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Modifications of the classical φ-divergences Dφ(μ, ν) = ∫
qφ(p/q) dλ of finite measures μ, ν on a

σ -finite measure space (X , A, λ) with Radon–Nikodym densities p = dμ/dλ, q = dν/dλ are intro-
duced by the formula Dφ(μ, ν) = ∫

qφ̃(p/q) dλ using the nonnegative convex functions φ̃(t) = φ(t) −
φ′+(1) (t − 1). Basic properties of the modified φ-divergences are investigated, such as the range of values,
symmetry and a decomposition into local and global components. A general φ-divergence formula for
right-censored observations illustrates the statistical applicability. The Pinsker inequality for finite mea-
sures and the generalized Ornstein distance of stationary random processes are among the illustrations of
applicability in the information theory.

Keywords: divergences of finite measures; local and global divergences of finite measures; divergences
of σ -finite measures; statistical censoring; Pinsker’s inequality for finite measures; differential power
entropies

AMS Subject Classification: 62B10; 94A17; 62N01; 62C10

1. Introduction

Csiszár [1] introduced φ-divergences Dφ(μ, ν) of probability measures μ, ν for real-valued
convex functions φ(t), t > 0. They satisfy the natural nonnegativity condition if φ(1) = 0 even
if φ(t) is negative on some intervals. Liese and Vajda [2] extended φ-divergences Dφ(μ, ν)

to finite and even infinite measures μ, ν. Their definition admitted negativity of the extended
φ-divergences resulting from the possible negativity of φ(t). In this paper, we avoid this inconve-
nience by replacing the general convex φ(t) with φ(1) = 0 by the nonnegative linear transform
φ̃(t) = φ(t) − φ′+(1) (t − 1), where φ′+(1) stands for the right-hand derivative of φ at t = 1. The
paper investigates in a systematic and rigorous manner the basic properties of the nonnegative
φ-divergences Dφ(μ, ν) := Dφ̃(μ, ν) of finite measures and illuminates the importance of these
divergences by selected applications in statistics and information theory.
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2 W. Stummer and I. Vajda

The objects of interest in computer-based decisions, machine learning, classification, speech
and image compression, automatic information retrieval and other rapidly developing areas of
modern computer science seem to be more and more often characterized by various histograms,
spectral densities and distribution functions not normalized to 1 and thus representing measures
which are typically finite. Relations between such objects are preferred to be based on divergences
between the corresponding distributions. The aim of this paper is to provide a rigorous, sufficiently
general and practically applicable definition of such divergences (namely the abovementioned
Dφ(μ, ν)) and to propose a simple universal method for the derivation of their properties from
the similar properties of divergences of probability measures which are well established in the
existing literature.

Section 2 presents detailed definitions and basic properties of the modified φ-divergences of
finite measures and introduces their extension to the σ -finite measures. Theorem 2.4 enables
one to transfer or transform the results concerning probability measures to the more general
models with finite measures, and partially also to the σ -finite measure context. Section 3 illus-
trates the applicability in the statistical theory. Section 4 illustrates the applicability in the
information theory.

2. Definition and basic properties

Let � be the class of convex functions φ : (0, ∞) �−→ R which are strictly convex at 1 and satisfy
the condition φ(1) = 0. For every φ ∈ �, we put

φ(0) = lim
t↓0

φ(t). (1)

It is easy to see that if φ ∈ �, then the ∗-adjoint function defined by

φ∗(t) = tφ

(
1

t

)
, t > 0, (2)

belongs to � too.
Let X be an observation space with a given σ -algebra of subsets A 	= {∅, X } and M the class

of all finite measures on this space, which are not identically zero. If X is a metric space, then A
is assumed to be the corresponding Borel σ -algebra. By Definition 1.1 and Remark 1.2 in Liese
and Vajda [2], the φ-divergence of measures μ, ν ∈ M is well defined for every φ ∈ � by the
integral

Dφ(μ, ν) =
∫

X
qφ

(
p

q

)
dλ, (3)

where λ is a σ -finite measure on (X , A) dominating {μ, ν} (in symbols μ � λ, ν � λ) and
p = dμ/dλ, q = dν/dλ are the corresponding Radon–Nikodym densities. Behind the integral, it
is assumed that

0φ
(p

0

)
= lim

t↓0
t φ

(p

t

)
= pφ∗(0) (cf. (1), (2)) (4)

with the convention 0φ∗(0) = 0 even if φ∗(0) is infinite. As argued by Liese and Vajda, the value
of the classical φ-divergence (3) is independent of the choice of the dominating measure λ.

For the special case μ(X ) = ν(X ), it is straightforward to show (e.g. from the discussion below
Definition 2.1) that Dφ(μ, ν) ≥ 0, and that Dφ(μ, ν) = 0 if and only if the measures μ and ν

totally coincide on A. However, in general, the values of the divergence (3) may be negative or
Dφ(μ, ν) may be zero even if the measures μ and ν differ on A. This can be seen, for instance,
from the following:

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
V
a
j
d
a
,
 
I
g
o
r
]
 
A
t
:
 
1
1
:
4
5
 
2
4
 
S
e
p
t
e
m
b
e
r
 
2
0
0
9



Statistics 3

Example 2.1 Let μ, ν be the measures on the interval X = (0, 1) with the densities

p(x) = e−x, q(x) = e1−x

e − 1
.

Then it is easy to verify that for φ1(t) = t ln t , we get the negative information divergence
Dφ1(μ, ν) < 0. On the other hand, let μ, ν be measures on X = (0, ∞) with the densities

p(x) = 1]0,1[(x)e−x, q(x) = e−x,

where 1A(·) stands here and in the sequel for the indicator function of a set A. Then μ 	= ν but
Dφ(μ, ν) = 0 not only for the above considered φ = φ1 but for all φ ∈ � such that φ(0) = 0.

For the rest of this paper, Dφ(μ, ν) defined by Equation (3) is referred to as classical
φ-divergence of measures μ, ν. To avoid the paradoxes demonstrated in Example 2.1, we slightly
modify definition (3), and the modified concept is referred to simply as φ-divergence of mea-
sures μ, ν. As mentioned in the introduction, the modification consists in the replacement of the
functions φ ∈ � by their nonnegative transforms φ̃ ∈ �, where

φ̃(t) = φ(t) − φ′
+(1)(t − 1)

{
> 0, for t 	= 1,

= 0, for t = 1,
(5)

and φ′+(1) denotes the right-hand derivative φ′+(t) of φ(t) at t = 1.
Since φ(1) = 0 and φ(1) + φ′+(1)(t − 1) is the support line of φ(t) at t = 1, it follows from

the assumed strict convexity of φ(t) at t = 1 that the equality as well as the strict inequality of
Equation (5) hold.

Definition 2.1 For every φ ∈ �, the φ-divergence of measures μ, ν ∈ M is defined by the
formula

Dφ(μ, ν) =
∫

X
q φ̃

(
p

q

)
dλ, (6)

where p, q, λ are the same as in Equation (3), φ̃ ∈ � is defined by Equation (5) and the
conventions (4) are applied to φ̃.

The nonnegative transforms φ̃ ∈ � of the functions φ ∈ � were used previously by Liese
and Vajda [2] in the model with probability measures (μ, ν) = (P, Q). These authors frequently
applied the equality Dφ̃(P, Q) = Dφ(P, Q).

Like the classical φ-divergence Dφ(μ, ν), also the φ-divergence Dφ(μ, ν) does not depend on
the concrete choice of dominating measure λ but, contrary to Equation (3), the expression (6) is
always nonnegative. From Equations (5) and (6), we get the relation

Dφ(μ, ν) = Dφ(μ, ν) + φ′
+(1)[ν(X ) − μ(X )] (7)

between the two concepts of φ-divergence, which shows in particular that this nonnegativity is
achieved by adding an appropriate compensation term to Dφ(μ, ν). Furthermore, Equation (7)
implies also the coincidence

Dφ(P, Q) = Dφ(P, Q) for all probability measures P, Q ∈ M (8)

between the φ-divergence and the classical φ-divergence.
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4 W. Stummer and I. Vajda

Example 2.2 For every α ∈ R with α(α − 1) 	= 0, the power functions

φα(t) = tα − 1

α(α − 1)
(9)

belong to �, and their transforms corresponding to Equation (5) are

φ̃α(t) = tα − α(t − 1) − 1

α(α − 1)
. (10)

Their limits for α tending to 1 resp. 0 are

φ̃1(t) = t ln t − t + 1 resp. φ̃0(t) = − ln t + t − 1, (11)

which are the (5)-type transforms of the functions

φ1(t) = t ln t resp. φ0(t) = − ln t (12)

belonging to � too. For the classical power divergences Dφα
(μ, ν) (defined by Equations (3), (9)

and (12)) and the power divergences Dφα
(μ, ν) (defined by Equations (6), (10) and (11)), we use

the simplified notation

Dα(μ, ν) = Dφα
(μ, ν) and Dα(μ, ν) = Dφα

(μ, ν), α ∈ R. (13)

Furthermore, in accordance with the common notation I (P, Q) for the classical information
divergence (Kullback–Leibler divergence) D1(P, Q) of probability measures P, Q, the corre-
sponding divergence D1(μ, ν) of finite measures μ, ν is denoted by I(μ, ν) and called information
divergence (Kullback–Leibler divergence) of finite measures μ, ν. In other words,

I(μ, ν) ≡ D1(μ, ν) = D1(μ, ν) + ν(X ) − μ(X ) for all μ, ν ∈ M, (14)

which corresponds to Equation (7). For α 	= 1, we get from Equations (6) and (7)

Dα(μ, ν) = Dφ̃α
(μ, ν) = Dα(μ, ν) + ν(X ) − μ(X )

α − 1
. (15)

The first two general results deal with symmetry properties of the φ-divergences (6).

Theorem 2.1 If φ belongs to �, then the function

ϕ(t) = φ(t) + c (t − 1) where c ∈ R (16)

belongs to � too, and for all μ, ν ∈ M,

Dϕ(μ, ν) = Dφ(μ, ν) (17)

holds. Conversely, if for some ϕ, φ ∈ � the equality (17) holds for all μ, ν ∈ M, then ϕ and φ

must satisfy (16).

Proof Equation (17) is obvious from the definition (6), as Equation (16) implies ϕ̃(t) = φ̃(t).
On the other hand, if Equation (17) holds for some ϕ, φ ∈ � and for all μ, ν ∈ M, then it follows
from Equation (8) that

Dϕ(P, Q) = Dφ(P, Q)

for all probability measures P, Q ∈ M. Therefore, Equation (16) follows from Proposition 1.13
in Liese and Vajda [2]. �
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Statistics 5

Theorem 2.2 If φ belongs to �, then the function

ϕ(t) = tφ

(
1

t

)
+ c(t − 1) for c ∈ R (18)

belongs to � too, and if additionally φ is differentiable at t = 1, then for all μ, ν ∈ M,

Dϕ(μ, ν) = Dφ(ν, μ) (19)

holds. Conversely, if for some ϕ, φ ∈ � the equality (19) holds for all μ, ν ∈ M, then ϕ and φ

must satisfy Equation (18).

Proof Similar to the previous proof, the first assertion is easily verifiable directly from
Equation (18). If φ ∈ �, then, by Equations (7) and (18), for all μ, ν ∈ M

Dϕ(μ, ν) = Dφ(ν, μ) + (ϕ′
+(1) − c)[ν(X ) − μ(X )]

and

Dφ(ν, μ) = Dφ(ν, μ) + φ′
+(1)[μ(X ) − ν(X )]

hold. But

ϕ′
+(1) = −φ′

−(1) + c, (20)

so that in the case of φ′−(1) = φ′+(1) the desired equality (19) holds. The last assertion follows
from Proposition 1.13 in Liese and Vajda [2] too, because its assumptions imply the relation

Dϕ(P, Q) = Dφ(Q, P )

for all probability measures P, Q ∈ M. �

Example 2.3 Since φ1−α(t) = tφα(1/t) + (t − 1)/[α(α − 1)] when α(α − 1) 	= 0 and
φ1−α(t) = tφα(1/t) when α(α − 1) = 0, we get from Theorem 2.2 the skew symmetry

Dα(ν, μ) = D1−α(μ, ν), α ∈ R. (21)

Notice also that without the differentiability assumption on φ, the symmetry (19) may break down.
For instance, take φ(t) = |t − 1| and c = 0, and thus ϕ(t) = φ(t) by Equation (18). Accordingly,
by Equation (7) and ϕ′+(1) = φ′+(1) = 1, one gets the total variations

Dϕ(μ, ν) = V(μ, ν) =
∫

X
|p − q| dλ + μ(X ) − ν(X ) (22)

and

Dφ(ν, μ) = V(ν, μ) =
∫

X
|q − p| dλ + ν(X ) − μ(X ),

which are unequal unless the total masses μ(X ) and ν(X ) coincide.

The following assertion follows directly from the assertions of Theorem 2.2 and Equation (20).
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6 W. Stummer and I. Vajda

Corollary 2.1 Let φ belong to � and be differentiable at t = 1. Then the φ-divergence (6) is
symmetric in the sense

Dφ(μ, ν) = Dφ(ν, μ) for all μ, ν ∈ M

if and only if

φ(t) = tφ

(
1

t

)
+ 2φ′(1)(t − 1) for all t ∈ (0, ∞). (23)

For instance, the choice φ1/2(t) = 4(1 − √
t) in Example 2.2 satisfies Equation (23) and leads

to the symmetry of the Hellinger divergence

D1/2(μ, ν) = 2
∫

X
(
√

p − √
q)2 dλ = D1/2(ν, μ) (24)

for all μ, ν ∈ M. This is also consistent with Equation (21).
Next, we derive directly from Definition 2.1 some upper bounds for the divergences Dφ(μ, ν),

φ ∈ �. As a first step, from Equations (3), (4) and (6) and from the assumptions φ(1) = φ̃(1) = 0,
we get

Dφ(μ, ν) =
∫

{p 	=q}
qφ̃

(
p

q

)
dλ

=
∫

{p<q}
qφ̃

(
p

q

)
dλ +

∫
{q<p}

pφ̃∗
(

q

p

)
dλ, (25)

where

φ̃∗(t) = φ∗(t) + φ′
+(1) (t − 1)

is adjoint to φ̃ in the sense of Equation (2). By the generalized Taylor formula for convex functions
proved in Theorem 1 of Liese and Vajda [3], for every φ ∈ � with φ′+(1) = 0 and every 0 ≤ t ≤ 1,

φ(t) =
∫

1]t,1](s)(s − t) dλφ(s),

holds, where λφ is the unique extension of the measure

λφ(]a, b]) = φ′
+(b) − φ′

+(a)

of intervals ]a, b] ⊂ (0, ∞) on the Borel subsets of R. The strict convexity of φ at 1 implies that λφ

is strictly positive in the neighbourhood of s = 1, so that the strict monotonicity 1]t1,1](s)(s − t1) >

1]t2,1](s)(s − t2) of integrands for any 0 ≤ t1 < t2 ≤ 1 implies the monotonicity

0 = φ(1) ≤ φ(t2) < φ(t1) ≤ φ(0).

Applying this result to φ = φ̃ and φ = φ̃∗, we get from Equation (25)

0 = φ(1) ≤ Dφ(μ, ν) =
∫

{p<q}
φ̃

(
p

q

)
dν +

∫
{q<p}

φ̃∗
(

q

p

)
dμ

≤ ν(X ) φ̃(0) + μ(X ) φ̃∗(0), (26)

where the left inequality is strict unless ν({p < q}) = μ({q < p}) = 0, and the right inequality
is strict unless ν({p = 0}) = ν(X ) and μ({q = 0}) = μ(X ), except for the cases where one of
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Statistics 7

the involved integrals is infinite. Since φ̃(0) = φ(0) + φ′+(1), φ̃∗(0) = φ∗(0) − φ′+(1), we have
proved the following result.

Theorem 2.3 The divergence (6) satisfies for all μ, ν ∈ M the inequalities

0 ≤ Dφ(μ, ν) ≤ ν(X ) φ(0) + μ(X )φ∗(0) + φ′
+(1)[ν(X ) − μ(X )], (27)

where the left equality holds if and only if μ = ν and the right equality holds if μ⊥ν (singularity).
For φ(0) + φ∗(0) < ∞, the right equality holds if and only if μ⊥ν.

Ifφ(0) = ∞orφ∗(0) = ∞, then the upper bound ofDφ(μ, ν) in Inequality (27) is∞. Ifφ(0) =
∞holds, then one can see from Inequality (26) that already the condition ν(p = 0) > 0, i.e. ν 	� μ

(and not only the more restrictive condition μ⊥ν stated in Theorem 2.3) implies Dφ(μ, ν) = ∞.
Similarly, if φ∗(0) = ∞ holds, then already the condition μ 	� ν (and not only the condition
μ⊥ν) implies Dφ(μ, ν) = ∞.

Example 2.4 Let us apply Theorem 2.3 to the power divergences of Example 2.2. (i) In the
case α ∈]0, 1[, one gets φα(0) = 1/[α(1 − α)], φ∗

α(0) = 0, φ′
α+(1) = 1/(α − 1), and thus from

Inequality (27)

0 ≤ Dα(μ, ν) ≤ ν(X )

α
+ μ(X )

1 − α
, if α ∈]0, 1[,

where the left equality holds if and only if μ = ν and the right equality holds if and only if μ⊥ν.
(ii) In the case α ≤ 0, it follows φα(0) = ∞ and φ∗

α(0) = 0, and thus from Inequality (27)

0 ≤ Dα(μ, ν) ≤ ∞, (28)

where the left equality holds if and only if μ = ν and Dα(μ, ν) = ∞ not only if μ⊥ν (as stated
in Theorem 2.3) but already if ν 	� μ. (iii) The case α ≥ 1 leads to finite φα(0) as well as to
φ∗

α(0) = ∞, and thus from Inequality (27) one obtains Inequality (28) where the left equality
holds if and only if μ = ν and Dα(μ, ν) = ∞ not only if μ⊥ν (as stated in Theorem 2.3) but
already if μ 	� ν. It is easy to verify that the paradoxes of Example 2.1 disappear if Dφ(μ, ν) is
replaced by the divergence Dφ(μ, ν).

Further properties of the divergences (6) can be obtained from the following theorem which
relates the φ-divergence of measures to the φ-divergences of probability measures. To formulate
this, put for arbitrary μ, ν ∈ M with μ(X )ν(X ) > 0 and φ ∈ �

Rμ,ν = μ(X )

ν(X )
, φμ,ν(t) = φ(Rμ,νt) − φ(Rμ,ν) (29)

and

Pμ = μ

μ(X )
, Pν = ν

ν(X )
. (30)

Theorem 2.4 The function φμ,ν of Equation (29) belongs to �, the normalized measures Pμ

and Pν of Equation (30) are probability measures, and the φ-divergence of μ, ν decomposes as
follows:

Dφ(μ, ν) = ν(X )[�φ(μ, ν) + �φ(μ, ν)],
where the nonnegative components

�φ(μ, ν) = Dφμ,ν
(Pμ, Pν) resp. �φ(μ, ν) = φ(Rμ,ν) − φ′

+(1)(Rμ,ν − 1)

can be interpreted as local resp. global φ-divergence of measures μ, ν.
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8 W. Stummer and I. Vajda

Proof Let φ̃ be defined by Equation (5). Then φμ,ν of Equation (29) satisfies the relation

φμ,ν(t) = φ̃(Rμ,νt) − φ̃(Rμ,ν) + Rμ,νφ
′
+(1)(t − 1)

and belongs to �. Hence, by Equation (3)

Dφμ,ν
(Pμ, Pν) =

∫
X

[
φ̃

(
Rμ,νν(X )p

μ(X )q

)
− φ̃(Rμ,ν)

]
q

ν(X )
dλ

= 1

ν(X )

[∫
X

qφ̃

(
p

q

)
dλ − ν(X )φ̃(Rμ,ν)

]
.

By using Equation (6), we obtain from here

Dφ(μ, ν) = ν(X )Dφμ,ν
(Pμ, Pν) + ν(X )φ̃(Rμ,ν),

where by Equation (5) φ̃(Rμ,ν) = φ(Rμ,ν) − φ′+(1)(Rμ,ν − 1), which completes the proof. �

Example 2.5 Let us apply Theorem 2.4 to the power divergences of Example 2.2. We get for all
α ∈ R

Dα(μ, ν) = ν(X )[�α(μ, ν) + �α(μ, ν)], (31)

where �α(μ, ν) is the local and �α(μ, ν) the global power divergence of measures μ, ν given by
the formulas

�α(μ, ν) = (Rμ,ν)
αDα(Pμ, Pν) and �α(μ, ν) = φ̃α(Rμ,ν) (32)

for Rμ,ν given by Equation (29), Pμ, Pν given by Equation (30) and φ̃α given by Equation (10).
In particular,

I(μ, ν) = ν(X )[�(μ, ν) + �(μ, ν)],
where

�(μ, ν) = �1(μ, ν) = Rμ,νI (Pμ, Pν) (33)

is the local and

�(μ, ν) = �1(μ, ν) = Rμ,ν ln Rμ,ν − Rμ,ν + 1 (34)

the global information divergence of measures μ, ν.

Theorem 2.4 enables one to reformulate all the theorems concerning the classical φ-divergences
Dφ(P, Q) of probability measures P, Q established in the previous literature to the φ-divergences
Dφ(μ, ν) of finite measures μ, ν.An illustration will be given in Theorems 4.1 and 4.2 in Section 4.

3. Statistical applicability

It is well known that φ-divergences of probability distributions play an important role in the
statistical inference (see, e.g. minimum divergence estimation and testing in Liese and Vajda [3],
minimum divergence testing in Morales et al. [4,5] and divergence-based decisions in Stummer
and Vajda [6], Stummer [7,8]). It is easy to find situations where the evaluation of φ-divergences
of probability distributions reduces to the evaluation of φ-divergences of finite measures. Clas-
sical examples can be found in Liese and Vajda [2] and references therein. For example, by
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Statistics 9

[2, Theorem 3.30], the Rényi divergence of the order α ∈ R of two Poisson processes with inten-
sity measures ν1, ν2 is the power divergence Dα(ν1, ν2) defined by Equation (13) when ν1, ν2 are
finite. The power divergences Dα(ν1, ν2) play a similar role also in [2, Theorem 4.24] dealing with
the Rényi divergences of Lévy processes with characteristic triplets (a1, b1, ν1) and (a2, b2, ν2)

(these divergences were used for goodness-of-fit testing, for example, in Morales et al. [4]).
In this section, we look in more detail at the statistical model with censored observations (see,

e.g. Miller [9]) where various measures of uncertainty, informativity and divergence were studied
previously, e.g. by Hollander et al. [10], Stute [11,12] and Tsairidis et al. [13,14]. We illustrate
the applicability of the φ-divergences of finite measures by a rigorous evaluation of the general
φ-divergence of probability distributions of randomly right-censored observations.

In more detail, let us consider two independent real-valued random variables X and Y defined
on a probability space (�, F, P) with distribution functions F and G, where X is supposed to
have the Lebesgue density f = dF/dx.

In the randomly right-censored statistical model, one assumes the observation space X =
X1 ⊗ X2 = R ⊗ {0, 1} and the (R ⊗ {0, 1})-valued observed variable

W = (Z, U),

where

Z = min{X, Y } and U = 1(−∞,Y ](X)

are R-valued and {0, 1}-valued random variables, respectively. The probability distribution P of
W on X is defined on the σ -algebra A generated by the products A ⊗ B of Borel sets A ⊂ R and
arbitrary subsets B ⊂ {0, 1} by the condition P(A × B) = P(Z ∈ A, U ∈ B). P is dominated by
the σ -finite measure λ defined on A by the condition

λ(A × B) = δ0(B)

∫
A

dG(y) + δ1(B)

∫
A

dx, (35)

where, as usual, δu is the Dirac probability measure with all mass concentrated at u ∈ {0, 1}. The
density of P with respect to λ has the form

dP

dλ
(x, u) = 1{0}(u)(1 − F(x)) + 1{1}(u)(1 − G(x))f (x), (x, u) ∈ R ⊗ {0, 1} (36)

illustrated in Example 3.1 below. This density follows from the formulas

P(] − ∞, z] × {0}) = P(Z ≤ z, U = 0) = P(Y ≤ z, Y < X)

=
∫

R

∫
R

1]−∞,z](y)1]y,∞[(x) dF(x) dG(y)

=
∫

]−∞,z]
P(X > y) dG(y) =

∫
]−∞,z]

(1 − F(x)) dG(x) (37)

=
∫

]−∞,z]×{0}
[1{0}(u)(1 − F(x)) + 1{1}(u)(1 − G(x))f (x)] dλ(x, u)
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10 W. Stummer and I. Vajda

for the marginal distribution corresponding to u = 0 and

P(] − ∞, z] × {1}) = P(Z ≤ z, U = 1) = P(X ≤ z, X ≤ Y )

=
∫

R

∫
R

1]−∞,z](x)1[x,∞[(y) dF(x) dG(y)

=
∫

]−∞,z]
P(Y ≥ x) dF(x) =

∫
]−∞,z]

(1 − G(x))f (x) dx (38)

=
∫

]−∞,z]×{1}
[1{0}(u)(1 − F(x)) + 1{1}(u)(1 − G(x))f (x)] dλ(x, u)

corresponding to u = 1. The fact that this density (36) integrates to 1 can be verified by the
integration-by-parts,

1 =
∫

R

d(F · G)(x) =
∫

R

G(x)f (x) dx +
∫

R

F(x) dG(x). (39)

Indeed, by the above computations, one gets

∫
R⊗{0,1}

dP

dλ
(x, u) dλ(x, u) =

∫
R

(1 − G(x)) dF(x) +
∫

R

(1 − F(x)) dG(x)

= 2 −
∫

R

G(x)f (x) dx −
∫

R

F(x) dG(x) = 1 (cf. (39)). (40)

Example 3.1 Figures 1–3 illustrate for various types of censoring Y the marginal distributions
P(] − ∞, z] × {u}) of W for u = 0 and u = 1.

Figure 1. The marginal distributions of Example 3.1(i).
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Statistics 11

Figure 2. The marginal distributions of Example 3.1(ii).

Figure 3. The marginal distributions of Example 3.1(iii).

(i) Let the censoring Y be continuous with a Lebesgue density g = dG/dx. Accordingly,
Figure 1 presents at the coordinate u = 0 the Lebesgue density of the distribution

P(] − ∞, z] × {0}) = P(Z ≤ z, U = 0) =
∫

]−∞,z]
(1 − F(x))g(x) dx
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12 W. Stummer and I. Vajda

(cf. Equation (37)) and at the coordinate u = 1 the Lebesgue density of P(] − ∞, z] × {1})
given in Equation (38) (exemplarily, we have used Student’s t-distribution function F with
two degrees of freedom, and the normal distribution function G with mean −2 and variance
100).

(ii) Let the censoring Y be constant, i.e. let P(Y = y0) = 1 for some fixed y0 ∈ R. Then G(x) =
1[y0,∞[(x), and Equation (37) implies

P(] − ∞, z] × {0}) =
∫

]−∞,z]
(1 − F(x)) dG(x) = (1 − F(y0))1[y0,∞[(z).

The corresponding discrete density of this marginal distribution function is drawn at the
coordinate u = 0 in Figure 2 (exemplarily, we have used y0 = 1.7 and the normal distribution
function F with mean 1 and variance 1). Furthermore, the formula (38) reduces to P(] −
∞, z] × {1}) = ∫

]−∞,z] 1]−∞,y0[(x)f (x) dx. The corresponding Lebesgue density is drawn
at the coordinate u = 1 in Figure 2.

(iii) Let the censoring Y be discrete and take for simplicity the binomial case where P(Y =
y1) = P(Y = y2) = 1/2 for some fixed real values y1 < y2. Then G(x) = (1/2)1[y1,∞[(x) +
1[y2,∞[(x), and Equation (37) implies

P(] − ∞, z] × {0}) =
∫

]−∞,z]
(1 − F(x)) dG(x)

= 1 − F(y1)

2
1[y1,∞[(z) + 1 − F(y2)

2
1[y2,∞[(z).

The corresponding discrete density is drawn at the coordinate u = 0 in Figure 3 (exemplarily, we
have used y1 = 1.3, y2 = 2.3 and the normal distribution function F with mean 1 and variance 1).
Moreover, the formula (38) gives the absolutely continuous distribution

P(] − ∞, z] × {1}) =
∫

]−∞,z]

(
1]−∞,y1[(x)f (x) + 1[y1,y2[(x)

f (x)

2

)
dx,

with the corresponding Lebesgue density visible at the coordinate u = 1 in Figure 3.

Suppose that one has to decide between two different statistical situations where the observa-
tions are distributed by F1 or F2 with densities f1, f2 on R, but practically available only in the
form randomly right-censored according to a general distribution function G considered above.
Then one has in fact to decide between the statistical models characterized by versions P1, P2 of
the probability measure P defined on R ⊗ {0, 1} above, with F and f replaced by F1, F2 and
f1, f2. Discernability between these models can be evaluated by the φ-divergence Dφ(P1, P2),
which is characterized in the next theorem. We see from Equation (40) that the measures μi , νi

considered in this theorem satisfy the relation μi(R) + νi(R) = 1 (i ∈ {1, 2}) so that they cannot
be probability measures simultaneously.

Theorem 3.1 The φ-divergence of P1 and P2 is the sum

Dφ(P1, P2) = Dφ(μ1, μ2) + Dφ(ν1, ν2), (41)

where μi, νi (i ∈ {1, 2}) are the finite measures on R defined by

μi(A) =
∫

A

(1 − G(x))fi(x) dx, νi(A) =
∫

A

(1 − Fi(x)) dG(x), A ⊂ R Borel.
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Statistics 13

Proof From Equation (36), we get the densities

hi(x, u) = dPi

dλ
(x, u) = 1{0}(u) (1 − Fi(x)) + 1{1}(u) (1 − G(x))fi(x), i = 1, 2,

with respect to λ given by Equation (35). Therefore, by Equations (6) and (7),

Dφ(P1, P2) = Dφ(P1, P2) =
∫

R×{0,1}
h2φ̃

(
h1

h2

)
dλ

=
∫

R

h2(x, 0) φ̃

(
h1(x, 0)

h2(x, 0)

)
dG(x) +

∫
R

h2(x, 1) φ̃

(
h1(x, 1)

h2(x, 1)

)
dx

=
∫

R

(1 − F2(x)) φ̃

(
1 − F1(x)

1 − F2(x)

)
dG(x)

+
∫

R

(1 − G(x))f2(x)φ̃

(
(1 − G(x))f1(x)

(1 − G(x))f2(x)

)
dx.

The rest follows from the fact that

Dφ(μ1, μ2) =
∫

R

f2(x)φ̃

(
f1(x)

f2(x)

)
(1 − G(x)) dx (42)

and

Dφ(ν1, ν2) =
∫

R

(1 − F2(x))φ̃

(
1 − F1(x)

1 − F2(x)

)
dG(x). (43)

�

An illustration of this theorem is given by the following.

Example 3.2 We apply the formulas (42) and (43) to the concrete censorings (i)–(iii) of Example
3.1, where f can now be either f1 or f2, and thus F is either F1 or F2, respectively.

(i) The divergence Dφ(μ1, μ2) is given by Equation (42), and (43) reduces to

Dφ(ν1, ν2) =
∫

R

(1 − F2(x))φ̃

(
1 − F1(x)

1 − F2(x)

)
g(x) dx.

(ii) Due to Equations (41), (42) and (43), one gets for this ‘nonrandomly’ right-censored context

Dφ(μ1, μ2) =
∫ y0

−∞
f2(x)φ̃

(
f1(x)

f2(x)

)
dx,

Dφ(ν1, ν2) = (1 − F2(y0))φ̃

(
1 − F1(y0)

1 − F2(y0)

)
.

We see that if the censoring sharpens in the sense y0 → −∞, then Dφ(μ1, μ2) +
Dφ(ν1, ν2) → 0. Contrarily, if the censoring relaxes to complete disappearance in the
sense y0 → +∞, then Dφ(ν1, ν2) → 0, and both Dφ(μ1, μ2) and Dφ(P1, P2) tend to
the φ-divergence Dφ(F1, F2) of alternative distributions F1 and F2 of the uncensored
observation X.
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14 W. Stummer and I. Vajda

(iii) In this censoring,

Dφ(μ1, μ2) =
∫ y1

−∞
f2(x)φ̃

(
f1(x)

f2(x)

)
dx + 1

2

∫ y2

y1

f2(x)φ̃

(
f1(x)

f2(x)

)
dx,

Dφ(ν1, ν2) = 1

2
(1 − F2(y1)) φ̃

(
1 − F1(y1)

1 − F2(y1)

)
+ 1

2
(1 − F2(y2))φ̃

(
1 − F1(y2)

1 − F2(y2)

)
.

We see that if the censoring on the one hand sharpens in the sense y1 → −∞ and at the same
time relaxes in the sense y2 → +∞, then both Dφ(μ1, μ2) and Dφ(P1, P2) tend to the half of the
φ-divergence Dφ(F1, F2) of alternative distributions F1 and F2 of the uncensored observation X.
This agrees with the intuition since in this case one gets with probability 1/2 either no observation
or the uncensored observation X.

4. Information-theoretic applicability

An important role in information theory plays the so-called Pinsker inequality

I (P, Q) ≥ V (P, Q)2

2
(44)

between the classical information divergence I (P, Q) of probability measures P, Q and the
classical total variation

V (P, Q) =
∫

X
|p − q| dλ

(cf. (22)) of these measures (for this inequality and its various sharpenings, see Fedotov et al. [15]).
In Example 2.2, we introduced the nonnegative extension I(μ, ν) of the classical information
divergence I (P, Q) to the case of finite measures μ, ν ∈ M. The corresponding extension of the
Pinsker inequality follows easily from Theorem 2.4.

Theorem 4.1 For all measures μ, ν ∈ M, the information divergence I(μ, ν) given by
Equation (14) satisfies the generalized Pinsker inequality

I(μ, ν)

μ(X )
≥ V (Pμ, Pν)

2

2
+ �(μ, ν)

Rμ,ν

,

where �(μ, ν)/Rμ,ν is the global information divergence (34) normalized by factor Rμ,ν .

Proof Clear from the consequence (34) of Theorem 2.4 and the original inequality (44). �

According to Inequality (44) and Equation (33), the term V (Pμ, Pν)
2/2 is a lower bound on the

normalized local divergence I (Pμ, Pν) = �(μ, ν)/Rμ,ν of measures μ, ν on X . This component
of the bound is increased by the contribution of the normalized global divergence �(μ, ν)/Rμ,ν .

Another applicability, which deserves to be mentioned here, is connected with differential
Shannon entropies H(p) and Burg entropies H̃ (p) of random observations X with probability
densities p on finite or σ -finite measure spaces (X , A, λ) (see Cover & Thomas [16]). In terms
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Statistics 15

of Equation (13), these entropies are defined by the formulas

H(p) = −D1(P, λ) = −
∫

X
p ln p dλ (45)

and

H̃ (p) = −D0(P, λ) =
∫

X
ln p dλ (46)

for probability densities p = dP/dλ w.r.t. a dominating finite or σ -finite measure λ such that
the corresponding integrals exist in the extended real line [−∞, ∞]. These integrals exist in
the extensions (−∞, ∞] or [−∞, ∞) of R if the positive or negative parts of the corresponding
integrands are λ-integrable, respectively. For finite measures λ, the Shannon entropy H(p) always
exists in (−∞, ∞]. In the remaining cases, sufficient conditions for the existence are needed.

If the dominating measure λ is finite, then one gets the following representations by means of
φ-divergences D(·, ·)

H(p) = −D1(P, λ) + λ(X ) − 1 (cf. (14)), (47)

and

H̃ (p) = −D0(P, λ) − λ(X ) + 1 (cf. (15)). (48)

Let us mention at least two of the classical concrete applications of the Shannon and Burg
entropies.

Example 4.1 Consider an information source which generates a message X = (X1, X2, . . .)

formally described as a real stationary zero mean Gaussian process with autocorrelation function
R(k) = EXjXj+k and let λ be the Lebesgue measure on the interval X =] − π, π ]. Suppose
for simplicity that the process is normalized so that the spectral measure P defined on X by the
spectral density

p(x) =
∞∑

k=−∞
R(k) e−ikx, x ∈ X ,

is a probability measure, i.e. ∫
X

p dλ =
∫ π

−π

p(x) dx = 1.

According to Kolmogorov [17], the Shannon entropy H(qn) of the probability density qn of the
first n terms (X1, . . . , Xn) of X w.r.t. the Lebesgue measure on R

n exists and is related to the
spectral Burg entropy

H̃ (p) = −D0(P, λ) =
∫ π

−π

ln p(x) dx

in the asymptotic sense

h(X) ≡ lim
n→∞

H(qn)

n
= ln(2πe) + H̃ (p)/2π

2
,

where h(X) is an important information-theoretic parameter called entropy rate of the process X.
The quantity σ 2∞ = exp{H̃ (p)/2π)} is the limit for n → ∞ of the variance in the best estimate
of Xn based on the past history X1, . . . , Xn−1, called also one-step prediction error or gain in the
literature on speech and image coding (see, e.g. Markel and Gray [18], Buzo et al. [19]).
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16 W. Stummer and I. Vajda

Example 4.2 In the literature on image and speech coding, one frequently meets the so-called
Itakura–Saito distance. This is a measure of distortion of a stationary signal with spectral measure
μ when it is replaced by a stationary signal with spectral measure ν (see [19, Section II] and the
references therein). For spectral measures with finite μ(X ) = ν(X ) > 0 on the spectral space
X = (−π, π) with continuous densities p(x), q(x), this distance is given as

IS(μ, ν) = 1

2π

∫ π

−π

[
− ln

p(x)

q(x)
+ p(x)

q(x)
− 1

]
dx

(cf. [19, (10)]). We see from Equations (13), (11) and (6) that it differs only by the uniform
norming from our zero-order power divergence

D0(μ, ν) =
∫ π

−π

[
− ln

p(x)

q(x)
+ p(x)

q(x)
− 1

]
q(x) dx.

Example 4.3 Sturm [20,21] applied the concept of the Shannon entropy in the research on the
geometry of metric measure spaces (X , A, λ). He introduced relative entropies Ent(P, λ) of
probability measures P on (X , A) w.r.t. dominating locally finite λ by the formula

Ent(P, λ) = lim
ε↓0

∫
{p>ε}

p ln p dλ

for p = dP/dλ. It is easy to see that Ent(P, λ) exists if and only if the Shannon entropy H(p) =
−D1(P, λ) exists, and then Ent(P, λ) = −H(p).

If in an open neighbourhood N of α = 1 the function M(α) = ∫
X pα dλ is finite and differen-

tiable in the sense M(α)′ = ∫
X (pα)′ dλ, then the Shannon entropy H(p) of Equation (45) can be

imbedded as a special limit case for α = 1 in the family of alternative differential power entropies

Hα(p) = 1

α − 1

(
1 −

∫
X

pα dλ

)
, α ∈ N. (49)

If in addition λ is finite, then one gets for α ∈ N\{0, 1} the representation

Hα(p) = −αDα(P, λ) + λ(X ) − 1. (50)

Let us give an example which demonstrates that the entropies from the class (49) have been
over a century successfully applied in various areas of science.

Example 4.4 If the observation space is finite, X = {1, . . . , n}, and λ is the counting measure
on X then the density p of a probability measure P on X reduces to a discrete distribution
p = (p1, . . . , pn) and (49) reduces to the formula

Hα(p) = 1

α − 1

(
1 −

n∑
i=1

pα
i

)
, α ∈ N = R, (51)

where H1(p) stands for the limit

H1(p) = lim
α→1

Hα(p) = −
n∑

i=1

pi ln pi. (52)

The quadratic entropy

H2(p) = 1 −
n∑

i=1

p2
i (53)
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Statistics 17

has been used as an econometric measure of uniformity of income ever since Dalton [22,23] and
as a measure of diversity in biology, ecology and sociology ever since Gini [24] and Simpson [25].
The term ‘quadratic entropy’ was coined by Vajda [26] who proposed H2(p) as an approximation
to the Bayes error e(p) = 1 − maxi pi . In this role, the quadratic entropy is frequently applied
in pattern recognition, cf., e.g. Devroye et al. [27]. For the applications of the ‘Gini–Simpson
index of diversity’ H2(p) in genetics and medicine, see, e.g. Zvárová and Vajda [28]. The whole
subclass of the entropies (51) of positive powers α > 0 was introduced axiomatically by Havrda
and Charvát [29], but this subclass is just an exponential rescaling of the class

Rα(p) = 1

1 − α
ln

n∑
i=1

pα
i (54)

introduced axiomatically earlier by Rényi [30]. The entropies (51) of the nonpositive powers
α ≤ 0 were introduced recently by Vajda and Zvárová [31] on pragmatic grounds: they proved
that H2−β(p) are the generalized informations of positive orders β > 0 obtained by a direct
observation of outputs of a discrete information source (X , p).

If we replace Equation (49) by

H̃α(p) = 1

α

(
1 −

∫
X

pα dλ

)
, α ∈ N,

for a neighbourhood N of α = 0, and correspondingly modify the assumptions concerning N

before Equation (49), then we obtain a family of power extensions of the Burg entropy H̃ (p) of
(46) which is now obtained as the limit for α → 0.

To demonstrate another, information-theoretic applicability of power divergences of finite
measures, consider two real stationary zero mean Gaussian processes X = (X1, X2, . . .), Y =
(Y1, Y2, . . .), with autocorrelation functions

R(k) = EXjXj+k, S(k) = EYjYj+k

and spectral densities

p(x) =
∞∑

k=−∞
R(k) e−ikx, q(x) =

∞∑
k=−∞

S(k) e−ikx

on the interval X =] − π, π ]. Denote by λ the finite measure on the Borel subsets of X with the
constant density 1/4π w.r.t. the Lebesgue measure on X , and let μ and ν be the finite measures
on the Borel subsets of X with the Radon–Nikodym densities p and q w.r.t. λ. Then the Hellinger
divergence

D1/2(μ, ν) = 2
∫

X

(√
p(x) − √

q(x)
)2

dλ(x) (cf. (24))

= 1

2π

∫ π

−π

(√
p(x) − √

q(x)
)2

dx

is a generalized Ornstein distance of the processes X, Y with important applications in the
information theory and also in system identification and modelling (see Gray et al. [32, Section 4]).

An analogue of the generalized Pinsker inequality for D1/2(μ, ν) instead of I(μ, ν) = D1(μ, ν)

is given in the next theorem where it is assumed for simplicity that μ(X ) = ν(X ). The extension
to μ(X ) 	= ν(X ) is obvious.
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Theorem 4.2 If μ, ν are finite measures with the property μ(X ) = ν(X ), then the Hellinger
divergence (24) satisfies the inequality

D1/2(μ, ν) ≥ 4μ(X )

{
1 −

(
1 − V (Pμ, Pν)

2

4

)1/2
}

,

where Pμ, Pν are the normalized versions of μ, ν given by Equation (30).

Proof By (2.38) in [2],

D1/2(Pμ, Pν) ≥ 4

{
1 −

(
1 − V (Pμ, Pν)

2

4

)1/2
}

,

and by Equations (31) and (32), the divergence (24) satisfies the relation

D1/2(μ, ν) = μ(X )D1/2(Pμ, Pν). �
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