents can only store and transmit quantized values.

0018-9286/$26.00 © 2009 IEEE
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This model provides a good approximation for communication
networks that are subject to communication bandwidth or
storage constraints. We focus on a particular quantization rule,
which rounds down the values to the nearest quantization level.
We propose a distributed algorithm that uses quantized values
and, using a slightly different Lyapunov function, we show
that the algorithm guarantees the convergence of the values
of the agents to a common value. In particular, we prove that
all agents have the same value after time
steps, where is the number of quantization levels per unit
value. Due to the rounding-down feature of the quantizer, this
algorithm does not preserve the average of the values at each
iteration. However, we provide bounds on the error between
the final consensus value and the initial average, as a function
of the number of available quantization levels. In particular,
we show that the error goes to 0 at a rate of , as the
number of quantization levels increases to infinity.

Other than the papers cited above, our work is also related
to [11] and [5], [6], which studied the effects of quantization
on the performance of averaging algorithms. In [11], Kashyap
et al. proposed randomized gossip-type quantized averaging al-
gorithms under the assumption that each agent value is an in-
teger. They showed that these algorithms preserve the average
of the values at each iteration and converge to approximate con-
sensus. They also provided bounds on the convergence time of
these algorithms for specific static topologies (fully connected
and linear networks). In the recent work [5], Carli et al. proposed
a distributed algorithm that uses quantized values and preserves
the average at each iteration. They showed favorable conver-
gence properties using simulations on some static topologies,
and provided performance bounds for the limit points of the gen-
erated iterates. Our results on quantized averaging algorithms
differ from these works in that we study a more general case of
time-varying topologies, and provide tight polynomial bounds
on both the convergence time and the discrepancy from the ini-
tial average, in terms of the number of quantization levels.

The paper is organized as follows. In Section II, we intro-
duce a general class of averaging algorithms, and present our
assumptions on the algorithm parameters and on the informa-
tion exchange among the agents. In Section III, we present our
main result on the convergence time of the averaging algorithms
under consideration. In Section IV, we present a distributed av-
eraging algorithm for the case of undirected graphs, which picks
the weights dynamically, resulting in an improved bound on the
convergence time. In Section V, we propose and analyze a quan-
tized version of the averaging algorithm. In particular, we estab-
lish bounds on the convergence time of the iterates, and on the
error between the final value and the average of the initial values
of the agents. Finally, we give our concluding remarks in Sec-
tion VI.

II. A CLASS OF AVERAGING ALGORITHMS

We consider a set of agents, which will
henceforth be referred to as “nodes.” Each node starts with
a scalar value . At each nonnegative integer time , node

receives from some of the other nodes a message with the
value of , and updates its value according to

(1)

where the are nonnegative weights with the property that
only if node receives information from node at

time . We use the notation to denote the weight matrix
, so that our update equation is

Given a matrix , we use to denote the set of directed
edges , including self-edges , such that . At
each time , the nodes’ connectivity can be represented by the
directed graph .

Our goal is to study the convergence of the iterates to
the average of the initial values, , as ap-
proaches infinity. In order to establish such convergence, we
impose some assumptions on the weights and the graph
sequence .

Assumption 1: For each , the weight matrix is a doubly
stochastic matrix1 with positive diagonal entries. Additionally,
there exists a constant such that if , then

.
The double stochasticity assumption on the weight matrix

guarantees that the average of the node values remains the same
at each iteration (cf. the proof of Lemma 4 below). The second
part of this assumption states that each node gives significant
weight to its values and to the values of its neighbors at each
time .

Our next assumption ensures that the graph sequence
is sufficiently connected for the nodes to repeatedly influence
each other’s values.

Assumption 2: There exists an integer such that the
directed graph

is strongly connected for all nonnegative integers .
Any algorithm of the form given in (1) with the sequence of

weights satisfying Assumptions 1 and 2 solves the aver-
aging problem. This is formalized in the following proposition.

Proposition 3: Let Assumptions 1 and 2 hold. Let be
generated by the algorithm (1). Then, for all , we have

This fact is a minor modification of known results in [3], [10],
[18], [19], where the convergence of each to the same
value is established under weaker versions of Assumptions 1
and 2. The fact that the limit is the average of the entries of
the vector follows from the fact that multiplication of a

1A matrix is called doubly stochastic if it is nonnegative and all of its rows
and columns sum to 1.
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vector by a doubly stochastic matrix preserves the average of
the vector’s components.

Recent research has focused on methods of choosing weights
that satisfy Assumptions 1 and 2, and minimize the con-

vergence time of the resulting averaging algorithm (see [21] for
the case of static graphs, see [15] and [2] for the case of sym-
metric weights, i.e., weights satisfying , and
also see [4], [7]). For static graphs, some recent results on op-
timal time-invariant algorithms may be found in [16].

III. CONVERGENCE TIME

In this section, we give an analysis of the convergence time of
averaging algorithms of the form (1). Our goal is to obtain tight
estimates of the convergence time, under Assumptions 1 and 2.

As a convergence measure, we use the “sample variance” of
a vector , defined as

where is the average of the entries of

Let denote the vector of node values at time [i.e., the
vector of iterates generated by algorithm (1) at time ]. We are
interested in providing an upper bound on the number of itera-
tions it takes for the “sample variance” to decrease to
a small fraction of its initial value . We first establish
some technical preliminaries that will be key in the subsequent
analysis. In particular, in the next subsection, we explore sev-
eral implications of the double stochasticity assumption on the
weight matrix .

A. Preliminaries on Doubly Stochastic Matrices

We begin by analyzing how the sample variance
changes when the vector is multiplied by a doubly stochastic
matrix . The next lemma shows that . Thus,
under Assumption 1, the sample variance is nonin-
creasing in , and can be used as a Lyapunov function.

Lemma 4: Let be a doubly stochastic matrix. Then,2 for all

where is the th entry of the matrix .
Proof: Let denote the vector in with all entries equal

to 1. The double stochasticity of implies

2In the sequel, the notation will be used to denote the double sum
.

Note that multiplication by a doubly stochastic matrix pre-
serves the average of the entries of a vector, i.e., for any ,
there holds

We now write the quadratic form explicitly, as
follows:

(2)

Let be the th entry of . Note that
is symmetric and stochastic, so that and

. Then, it can be verified that

(3)

where is a unit vector with the th entry equal to 1, and all
other entries equal to 0 (see also [22] where a similar decompo-
sition was used).

By combining (2) and (3), we obtain

Note that the entries of are nonnegative,
because the weight matrix has nonnegative entries. In view
of this, Lemma 4 implies that

Moreover, the amount of variance decrease is given by

We will use this result to provide a lower bound on the amount of
decrease of the sample variance in between iterations.

Since every positive entry of is at least , it follows that
every positive entry of is at least . Therefore, it
is immediate that

In our next lemma, we establish a stronger lower bound. In par-
ticular, we find it useful to focus not on an individual , but

Authorized licensed use limited to: MIT Libraries. Downloaded on February 11, 2010 at 14:50 from IEEE Xplore.  Restrictions apply. 
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Fig. 1. (a) Intuitively, � measures how much weight � assigns to nodes in
� (including itself), and � measures how much weight � assigns to nodes
in� . Note that the edge �� � � � is also present, but not shown. (b) For the case
where � � ���, we only focus on two-hop paths between � and elements
� � � obtained by taking ��� � � as the first step and the self-edge �� � � � as
the second step. (c) For the case where � � ���, we only focus on two-hop
paths between � and elements � � � obtained by taking �� � � � as the first
step in ���� and �� � �� as the second step in ��� �.

rather on all associated with edges that cross a par-
ticular cut in the graph . For such groups of ,
we prove a lower bound which is linear in , as seen in the fol-
lowing.

Lemma 5: Let be a row-stochastic matrix with positive
diagonal entries, and assume that the smallest positive entry in

is at least . Also, let be a partition of the set
into two disjoint sets. If

then

Proof: Let . From the definition of
the weights , we have , which shows that
there exist , , and some such that
and . For either case where belongs to or ,
we see that there exists an edge in the set that crosses
the cut . Let be such an edge. Without loss
of generality, we assume that and .

We define

See Fig. 1(a) for an illustration. Since is a row-stochastic ma-
trix, we have

implying that at least one of the following is true:

We consider these two cases separately. In both cases, we focus
on a subset of the edges and we use the fact that the elements

correspond to paths of length 2, with one step in and
another in .

Case (a): : We focus on those with
and . Indeed, since all are nonnegative, we have

(4)

For each element in the sum on the right-hand side, we have

where the inequalities follow from the facts that has nonneg-
ative entries, its diagonal entries are positive, and its positive
entries are at least . Consequently,

(5)

Combining (4) and (5), and recalling the assumption
, the result follows. An illustration of this argument can be

found in Fig. 1(b).
Case (b): : We focus on those with

and . We have

(6)

since all are nonnegative. For each element in the sum on
the right-hand side, we have

where the inequalities follow because all entries of are non-
negative, and because the choice implies that

. Consequently

(7)

Combining (6) and (7), and recalling the assumption
, the result follows. An illustration of this argument can be

found in Fig. 1(c).

B. A Bound on Convergence Time

With the preliminaries on doubly stochastic matrices in
place, we can now proceed to derive bounds on the decrease
of in between iterations. We will first somewhat relax
our connectivity assumptions. In particular, we consider the
following relaxation of Assumption 2.

Assumption 6: Given an integer , suppose that the com-
ponents of have been reordered so that they are in non-
increasing order. We assume that for every ,
we either have , or there exist some time

and some ,
such that or belongs to .

Lemma 7: Assumption 2 implies Assumption 6, with the
same value of .

Proof: If Assumption 6 does not hold, then there must exist
an index [for which holds] such that

Authorized licensed use limited to: MIT Libraries. Downloaded on February 11, 2010 at 14:50 from IEEE Xplore.  Restrictions apply. 
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there are no edges between nodes and nodes
during times . But this implies

that the graph

is disconnected, which violates Assumption 2.
For our convergence time results, we will use the weaker As-

sumption 6, rather than the stronger Assumption 2. Later on,
in Section IV, we will exploit the sufficiency of Assumption
6 to design a decentralized algorithm for selecting the weights

, which satisfies Assumption 6, but not Assumption 2.
We now proceed to bound the decrease of our Lyapunov func-

tion during the interval . In what
follows, we denote by the sample variance at
time .

Lemma 8: Let Assumptions 1 and 6 hold. Let be
generated by the update rule (1). Suppose that the components

of the vector have been ordered from largest to
smallest, with ties broken arbitrarily. Then, we have

Proof: By Lemma 4, we have for all

(8)

where is the -th entry of . Summing up
the variance differences over different values
of , we obtain

(9)

We next introduce some notation.
a) For all , let be the first time larger

than or equal to (if it exists) at which there is a com-
munication between two nodes belonging to the two sets

and , to be referred to as a com-
munication across the cut .

b) For all , let
, i.e., consists of “cuts”

such that time is the first communication time larger than
or equal to between nodes in the sets and

. Because of Assumption 6, the union of the
sets includes all indices , except possibly
for indices for which .

c) For all , let
.

d) For all , let
, i.e., consists of all

cuts such that the edge or at time is the
first communication across the cut at a time larger than or
equal to .

e) To simplify notation, let . By assumption,
we have .

We make two observations, as follows:
1) Suppose that . Then, for some , we

have either or . Because is
nonnegative with positive diagonal entries, we have

and by Lemma 5, we obtain

(10)

2) Fix some , with , and time
, and suppose that is nonempty. Let

, where the are arranged in in-
creasing order. Since , we have
and therefore . By the definition of , this im-
plies that there has been no communication between a
node in and a node in during
the time interval . It follows that .
By a symmetrical argument, we also have

(11)

These relations imply that

Since the components of are sorted in nonincreasing
order, we have , for every . For
any nonnegative numbers , we have

which implies that

(12)

We now use these two observations to provide a lower bound
on the expression on the right-hand side of (8) at time . We use
(12) and then (10), to obtain

Authorized licensed use limited to: MIT Libraries. Downloaded on February 11, 2010 at 14:50 from IEEE Xplore.  Restrictions apply. 
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We now sum both sides of the above inequality for different
values of , and use (9), to obtain

where the last inequality follows from the fact that the union of
the sets is only missing those for which .

We next establish a bound on the variance decrease that plays
a key role in our convergence analysis.

Lemma 9: Let Assumptions 1 and 6 hold, and suppose that
. Then

Proof: Without loss of generality, we assume that the com-
ponents of have been sorted in nonincreasing order. By
Lemma 8, we have

This implies that

Observe that the right-hand side does not change when we add
a constant to every . We can therefore assume, without
loss of generality, that , so that

Note that the right-hand side is unchanged if we multiply each
by the same constant. Therefore, we can assume, without loss

of generality, that , so that

(13)

The requirement implies that the average value of
is , which implies that there exists some such that

. Without loss of generality, let us suppose that this is
positive.3

3Otherwise, we can replace � with�� and subsequently reorder to maintain
the property that the components of � are in descending order. It can be seen
that these operations do not affect the objective value.

The rest of the proof relies on a technique from [12] to provide
a lower bound on the right-hand side of (13). Let

Note that for all and

Since for some , we have that ; since
, it follows that at least one is negative, and

therefore . This gives us

Combining with (13), we obtain

The minimization problem on the right-hand side is a symmetric
convex optimization problem, and therefore has a symmetric
optimal solution, namely for all . This results in
an optimal value of . Therefore

which is the desired result.
We are now ready for our main result, which establishes that

the convergence time of the sequence of vectors generated
by (1) is of order .

Theorem 10: Let Assumptions 1 and 6 hold. Then, there ex-
ists an absolute constant4 such that we have

Proof: The result follows immediately from Lemma 9.
Recall that, according to Lemma 7, Assumption 2 implies As-

sumption 6. In view of this, the convergence time bound of The-
orem 10 holds for any and any sequence of weights satisfying
Assumptions 1 and 2. In the next subsection, we show that this
bound is tight when the stronger Assumption 2 holds.

C. Tightness

The next proposition shows that the convergence time bound
of Theorem 10 is tight under Assumption 2.

Proposition 11: There exist constants and with the fol-
lowing property. For any , nonnegative integer ,

, and , there exist a sequence of weight matrices
satisfying Assumptions 1 and 2, and an initial value such
that if , then

Proof: Let be the circulant shift operator defined by
, , where is a unit vector with the -th

4We say � is an absolute constant when it does not depend on any of the
parameters in the problem, in this case ���� �� �.
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entry equal to 1, and all other entries equal to 0. Consider the
symmetric circulant matrix defined by

Let , when is a multiple of , and
otherwise. Note that this sequence satisfies Assumptions 1 and
2.

The second largest eigenvalue of is

([9, eq. (3.7)]). Therefore, using the inequality

For large enough, the quantity on the right-hand side is non-
negative. Let the initial vector be the eigenvector corre-
sponding to . Then

For the right-hand side to become less than , we need
. This implies that for to be-

come less than , we need .

IV. SAVING A FACTOR OF : FASTER AVERAGING

ON UNDIRECTED GRAPHS

In the previous section, we have shown that a large class of
averaging algorithms have convergence
time. Moreover, we have shown that this bound is tight, in the
sense that there exist matrices satisfying Assumptions 1 and 6
which converge in .

In this section, we consider decentralized ways of synthe-
sizing the weights while satisfying Assumptions 1 and
6. Our focus is on improving convergence time bounds by con-
structing “good” schemes.

We assume that the communications of the nodes are gov-
erned by an exogenous sequence of graphs
that provides strong connectivity over time periods of length .
This sequence of graphs constrains the matrices that we
can use; in particular, we require that if

. Naturally, we assume that for every .
Several such decentralized protocols exist. For example, each

node may assign

where is the degree of in . If is small enough and
the graph is undirected [i.e., if and only if

], this results in a nonnegative, doubly stochastic
matrix (see [15]). However, if a node has neighbors,
will be of order , resulting in convergence time.
Moreover, this argument applies to all protocols in which nodes
assign equal weights to all their neighbors; see [2] and [21] for
more examples.

In this section, we examine whether it is possible to syn-
thesize the weights in a decentralized manner, so that

whenever , where is a positive con-
stant independent of and . We show that this is indeed pos-
sible, under the additional assumption that the graphs are
undirected. Our algorithm is data-dependent, in that de-
pends not only on the graph , but also on the data vector

. Furthermore, it is a decentralized 3-hop algorithm, in that
depends only on the data at nodes within a distance of

at most 3 from . Our algorithm is such that the resulting se-
quences of vectors and graphs , with

, satisfy Assumptions 1 and 6.
Thus, a convergence time result can be obtained from Theorem
10.

A. The Algorithm

The algorithm we present here is a variation of an old load
balancing algorithm (see [8] and Chapter 7.3 of [1]).5

At each step of the algorithm, each node offers some of its
value to its neighbors, and accepts or rejects such offers from
its neighbors. Once an offer from to , of size , has been
accepted, the updates and are executed.

We next describe the formal steps the nodes execute at each
time . For clarity, we refer to the node executing the steps
below as node . Moreover, the instructions below sometimes
refer to the neighbors of node ; this always means current
neighbors at time , when the step is being executed, as deter-
mined by the current graph . We assume that at each time

, all nodes execute these steps in the order described below,
while the graph remains unchanged.

Balancing Algorithm:
1. Node broadcasts its current value to all its neighbors.
2. Going through the values it just received from its neigh-

bors, Node finds the smallest value that is less than its
own. Let be a neighbor with this value. Node makes
an offer of to node .
If no neighbor of has a value smaller than , node
does nothing at this stage.

3. Node goes through the incoming offers. It sends an ac-
ceptance to the sender of a largest offer, and a rejection to
all the other senders. It updates the value of by adding
the value of the accepted offer.
If node did not receive any offers, it does nothing at this
stage.

4. If an acceptance arrives for the offer made by node , node
updates by subtracting the value of the offer.

Note that the new value of each node is a linear combination
of the values of its neighbors. Furthermore, the weights
are completely determined by the data and the graph at most 3
hops from node in . This is true because in the course
of execution of the above steps, each node makes at most three
transmission to its neighbors, so the new value of node cannot
depend on information more than 3 hops away from .

5This algorithm was also considered in [16], but in the absence of a result
such as Theorem 10, a weaker convergence time bound was derived.
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B. Performance Analysis

In the following theorem, we are able to remove a factor of
from the worst-case convergence time bounds of Theorem 10.

Theorem 12: Consider the balancing algorithm, and suppose
that is a sequence of undirected graphs such
that is connected,
for all integers . There exists an absolute constant such that
we have

Proof: Note that with this algorithm, the new value at some
node is a convex combination of the previous values of itself
and its neighbors. Furthermore, the algorithm keeps the sum
of the nodes’ values constant, because every accepted offer in-
volves an increase at the receiving node equal to the decrease at
the offering node. These two properties imply that the algorithm
can be written in the form

where is a doubly stochastic matrix, determined by
and . It can be seen that the diagonal entries of are
positive and, furthermore, all nonzero entries of are larger
than or equal to 1/3; thus, .

We claim that the algorithm [in particular, the sequence
] satisfies Assumption 6. Indeed, suppose that at

time , the nodes are reordered so that the values
are nonincreasing in . Fix some , and
suppose that . Let and

.
Because of our assumptions on the graphs , there will be

a first time in the interval , at which
there is an edge in between some and .
Note that between times and , the two sets of nodes,
and , do not interact, which implies that ,
for , and , for .

At time , node sends an offer to a neighbor with the
smallest value; let us denote that neighbor by . Since

, we have , which
implies that . Node will accept the largest offer
it receives, which must come from a node with a value no
smaller than , and therefore no smaller than ;
hence the latter node belongs to . It follows that
contains an edge between and some node in , showing
that Assumption 6 is satisfied.

The claimed result follows from Theorem 10, because we
have shown that all of the assumptions in that theorem are sat-
isfied with .

V. QUANTIZATION EFFECTS

In this section, we consider a quantized version of the up-
date rule (1). This model is a good approximation for a network
of nodes communicating through finite bandwidth channels, so
that at each time instant, only a finite number of bits can be
transmitted. We incorporate this constraint in our algorithm by
assuming that each node, upon receiving the values of its neigh-
bors, computes the convex combination and

quantizes it. This update rule also captures a constraint that each
node can only store quantized values.

Unfortunately, under Assumptions 1 and 2, if the output of (1)
is rounded to the nearest integer, the sequence is not guar-
anteed to converge to consensus; see [11]. We therefore choose
a quantization rule that rounds the values down, according to

(14)

where represents rounding down to the nearest multiple of
, and where is some positive integer.

We adopt the natural assumption that the initial values are
already quantized.

Assumption 13: For all , is a multiple of .
For convenience we define

We use to denote the total number of relevant quantization
levels, i.e.,

which is an integer by Assumption 13.

A. Quantization Level Dependent Bound

We first present a convergence time bound that depends on
the quantization level .

Proposition 14: Let Assumptions 1, 2, and 13 hold. Let
be generated by the update rule (14). If , then

all components of are equal.
Proof: Consider the nodes whose initial value is . There

are at most of them. As long as not all entries of are
equal, then every iterations, at least one node must use a value
strictly less than in an update; such a node will have its value
decreased to or less. It follows that after iterations,
the largest node value will be at most . Repeating this
argument, we see that at most iterations are possible be-
fore all the nodes have the same value.

Although the above bound gives informative results for small
, it becomes weaker as (and, therefore, ) increases. On

the other hand, as approaches infinity, the quantized system
approaches the unquantized system; the availability of conver-
gence time bounds for the unquantized system suggests that
similar bounds should be possible for the quantized one. Indeed,
in the next subsection, we adopt a notion of convergence time
parallel to our notion of convergence time for the unquantized
algorithm; as a result, we obtain a bound on the convergence
time which is independent of the total number of quantization
levels.

B. Quantization Level Independent Bound

We adopt a slightly different measure of convergence for the
analysis of the quantized consensus algorithm. For any ,
we define and
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We will also use the simpler notation and to de-
note and , respectively, where it is more con-
venient to do so. The function will be our Lyapunov func-
tion for the analysis of the quantized consensus algorithm. The
reason for not using our earlier Lyapunov function, , is that
for the quantized algorithm, is not guaranteed to be mono-
tonically nonincreasing in time. On the other hand, we have that

for any6 . As a consequence,
any convergence time bounds expressed in terms of translate
to essentially the same bounds expressed in terms of , up to a
logarithmic factor.

Before proceeding, we record an elementary fact which will
allow us to relate the variance decrease to the
decrease, , of our new Lyapunov function. The
proof involves simple algebra, and is therefore omitted.

Lemma 15: Let and be real numbers
satisfying

Then, the expression

is a constant, independent of the scalar .
Our next lemma places a bound on the decrease of the Lya-

punov function between times and .
Lemma 16: Let Assumptions 1, 6, and 13 hold. Let be

generated by the update rule (14). Suppose that the components
of the vector have been ordered from largest to

smallest, with ties broken arbitrarily. Then, we have

Proof: For all , we view (14) as the composition of two
operators

where is a doubly stochastic matrix, and

where the quantization is carried out componentwise.
We apply Lemma 15 with the identification ,

. Since multiplication by a doubly stochastic matrix
preserves the mean, the condition is satisfied.

6The first inequality follows because �� ��� is minimized when � is the
mean of the vector �; to establish the second inequality, observe that it suffices
to consider the case when the mean of � is 0 and � ��� � �. In that case,
the largest distance between � and any � is 2 by the triangle inequality, so
� ��� � ��.

By considering two different choices for the scalar , namely,
and , we obtain

(15)

Note that . Therefore

(16)

Furthermore, note that since for
all , we have that .
Therefore

(17)

By combining (15)–(17), we obtain

Summing the preceding relations over
, we further obtain

To complete the proof, we provide a lower bound on the ex-
pression

Since for all , it follows from Lemma 4 that
for any :

where is the th entry of . Using this rela-
tion and following the same line of analysis used in the proof of
Lemma 8 [where the relation holds in view of the
assumption that is a multiple of for all , cf.
Assumption 13] , we obtain the desired result.

The next theorem contains our main result on the convergence
time of the quantized algorithm.

Theorem 17: Let Assumptions 1, 6, and 13 hold. Let
be generated by the update rule (14). Then, there exists an ab-
solute constant such that we have
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Proof: Let us assume that . From Lemma 16,
we have

where the components are ordered from largest to
smallest. Since , we have

Let . Clearly, for all , and
. Moreover, the monotonicity of implies the

monotonicity of

Thus

Next, we simply repeat the steps of Lemma 9. We can assume
without loss of generality that . Define

for and . We have that are all
nonnegative and . Therefore

The minimization problem on the right-hand side has an optimal
value of at least , and the desired result follows.

C. Extensions and Modifications

In this subsection, we comment briefly on some corollaries
of Theorem 17.

First, we note that the results of Section IV immediately carry
over to the quantized case. Indeed, in Section IV, we showed
how to pick the weights in a decentralized manner, based
only on local information, so that Assumptions 1 and 6 are sat-
isfied, with . When using a quantized version of the bal-
ancing algorithm, we once again manage to remove the factor
of from our upper bound.

Proposition 18: For the quantized version of the balancing
algorithm, and under the same assumptions as in Theorem 12,
if , then , where is an
absolute constant.

Second, we note that Theorem 17 can be used to obtain a
bound on the time until the values of all nodes are equal. In-
deed, we observe that in the presence of quantization, once the
condition is satisfied, all components of
must be equal.

Proposition 19: Consider the quantized algorithm
(14), and assume that Assumptions 1, 6, and 13 hold. If

, then all components of
are equal, where is an absolute constant.

D. Tightness

We now show that the quantization-level independent bound
in Theorem 17 is tight, even when the weaker Assumption 6 is
replaced with the stronger Assumption 2.

Proposition 20: There exist absolute constant s and with
the following property. For any nonnegative integer , ,

, and and , there exist a sequence of weight
matrices satisfying Assumptions 1 and 2, and an initial
value satisfying Assumption 13, and a number quantization
levels (depending on ) such that under the dynamics of
(14), if , then

Proof: We have demonstrated in Proposition 11 a similar
result for the unquantized algorithm. Namely, we have shown
that for large enough and for any , , and

, there exists a weight sequence and an initial vector
such that the first time when occurs after

steps. Let be this first time.
Consider the quantized algorithm under the exact same se-

quence , initialized at . Let refer to the value
of node at time in the quantized algorithm under this scenario,
as opposed to which denotes the value in the unquantized
algorithm. Since quantization can only decrease a nodes value
by at most at each iteration, it is easy to show, by induction,
that

We can pick large enough so that, for , the vector
is as close as desired to .

Therefore, for and for large enough ,
will be arbitrarily close to .

From the proof of Proposition 11, we see that is al-
ways a scalar multiple of . Since is in-
variant under multiplication by a constant, it follows that

. Since this last quan-
tity is above for , it follows that provided is large
enough, is also above for . This
proves the proposition.

E. Quantization Error

Despite favorable convergence properties of our quantized
averaging algorithm (14), the update rule does not preserve the
average of the values at each iteration. Therefore, the common
limit of the sequences , denoted by , need not be equal
to the exact average of the initial values. We next provide an
upper bound on the error between and the initial average, as
a function of the number of quantization levels.
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Fig. 2. Initial configuration. Each node takes the average value of its neighbors.

Proposition 21: There is an absolute constant such that for
the common limit of the values generated by the quan-
tized algorithm (14), we have

Proof: By Proposition 19, after
iterations, all nodes

will have the same value. Since and
the average decreases by at most at each iteration, the
result follows.

Let us assume that the parameters , , and are fixed.
Proposition 21 implies that as increases, the number of bits
used for each communication, which is proportional to ,
needs to grow only as to make the error negligible.
Furthermore, this is true even if the parameters , , and

grow polynomially in .
For a converse, it can be seen that bits are needed.

Indeed, consider nodes, with nodes initialized at 0, and
nodes initialized at 1. Suppose that ; we connect

the nodes by forming a complete subgraph over all the nodes
with value 0 and exactly one node with value 1; see Fig. 2 for
an example with . Then, each node forms the average of its
neighbors. This brings one of the nodes with an initial value of 1
down to 0, without raising the value of any other nodes. We can
repeat this process, to bring all of the nodes with an initial value
of 1 down to 0. Since the true average is , the final result
is away from the true average. Note now that can grow
linearly with , and still satisfy the inequality . Thus,
the number of bits can grow as , and yet, independent
of , the error remains .

VI. CONCLUSION

We studied distributed algorithms for the averaging problem
over networks with time-varying topology, with a focus on tight
bounds on the convergence time of a general class of averaging
algorithms. We first considered algorithms for the case where
agents can exchange and store continuous values, and estab-
lished tight convergence time bounds. We next studied aver-
aging algorithms under the additional constraint that agents can
only store and send quantized values. We showed that these al-
gorithms guarantee convergence of the agents values to con-
sensus within some error from the average of the initial values.

We provided a bound on the error that highlights the dependence
on the number of quantization levels.

Our paper is a contribution to the growing literature on dis-
tributed control of multi-agent systems. Quantization effects are
an integral part of such systems but, with the exception of a few
recent studies, have not attracted much attention in the vast lit-
erature on this subject. In this paper, we studied a quantization
scheme that guarantees consensus at the expense of some error
from the initial average value. We used this scheme to study the
effects of the number of quantization levels on the convergence
time of the algorithm and the distance from the true average.

The framework provided in this paper motivates a number of
further research directions:

a) The algorithms studied in this paper assume that there
is no delay in receiving the values of the other agents,
which is a restrictive assumption in network settings. Un-
derstanding the convergence of averaging algorithms and
implications of quantization in the presence of delays is
an important topic for future research.

b) We studied a quantization scheme with favorable conver-
gence properties, that is, rounding down to the nearest
quantization level. Investigation of other quantization
schemes and their impact on convergence time and error
is left for future work.

c) The quantization algorithm we adopted implicitly as-
sumes that the agents can carry out computations with
continuous values, but can store and transmit only quan-
tized values. Another interesting area for future work is
to incorporate the additional constraint of finite precision
computations into the quantization scheme.

d) Although our bounds are tight in the worst case over all
graphs, they are not guaranteed to perform better on well-
connected graphs as compared to sparse graphs with many
potential bottlenecks. An interesting question is whether
it is be possible to pick averaging algorithms that learn the
graph and make optimal use of its information diffusion
properties.
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