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The paper aims at extending, utilising and general ising research in nonlinear dynamics of (i) 
spiral/helicoidal structures, and (ii) viscous. low speed fluid to biomechanical DNA fluid· 
structure interaction. Employing a nonlinear helicoidal model. the energy stored in a 
distorted Watson-Crick DNA model subjected to viscous. low speed organic fluid loading is 
fonnulated. Numerical solutions based on the variational principle are presented for a 
linearized flow field as examples. Significant dynamical responses such as defonnation 
components and resultants are discussed. A proposal for matching of DNA sequential 
characteristics with respect to the nonlinear dynamical responses is outlined in order to 
reveal infonnation regarding DNA sequencing by means of a fluid-structure dynamical 
approach. 
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1 INTRODUCTION 

Although Deoxyribonucleic acid (DNA) was first identified as a kind of 
acid in a cell nucleus over 100 years ago, the way by which two polynucleo-
tide chains are held together in a helical manner with A-T and G-C pairing 
bases was only discovered by James Watson and Francis Crick [1] in 1953. 
This model has beel1- widely discussed and several alternative models have 
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also been proposed [2]. In general, DNA is constructed from two inconcei-
vably long and heavily supercoiled helical polymers, commonly referred to 
as the Watson-Crick double helix model. It is known as one of the most 
interesting and mysterious biological molecules having an ability to con-
serve, replicate and transfer genetic infonnation. It has been discovered 
as an acid in a cell nucleus for more than 100 years, and its biological as-
pects have been established to a certain advanced level today. However, the 
understanding of nonlinear physical properties of DNA.is still far from suf-
ficient for accurate prediction of its dynamical responses. The knowledge 
of molecular biomechanics is important because almost all aspects of life 
are engineered at that level. As Francis Crick mentioned "All approaches 

at a higher level are suspect until confirmed at the molecular level" [3]. 
There exists intensive research in biological and chemical DNA analyses 

[4]. A comprehensive review of the essential works is out of scope, and will 
not be presented. Three events stimulated the appearance and rapid devel-
opment of nonlinear DNA physics [5,6]. The first was the success of non-
linear mathematics and its application to many physical phenomena. The 
second was the emergence of new results in the dynamics of biopolymers, 
which has led to an understanding of the important role of dynamics in the 
biological functioning ofbiopolymers. The third event was the publications 
of Davydov [5] where, for the first time, the achievements of nonlinear 
mathematics were applied to biology and the occurrence of solitons in bio-
polymers was hypothesized. One of the earliest research works on the non-
linear physics of DNA was attributed to Englander et al. [6] who introduced 
the nonlinear conformational excitations and presented the first nonlinear 
Hamiltonian of DNA, which gave a powerful impulse for theoretical inves-
tigations. A number of investigators [2] improved the Hamiltonian model 
and its dynamical parameters, by investigating corresponding nonlinear dif-
ferential equations and their soliton-like solutions with consideration of 
DNA solitons and calculation of corresponding correlation functions. The 
results [5,6] fonned a theoretical basis for the nonlinear physics of DNA. 

DNA is not motionless. It is in a constantly wriggling dynamic state in a 
medium of bioorganic fluid in the nucleus of a cell. DNA can be modelled 
is a d e twisted helicoidal structure [2. 4] constantly interacting with sur-
rounding viscous, organic fluid. Almost all existing DNA analyses assume a 
very coarse dynamical model. Among them are the rod-like models, the 
double rod·like models and the nonlinear higher.level models [2]. Complex-
ity was introduced by adding the effects of environment, inhomogeneitYt 
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helicity and nonlinear excitations [2]. The rod-like models disregard DNA 
helical effects, and assume a coiled double helix as a single rod. They are 
only good if we are interested in examining the global responses of DNA 
at a coarser level. As the Watson-Crick model features a double helix, 
the rod-like models are too crude to study the interior twisting, deformation 
and distribution of energy. 

For the reasons above, we present a new innovative approach to investi-
gate the nonlinear dynamics of DNA in this paper. The DNA molecule is 
modelled, from a physical viewpoint, as an interactive fluid-structure com~ 
plex dynamical system, having a two-dimensional helicoidal structure 
[7-12] immersed in viscous bio-fluids. The model proposed here is more re

fined than the elastic rod-like models such as that of Barkley ad Zimm [13] 
and Allison and Shurr [14]. It can be developed from expertise in the mod~ 
elling of helicoidal structures, because the model can be formed by limiting 
the width of a drill [11, 12]. In other words, a helix is a special subset of a 
drill, and therefore the dynamic responses of a double helix can be investi-
gated from the knowledge of dynamics of drilling structures. The viscous 
bio-fluids surrounding DNA are considered as Low-Reynolds number 
fluids, and fundamental solutions can be obtained by solving the unsteady 
Stokes flow equation [l.St 16]. The fluid-structure system can be charac-
terised by specific distributions of internal forces and energy, and internal 
motions including deformation, bending and twisting could be determined 
from the unsteady viscous flow loadings. These dynamical characteristics 
and responses will assist in the classification of various types of DNA. 

2 ENGINEERING DNA l\:IODEL 

The geometry of a helix or a helicoil with length a, radius R, width band 
projected angle eo (at a) are shown in Figures I and 2. When the condition 
b < R « a, where b is about an order smaller than R [2] is imposed, a he-
licoil (Fig. 3) is obtained. Although not shown in this figure, the thickness h 

of the helicoil considered may not necessarily be a constant. It could vary 
such that the cross section is round or any other shape, so that the helicoil 
model is more realistic. The Watson-Crick double helix DNA model can be 
constructed as a combination of such two parallel helicoils with internal 
bondings as shown in Figure 4(a), which can be used to model a DNA 
molecule as shown in Figure 4(b). 
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FIGURE 1 Geometry of a helix. 

A curvilinear coordinate system, perpendicular and tangential to the helix 
and lying in the osculating plane (r, or/am, is adopted. With the binormal 
vector to the helix ii, it forms an orthogonal coordinate system (r, Or/00, b), 
and its transfonnation with respect to the Cartesian system (I. j, k) is 

... ... () ... r = rei cos 0 + J sin 0) + - k 
rp 

FIGURE 2 Geometry of a helicoidal stroctures. 

(1) 
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FIGURE 3 Geometry of a helicoil. 

where cp = 80la is the rate of change of 8 along the z-axis. Deriving from 
the theory of surfaces, a helicoil (Fig. 3) has infinite radius of curvature 
with respect to the coordinates (r, e), whereas the radius of twist (or torsion 
of the space curve r) is finite [11, 12] as shown in Figures 5 and 6, i.e., 

1 1 1 cp 
Rr = 0; Ro = 0; Rro = -1 +r2cp2 (2a, b, c) 

where Rr and Ro are the radius of curvatures in the r- and 8-directions, 
respectively, and Rro is the radius of twist. 

In Figure 5, large nonlinear twisting curvature versus ria, for constant 
80, is presented. Considering a specific length a (Fig. 2), the twisting cur-
vature at a point r from the axis would be almost linear to the distance r if
the projected angle 80 is small (80 :5 30°). For larger 80, the nonlinearity 
effect becomes more obvious, and the twisting curvatUre decreases drama-
tically for a point moving from the axis outwards radially (along the r-direc-
tion). In Figure 6, the relationship of twisting curvature with respect to 
varying 80, for constant rIa, is presented. Considering a specific length 
a, the twisting curvature at a point r from the axis increases first, when
the projected angle 80 increases. However, as 80 further increases, the twist-
ing curvature reaches a maximum before it starts decreasing. Therefore, in 
order to achieve maximum twisting curvature, eo should maintain a parti-
cular relationship with respect to rIa, as shown in Figure 6. For instance, 
for a constant r = rl, we may differentiate Eq. (2c) with respect to lfJ and 
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(a) (b) 

FIGURE 4 (a) A double helicoidal DNA model with bonding and (b) A DNA molecule. 

set it to zero, dll/Rrnl/dcp = O. We then detennine that for maximum 
II/Rrol, £f' = I/r. and IIIRroimu = £f'/2. 

The derivation of nonlinear twisting curvature (2c) [11, 12] is a bench-
mark, as it has generalized the conventional linear twisting curvature 
IIRro ~ - tanlp for a small cp [7,9, 10]. Thus, it is possible to analyze a 
highly twisted helicoidal structure. There exist two inherent approximations 
in assuming 1/ Rro ~ - tan cp, the first being q> ~ tan q> and the second 
rq> « 1. For the first assumption, an approximately 1 0% error will occur 
for 00 = 30°; for the second assumption, Oo(rla) = 0.26 «1 for 
rIa = 0.5 is very unsatisfactory. 
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FIGURE 5 Large nonlinear twisting curvature for constant 00. 
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Let ii(t, r, 0) be the time-dependent, t, displacement vector composing of 
lI,., lIO in the osculating plane and lib in the binonnal direction, the linear 
nonnal and shear strains [11 t 12] are: 

(3a, b, c) 

3 QUo 3nlo 02 lib lou,. " --- -+---+-- (3d) 
rr - 2cph~ or 2cph~ or2 2cph~ 00 

3 OUr 1 02Ub nlo raUb 1 ouo 
"00 = - 2(f)h) 00 - 112 ~02 - 2(f)h4 - 112 or + 2(f)h2 Or (3e) 

-r0 au 't'O a 't'O 

1 02Ub raUb lou,. 1 ouo nil' 

frO = ho orao + h~ 00 - cph~ or - cph~ 00 + cph~ (3 f) 
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URE 6 large nonlinear twisting curvature for constant rIa. 

where ho = (l/cp)Jl + r2cp2 is the metric tensor of the helicoidal coordi-
nate system. During deformation, the stretching strain energy and bending 
strain energy for constant thickness h can be expressed as 

u = ~~ J L[r.;,. +'?'o + 2v£"too + \ ~. y~ ]hodrdO 

+ ~ J V,,;, + "~o + 2\'1'""00 + 2(\ - .)r~lho drdO, (4) 

corresponding to the first and second integrals, respectively, where 
D = Eh3/12(1 - v2

) is the flexural rigidity with E and v representing the 
Young's modulus and Poison's ratio. Equations for varying thickness 
h(r, 0) can be refonnulated accordingly, by moving h3(r, 0) present in D 
into the domain integrals for strain (first domain integral in Eq. (4)) and 
change of curvature (second domain integral in Eq. (4». 
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The work done due to fluid excitation is 

w = I L ij(t. r. 0)· ii(t. r. O)ho drdO (5) 

where q(t, r, e) is the time-dependent fluid loading distribution over do-
main A. Assuming admissible displacement functions for tlr, Uo, lib, defin-
ing an energy functional as 

(6) 

and minimizing F in accordance with the variational principle result in a 
system of homogeneous equations as 

[K]{C} - {Q} = 0 (7) 

where [Kj, {C}, {Q} are the stiffuess matrix, displacement coefficient and
external loadings. Solving this system of homogeneous equations gives
the response of the Watson-Crick DNA model subject to external fluid 
excitations. 

For nonlinear large defonnation analysis, some linear relations such as
the strain-displacement relationships (3a-f) and strain energy (4) must be 
refonnulated. A nwnber of nonlinear terms comprising (Ollb/ori,
(OUb/Oe)2 etc. will be involved. Combining with the fluid flow excitations,
the governing equation may have to be solved repeatedly and recursively. 
Some root-finding numerical procedures such as Powell's hybrid algorithm, 
an improved variation of Newton's method, may be employed. 

If thickness-to-width ratio h/b is of the order 0(10-1) or lower, first. 
order or higher-order displacement functions, depe~ding on the thickness 
coordinate, must b~ adopted [17]. A three-dimensional elasticity model 
[18] on one unit (360°) of the repeating helicoil may also be solved for 
more accurate solutions. All formulation and equations derived for a
modeling in Figure 2 are valid for a helicoil model in Figure 3. 
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LO'V-REYNOLDS-NU1\1BER FLUID EXCITATION 

organic fluid in the nucleus of a living cell. in which DNA is sub-
ed, is highly viscous and undergoes low speed motion. Precisely. it 

a low Reynolds number defined as 

Re = pUL (8) 
Jl 

where p, U, Ji are respectively the fluid density, speed, dynamic viscosity 
and L is a typical dimension. In investigating flows at low Reynolds num-
bers, it is customary to linearize the Navier-Stokes equations, in order to 
obviate a prohibitively difficult problem of obtaining complete, analytical 
solutions. A useful method for solving such linearized flows is the singu-
larity method, where the solution is expressed in terms of discrete or con-

tinuous distributions of fundamental singularities [15]. For steady viscous 
flows, a set of new fundamental solutions called Stokesons, rotons and 
stressons was first introduced [15]. This approach has recently been further 
extended to unsteady, time-dependent 

Stokes flo\\s and general fundamen-
tal solutions in an arbitrary temporal domain were presented [16]. For the 
analysis of DNA dynamics, the organic fluid flow is governed by [16]: 

~; + V. Vv- V x [(n x x) x v] = -Vp+ V2v+ q(t,x) (10) 

... .... 
where V, n are the flow velocity and angular velocity; v,p are the dis-
turbed flow velocity and pressure, q(t, i) is the time-dependent fluid 
force distribution in the flow field i, related to the quantity in Eq. (5). 
A fundamental solution for the unsteady Oseen flow is [16] 

... 81t 
Ilqll = J + 2Ko(t/4; Re/4) 

(lJa) 

where 

1 (cc)nJ' e-P-(~2/4fi) 
Kn(t; cc) = '2 2 0 pn+1 d{J (llb) 

Decomposing ij into qr. qo, qb and substituting them into Eq. (5), the work 
done by the fluid loading on the helicoidal structure can be detennined. 
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4 NUl\IERICAL EXAl\IPLES 

Consider a single, infinitely long helicoil, as shown Figure 3, immersed in a 
viscous flow field having a constant, steady fluid loading ij = qi in the po· 
sitive x-direction. As the helicoil is assumed infinitely long, it is possible to 
analyze only one unit (360°) of the repeating helicoil. From Eq. (1) and 
Figure 1, the unit normal vectors in the orthogonal coordinate system 
(r, or /ofJ, b) can be found as 

er = cos e i + sin 0 j 

eo = -r sin e i + r cos e j + - k -cp [ - - 1-] 
Jl + r2cp2 cp 

(12) 

1 ~ ...... eb = [sin e 1- cos e j + rcpk] Jl + rlcp2 

Decomposing ij = qi in the orthogonal coordinate system (r, or/ee, b) 
provides 

- e- qrcp sin 0 - q sin e -q = q cos er - eo + eb "'1 + r2cp2 ./1 + rlf{J2 
(13) 

Substituting the flow loading in Eq. (13) into Eq. (5) yields the work done 
by flow on the helicoil as 

11 [ . sin 0 ] W = q A ho cos 0 Ur - rsm () Uo + --;P-Ub drdO (14) 

The displacement field (ur , lIO, Ub) may be represented as an infinite 
polynomial series as 

m 

Ur = L: Cr4>~(x,y) 
1=1 
m 

lIO = L: Cr4>~(X,y) 
;=1 
m 

Ub = L: ct4>~(X,Y) (15) 
;=1 
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where Cj, cf, C~ are unknown coefficients and ¢~ I 4>~, ¢r are truncated, 
complete two-dimensional polynomial series. 

Due to geometric symmetry of a helicoil for every cycle of 3600 along 
the axis, we may impose the following boundary conditions when analyz-
ing one cycle ofhelicoil. At the two boundaries when (} = 00 and 0 = 360°, 

Uo = Ub = 0 (16) 

while Ur -=F 0 because the helicoil is SUbjected to a flow loading in the 
r·direction. These boundary conditions can be imposed to the strain energy 
and work expressions in Eqs. (4) and (14), respectively. 

Substituting strain energy and work done into the energy functional in 
Eq. (6) and minimizing in accordance with the variational principle with 
respect to the unknown coefficients 

aF=aF=a~=o 
oCr aCf aCi 

(17) 

result in a system of homogeneous equations as given by Eq. (7). This sys-
tem can be solved numerically using a standard numerical solver, such as 
the IMSL library in Fortran, to obtain the defonnation solution. 

Two numerical examples are provided in Figures 7 and 8 for infinite 
helicoils with width-to-radius hi R equal to 0.4 and 0.7, respectively, for 
a dimensionless fluid loading of qR3 I D = 1. On the left of the figures 
show the deformed mode shape of one-unit (360Q

) ofhelicoil, on the mid-
dle and right show the values of dimensionless orthogonal deformation 
components ft = urlR, Uo = uo/R, fib = lIh/R and their resultant 
u = ii; + u~ + u~ for the inner (closer to the axis) and outer (further to 
the axis) boundaries, respectively. It is interesting to note that fin Uo, ih 

and u are periodic with respect to one-cycle of dimensionless height or 
3600 of helicoil. This is expected as we analyze an infinitely long helicoil 
and due to symmetry in geometry and flow loading, the deformation pattern 
repeats itself for every cycle of dimensionless height along the axis. 

It is also observed that the outer boundary defonned higher than the inner 
boundary. As we have discussed in Section 2 and Figures 5 and 6, the mag-
nitude of twisting curvature varies along the radial direction of the twisting 
helicoil. As stiffness is dependent of the magnitude of twisting curvature, 
the inner and outer boundaries would have different deformation in general. 
For the inner and outer boundaries, llr and lIh components defonn in a 
similar direction while uo component defonns in opposite directions. 
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Comparing Figures 7 and 8, the corresponding dimensionless defor-
mation components are of similar patterns because we assumed a linear, 
steady flow loading in these examples. A decrease in structural stiffness 
or an increase in flow loading will anticipate an increase in deformation 
amplitude. For instance, the overall stiffness of a narrower helicoil 
(b/R = 0.4) in Figure 7 is smaller than the overall stiffness of a wider 
helicoil (b/R = 0.7) in Figure 8. Therefore, the magnitude of deformation 
in Figure 7 is higher than the corresponding values in Figure 8. Therefore, 
by adjusting the width of the helicoil, it is possible to simulate the stiffness 
of a helicoidal structure and the quantity of flow loading without changing 
the magnitude of flow loading distribution on the helicoidal structure, 
which is. qR3 / D = 1 in these examples. It is also possible to adopt a varying 
thickness helicoil h(r, (J) so that the stiffness at any single point on the 
domain of helicoil could be characterized accordingly to simulate the 
stiffness of a DNA double helix. Further work and examples in this area 
will be conducted to accommodated nonlinear flow field with nonlinear 
defonnation of helicoils. 

On knowing the structural characteristics of DNA molecules, an efficient 
structural model could be constructed. Further analysis of the DNA mole-
cules could be focused on measuring the mechanical parameters, such as 
distributions of defonnation, bending and twisting, of the defonned DNA. 

CONCLUDING RE~IARKS 

The paper is devoted to a new and rapidly developing field of life sciences, 
the nonlinear physics of DNA. A theoretical model for helicoidal structures 
subject to viscous fluid excitations at a low-Reynolds-number is presented 
herewith. It aims to model bio- nonlinear DNA dynamics mechanica~ly 
from a fluid-structure interaction approach. Constructing a physical 
model for systematic and consistent analysis of the internal biomechanical 
structure of DNA is significant and valuable. Besides cultivating an under-
standing of life science, the matching of DNA sequential characteristics 
with respect to the dynamical responses will reveal information regarding 
DNA sequencing by means of its twisting and bending motions. Two nu-
merical examples for linear, steady flows on an infinite helicoidal structure 
are presented to outline the idea and procedure of computation. 
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