On Double and Multiple Interval Graphs

William T. Trotter, Jr. UNIVERSITY OF SOUTH CAROLINA

Frank Harary
UNIVERSITY OF MICHIGAN

Abstract

In this paper we discuss a generalization of the familiar concept of an interval graph that arises naturally in scheduling and allocation problems. We define the interval number of a graph G to be the smallest positive integer t for which there exists a function f which assigns to each vertex u of G a subset $f(u)$ of the real line so that $f(u)$ is the union of t closed intervals of the real line, and distinct vertices u and v in G are adjacent if and only if $f(u)$ and $f(v)$ meet. We show that (1) the interval number of a tree is at most two, and (2) the complete bipartite graph $K_{m, n}$ has interval number $\lceil(m n+1) /(m+n)\rceil$.

1. INTRODUCTION

A graph G is called an interval graph if there is a function f that assigns to each vertex u of G a closed interval of the real line R so that distinct vertices u, v of G are adjacent if and only if $f(u) \cap f(v) \neq \varnothing$. Structural characterizations of interval graphs have been provided by Lekkerkerker and Boland [7] who specified the forbidden subgraphs, Gilmore and Hoffman [2] in terms of cycles, and Fulkerson and Gross [1] in terms of matrices. Definitions not given here can be found in Ref. 5.
In this paper, we consider a generalization of the concept of an interval graph; we are motivated by scheduling and allocation problems that arise when a graph is used to model constraints on interactions between
components of a large scale system. For a graph G, we define* the interval number of G, denoted $i(G)$, as the smallest positive interger t for which there exists a function f which assigns to each vertex u of G a subset $f(u)$ of R which is the union of t (not necessarily disjoint) closed intervals of R and distinct vertices u, v of G are adjacent if and only if $f(u) \cap f(v) \neq \varnothing$. The function f is called a t-representation of G. Thus G is an interval graph if and only if its interval number is one. Obviously every graph G with p vertices has an interval number $i(G) \leq p-1$, and thus $i(G)$ is well defined.

A number m is called an upper bound for a representation f of a graph G when $m>r$ for every number r in $f(u)$ and every vertex u of G.

We will frequently find it convenient to impose an additional restriction on a representation of a graph. A t-representation f of a graph G is said to be displayed if for every vertex u of G, there exists an open interval I_{u} contained in $f(u)$ so that $I_{u} \cap f(v)=\varnothing$ for every vertex v in G with $u \neq v$.

Recall that for any tree T, the tree T^{\prime} is obtained by removing all the endvertices of T. A caterpillar is a tree T for which T^{\prime} is a path. It was noted in Harary and Schwenk [6] that T is a caterpillar if and only if T does not contain the subdivision graph of $K_{1,3}$ as a subtree.

Theorem 1. If T is a tree, then $i(T)=1$ if T is a caterpillar and $i(T)=2$ if it is not.

Proof. If T is a tree and does not contain the subdivision graph of $K_{1,3}$ as a subtree, then it follows from the forbidden subgraph characterization of Ref. 7 that T is an interval graph. On the other hand, if T contains this subdivision graph, then T is not an interval graph and $i(T) \geq 2$.

Now we proceed by induction on the number of vertices to show that every tree has a displayed 2-representation. If T is the one point tree, the result is trivial. Next assume that for some $k \geq 1$, every tree on k vertices has a displayed 2-representation and let T be a tree with $k+1$ vertices.

Choose an endvertex u of T and let f be a displayed 2-representation of the tree $T-u$. Let v be the unique vertex adjacent to u in T and let I_{v} be an open interval contained in $f(v)$ so that $I_{v} \cap f(w)=\varnothing$ for every vertex w in $T-u$ with $w \neq v$. Choose a closed interval A contained in I_{v}.

[^0]Now choose an upper bound m for f and define $g(w)=f(w)$ for every vertex w in $T-u$ and $g(u)=A \cup[m, m+1]$. It is clear that g is a displayed 2-representation of T and our proof is complete.

2. COMPLETE BIPARTITE GRAPHS

We now derive our main result. We use the notation $\lceil x\rceil$ to represent the smallest integer among those which are at least as large as x.

Theorem 2. The interval number of the complete bipartite graph $K_{m, n}$ is given by

$$
i\left(K_{m, n}\right)=\lceil(m n+1) /(m+n)\rceil .
$$

Proof. We first show that $i\left(K_{m, n}\right) \geq\lceil(m n+1) /(m+n)\rceil$. Suppose that f is a t-representation of $K_{m, n}$. Without loss of generality, we may assume that for each vertex u in $K_{m, n}, f(u)$ is the union $A_{1}(u) \cup A_{2}(u) \cup \cdots \cup$ $A_{t}(u)$ of t pairwise disjoint closed intervals.

We now use f to determine a graph G. The vertices of G are the ordered pairs of the form (u, i) where u is a vertex in $K_{m, n}$ and $1 \leq i \leq t$ with distinct vertices (u, i) and (v, j) adjacent in G when $A_{i}(u) \cap$ $A_{i}(v) \neq \varnothing$. The function g defined by $g(u, i)=A_{i}(u)$ is a 1-representation of G so G is an interval graph. Since G is bipartite, it is triangle-free. Since G is an interval graph, it does not contain a cycle of four or more vertices as an induced subgraph. Therefore, G is a forest. Note that G has $(m+n) t$ vertices and at most $(m+n) t-1$ edges.

Now suppose that $e=\{u, v$,$\} is an edge of K_{m, n}$. Then there exist integers i, j with $A_{i}(u) \cap A_{j}(v) \neq \varnothing$, and we may therefore define a function h from the edge set of $K_{m, n}$ to the edge set of G by setting $h(e)=h(\{u, v\})=\{(u, i),(v, j)\}$. Clearly, h is a one-to-one function and since $K_{m, n}$ has $m n$ edges, we see that $m n \leq(m+n) t-1$, i.e., $t \geq$ $\lceil(m n+1) /(m+n)\rceil$.

We will now show that $i\left(K_{m, n}\right) \leq\lceil(m n+1)(m+n)\rceil$. Let $t=$ $[(m n+1) /(m+n)\rceil$. We will construct an interval graph G with a 1representation g. We will then construct a t-representation f of $K_{m, n}$ by appropriately choosing, for each vertex u of $K_{m, n}, t$ intervals from the range of g as the intervals whose union is $f(u)$.

We begin by labeling the vertices of $K_{m, n}$ with the symbols $a_{1}, a_{2}, \ldots, a_{m}, b_{1}, b_{2}, \ldots, b_{n}$ so that a_{i} is adjacent to b_{j} for all i and j. Without loss of generality, we may assume $m \geq n$. Let $A=$ $\{1,2,3, \ldots, m\}$ and $B=\{1,2,3, \ldots, n\}$.

We next construct a graph T whose vertex set is

$$
\left\{u_{k}: 1 \leq k \leq n t\right\} \cup\left\{v_{k}: 1 \leq k \leq n t-1\right\} \cup\left\{w_{i j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}
$$

where T has the following adjacencies: v_{k} is adjacent to u_{k} and u_{k+1} for $k=1,2, \ldots, n t-1$ and $w_{i j}$ is adjacent to u_{i} for $i=1,2, \ldots, m$ and $j=1,2, \ldots, n$. The graph T is a caterpillar and, by Theorem 1 , is also an interval graph. Consequently any induced subgraph of T is also an interval graph.

The next step in the construction is to color some, but not all, of the vertices of T using the elements of A as colors. We begin by assigning to $u_{1}, u_{2}, \ldots, u_{n t}$ the colors

$$
1,2,3, \ldots, n, 1,2,3, \ldots, n, \ldots, 1,2,3, \ldots, n
$$

in order. Note that each color from B is used exactly t times.
Now let $s=n-t$; then $2 s \leq n-1$. Suppose that S is a set of either $2 s$ or $2 s-1$ consecutive vertices from the sequence $v_{1}, v_{2}, \ldots, v_{n t-1}$. Consider a subset S^{\prime} of S that contains s vertices, no two of which are consecutive. Then let B^{\prime} be the subset of B consisting of those integers j for which there is a vertex v from S^{\prime} and a vertex u adjacent to v with u having color j. It is easy to verify that B^{\prime} must contain $2 s$ elements, i.e., the s vertices of S^{\prime} are adjacent to $2 s$ distinctly colored vertices.

The next step is to assign colors to the first $m s$ vertices in the sequence $v_{1}, v_{2}, \ldots, v_{n t-1}$. Note that $t=\lceil(m n+1) /(m+n)\rceil$ and $s=n-t$ imply that $m s \leq n t-1$. At this point, we must consider two cases depending on the parity of m. If m is even, then assign the vertices $v_{1}, v_{2}, \ldots, v_{m s}$ the colors

$$
1,2,1,2, \ldots, 1,2,3,4,3,4, \ldots, 3,4, \ldots, m-1,
$$

in order. Note that each color in A is to be used exactly s times. If m is odd, we modify this scheme as follows. We first assign color m to $v_{1}, v_{n+3}, v_{2 n+5}, \ldots, v_{(s-1)(n+2)+1}$. Note that for each $j=1,2,3, \ldots, 2 s$, there are integers k, l for which u_{k} is adjacent to v_{l}, where v_{l} has color m and u_{k} has color j. Next assign to the ($m-1$)s vertices in the sequence $v_{1}, v_{2}, \ldots, v_{m s}$, which were not assigned color m, the colors

$$
1,2,1,2, \ldots, 1,2,3,4,3,4, \ldots, 3,4, \ldots, m-2, m-1, \ldots, m-2, m-1
$$

in order. Again we note that each color in A is to be used exactly s times.
When m is even, observe that each color i from A is assigned to s nonconsecutive vertices in a block of $2 s-1$ consecutive vertices from the sequence $v_{1}, v_{2}, \ldots, v_{n t-1}$. When m is odd, we observe that distinct vertices that have been assigned color m are at least $n+2$ apart in the
sequence $v_{1}, v_{2}, \ldots, v_{n t-1}$. Therefore, we observe that each color i from A with $i \neq m$ is assigned to s nonconsecutive vertices in a block of $2 s$ or $2 s-1$ consecutive vertices in the sequence $v_{1}, v_{2}, \ldots, v_{n t-1}$. For each color $i \in A$, define the set
$B(i)=\left\{j \in B\right.$: There exist integers k, l with u_{k} adjacent to v_{1} for which u_{k} has been assigned color \dot{j} and v_{l} has been assigned color $\left.i\right\}$.
We conclude that for all values of m and for every color i from A, the set $B(i)$ contains exactly $2 s$ elements.

The next step in the construction is to assign colors to some, but not all, of the vertices in $\left\{w_{i j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$. The construction is the same for all values of m. Let i be an element of A; assign color i to vertex $w_{i j}$ if and only if j is an element of $\boldsymbol{B}-\boldsymbol{B}(i)$. Now let

$$
U_{1}=\left\{v_{k}: 1 \leq k \leq n t-1\right\} \cup\left\{w_{i j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}
$$

and let

$$
U_{2}=\left\{u_{k}: 1 \leq k \leq n t\right\} .
$$

Observe that for each color i from A, exactly t vertices of U_{1} have been assigned color i, and for each color j from B, exactly t vertices from U_{2} have been assigned color j; furthermore, there exist adjacent vertices $u^{\prime}, u^{\prime \prime}$ with u^{\prime} from $U_{1}, u^{\prime \prime}$ from U_{2}, u^{\prime} having color i, and $u^{\prime \prime}$ having color j.

Now let G be the subgraph of T generated by the colored vertices and let g be a 1 -representation of G. The final step in the construction is to use g to define a t-representation f of $K_{m, n}$. But this is accomplished simply by defining

$$
f\left(a_{i}\right)=\cup\left\{g\left(u^{\prime}\right): u^{\prime} \text { is a vertex from } U_{1} \text { and } u^{\prime} \text { has color } i\right\}
$$

$$
\text { for } i=1,2, \ldots, m
$$

and

$$
\begin{array}{r}
f\left(b_{j}\right)=\cup\left\{g\left(u^{\prime \prime}\right): u^{\prime \prime} \text { is a vertex from } U_{2} \text { and } u^{\prime \prime} \text { has color } j\right\} \\
\text { for } j=1,2, \ldots, n .
\end{array}
$$

It is trivial to verify that f is a t-representation of $K_{m, n}$.

3. OTHER RESULTS

A preliminary version of this paper included a proof of the following result.

Theorem 3. If G has p vertices, then $i(G) \leq\lceil p / 3\rceil$.
This theorem may be established using a two-part argument in which it is proved inductively that a graph on $3 n$ vertices has an n-representation and a triangle-free graph on $3 n$ vertices has a displayed n-representation. The proof of the second part makes use of Turán's theorem for the maximum number of edges in a triangle-free graph.

However, the authors did not believe that the upper bound on the interval number of a graph provided by Theorem 3 was best possible. Motivated by the observation that the complete bipartite graph $K_{2 n, 2 n}$ has $4 n$ vertices and interval number $n+1$, the authors conjectured that if G is a graph with p vertices, then $i(G) \leq\lceil(p+1) / 4\rceil$.

The concept of interval number has been independently investigated by Griggs and West [4]. They obtained the formula given in Theorem 1 for the interval number of a tree as well as the upper bound given in Theorem 3. They also made the same conjecture concerning the maximum interval number of a graph with p vertices. And they also provided an upper bound on the interval number of a graph in terms of the maximum degree of a vertex in the graph. Specifically, they showed that if the maximum degree of a vertex in a graph G is d, then $i(G) \leq$ $\lceil(d+1) / 2\rceil$. This last result allowed them to determine that the interval number of the n-cube Q_{n} is $\lceil(n+1) / 2\rceil$, which answered a problem posed in the preliminary version of this paper.

The authors have recently learned that Griggs [3] has established the conjecture by proving that if G has $4 n-1$ vertices, then $i(G) \leq n$.

4. AN OPEN PROBLEM

Lekkerkerker and Boland [7] gave a forbidden subgraph characterization of interval graphs by listing the collection $\mathscr{\Phi}_{2}$ of graphs defined by

$$
\mathscr{I}_{2}=\{G: i(G)=2 \text { but } i(H)=1
$$

for every proper induced subgraph H of $G\}$.
We propose the general problem of finding for $t \geq 3$, the collection

$$
\mathscr{I}_{t}=\{G: i(G)=t \text { but } i(H) \leq t-1 \text { for every proper subgraph } H \text { of } G\}
$$

The problem for $t=3$ seems to both manageable and interesting since from applied viewpoint, graphs that are the intersection graphs of a family of sets each of which is the union of two intervals of the real line have practical significance, e.g., two work periods separated by a lunch break. By double interval graphs, we mean graphs with interval number
two. Theorem 2 shows that $K_{2 n, 2 n}$ is in $\mathscr{\Phi}_{n+1}$ for every $n \geq 1$ and that $K_{2 n-1,2 n+2}$ is in \mathscr{I}_{n+1} for every $n \geq 2$. In particular, we note then that a forbidden subgraph characterization of double interval graphs will include $K_{4,4}$ and $K_{3,6}$.

References

[1] D. R. Fulkerson and O. A. Gross, Incidence matrices and interval graphs. Pacific J. Math. 15 (1965) 835-855.
[2] P. C. Gilmore and A. J. Hoffman, A characterization of comparability graphs and of interval graphs. Canad. J. Math. 16 (1964) 539-548.
[3] J. Griggs, Extremal values of the interval number of a graph II. Submitted.
[4] J. Griggs and D. West, Extremal values of the interval number of a graph. Submitted.
[5] F. Harary, Graph Theory. Addison-Wesley, Reading, Mass. (1969).
[6] F. Harary and A. J. Schwenk, Trees with hamiltonian square. Mathematika 18 (1971) 138-140.
[7] C. G. Lekkerkerker and J. Ch. Boland, Representation of a finite graph by a set of intervals on the real line. Fund. Math. 51 (1962) 45-64.
[8] F. S. Roberts, On the boxicity and cubicity of a graph. In Recent Progress in Combinatorics. Academic, New York (1969) 301-310.

[^0]: * Roberts [8] has studied another generalization of interval graphs. He defines the boxicity of a graph G as the smallest positive integer t for which there exists a function f which assigns to each vertex u of G a sequence $f(u)(1), f(u)$ 2), $\ldots, f(u)(t)$ of closed intervals of R so that distinct vertices u, v of G are adjacent if and only if $f(u)(i) \cap f(v)(i) \neq \varnothing$ for $i=1,2,3, \ldots, t$.

