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On Distributed Convex Optimization Under
Inequality and Equality Constraints
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Abstract—We consider a general multi-agent convex optimiza-
tion problem where the agents are to collectively minimize a global
objective function subject to a global inequality constraint, a global
equality constraint, and a global constraint set. The objective func-
tion is defined by a sum of local objective functions, while the global
constraint set is produced by the intersection of local constraint
sets. In particular, we study two cases: one where the equality con-
straint is absent, and the other where the local constraint sets are
identical. We devise two distributed primal-dual subgradient algo-
rithms based on the characterization of the primal-dual optimal
solutions as the saddle points of the Lagrangian and penalty func-
tions. These algorithms can be implemented over networks with
dynamically changing topologies but satisfying a standard connec-
tivity property, and allow the agents to asymptotically agree on
optimal solutions and optimal values of the optimization problem
under the Slater’s condition.

Index Terms—Cooperative control, distributed optimization,
multi-agent systems.

I. INTRODUCTION

R ECENT advances in sensing, communication and com-
putation technologies are challenging the way in which

control mechanisms are designed for their efficient exploitation
in a coordinated manner. This has motivated a wealth of al-
gorithms for information processing, cooperative control, and
optimization of large-scale networked multi-agent systems per-
forming a variety of tasks. Due to a lack of a centralized au-
thority, the proposed algorithms aim to be executed by indi-
vidual agents through local actions, with the main feature of
being robust to dynamic changes of network topologies.

In this paper, we consider a general multi-agent optimiza-
tion problem where the goal is to minimize a global objective
function, given as a sum of local objective functions, subject
to global constraints, which include an inequality constraint, an
equality constraint and a (state) constraint set. Each local objec-
tive function is convex and only known to one particular agent.
On the other hand, the inequality (respectively, equality) con-
straint is given by a convex (respectively, affine) function and
known by all agents. Each node has its own convex constraint
set, and the global constraint set is defined as their intersection.
This problem is motivated by others in distributed estimation
[21], [28], distributed source localization [25], network utility
maximization [13], optimal flow control in power systems [23],
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[30] and optimal shape changes of mobile robots [9]. An im-
portant feature of the problem is that the objective and (or) con-
straint functions depend upon a global decision vector. This re-
quires the design of distributed algorithms where, on the one
hand, agents can align their decisions through a local informa-
tion exchange and, on the other hand, the common decisions
will coincide with an optimal solution and the optimal value.

Literature Review: In [2], the authors develop a general
framework for parallel and distributed computation over a
set of processors. Consensus problems, a class of canonical
problems on networked multi-agent systems, have been in-
tensively studied since then. A necessarily incomplete list of
references includes [22] tackling continuous-time consensus,
[2], [10], [16] investigating discrete-time versions, and [15]
where asynchronous implementation of consensus algorithms
is discussed. The papers [5], [6], [12], [29] treat randomized
consensus via gossip communication, achieving consensus
through quantized information, consensus over random graphs
and average consensus through memoryless erasure broadcast
channels, respectively. The convergence rate of consensus al-
gorithms is discussed, e.g., in [24], and the author in [7] derives
conditions to achieve different consensus values. Applications
of consensus algorithm to cooperative control are discussed in
[27].

In robotics and control communities, convex optimization has
been exploited to design algorithms coordinating mobile robots.
In [8], in order to increase the connectivity of a multi-agent
system, a distributed supergradient-based algorithm is proposed
to maximize the second smallest eigenvalue of the Laplacian
matrix of the state-dependent proximity graph. In [9], optimal
shape changes of mobile robots are achieved through second-
order cone programming techniques.

The recent papers [18], [20] are the most relevant to our work.
In [18], the authors solve a multi-agent unconstrained convex
optimization problem through a novel combination of average
consensus algorithms with subgradient methods. More recently,
the paper [20] further takes local constraint sets into account. To
deal with these constraints, the authors in [20] present an exten-
sion of their distributed subgradient algorithm, by projecting the
original algorithm onto the local constraint sets. Two cases are
solved in [20]: the first assumes that the network topologies can
dynamically change and satisfy a periodic strong connectivity
assumption, but then the local constraint sets are identical; the
second requires that the communication graphs are (fixed and)
complete and then the local constraint sets can be different. An-
other related paper is [11] where a special case of [20], the net-
work topology is fixed and all the local constraint sets are iden-
tical, is addressed.

Statement of Contributions: Building on the work [20], this
paper further incorporates global inequality and equality con-
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straints. More precisely, we study two cases: one in which the
equality constraint is absent, and the other in which the local
constraint sets are identical. For the first case, we adopt a La-
grangian relaxation approach, define a Lagrangian dual problem
and devise the distributed Lagrangian primal-dual subgradient
algorithm (DLPDS, for short) based on the characterization of
the primal-dual optimal solutions as the saddle points of the La-
grangian function. The DLPDS algorithm involves each agent
updating its estimates of the saddle points via a combination
of an average consensus step, a subgradient (or supgradient)
step and a primal (or dual) projection step onto its local con-
straint set (or a compact set containing the dual optimal set). The
DLPDS algorithm is shown to asymptotically converge to a pair
of primal-dual optimal solutions under the Slater’s condition
and the periodic strong connectivity assumption. Furthermore,
each agent asymptotically agrees on the optimal value by imple-
menting a dynamic average consensus algorithm developed in
[31], which allows a multi-agent system to track time-varying
average values.

For the second case, to dispense with the additional equality
constraint, we adopt a penalty relaxation approach, while
defining a penalty dual problem and devising the distributed
penalty primal-dual subgradient algorithm (DPPDS, for short).
Unlike the first case, the dual optimal set of the second case
may not be bounded, and thus the dual projection steps are
not involved in the DPPDS algorithm. It renders that dual
estimates and thus (primal) subgradients may not be uniformly
bounded. This challenge is addressed by a more careful choice
of step-sizes. We show that the DPPDS algorithm asymptoti-
cally converges to a primal optimal solution and the optimal
value under the Slater’s condition and the periodic strong
connectivity assumption.

II. PROBLEM FORMULATION AND ASSUMPTIONS

A. Problem Formulation

Consider a network of agents labeled by
that can only interact with each other through local communica-
tion. The objective of the multi-agent group is to cooperatively
solve the following optimization problem:

(1)

where is the convex objective function of agent ,
is the compact and convex constraint set of agent ,

and is a global decision vector. Assume that and are
only known by agent , and probably different. The function

is known to all the agents with each component
, for , being convex. The inequality
is understood component-wise; i.e., , for all

, and represents a global inequality constraint. The
function , defined as with

, represents a global equality constraint, and is known to
all the agents. We denote , ,
and . We assume
that the set of feasible points is non-empty; i.e., .
Since is compact and is closed, then we can deduce that

is compact. The convexity of implies that of and
thus is continuous. In this way, the optimal value of the

problem (1) is finite and , the set of primal optimal points,
is non-empty. Throughout this paper, we suppose the following
Slater’s condition holds:

Assumption 2.1 (Slater’s Condition): There exists a vector
such that and . And there exists a

relative interior point of such that where is a
relative interior point of ; i.e., and there exists an open
sphere centered at such that with
being the affine hull of .

In this paper, we will study two particular cases of problem
(1): one in which the global equality constraint is not
included, and the other in which all the local constraint sets are
identical. For the case where the constraint is absent,
the Slater’s condition 2.1 reduces to the existence of a vector

such that .

B. Network Model

We will consider that the multi-agent network oper-
ates synchronously. The topology of the network at time

will be represented by a directed weighted graph
where is

the adjacency matrix with being the weight assigned
to the edge and is the set of edges
with non-zero weights . The in-neighbors of node at time

are denoted by .
We here make the following assumptions on the network
communication graphs, which are standard in the analysis of
average consensus algorithms; e.g., see [22], [24], and dis-
tributed optimization in [18], [20].

Assumption 2.2 (Non-Degeneracy): There exists a constant
such that , and , for , satisfies

, for all .
Assumption 2.3 (Balanced Communication)1: It holds that

for all and , and
for all and .

Assumption 2.4 (Periodical Strong Connectivity): There is a
positive integer such that, for all , the directed graph

is strongly connected.

C. Notion and Notations

The notion of saddle point plays a critical role in our paper.
Definition 2.1 (Saddle Point): Consider a function

where and are non-empty subsets of and .
A pair of vectors is called a saddle point of

over if hold for all
.

Remark 2.1: Equivalently, is a saddle point of
over if and only if , and

.
In this paper, we do not assume the differentiability of and
. At the points where the function is not differentiable, the

subgradient plays the role of the gradient. For a given convex
function and a point , a subgradient of the
function at is a vector such that the following
subgradient inequality holds for any

.
Similarly, for a given concave function and a

point , a supgradient of the function at is a vector

1It is also referred to as double stochasticity.
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such that the following supgradient inequality
holds for any .

Given a set , we denote by its convex hull. We let
the function denote the projection operator
onto the non-negative orthant in . For any vector , we
denote , while is the 2-norm in the
Euclidean space.

III. CASE (I): ABSENCE OF EQUALITY CONSTRAINT

In this section, we study the case of problem (1) where the
equality constraint is absent; i.e.

(2)

We first provide some preliminaries, including a Lagrangian
saddle-point characterization of the problem (2) and finding a
superset containing its Lagrangian dual optimal set. We then
present the distributed Lagrangian primal-dual subgradient al-
gorithm and summarize the convergence properties.

A. Preliminaries

We here introduce some preliminary results which are essen-
tial to the development of the distributed Lagrangian primal-
dual subgradient algorithm.

1) A Lagrangian Saddle-Point Characterization: Firstly, the
problem (2) is equivalent to

with associated Lagrangian dual problem given by

Here, the Lagrangian dual function, , is defined as
, where is the La-

grangian function . We denote the
Lagrangian dual optimal value of the Lagrangian dual problem
by and the set of Lagrangian dual optimal points by . As
is well-known, under the Slater’s condition 2.1, the property of
strong duality holds; i.e., , and . The following
theorem is a standard result on Lagrangian duality stating that
the primal and Lagrangian dual optimal solutions can be char-
acterized as the saddle points of the Lagrangian function.

Theorem 3.1 (Lagrangian Saddle-Point Theorem [3]): The
pair of is a saddle point of the Lagrangian
function over if and only if it is a pair of primal
and Lagrangian dual optimal solutions and the following La-
grangian minimax equality holds:

This following lemma presents some preliminary analysis of
saddle points.

Lemma 3.1 (Preliminary Results on Saddle Points): Let
be any superset of .

(a) If is a saddle point of over , then
is also a saddle point of over .

(b) There is at least one saddle point of over .

(c) If is a saddle point of over , then
and is Lagrangian dual optimal.

Proof:
(a) It just follows from the definition of saddle point of over

.
(b) Observe that

Since the Slater’s condition 2.1 implies zero duality gap,
the Lagrangian minimax equality holds. From Theorem
3.1 it follows that the set of saddle points of over

is the Cartesian product . Recall that
and are non-empty, so we can guarantee the existence
of the saddle point of over . Then by (a), we
have that (b) holds.

(c) Pick any saddle point of over .
Since the Slater’s condition 2.1 holds, from Theorem
3.1 one can deduce that is a pair of primal and
Lagrangian dual optimal solutions. This implies that

From Theorem 3.1, we have . Hence,
. On the other hand, we pick any

saddle point of over . Then for all
and , it holds that .
By Theorem 3.1, then . Recall ,
and thus we have . Since

and , we have
. Combining the above two relations gives that

. From Remark 2.1 we
see that . Since

, then and thus
is a Lagrangian dual optimal solution.

Remark 3.1: Despite that (c) holds, the reverse of (a) may
not be true in general. In particular, may be infeasible; i.e.,

for some .
2) An Upper Estimate of the Lagrangian Dual Optimal Set:

In what follows, we will find a compact superset of . To do
that, we define the following primal problem for each agent :

Due to the fact that is compact and the are continuous,
the primal optimal value of each agent’s primal problem is
finite and the set of its primal optimal solutions is non-empty.
The associated dual problem is given by

Here, the dual function is defined by
, where is the Lagrangian

function of agent and given by .
The corresponding dual optimal value is denoted by . In this
way, is decomposed into a sum of local Lagrangian functions;
i.e., .
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Define now the set-valued map by
. Additionally, define a

function by . Ob-
serve that if is a Slater vector, then . The following
lemma is a direct result of Lemma 1 in [17].

Lemma 3.2 (Boundedness of Dual Solution Sets): The set
is bounded for any , and, in particular, for any

Slater vector , it holds that
.

Notice that . Picking any
Slater vector , and letting in Lemma 3.2
gives that

(3)

Define the function by
. By the property of weak du-

ality, it holds that and thus for any
. Since , thus for any

. With this observation, we pick any and the
following set is well-defined:

for some . Observe that for all

(4)

Since , it follows from (3) and (4) that

Hence, we have for all . To simplify
the notations, we will use the shorthands and

. It is easy to see that and are convex
and compact.

3) Convexity of : For each , we define the func-
tion as . Note that is
convex since it is a nonnegative weighted sum of convex func-
tions. For each , we define the function
as . It is easy to check that is a con-
cave (actually affine) function. Then the Lagrangian function
is the sum of a collection of convex-concave local functions.
This property motivates us to significantly extend primal-dual
subgradient methods in [1], [19] to the networked multi-agent
scenario.

B. Distributed Lagrangian Primal-Dual Subgradient
Algorithm

Here, we introduce the Distributed Lagrangian Primal-Dual
Subgradient Algorithm (DLPDS, for short) to find a saddle point
of the Lagrangian function over and the optimal value.
This saddle point will coincide with a pair of primal and La-
grangian dual optimal solutions which is not always the case;
see Remark 3.1.

Through the algorithm, at each time , each agent main-
tains the estimate of of the saddle point of the
Lagrangian function over and the estimate of of

. To produce (respectively, ), agent takes
a convex combination (respectively, ) of its estimate

(respectively, ) with the estimates of its neighboring
agents at time , makes a subgradient (respectively, supgradient)
step to minimize (respectively, maximize) the local Lagrangian
function , and takes a primal (respectively, dual) projection
onto the local constraint (respectively, ). Furthermore,
agent generates the estimate by taking a convex com-
bination of its estimate with those of its neighbors
at time and taking one step to track the variation of the local
objective function . More precisely, the DLPDS algorithm is
described as follows:

Initially, each agent picks a common Slater vector and a
common . Then agent computes through a
max-consensus algorithm, and computes the set with some

. Furthermore, agent chooses any initial state
, , and .
At every , each agent generates ,

and according to the following rules:

where (respectively, ) is the projection operator onto
the set (respectively, ), the scalars are non-neg-
ative weights and the scalars are step-sizes2. We
use the shorthands , and

.
The following theorem summarizes the convergence proper-

ties of the DLPDS algorithm.
Theorem 3.2: (Convergence Properties of the DLPDS Algo-

rithm): Consider the optimization problem (2). Let the non-de-
generacy assumption 2.2, the balanced communication assump-
tion 2.3 and the periodic strong connectivity assumptions 2.4
hold. Consider the sequences of , and
of the distributed Lagrangian primal-dual subgradient algorithm
with the step-sizes satisfying ,

, and . Then, there
is a pair of primal and Lagrangian dual optimal solutions

such that
and for all . Moreover,

for all .
Remark 3.2: For a convex-concave function, continuous-time

gradient-based methods are proved in [1] to converge globally
towards the saddle-point. Recently, [19] presents (discrete-time)

2Each agent � executes the update law of � ��� for � � �.
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primal-dual subgradient methods which relax the differentia-
bility in [1] and further incorporate state constraints. The
method in [1] is adopted by [14] and [26] to study a distributed
optimization problem on fixed graphs where objective functions
are separable.

The DLPDS algorithm is a generalization of primal-dual sub-
gradient methods in [19] to the networked multi-agent scenario.
It is also an extension of the distributed projected subgradient al-
gorithm in [20] to solve multi-agent convex optimization prob-
lems with inequality constraints. Additionally, the DLPDS algo-
rithm enables agents to find the optimal value. Furthermore, the
DLPDS algorithm objective is that of reaching a saddle point of
the Lagrangian function in contrast to achieving a (primal) op-
timal solution in [20].

IV. CASE (II): IDENTICAL LOCAL CONSTRAINT SETS

In last section, we study the case where the equality constraint
is absent in problem (1). In this section, we turn our attention
to another case of problem (1) where is taken into
account but we require that local constraint sets are identical;
i.e., for all . We first adopt a penalty relax-
ation and provide a penalty saddle-point characterization of the
primal problem (1) with . We then introduce the dis-
tributed penalty primal-dual subgradient algorithm, followed by
its convergence properties.

A. Preliminaries

Some preliminary results are developed in this section, and
these results are essential to the design of the distributed penalty
primal-dual subgradient algorithm.

1) A Penalty Saddle-Point Characterization: The primal
problem (1) with is equivalent to the following:

(5)

with associated penalty dual problem given by

(6)

Here, the penalty dual function, ,
is defined by , where

is the penalty function given
by . We de-
note the penalty dual optimal value by and the set of penalty
dual optimal solutions by . We define the penalty function

for each agent as follows:
. In this way, we

have that . As proven in the
next lemma, the Slater’s condition 2.1 ensures zero duality gap
and the existence of penalty dual optimal solutions.

Lemma 4.1: (Strong Duality and Non-Emptyness of the
Penalty Dual Optimal Set): The values of and coincide,
and is non-empty.

Proof: Consider the auxiliary Lagrangian function
given by

, with the associated dual problem defined by

(7)

Here, the dual function, , is defined
by . The dual optimal value
of problem (7) is denoted by and the set of dual optimal
solutions is denoted . Since is convex, and , for

, are convex, is finite and the Slater’s con-
dition 2.1 holds, it follows from Proposition 5.3.5 in [3] that

and . We now proceed to characterize and
. Pick any . Since , then

(8)

On the other hand, pick any . Then is feasible,
i.e., , and . It implies that

holds for any
and , and thus

. Therefore, we have .
To prove , we pick any . From (8) and

, it follows that and thus .
The following is a slight extension of Theorem 3.1 to penalty

functions.
Theorem 4.1: (Penalty Saddle-Point Theorem): The pair of

is a saddle point of the penalty function over
if and only if it is a pair of primal and penalty dual

optimal solutions and the following penalty minimax equality
holds:

Proof: The proof is analogous to that of Proposition 6.2.4
in [4], and thus omitted here. For the sake of completeness, we
provide the details in the enlarged version [32].

2) Convexity of : Since is convex and is convex
and non-decreasing, thus is convex in for each

. Denote . Since is convex
and is an affine mapping, then is convex in

for each .
We denote . For each , we define

the function as . Note
that is convex in by using the fact that a nonnegative
weighted sum of convex functions is convex. For each ,
we define the function as

. It is easy to check that is concave (actually
affine) in . Then the penalty function is the sum of
convex-concave local functions.

Remark 4.1: The Lagrangian relaxation does not fit to our
approach here since the Lagrangian function is not convex in
by allowing entries to be negative.

B. Distributed Penalty Primal-Dual Subgradient Algorithm

We now proceed to devise the Distributed Penalty Primal-
Dual Subgradient Algorithm (DPPDS, for short), that is based
on the penalty saddle-point theorem 4.1, to find the optimal
value and a primal optimal solution to the primal problem (1)
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with . The main steps of the DPPDS algorithm are de-
scribed as follow.

Initially, agent chooses any initial state ,
, , and . At every time

, each agent computes the following convex combinations:

and generates , , and
according to the following rules:

where is the projection operator onto the set , the scalars
are non-negative weights and the positive scalars

are step-sizes3. The vector defined below is a subgradient
of at where

Given a step-size sequence , we define the sum over
by and assume that:

Assumption 4.1 (Step-Size Assumption): The step-
sizes satisfy , ,

, and ,
, .

The following theorem characterizes the convergence of the
DPPDS algorithm where a optimal solution and the optimal
value are asymptotically achieved.

Theorem 4.2 (Convergence Properties of the DPPDS Al-
gorithm): Consider the problem (1) with . Let the
non-degeneracy assumption 2.2, the balanced communication
assumption 2.3 and the periodic strong connectivity assumption
2.4 hold. Consider the sequences of and
of the distributed penalty primal-dual subgradient algorithm
where the step-sizes satisfy Assumption 4.1. Then
there exists a primal optimal solution such that

for all . Furthermore, we
have for all .

3Each agent � executes the update law of � ��� for � � �.

Remark 4.2: As the primal-dual subgradient algorithm in
[1], [19], the DPPDS algorithm produces a pair of primal and
dual estimates at each step. Main differences include: firstly,
the DPPDS algorithm extends the primal-dual subgradient al-
gorithm in [19] to the multi-agent scenario; secondly, it further
takes the equality constraint into account. The presence of the
equality constraint can make unbounded. Therefore, unlike
the DLPDS algorithm, the DPPDS algorithm does not involve
the dual projection steps onto compact sets. This may cause
the subgradient not to be uniformly bounded, while the
boundedness of subgradients is a standard assumption in the
analysis of subgradient methods, e.g., see [3], [4], [17]–[20].
This difficulty will be addressed by a more careful choice of the
step-size policy; i.e, Assumption 4.1, which is stronger than the
more standard diminishing step-size scheme, e.g., in the DLPDS
algorithm and [20]. We require this condition in order to prove,
in the absence of the boundedness of , the existence of
a number of limits and summability of expansions toward The-
orem 4.2. Thirdly, the DPPDS algorithm adopts the penalty re-
laxation instead of the Lagrangian relaxation in [19].

Remark 4.3: Observe that , and
(due to the fact that is convex). Furthermore,

is a supgradient of ;
i.e., the following penalty supgradient inequality holds for any

and :

(9)

In addition, a step-size sequence that satisfies the step-size as-
sumption 4.1 is the harmonic series .
The verification can be found in the extended version [32].

V. CONVERGENCE ANALYSIS

We next provide the proofs for Theorem 3.2 and 4.2. We
start our analysis by providing some useful properties of the se-
quences weighted by .

Lemma 5.1: (Convergence Properties of Weighted Se-
quences): Let . Consider the sequence defined
by where ,

and .
(a) If , then .
(b) If , then .

Proof:
(a) For any , there exists such that

for all . Then the following holds for all :

Take the limit on in the above estimate and we have
. Since is arbitrary, then

.
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(b) For any , there exists such that
for all . Then we have

Take the limit on in the above estimate and we have
. Since is arbitrary, then

.

Proofs of Theorem 3.2

We now proceed to show Theorem 3.2. To do that, we first
rewrite the DLPDS algorithm into the following form:

where and are projection errors described by

and is the local input
which allows agent to track the variation of the local objective
function .

Lemma 5.2 (Lipschitz Continuity of ): Consider and
. Then there are and such that

and for each pair of and
. Furthermore, for each , the

function is Lipschitz continuous with Lipschitz constant
over , and for each , the func-

tion is Lipschitz continuous with Lipschitz constant over
.

Proof: The readers can find the proof in [32].
The following lemma provides a basic iteration relation used

in the convergence proof for the DLPDS algorithm. Many sim-
ilar relations have been employed to analyze the subgradient
methods in, e.g., [18], [20], [28].

Lemma 5.3 (Basic Iteration Relation): Let the balanced com-
munication assumption 2.3 and the periodic strong connectivity
assumption 2.4 hold. For any , any and all ,
the following estimates hold:

(10)

(11)

Proof: By Lemma 1 in [20] with ,
and , we have that for all

(12)

One can show (11) by substituting the following Lagrangian
supgradient inequality into (12):

Similarly, the equality (10) can be shown by using the following
Lagrangian subgradient inequality:

.
The following lemma shows that the consensus is asymptot-

ically reached.
Lemma 5.4 (Achieving Consensus): Let the non-de-

generacy assumption 2.2, the balanced communication
assumption 2.3 and the periodic strong connectivity as-
sumption 2.4 hold. Consider the sequences of ,

and of the DLPDS algorithm with the
step-size sequence satisfying .
Then there exist and such that

,
for all , and for all ,

.
Proof: Observe that and

. Then it follows from Lemma 5.2 that
. From Lemma 5.3 it follows that:

(13)



158 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 1, JANUARY 2012

Notice that ,
and are bounded. Since is continuous, then

and are bounded. Since
, the last two terms on the right-hand

side of (13) converge to zero as . One can verify that
exists for any .

On the other hand, taking limits on both sides of (10) we
obtain and there-
fore we deduce that for all .
It follows from [31] that
for all , . Combining this with the property that

exists for any , we deduce that
there exists such that for
all . Since and is closed, it implies that

for all and thus . Similarly, one can show
that there is such that
for all .

Since and is continuous,
then . It follows from [31] that

for all , .
From Lemma 5.4, we know that the sequences of and

of the DLPDS algorithm asymptotically agree on to
some point in and some point in , respectively. Denote by

the set of such limit points. Denote by the average
of primal and dual estimates and

, respectively. The following lemma
further characterizes that the points in are saddle points of the
Lagrangian function over .

Lemma 5.5 (Saddle-Point Characterization of ): Each point
in is a saddle point of over .

Proof: Denote by the maximum deviation of primal
estimates . Notice that

. Denote by the maximum deviation
of dual estimates . Sim-
ilarly, we have . We will show this
lemma by contradiction. Suppose that there is
which is not a saddle point of over . At least one of
the following holds:

(14)

(15)

Suppose first that (14) holds. Then, there exists such that
. Consider the sequences of

and which converge respectively to and defined
above. The estimate (10) leads to

where ,
,

, ,
, and .

It follows from the Lipschitz continuity property of ; see
Lemma 5.2, that:

Since , ,
, and , then

all , , , , converge to zero as
. Then there exists such that for all , it

holds that

Similarly, we have that for all , it holds that

Since and and
, are bounded, the above estimate yields a

contradiction by taking sufficiently large. In other words, (14)
cannot hold. Following a parallel argument, one can show that
(15) cannot hold either. This ensures that each is
a saddle point of over .

The combination of (c) in Lemmas 3.1 and Lemma 5.5 gives
that, for each , we have that and

is Lagrangian dual optimal. We still need to verify that is
a primal optimal solution. We are now in the position to show
Theorem 3.2 based on two claims.

Proofs of Theorem 3.2:
Claim 1: Each point is a point in .

Proof: The Lagrangian dual optimality of follows
from (c) in Lemma 3.1 and Lemma 5.5. To characterize the
primal optimality of , we define an auxiliary sequence

by which is a
weighted version of the average of primal estimates. Since

, it follows from Lemma 5.1 (b) that
.
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Since is a saddle point of over , then
for any ; i.e., the following re-

lation holds for any :

(16)

Choose where
is given in the definition of . Then and

implying . Letting
in (16) gives that .

Since , we have . On the other hand, we
choose and then . Letting in (16)
gives that and thus . The
combination of the above two estimates guarantees the property
of .

We now proceed to show by contradiction. As-
sume that does not hold. Denote

and .
Then . Since is continuous and converges to ,
there exists such that for all
and all . Since converges to , without loss
of generality, we say that for
all . Choose such that for and

for . Since and
, thus . Furthermore, ,

then . Equating to and letting in
the estimate (12), the following holds for :

(17)

Summing (17) over with , dividing by
on both sides, and using

, we obtain

(18)

Since , are bounded and
, then the limit of the first term on the right hand side

of (18) is zero as . Since ,
then the limit of the second term is zero as .
Since and , thus

.
Then it follows from Lemma 5.1 (b) that then the limit

of the third term is zero as . Then we have
. Recall that ,

and . Then we reach a contradiction, implying
that .

Since and , then is a feasible solution
and thus . On the other hand, since is a convex
combination of and is convex, thus we
have the following estimate:

(19)

Recall the following convergence properties:

It follows from Lemma 5.1 (b) that . Therefore, we
have , and thus is a primal optimal point.

Claim 2: It holds that .
Proof: The following can be proven by induction on for

a fixed :

(20)

Let in (20) and recall that initial state
for all . Then we have

. The combination of this relation with
gives the desired result.

Proofs of Theorem 4.2

In order to analyze the DPPDS algorithm, we first rewrite it
into the following form:

where is projection error described by

and , ,
are some local in-

puts. Denote by the maximum deviations of dual estimates
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and .
Before showing Lemma 5.6, we present some useful facts.
Since is compact, and , and are continuous, there
exist , , such that for all , it holds that

for all , and .
Since is a compact set and , , are convex,
then it follows from Proposition 5.4.2 in [3] that there exist

, , such that for all , it holds that
,

and . Denote by the av-
erages of primal and dual estimates ,

and .
Lemma 5.6 (Diminishing and Summable Properties): Sup-

pose the balanced communication assumption 2.3 and the step-
size assumption 4.1 hold.

(a) It holds that ,
,

, and the sequences of
, and

are summable.
(b) The sequences ,

, ,
and

are summable.
Proof: (a) Notice that

where in the last equality we use the balanced communication
assumption 2.3. Recall that . This implies that the
following inequalities hold for all :

From here, then we deduce the following recursive estimate on
. Repeatedly

applying the above estimates yields that

(21)

Similar arguments can be employed to show that

(22)

Since and ,
then we know that and

. Notice that the following
estimate on holds:

(23)

Recall that ,
and . Then the result of

follows. By (21), we have

It follows from the step-size assumption 4.1 that
. Similarly, one can show that

. By using (21), (22) and (23), we
have the following estimate:

Then the summability of , and
verifies that of .

(b) Consider the dynamics of which is in the same
form as the distributed projected subgradient algorithm in
[20]. Recall that is uniformly bounded. Then
following from Lemma 7.1 in Appendix with
and , we have the summability of

. Then
is summable by using the following set of inequalities:

(24)

where we use . Similarly, it holds that

. We now consider the
evolution of . Recall that . By Lemma 1 in [20]
with , and , we have
the following:

and thus . With this re-
lation, from Lemma 7.1 with and , the
following holds for some and :

(25)
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Multiplying both sides of (25) by and using (23),
we obtain

Notice that the above inequalities hold for all . Then by
employing the relation of and regrouping
similar terms, we obtain

Part (a) gives that is summable. Combining
this fact with , then
we can say that the first term on the right-hand side in the
above estimate is summable. It is easy to check that the
second term is also summable. It follows from Part (a) that

and
is summable. Then

Lemma 7 in [20] with
ensures that the third term is summable. Therefore,

the summability of is
guaranteed. Following the same lines in (24), one can show
the summability of . Analo-
gously, the sequences of and

are summable.
Remark 5.1: In Lemma 5.6, the assumption of all local con-

straint sets being identical is utilized to find an upper bound of
the convergence rate of to zero. This property
is crucial to establish the summability of expansions pertaining
to in part (b).

The following lemma provides basic iteration relations of the
DPPDS algorithm.

Lemma 5.7 (Basic Iteration Relation): The following esti-
mates hold for any and :

(26)

(27)

Proof: The proof is similar to that of Lemma 5.3.
Lemma 5.8 (Achieving Consensus): Let us suppose that the

non-degeneracy assumption 2.2, the balanced communication
assumption 2.3 and the periodical strong connectivity assump-
tion 2.4 hold. Consider the sequences of , ,

and of the distributed penalty primal-dual
subgradient algorithm with the step-size sequence
and the associated satisfying
and . Then there exists
such that for all .
Furthermore, ,

and
for all , .

Proof: The proof is analogous to Lemma 5.4 and provided
in the enlarged version of [32].

We now proceed to show Theorem 4.2 based on five claims.
Proof of Theorem 4.2:

Claim 1: For any and
, the sequences of

and
are summable.

Proof: Observe that

(28)

By using the summability of and
in Part (b) of Lemma 5.6, we have that

and thus
are summable. Similarly, the

following estimates hold:

Then the property of in
Part (b) of Lemma 5.6 implies the summability of the se-
quence
and thus the sequence

.
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Claim 2: Denote the weighted version of as
. The following

property holds: .
Proof: Summing (26) over and replacing by

leads to

(29)

The summability of in Part (b) of Lemma 5.6
implies that the right-hand side of (29) is finite as , and
thus

(30)

Pick any . It follows from Theorem 4.1 that
is a saddle point of over . Notice

that . Combining this
relation, Claim 1 and (30) renders that

and thus . On the other hand,
implies that .

Similarly, by using (27) with , , and Claim 1,
we have . We reach the desired
relation.

Claim 3: Denote by
.

Denote the weighted version of as
. The

following property holds: .

Proof: Notice that

(31)

By using the boundedness of subdifferentials and the primal es-
timates, it follows from (31) that:

(32)

Then it follows from (b) in Lemma 5.6 that
is summable. Notice that

, and thus
. The desired result

immediately follows from Claim 2.
Claim 4: The limit point in Lemma 5.8 is primal optimal.

Proof: Let . By the
balanced communication assumption 2.3, we obtain

This implies that the sequence is non-decreasing in
. Observe that is lower bounded by zero. In this

way, we distinguish the following two cases:
Case 1: The sequence is upper

bounded. Then is convergent in .
Recall that for
all , . This implies that there exists

such that
for all . Observe that

. Thus,
we have , im-
plying that . Since

for all , then
, and thus .

Case 2: The sequence is not upper bounded. Since
is non-decreasing, then . It follows

from Claim 3 and (a) in Lemma 5.1 that it is impossible that



ZHU AND MARTÍNEZ: ON DISTRIBUTED CONVEX OPTIMIZATION UNDER INEQUALITY AND EQUALITY CONSTRAINTS 163

. Assume that . Then
we have the following:

(33)

Notice that the right-hand side of (33) diverges and so does
. Then we reach a contradiction, implying

that .
In both cases, we have for any . By

utilizing similar arguments, we can further prove that
. Since , then is feasible and thus . On the

other hand, since is a convex com-
bination of and , then
Claim 3 and (b) in Lemma 5.1 implies that

Hence, we have and thus .
Claim 5: It holds that .

Proof: The proof follows the same lines in Claim 2 of The-
orem 3.2, and thus omitted here.

VI. CONCLUSION

We have studied a general multi-agent optimization problem
where the agents aim to minimize a sum of local objective func-
tions subject to a global inequality constraint, a global equality
constraint and a global constraint set defined as the intersection
of local constraint sets. We have considered two cases: the first
one in the absence of the equality constraint and the second one
with identical local constraint sets. To address these cases, we
have introduced two distributed subgradient algorithms which
are based on primal-dual methods. These two algorithms were
shown to asymptotically converge to primal solutions and op-
timal values.

APPENDIX

Consider the distributed projected subgradient algorithm pro-
posed in [20]: . Denote by

. The following is a
slight modification of Lemma 8 and its proof in [20].

Lemma 7.1: Let Assumption 2.2, 2.3 and 2.4 hold. Suppose
is a closed and convex set. Then there exist and

such that

Suppose is uniformly bounded for each
, and , then we have

.
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