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ABSTRACT

In CD grammar systems, the rewriting process is distributed over component grammars
that take turns in the derivation of new symbols. Team automata however collaborate
by synchronising their actions. Here we investigate how to transfer this concept of
synchronisation to grammars by defining grammar teams that agree on the generation
of shared terminal symbols based on a novel notion of competence. We first illustrate
this idea for the case of regular grammars and next propose an extension to the case
of context-free grammars.
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1. Introduction

When a scientist encounters difficulties when trying to solve a complex problem,
(s)he might try to approach the problem in cooperation or collaboration with other
scientist(s). To this aim, modern means of communication like e-mail and skype
are used but also blackboards. In Artificial Intelligence, the blackboard model of
problem solving was defined as a method of cooperative problem solving. The problem
is specified on a blackboard. A number of participants contribute, regulated by a
cooperation strategy, to the solution of the problem by editing the blackboard. During
this cooperative process, the participants communicate through the blackboard. If
their cooperation is successful, the solution will appear on the blackboard.

Together with an expert in AI, Erzsébet Csuhaj-Varjú established a link between
this blackboard model of problem solving and formal languages [13]. In [11], so-called
Cooperating Distributed (CD) grammar systems have been proposed to formalise this
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link. The participants are modelled as grammars that edit the blackboard by rewrit-
ing a sentential form taking turns. Their cooperation strategy is regulated by so-called
derivation modes and solutions are represented by terminal words. Contrary to the
classical notion of a single grammar generating a language, the grammars forming a
grammar system work together and generate a language by cooperating. This idea
has given rise to a lively field of formal language theory known as grammar systems.
In ter Beek’s M.Sc. thesis, supervised by Csuhaj-Varjú, Kleijn, and Rozenberg, the
idea of teams in grammar systems – originally introduced in [20] – was explored [1, 2].
Whereas in CD grammar systems, grammars rewrite sequentially taking turns, gram-
mars forming a team within the system rewrite several occurrences of nonterminals in
parallel. On the other hand, in team automata (see, e. g., ter Beek’s Ph.D. thesis [3]
and [6, 9, 10]), the basic concept is collaboration through synchronisation rather than
distributed cooperation either by taking turns in rewriting or parallel rewriting. The
automata forming a team automaton collaborate to recognise a language by synchro-
nising on shared actions (i. e., they agree on the simultaneous execution of labelled
transitions) according to a specific synchronisation strategy.

In this paper, we propose to transfer the concept of synchronisation to grammars.
We define teams of grammars that synchronise on the generation of shared terminal
symbols based on a novel notion of competence of the grammars forming the team.
Thus grammars should now agree on which terminal to insert in the sentential form
and so this concept adds to the blackboard model the idea that experts collaborate
and agree on a common contribution to the solution.

After a preliminary section we formally introduce CD grammar systems and team
automata, pointing out resemblances and differences between the distributed cooper-
ation strategies of CD grammar systems and the synchronised collaboration strategies
of team automata. Using the close relationship between finite automata and regu-
lar grammars, we first focus on the synchronisation of regular grammars. Next we
demonstrate how this concept could be extended to the case of context-free grammars.
In the concluding section we reflect on what we have achieved, mention related work,
and indicate some interesting questions for future research. Although the investiga-
tions presented in this paper have no conclusive results yet, we would like to argue
that they point towards a hitherto missing link between distributed cooperation and
synchronised collaboration in the context of rewriting systems.

2. Preliminaries

The following notation is used: \ for set difference; ⊆ for set inclusion and ⊂ for
strict inclusion; and [n] for the set {1, . . . , n}. Let V1, . . . , Vn be sets. Then

∏
i∈[n] Vi

is their cartesian product. If v = (v1, . . . , vn) ∈
∏

i∈[n] Vi and i ∈ [n], then the i-th
entry of v is obtained by applying the projection function proji(v) = vi.

We assume some familiarity with formal language theory [24]. An alphabet is a
finite nonempty set of symbols. A word over an alphabet Σ is a finite string of symbols
from Σ. By |w| we denote the length of a word w, i. e., the number of occurrences
of symbols from Σ in w; and alph(w) is the set of symbols that occur at least once
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in w.We use λ to denote the empty word; |λ| = 0. The set of all nonempty words
over Σ is denoted by Σ+ and Σ∗ consists of all words over Σ. Any subset of Σ∗ is a
language (over Σ).

A context-free grammar is a quadruple G = (N,T, S, P ), with disjoint finite sets N
of nonterminal symbols and T of terminal symbols, axiom S ∈ N , and finite set P
of productions of the form A → α, for A ∈ N and α ∈ (N ∪ T )∗. The alphabet of a
production π : A → α is defined as alph(π) = alph(Aα) and its terminal alphabet as
alph(π) ∩ T . If all productions of G are of the form A → zB or A → z, for A,B ∈ N
and z ∈ T ∪ {λ}, then G is regular. G is in Greibach normal form (GNF) if each
production in P is of the form S → λ or A → zα, for A ∈ N , z ∈ T , α ∈ (N \ {S})∗,
and |α|≤2 [19]. In this paper, we often assume context-free grammars to be in GNF.

A word x directly derives a word y in G, x ⇒G y, iff x = x1Ax2, y = x1αx2, and
A → α ∈ P for x1, x2 ∈ (N ∪ T )∗. Such a one-step derivation is extended to a k-step
derivation, x ⇒k

G y for some k ≥ 0, iff there are words x0, . . . , xk such that x = x0,
y = xk and xi ⇒G xi+1, for all 0 ≤ i ≤ k − 1. G may be omitted if it is clear from
the context. The transitive (and reflexive) closure of ⇒ is denoted by ⇒+ (⇒∗).

The language generated by G is defined as L(G) = {w ∈ T ∗ | S ⇒∗
G w }. A word

w ∈ (N ∪T )∗ is called a sentential form (word if w ∈ T ∗) of G iff S ⇒∗
G w. The family

of context-free (regular) languages generated by context-free (regular) grammars is
denoted by CF (REG , respectively). It is well known that REG ⊂ CF .

3. CD Grammar Systems and Team Automata

In this section we first recall CD grammar systems, in which grammars cooperate
by taking turns in rewriting according to their own productions until they have to
hand over the string as determined by a cooperation strategy (mode). Subsequently
we recall team automata, which consist of a conglomerate of component automata
forming a product automaton in which some combinations of components’ transitions
with a common label are synchronised.

3.1. CD Grammar Systems

The underlying philosophy is that grammars cooperate by individually rewriting a
sentential form repeatedly until passing it to a colleague.

A cooperating distributed grammar system (CDGS) of degree n ≥ 1 is a construct
G = (N,T, S, P1, . . . , Pn), with finite sets N of nonterminals and T of terminals,
N ∩ T = ∅, axiom S ∈ N , and finite sets P1, . . . , Pn of context-free productions
of the form A → α, for A ∈ N and α ∈ (N ∪ T )∗. We refer to both the Pi and
Gi = (N,T, S, Pi) as component grammars or components for short.

Let 1 ≤ i, k ≤ n and x, y ∈ (N ∪ T )∗. We define a (sequential) rewriting step as
x ⇒i y iff x = x1Ax2 and y = x1αx2, for some A → α ∈ Pi and we denote a k-step
derivation by ⇒k

i . Subscript i refers to the component used. A CDGS G rewrites by
means of a cooperation strategy f ∈ {≤k,=k,≥k | k ≥ 1 } ∪ {∗, t}, defined as follows:

x ⇒≤k
G y iff there exists a Pi such that x ⇒0

i y or x ⇒j
i y for some j ≤ k,
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x ⇒=k
G y iff there exists a Pi such that x ⇒k

i y,

x ⇒≥k
G y iff there exists a Pi such that x ⇒`

i y for some ` ≥ k,

x ⇒ ∗
G y iff there exists a Pi such that x ⇒0

i y or x ⇒k
i y for some k,

x ⇒ t
G y iff there exists a Pi such that x ⇒∗

i y and no z exists for which y ⇒i z.

The language generated by a CDGS G depends on the cooperation strategy:

Lf (G) = {w ∈ T ∗ | S = w1 ⇒f
G · · · ⇒f

G wn = w and n ≥ 1 }.

The language family generated by CD grammar systems with context-free produc-
tions, at most n components, and cooperation strategy f , with

f ∈ {≤k,=k,≥k | k ≥ 1 } ∪ {∗, t},

is denoted by CDn(f). Denote CD(f) =
⋃

n≥1 CDn(f) and CDREG(f) when limited
to regular productions.

Example 1 Consider the CDGS G1 = ({S, A,B}, {a, b, c}, S, P1, P2, P3), with

P1 = {S → aS, S → aB}, P2 = {B → bB,B → bC}, P3 = {C → cC, C → c}.

Then Lt(G1) = a+b+c+. Derivations are as follows:

S ⇒t
1 aS ⇒t

1 · · · ⇒t
1 a+B ⇒t

2 a+bB ⇒t
2 · · · ⇒t

2 a+b+C

⇒t
3 A+b+cC ⇒t

3 · · · ⇒t
3 a+b+c+.

Example 2 Consider the CDGS G2 = ({S, A,B,A′, B′}, {a, b, c}, S, P1, P2, P3), with
P1 = {S → λ, S → aA′S′, S′ → bB′S′′, S′′ → cC ′, A → aA′, B → bB′, C → cC ′},
P2 = {A′ → aA,B′ → bB,C ′ → cC}, and P3 = {A′ → a,B′ → b, C ′ → c}. Then
Lt(G2) = { anbncn | n is even }. Derivations are as follows:

S ⇒t
1 aA′bB′cC ′ ⇒t

2 a2Ab2Bc2C ⇒t
1 · · · ⇒t

1 an−1A′bn−1B′cn−1C ′ ⇒t
3 anbncn.

Hence CD grammar systems with context-free components can produce non-context-
free languages. From [12] we know that for g ∈ {=k,≥k | k ≥ 2 }, k ≥ 1, and
k′, k′′ ≥ 2,

CF = CD(=1) = CD(≥1) = CD(∗) = CD(≤k) ⊂ (CD(=k′) ∩ CD(≥k′′)),
CF = CD1(g) ⊂ CD2(g) ⊆ CD3(g) ⊆ · · · ⊆ CD(g), and
CF = CD1(t) = CD2(t) ⊂ CD3(t) = CD(t) = ET0L,

the family of ET0L languages [24]; in case of regular components however

REG = CDREG(f), for f ∈ {≤k,=k,≥k | k ≥ 1 } ∪ {∗, t}.
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3.2. Team Automata

The underlying philosophy is that (finite) automata collaborate by jointly executing
(synchronising) transitions with the same label as agreed upon upfront.

A (component) automaton is a quintuple A = (Q, Σ, I, δ), with finite sets Q of
states, Σ of actions, Q ∩ Σ = ∅, I ⊆ Q of initial states, and δ ⊆ Q × Σ × Q of
(Σ-labelled) transitions. In addition there is a partition of the actions into input, out-
put, and internal actions (less relevant to this paper). Let δa = { (q, q′) | (q, a, q′) ∈ δ }
denote the set of all a-transitions, for a ∈ Σ. Note that no final states are specified:
all states are viewed as accepting states and computations are seen as ongoing runs.

The set of computations of A is defined as

C(A) = { q0a1q1· · · anqn | (qi−1, ai, qi) ∈ δ for all i ∈ [n] and n ≥ 0 }.

Its language is defined as L(A) = presΣ(C(A)) with the homomorphism presΓ,Σ that
preserves the symbols from Σ and erases all other symbols in Γ, being defined by
presΓ,Σ(a) = λ if a ∈ Γ\Σ and presΓ,Σ(a) = a if a ∈ Γ∩Σ. Clearly, since each state is
accepting, the languages of component automata are exactly the prefix-closed regular
languages, with a language K being prefix closed if pref(K) ⊆ K, where pref(K)
denotes the set of prefixes of the words of K.

Team automata are composed of component automata and have as their actions
the components’ actions and as states the cartesian products of the components’
states, while their transitions are synchronisations of components’ transitions. Let
S = {Ai = (Qi,Σi, Ii, δi) | i ∈ [n] } be a set of component automata, Σ =

⋃
i∈[n] Σi,

and a ∈ Σ. The set of synchronisations on a is defined as

∆a(S) = { (q, q′) ∈
∏

i∈[n]

Qi ×
∏

i∈[n]

Qi | ∃j∈ [n] : (projj(q),projj(q)
′)∈δj,a

and ∀i∈ [n] : (proji(q),proji(q
′))∈δi,a or proji(q)=proji(q

′) }.

Hence ∆a(S) contains all possible combinations of a-transitions of the components in
S, with all non-participating components remaining in the same state. Note that in
every synchronisation always at least one component takes part.

A specific team automaton is defined by choosing , for each action a, a subset of
∆a(S), all possible synchronisations on a: A team automaton over S is a quadruple
T = (Q,Σ, I, δ), with Q =

∏
i∈[n] Qi, I =

∏
i∈[n] Ii, and δ ⊆ Q × Σ × Q such that

δa ⊆ ∆a(S) for all a ∈ Σ. Hence each choice of synchronisations defines a team
automaton and every team automaton is again a component automaton.

Which synchronisations to select for a team automaton may be determined by an a
priori defined synchronisation strategy . Such a strategy should imply the specification
for each action a of a subset Ra(S) of all synchronisations on that action that should
be included as a-transitions of the team. If we now let R = {Ra(S) | a ∈ Σ }, then
T is the R-team automaton over S if δa = Ra(S) for all a ∈ Σ.

We mention two obvious strategies. Action a is action-indispensable (ai) in T if all
a-transitions of T are the result of a synchronisation of all components from S that
have a as an action; and a is state-indispensable (si) in T if all its a-transitions are the
result of a synchronisation of all components from S in which a is currently enabled;
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a is enabled at state q in an automaton A if there exists a state q′ such that (q, q′) is
an a-transition of A. We now specify the corresponding synchronisation strategies:

Rai
a (S)={(q, q′) ∈ ∆a(S) | ∀i ∈ [n] : if a ∈ Σi, then (proji(q),proji(q

′))∈δi,a},
Rsi

a (S)]={(q, q′) ∈ ∆a(S) | ∀i ∈ [n] : if a ∈ Σi, then (proji(q),proji(q
′))∈δi,a

whenever a is enabled in Ai at state q }.

Note that the ai strategy defines the standard (synchronised) product of automata.
In [6] also other synchronisation strategies have been defined based on the input-
output role of actions to model more advanced forms of collaboration between com-
ponents, such as peer-to-peer and master-slave relationships.

Example 3 Consider the two automata depicted in Fig. 1(a). We have L(A1) = a∗b∗

and L(A2) = b∗c∗. The Rai - and Rsi -team automata T ai and T si over {A1,A2}
are depicted in Figs. 1(b) and 1(c), respectively. We have L(T ai) = a∗ ∪ a∗b+c∗,
while L(T si) = a∗ ∪ a∗b+{b, c}∗. Note that bcb ∈ L(T si) and hence the relation
pres{a,b,c},{b,c}(L(T si)) * L(A2) even though the alphabet of A2 is {b, c}.
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�� b //'&%$ !"#q

b

��

///o ��������s

b

�� b // ��������t

c
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(b) T ai over {A1,A2}

/.-,()*+p
t

a,c
::

b ///.-,()*+q
t

b,cdd

��

�O

/.-,()*+p
s

a ::

b

@@

b ///.-,()*+q
s b

zz

b

OO

(c) T si over {A1,A2}

Figure 1: The Rai - and Rsi -team automata over {A1,A2}.

Every team automaton is a component automaton and thus its language is a prefix-
closed regular language. Interesting features to investigate concern how, depending
on the synchronisation strategy, the language of a team automaton can be defined in
terms of the languages of its component automata [9, 7].

4. Teams of Regular Grammars

In this section we discuss how to transfer the idea of synchronisation in team automata
to a team of collaborating regular grammars, the idea being that the grammars jointly
generate a common terminal symbol. We consider the regular case first, as we can
then rely on the close resemblance between automata and regular grammars. If we
think of nonterminals as states and terminals as actions, then nonterminals are to
be combined into cartesian products. It should be noted however that there is no
obvious corresponding state once the rewriting in a grammar has terminated and it is
no longer represented by a nonterminal. Suppose, e. g., that we want to introduce a
terminal z when rewriting a sentential form

(
S
S

)
by synchronising productions S → zB
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and S → z. Then what should the resulting sentential form look like? An option
would be to allow

(
S
S

)
⇒ z

(
B
λ

)
and use λ to indicate termination. We however prefer

not to have ‘empty’ places in nonterminal vectors and therefore introduce a special
symbol, #, to mark explicitly the termination of a component grammar. This symbol
cannot be rewritten and corresponds to a final sink state in an automaton. For
above example, this means we allow

(
S
S

)
⇒ z

(
B
#

)
, after which only the B can still be

rewritten.
Formally, we consider #-extended regular grammars G = (N,T ∪ {#}, S, P ) in

which all productions are of the form A→ zB or A→ z#, for A,B∈N , z∈T ∪ {λ},
and # /∈N ∪T . The underlying regular grammar G of G is obtained by removing # as
a terminal symbol and replacing all occurrences of # by λ. Note that L(G) = L(G)#.

We are now ready to lift the concept of synchronisation to regular grammars in
a rather straightforward manner. For the remainder of this section, let n ≥ 1, let
G = {Gi = (Ni, Ti, Si, Pi) | Gi is a #-extended regular grammar, i∈ [n] }, and a∈T .
The set of synchronisations on a (within G) is defined as:

∆a(G) = { (p, q) ∈
∏

i∈[n](Ni ∪ {#})×
∏

i∈[n](Ni ∪ {#}) |
∃j ∈ [n] : projj(p) → aprojj(q) ∈ Pj and
∀ i ∈ [n] : proj i(p) → aproj i(q) ∈ Pi or proji(p) = proji(q) }.

Hence ∆a(G) contains all possible combinations of a-productions (i. e., productions
generating the terminal a) from the regular grammars constituting G such that in
every synchronisation on a at least one grammar applies an a-production and all
other grammars either do so as well or do not rewrite.

A (regular) grammar team is obtained by choosing, for each a, a subset of ∆a(G).

Definition 1 (regular grammar team) A (regular) grammar team over G is a
grammar T = (Q, T, S, P ), in which Q =

∏
i∈[n](Ni ∪ {#}), T =

⋃
i∈[n] Ti \ {#},

S = (S1, S2, . . . , Sn), and P ⊆
⋃

a∈T ∆a(S).

Note that T is a regular grammar without terminating productions. We nevertheless

refer to {w∈T ∗ |S ⇒∗
T w

(#
:
#

)
} as the language generated by T and denote it by L(T ).

Observe that
∏

i∈[n] # indicates termination of all grammars and if we would add a

production
(#

:
#

)
→ λ, thus defining the regular grammar T ′, then L(T ) = L(T ′). The

family of languages generated by teams of regular grammars is denoted by TAREG .
We now formalise two synchronisation strategies for grammar teams, which corre-

spond to the ai and si synchronisation strategies from team automata. We use the
term ‘competence’ in analogy to the concept of competence of component grammars
in CD grammar systems. There however competence refers to the presence of the
left-hand sides of productions in a sentential form, whereas here we are interested in
the terminal symbols that can be introduced by a component grammar:

Pi is called a-competent iff a ∈ alphT (π) for some π ∈ Pi, i. e., Pi is a-competent if
at least one of its productions has a in its right-hand side.
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Pi is called a-competent on a nonterminal A iff there exists a π : A → α ∈ Pi such
that a ∈ alphT (α), i. e., Pi is a-competent on A if at least one of its productions with
A as its left-hand side has an occurrence of a in its right-hand side.

The ai and si synchronisation strategies are translated into the following synchro-
nisation strategies for regular grammar teams:

Rai
a (G) = { (p, q) ∈ ∆a(G) | ∀i ∈ [n] : if Pi is a-competent,

then proji(p) → aproji(q) ∈ P },
Rsi

a (G) = { (p, q) ∈ ∆a(G) | ∀i ∈ [n] : if Pi is a-competent on proji(p),
then proji(p) → aproji(q) ∈ P }.

Let R = {Ra(G) | a ∈ T }. T is the R-regular grammar team over G if P = R.

Example 4 Let G = {G1, G2} consist of the #-extended regular grammars

G1 = ({A,A′}, {a, b}, A, {A → aA, A → bA′, A′ → bA′, A′ → b#}) and
G2 = ({B,B′}, {b, c}, B, {B → bB,B → bB′, B′ → cB′, B′ → c#}).

We see that L(G1) = { akb`# | k ≥ 0, ` ≥ 2 } and L(G2) = { bmcn# | m ≥ 1, n ≥ 1 }.
The Rai - and Rsi -regular team grammars T1 and T2 over G both have terminals
{a, b, c}, axiom

(
A
B

)
, and nonterminal {

(
A
B

)
,
(

A
B′

)
,
(
A′

B

)
,
(

A′

B′

)
,
(

A
#

)
,
(
A′

#

)
,
(
#
B

)
,
(

#
B′

)
,
(#
#

)
}.

The (ai) productions of T1 are

P1 ={
(

A
B

)
→ a

(
A
B

)
,
(

A
B

)
→ b

(
A′

B

)
,
(

A
B

)
→ b

(
A′

B′

)
} ∪ {

(
A′

B′

)
→ c

(
A′

B′

)
,
(

A′

B′

)
→ c

(
A′

#

)
}

∪ {
(

A
B′

)
→ a

(
A
B′

)
,
(

A
B′

)
→ c

(
A
B′

)
,
(

A
B′

)
→ c

(
A
#

)
} ∪ {

(
#
B′

)
→ c

(
#
B′

)
,
(

#
B′

)
→ c

(#
#

)
}

∪ {
(
A′

B

)
→ b

(
A′

B

)
,
(
A′

B

)
→ b

(
A′

B′

)
,
(
A′

B

)
→ b

(
#
B

)
,
(
A′

B

)
→ b

(
#
B′

)
} ∪ {

(
A
#

)
→ a

(
A
#

)
}.

The (si) productions of T2 are

P2 = P1 ∪ {
(

A
B′

)
→ b

(
A′

B′

)
} ∪ {

(
A′

B′

)
→ b

(
#
B′

)
,
(

A′

B′

)
→ b

(
A′

B′

)
} ∪ {

(
A
#

)
→ b

(
A′

#

)
}

∪ {
(
A′

#

)
→ b

(
A′

#

)
,
(
A′

#

)
→ b

(#
#

)
} ∪ {

(
#
B

)
→ b

(
#
B

)
,
(
#
B

)
→ b

(
#
B′

)
}.

Hence a possible derivation of T1 is(
A
B

)
⇒∗ a∗

(
A
B

)
⇒ a∗b

(
A′

B

)
⇒∗ a∗bb∗

(
A′

B

)
⇒ a∗bb∗b

(
#
B′

)
⇒∗ a∗bb∗bc∗

(
#
B′

)
⇒ a∗bb∗bc∗c

(#
#

)
.

while T2 also allows derivations like(
A
B

)
⇒∗ a∗

(
A
B

)
⇒a∗b

(
A′

B′

)
⇒∗ a∗b{b, c}∗

(
A′

B′

)
⇒a∗b{b, c}∗b

(
#
B′

)
⇒a∗b{b, c}∗bc

(#
#

)
.

In fact, we have L(T1) = { akb`cn
(#
#

)
| k ≥ 0, ` ≥ 2, n ≥ 1 }, whereas we have that

L(T2) = L(T1) ∪ a∗b{b, c}∗bc
(#
#

)
∪ a∗b{b, c}∗cb

(#
#

)
. Similar to Example 3, we note

that bcb ∈ L(T2) and thus pres{a,b,c},{b,c}(L(T2)) * L(G2) even though the alphabet
of G2 is {b, c}.
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Regular Grammar Teams vs. Regular CD Grammar Systems

As already observed, the languages defined by regular grammar teams are exactly the
regular languages, as is the case for regular CD grammar systems.

Theorem 1 TAREG = REG = CDREG(f), for f ∈ {≤k,=k,≥k | k ≥ 1 } ∪ {∗, t}.

Actually, it is more interesting to compare sequential distributed cooperation and
synchronised collaboration in this context. We now show how these two mechanisms
can simulate each other in the case of regular grammars.

From TAREG to CDREG . First we demonstrate how the synchronisations in a
grammar team can be simulated by a CDGS. Let T = (Q, T, S, P ) be a regular

grammar team over G. Thus P has productions of the form
(A1:
An

)
→ z

(B1:
Bn

)
for which

∃ i ∈ [n] : Ai → zBi ∈ Pi and ∀j ∈ [n] : Aj → zBj ∈ Pj or Aj = Bj .

By interpreting the products
(A1:
An

)
as nonterminal symbols we immediately obtain

a CDGS G = (Q′, T, [S1 · · ·Sn], P ′) of degree 1 with

Q′ = { [A1 · · ·An] |
(A1:
An

)
∈ Q } and

P ′ = { [A1 · · ·An] → z[B1 · · ·Bn] |
(A1:
An

)
→ z

(B1:
Bn

)
∈ Q } ∪ {[# · · ·#] → λ}.

Clearly, G simulates T in the sense that for every derivation of a sentential form w
in T there exists a derivation in G that produces w. In fact, with G being of degree
1, any mode f ∈ {≤k | k ≥ 1 } ∪ {=1,≥1, ∗, t} will do and Lf (G) = L(T ). To simu-
late T in one of the modes {=k,≥k | k ≥ 2 } dummy productions can be added to G.

From CDREG to TAREG . Now we let G = (N,T, S, P1, . . . , Pn) be a CDGS of
degree n with regular components Pi, for i ∈ [n]. Hence each Pi has productions of
the form A → zB and A → z, with A,B ∈ N and z ∈ T ∪ {λ}.

For convenience, we assume that the component grammars make use of disjoint
sets of nonterminals, i. e., {A ∈ N | A → z ∈ Pi } ∩ {A ∈ N | A → z ∈ Pj } = ∅,
for all i 6= j ∈ [n]. Moreover, in our construction we will make use of a #-extended
version P#

i for each component Pi.
The derivations in G can then be simulated by the regular grammar team T =

(Q, T,
(S:

S

)
, P ) over the #-extended grammars Gi =(N,T, S, P#

i ), for i∈ [n], where

Q = {
(A:

A

)
| A ∈ N} ∪ {

(#
:
#

)
} and P = {

(A:
A

)
→ z

(B:
B

)
| A → zB ∈ P#

i , i ∈ [n]}.

It is not difficult to see how T simulates derivations in G in mode f ∈ {≤k | k ≥ 1 }∪
{=1,≥1, ∗, t}. To simulate G in one of the remaining modes {=k,≥k | k ≥ 2 } we
add dummy productions for ‘counting’.
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5. Teams of Context-Free Grammars

In this section we turn to the issue of synchronising context-free grammars. In this
case, it is less straightforward to define the synchronised introduction of an (the
same) occurrence of a nonterminal. This is due to the fact that a sentential form in
general has several occurrences of nonterminals and moreover, in the right-hand side
of productions several terminal symbols may occur in various places.

We therefore resort to context-free grammars in GNF and to leftmost derivations.
The nonterminals in a context-free grammar in GNF, when rewritten, introduce a
single terminal which moreover is the leftmost symbol of the right-hand side of the
production used, thus making it the natural candidate to synchronise upon. This
in combination with lefmost rewriting resembles the rewriting in regular grammars
as well as the recognising process by an automaton (with a stack or pushdown for
the remaining nonterminals). In case of GNF, the only terminal in a production is
moreover followed by no more than two nonterminals, which significantly reduces the
number of possible combinations of productions in synchronisations.

With leftmost derivations we rewrite sentential forms from left to right, symbol
per symbol, as in the regular case. In addition we use λ-transpositions to ‘push’
nonterminals to the left. Suppose, e. g., that we want to introduce a terminal z in
a sentential form

(
A
D

)
by synchronising the productions A → zBC and D → zE.

Then what should the new sentential form look like? Intuitively, we would expect to
derive z

(
BC
E

)
with

(
BC
E

)
partitioned as

(
B
E

)(
C
λ

)
,
(
B
λ

)(
C
E

)
, or even

(
B
λ

)(
C
λ

)(
λ
E

)
in various

orders. With leftmost rewriting, we favour the first option. Note, however, that
the derivation could continue as z

(
B
E

)(
C
λ

)
⇒ zz

(
F
G

)(
λ
H

)(
C
λ

)
⇒ zzz

(
λ
H

)(
C
λ

)
(assuming

productions B → zF , E → zGH, F → z, and G → z). At this point, with C being
the leftmost symbol for the first grammar, we would like to continue leftmost rewriting
and synchronising with nonterminal vector

(
C
H

)
rather than

(
λ
H

)
. Thus we need to

move the C to the left, i. e., transpose the λ and C. This is implemented by auxiliary
rewriting rules of the form

(
λ
H

)(
C
λ

)
→

(
C
H

)
. We call such rules λ-transpositions. Thus,

all but the leftmost occurrences of nonterminals in a sentential form act as a kind of
stack, storing the nonterminals to be rewritten in the future.

In analogy with the regular case, we will use # as a special symbol to indicate that
a grammar has finished rewriting. For context-free grammars this is slightly more
involved though, since there is no unique event of a nonterminal being rewritten into
a terminal string to mark the termination of the derivation. We therefore introduce
a so-called ‘#-extended Greibach normal form’, which uses # as a special (terminal)
symbol to form the suffix of each derivation and uses a partition of the nonterminals
in N and N# = {A# | A ∈ N }. The resulting (context-free) grammar thus generates
the same language as before, but with # appended to every word.

Formally, we consider context-free grammars (N ∪N#, T#, S#, P ∪ P#) in which
all productions are of the form A# → zBC#, A → zBC, A# → zB#, A → zB,
A# → z#, or A → z, for A,B,C ∈ N , A#, B#, C# ∈ N#, and z,# ∈ T#. We
also allow S# → # provided that S# does not occur in the right-hand side of any
production. Note that every context-free grammar G in GNF can be transformed into
a G# in #-extended GNF such that L(G#) = L(G)#. Moreover, a production of the



Cooperation and Collaboration 27

form A# → z# is applied only once in each successful derivation and only to rewrite
the rightmost symbol in the sentential form. Note that G# would be in GNF if we
were to consider # as a nonterminal symbol. This is exactly what we will do when
formally defining context-free grammar teams (again similar to the regular case).

For the sequel, let n ≥ 1, let Gi = (Ni, Ti, Si, Pi) be a context-free grammar in
#-extended GNF, for each i ∈ [n], and let G = {Gi | i ∈ [n] }. Let a ∈ T , where
T =

⋃
i∈[n] Ti \ {#}. The set of synchronisations on a (within G) is defined as:

∆a(G) = { (p, qr) ∈
∏

i∈[n]

Ni ∪ {#} ×
∏

i∈[n]

Ni ∪ {λ, #}
∏

i∈[n]

Ni ∪ {λ, #} |

∃j ∈ [n] : (projj(p) → aprojj(q)projj(r)) ∈ Pj and
∀ i ∈ [n] : [(proji(p) → aproji(q)proji(r)) ∈ Pi and proji(q) ∈ {λ, #}

implies proji(r) = λ]
or [proji(p) = proji(q) and proji(r) = λ] }.

Hence ∆a(G) contains all possible combinations of a-productions of the context-
free grammars constituting G such that in every synchronisation on a at least one
grammar applies an a-production and all other grammars either do so as well or do
not rewrite.

Note how we deal with the introduction of λ’s in nonterminal vectors. A production
of the form A → zBC that synchronises with a production of the form D → zE, with
A,B,C, D, E ∈ N and z ∈ T , will not lead to synchronised production

(
A
D

)
→ z

(
B
λ

)(
C
E

)
but only to

(
A
D

)
→ z

(
B
E

)(
C
λ

)
thanks to allowing proj2(q)=λ only if proj2(r)=λ. To this

we add the auxiliary rewriting rules, called λ-transpositions, now formally defined as:

Λ(G) = { (pq, rs) ∈
∏

i∈[n]

Ni∪{λ, #}
∏

i∈[n]

Ni∪{λ, #}×
∏

i∈[n]

Ni∪{λ, #}
∏

i∈[n]

Ni∪{λ, #} |

∃j ∈ [n] : projj(p) = projj(s) = λ, projj(q) = projj(r) ∈ Nj ∪ {#}, and
∃i 6= j : proji(q) 6= λ, and

∀ i ∈ [n] : proji(p) = proji(r) and proji(q) = proji(s) }

∪ { (pq, r) ∈
∏

i∈[n]

Ni ∪ {λ, #}
∏

i∈[n]

Ni ∪ {λ, #} ×
∏

i∈[n]

Ni ∪ {λ, #} |

∃j ∈ [n] : projj(p) = projj(s) = λ, projj(q) = projj(r) ∈ Nj ∪ {#}, and
∀i 6= j : proji(q) = λ, and

∀ i ∈ [n] : proji(p) = proji(r) }.

A context-free grammar team is obtained by choosing, for each a, a subset of ∆a(G).

Definition 2 (context-free grammar team) A context-free grammar team over
G is a grammar T = (Q,T, S, P ∪Λ(G)), in which Q = (

∏
i∈[n](Ni∪{λ, #}))\{

(λ:
λ

)
},

T =
⋃

i∈[n] Ti \ {#}, S = (S1, S2, . . . , Sn), and P ⊆
⋃

a∈Σ ∆a(S).

At each derivation step, the leftmost occurrence of a nonterminal vector is rewritten
or a λ-transposition is applied. Formally, a word v directly derives a word w in T ,
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v ⇒T w, iff either v = xpy, w = xzqry and p → zqr ∈ P for x ∈ ∆∗ and y ∈ (N∪T )∗,
or v = xpqy and either w = xrsy and pq → rs ∈ Λ(G) or w = xry and pq → r ∈ Λ(G)

for x, y ∈ (N∪T )∗. The language generated by T is L(T ) = {w ∈ T ∗ | S ⇒∗
T w

(#
:
#

)
}.

Exactly as for the regular case,
(#

:
#

)
indicates termination of all grammars. The

family of languages generated by teams of context-free grammars is denoted by TACF .

The fixed synchronisation strategies for teams of grammars defined for the regular
case are extended in the obvious way for the case of context-free grammars, thus
resulting in Rai - and Rsi -teams of context-free grammars:

Rai
a (G) = { (p, qr) ∈ ∆a(G) | ∀i ∈ [n] : if Pi is a-competent,

then proji(p) → aproji(q)proji(r) ∈ P },
Rsi

a (G) = { (p, qr) ∈ ∆a(G) | ∀i ∈ [n] : if Pi is a-competent on proji(p),
then proji(p) → aproji(q)proji(r) ∈ P }.

Let R = {Ra(G) | a ∈ Σ }. T is the R-context-free grammar team over G if P = R.

Example 5 Let G = {G1, G2}, where G1 = ({S, B} ∪ {S#, B#}, {a, b, #}, S#, P1)
and G2 = ({S, C} ∪ {S#, C#}, {b, c, #}, S#, P2) are context-free grammars in
#-extended GNF, with

P1 = {S# → aSB#, S → aSB, S# → aB#, S → aB, B# → b#, B → b} and
P2 = {S# → bSC#, S → bSC, S# → bC#, S → bC, C# → c#, C → c}.

It is not difficult to see that L(G1) = { anbn# | n≥1 } and L(G2) = { bncn# | n≥1 }.
The Rai -context-free grammar team over G is

T ai = ((N#
1 ×N#

2 ) \ {
(
λ
λ

)
}, {a, b, c, #},

(
S#

S#

)
, P ai ∪ Λ(G) ),

where

N#
1 = {S#, S,B#, B,#, λ},

N#
2 = {S#, S, C#, C,#, λ},

P ai = {
(
S#

S#

)
→ a

(
S

S#

)(
B#

λ

)
,
(
S#

S#

)
→ a

(
B#

S#

)
,
(

S
S#

)
→ a

(
S

S#

)(
B
λ

)
,
(

S
S#

)
→ a

(
B

S#

)
,

. . . ,
(

B
S#

)
→ b

(
λ
S

)(
λ

C#

)
,
(

B
S#

)
→ b

(
λ

C#

)
,
(
B
S

)
→ b

(
λ
S

)(
λ
C

)
,
(
B
S

)
→ b

(
λ
C

)
, . . . ,(

B
C#

)
→ c

(
B
#

)
,
(
B
C

)
→ c

(
B
λ

)
, . . . ,

( #

C#

)
→ c

(#
#

)
,
(
#
C

)
→ c

(
#
λ

)
}, and

Λ(G) = {
(
X
λ

)(
Y
Z

)
→

(
X
Z

)(
Y
λ

)
,
(
X
λ

)(
λ
Z

)
→

(
X
Z

)
| X ∈ N#

1 \ {λ}, Y, Z ∈ N#
2 \ {λ}}

∪ {
(

λ
X

)(
Y
Z

)
→

(
Y
X

)(
λ
Z

)
,
(

λ
X

)(
Y
λ

)
→

(
Y
X

)
| X ∈ N#

1 \ {λ}, Y, Z ∈ N#
2 \ {λ}}.
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Hence a possible (leftmost) derivation of T ai is:(
S#

S#

)
⇒n−1 an−1

(
S

S#

)(
B
λ

)n−2(
B#

λ

)
⇒ an

(
B

S#

)(
B
λ

)n−2(
B#

λ

)
⇒ anb

(
λ
S

)(
λ

C#

)(
B
λ

)n−2(
B#

λ

)
⇒ anb

(
λ
S

)(
B

C#

)(
B
λ

)n−1(
B#

λ

)
⇒ anb

(
B
S

)(
λ

C#

)(
B
λ

)n−1(
B#

λ

)
⇒ anb2

(
λ
S

)(
λ
C

)(
λ

C#

)(
B
λ

)n−1(
B#

λ

)
⇒3 anb2

(
B
S

)(
λ
C

)(
λ

C#

)(
B
λ

)n−2(
B#

λ

)
⇒+ anbn−2

(
λ
S

)(
λ
C

)n−3( λ
C#

)(
B
λ

)(
B#

λ

)
⇒n−1 anbn−2

(
B
S

)(
λ
C

)n−3( λ
C#

)(
B#

λ

)
⇒ anbn−1

(
λ
S

)(
λ
C

)n−2( λ
C#

)(
B#

λ

)
⇒n anbn−1

(
B#

S

)(
λ
C

)n−2( λ
C#

)
⇒ anbn

(
#
C

)(
λ
C

)n−2( λ
C#

)
⇒ anbnc

(
#
λ

)(
λ
C

)n−2( λ
C#

)
⇒ anbnc

(
#
λ

)(
λ
C

)n−2( λ
C#

)
⇒ anbnc

(
#
C

)(
λ
C

)n−3( λ
C#

)
⇒n−3 anbncn−2

(
#
λ

)(
λ
C

)(
λ

C#

)
⇒ anbncn−2

(
#
C

)(
λ

C#

)
⇒ anbncn−1

(
#
λ

)(
λ

C#

)
⇒ anbncn−1

( #

C#

)
⇒ anbncn

(#
#

)
.

No other type of derivation can end successfully and we have

L(T ai) = { anbncn | n ≥ 1 }.

Finally, it is left to the reader to verify that the Rsi -team over G = {G1, G2} does
not generate L(T ai).

6. Discussion and Future Work

For over two decades now, CD grammar systems have been recognised as an inter-
esting and challenging model for the description of coordinated rewriting processes.
Investigations in this area focus to a large extent on aspects of team work in concurrent
systems that can be caught in the framework of grammar systems [14, 16, 18, 22].

There are two main classes of grammar systems, viz. CD grammar systems and
parallel communicating (PC) grammar systems (originally introduced in [23], see
also [12, 24]). Contrary to the sequential rewriting of CD grammar systems, the gram-
mars in a PC grammar system work simultaneously, each on its own sentential form.
The operations are synchronized by means of a global clock and in each time unit
the grammars either all rewrite their current sentential form or they communicate via
queries, sending sentential forms from one component to another. Many PC grammar
system variants exist, mainly varying the protocol for transferring sentential forms.

CD grammar systems are intrinsically sequential, but concurrent (team) work can
be achieved by grouping components (called teams) to rewrite different nonterminals
in the sentential form in parallel [20, 1, 2, 15]. We already proposed a framework in
which grammars collaborate by synchronising productions [8]: In Petri net controlled
grammar systems they do so subject to the control exercised by a Petri net describing a
concurrent rewriting strategy for the team of participating grammars. The grammars
however all had their own sentential form to work on.
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In this paper, we have proposed a novel concept for team collaboration between
grammars following the approach of the team automata model. This has led to regular
or context-free grammar teams in which the grammars forming a system collaborate
by synchronising the introduction of terminals in a common sentential form rather
than synchronising nonterminals, rewriting in parallel, or individual sentential forms.
Different synchronisation strategies can be defined, depending on the competence
of the participating grammars, i. e., based on the current nonterminals that can be
rewritten and on the terminal they should introduce at that point in the derivation.

Rewriting according to the competence of the components of a CD grammar system
is a concept on which ter Beek and Csuhaj-Varjú have closely collaborated, starting
with [4]. They have also adapted this notion to automata when introducing teams
of pushdown automata [5]. The latter differ from the grammar teams introduced in
this paper, if not only because they consider stacks (i. e., pushdown memory), but
also because they do not synchronise but instead rewrite in parallel, similar to the
way this is done in teams of CD grammar systems. Also the sequential distributed
(pushdown) automata models studied by Csuhaj-Varjú et alii in [17, 21] are different.
These are obtained by replacing the grammars in CD grammar systems by (push-
down) automata, after which the latter take turns rewriting the sentential form in a
sequential manner according to the known modes. As a side effect of the context-free
case, we also seem to be close to a concept of synchronising pushdown automata.

The study presented in this paper is no more than a first step. Many issues con-
cerning the relation between distributed cooperation and synchronised collaboration
in the context of rewriting systems deserve further investigation. For one, we only
studied simulation for the case of regular grammars. In case of context-free grammars,
we know that CDCF (t)=ET0L and we have seen in Example 5 that also context-free
grammar teams can generate non-context-free languages, but the exact relation be-
tween TACF and CDCF (f), for any f , is an open problem. It would also be worth to
study the conditions under which a hierarchy of grammar teams can be defined.

Finally, inspired by team automata, it would be interesting to distinguish input,
output, and internal actions in sycnhronisations and to study whether grammar teams
are compositional: Does there exists a set-theoretic (shuffle) operation that when
applied to the languages of the component grammars, yields the language of the
grammar team (constructed according to a specific synchronisation strategy)?
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