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Abstract. Let H be a Weierstrass semigroup, i.e., the set H(P ) of integers
which are pole orders at P of regular functions on C\{P} for some pointed
non-singular curve (C,P ). In this paper for any Weierstrass semigroup H we
construct a double covering π : C̃ −→ C with a ramification point P̃ such that
H(π(P̃ )) = H. We also determine the semigroup H(P̃ ). Moreover, in the case
where H starts with 3 we investigate the relation between the semigroup H(P̃ )
and the Weierstrass semigroup of a total ramification point on a cyclic covering
of the projective line with degree 6.

1 Introduction.

Let C be a complete nonsingular irreducible curve of genus g ≥ 2 over an
algebraically closed field k of characteristic 0, which is called a curve in this
paper. Let K(C) be the field of rational functions on C. For a point P of C,
we set

H(P ) := {α ∈ N0| there exists f ∈ K(C) with (f)∞ = αP},

which is called the Weierstrass semigroup of the point P where N0 denotes the
additive semigroup of non-negative integers. A numerical semigroup means a
subsemigroup of N0 whose complement in N0 is a finite set. For a numerical
semigroup H the cardinality of N0\H is called the genus of H, which is denoted
by g(H). We note that H(P ) is a numerical semigroup of genus g. A numerical
semigroup H is said to be Weierstrass if there exists a pointed curve (C,P ) such
that H = H(P ).

Let (C̃, P̃ ) be a pointed curve of genus g̃. Let us take a positive integer g with
g̃ = 6g + 4. Using the property of the semigroup H(P̃ ) Torres [7] characterized
the condition under which C̃ is a double covering of some curve C of genus g with
ramification point P̃ . In this paper when a pointed curve (C,P ) of genus g is
given we construct many examples of H̃ which is the semigroup of a ramification
point of a double covering of C over the point P even if g(H̃) < 6g+4. In fact,

* Partially supported by Grant-in-Aid for Scientific Research (17540046), Japan Society
for the Promotion of Science.

** Partially supported by Grant-in-Aid for Scientific Research (17540030), Japan Society
for the Promotion of Science.

2000 Mathematics Subject Classification: Primary 14H55; Secondary 14H30, 14C20.
Key words and phrase: Weierstrass semigroup of a point, Double covering of a curve,

Cyclic covering of the projective line with degree 6

1



in Section 2 when H is any Weierstrass semigroup, i.e., there exists a pointed
curve (C,P ) with H(P ) = H we construct a double covering of a curve C with
ramification point P̃ over P such that g(H(P̃ )) = 2g(H) + c(H) − 1 where we
denote by c(H) the minimum of non-negative integers c satisfying c+N0 j H.
We note that c(H) 5 2g(H). We can also describe the semigroup H̃ = H(P̃ ).
For any positive integer m a numerical semigroup H is called an m-semigroup
if the least positive integer in H is m. An m-semigroup is said to be cyclic if it
is the Weierstrass semigroup of a total ramification point on a cyclic covering
of the projective line with degree m. If p is prime, Kim-Komeda [1] gives a
computable necessary and sufficient condition for a p-semigroup to be cyclic. In
Section 3 we describe a necessary and sufficient condition for a 6-semigroup to be
cyclic. Moreover, for a 3-semigroup H we find the condition for the semigroup
H̃ = Hn in Theorem 2.2 to be cyclic.

2 Weierstrass points on a double covering of a
curve.

In this section when a Weierstrass semigroup H is given we construct a double
covering π : C̃ −→ C with a ramification point P̃ such that H(π(P̃ )) = H.
Moreover, we determine the Weierstrass semigroup of the ramification point P̃ .
For a numerical semigroupH we use the following notation. For anm-semigroup
H we set

S(H) = {s0 = m, s1, s2, . . . , sm−1}

where si is the minimum element h in H such that h ≡ i mod m. The set S(H)
is called the standard basis for H.

Lemma 2.1. Let H be an m-semigroup and n an odd integer larger than
2c(H)− 2. We set Hn = 2H + nN0. Assume that n ̸= 2m− 1.
i) Hn is a 2m-semigroup with the standard basis

S(Hn) = {2m, 2s1, . . . , 2sm−1, n, n+ 2s1, . . . , n+ 2sm−1}.

ii) The genus of Hn is 2g(H) + (n− 1)/2.

Proof. i) Since

Max{si −m|i = 1, . . . ,m− 1} = c(H)− 1,

we get si −m 5 c(H)− 1 for all i. Hence, we have

2si 5 2(c(H)− 1 +m) 5 4c(H)− 2 5 2n

because of m 5 c(H) and the assumption n = 2c(H)− 1. Therefore, we obtain
the standard basis

S(Hn) = {2m, 2s1, . . . , 2sm−1, n, n+ 2s1, . . . , n+ 2sm−1}
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for Hn, because

{s ∈ S(Hn)|s is even } = {2m, 2s1, . . . , 2sm−1}

and
{s ∈ S(Hn)|s is odd } = {n, n+ 2s1, . . . , n+ 2sm−1}.

ii) If we set
n ≡ r mod 2m with 1 5 r 5 2m− 1,

then we get

g(Hn) =
∑m−1

i=1 [(2si)/(2m)] + [n/(2m)] +
∑m−1

i=1 [(n+ 2si)/(2m)]

= g(H) + (n− r)/(2m) + (m− 1) · (n− r)/(2m) +
∑m−1

i=1 [(r + 2si)/(2m)]

= g(H) + (n− r)/2 +
∑m−1

i=1 (si − i)/m+
∑m−1

i=1 [(r + 2i)/(2m)]

= 2g(H) + (n− r)/2 +
∑m−1

i=1 [(r + 2i)/(2m)].

By the way we have r + 2i 5 4m − 3, and r + 2i = 2m if and only if i =
m− (r − 1)/2. Hence, we obtain

g(Hn) = 2g(H) + (n− r)/2 + (r − 1)/2 = 2g(H) + (n− 1)/2.

2

We construct a desired double covering π : C̃ −→ C as follows:

Theorem 2.2. Let H be a Weierstrass m-semigroup of genus r = 0, i.e., there
exists a pointed curve (C,P ) such that H(P ) = H. For any odd n = 2c(H)− 1
we set Hn = 2H + nN0. Assume that n ̸= 2m − 1. Then there exists a double
covering π : C̃ −→ C with a ramification point P̃ over P such that H(P̃ ) = Hn.

Proof. We consider the divisor D = ((n+ 1)/2)P . Let L be an invertible sheaf
on C such that L ≃ OC(−D). Then we have

2D ∼ P + (some effective divisor) = R

where R is a reduced divisor. Here for any two divisors D1 and D2 on C
D1 ∼ D2 means that D1 and D2 are linearly equivalent. In fact, we have

deg(2D − P ) = 2 · (n+ 1)/2− 1 = n = 2c(H)− 1 = 2r + 1

because of c(H) = r + 1. Hence, the divisor 2D − P is very ample. We set
∆ = |2D − P | where for a divisor E on C we denote by |E| the set of effective
divisors on C which are linearly equivalent to E. By Bertini’s Theorem there
exists a non-empty open subset U in ∆ which is contained in the set

∆0 = {E ∈ ∆|E is reduced }.
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We consider the non-empty open subset

U1 = {E ∈ ∆|P ̸∈ E}.

Then U ∩ U1 is non-empty open. Take a divisor R′ in U ∩ U1. We may set
R = P +R′. Now we have isomorphisms

L⊗2 ≃ OC(−2D) ≃ OC(−R) ⊂ OC .

Using the composition of the above two isomorphisms we can construct a double
covering

π : C̃ = Spec(OC ⊕ L) −→ C

whose branch locus is R (See Mumford [6]). By Riemann-Hurwitz formula the
genus of C̃ is

2r + (n− 1)/2 = 2g(H) + (n− 1)/2.

Let P̃ ∈ C̃ be the ramification point of π over P . By Proposition 2.1 in Komeda-
Ohbuchi [4] we obtain

h0(C̃,OC̃((n−1)P̃ )) = h0(C,OC(((n−1)/2)P ))+h0(C,L⊗OC(((n−1)/2)P ))

and

h0(C̃,OC̃((n+1)P̃ )) = h0(C,OC(((n+1)/2)P ))+h0(C,L⊗OC(((n+1)/2)P )).

Since L ≃ OC(−((n+ 1)/2)P ), we get

h0(C̃,OC̃((n− 1)P̃ )) = h0(C,OC(((n− 1)/2)P ))

and
h0(C̃,OC̃((n+ 1)P̃ )) = h0(C,OC(((n+ 1)/2)P )) + 1.

The assumption n = 2c(H)− 1 implies that

h0(C,OC(((n+ 1)/2)P )) = h0(C,OC(((n− 1)/2)P )) + 1.

Thus, we get
h0(C̃,OC̃(nP̃ )) = h0(C̃,OC̃((n− 1)P̃ )) + 1,

which implies that n ∈ H(P̃ ). Moreover, we have H(P̃ ) ⊃ 2H. Thus, we get
H(P̃ ) k 2H + nN0 = Hn. By Lemma 2.1 ii) we have g(Hn) = g(H(P̃ )), which
implies that H(P̃ ) = Hn. 2.

Since for any m 5 5 every m-semigroup is Weierstrass (Maclachlan [5],
Komeda [2], [3]), we get the following:

Corollary 2.3. Let H be an m-semigroup for some 2 5 m 5 5. For any odd
n = 2c(H)−1 with n ̸= 2m−1 there exists a double covering with a ramification
point whose Weierstrass semigroup is 2H + nN0.

If we take H as the semigroup generated by 3, 4 and 5, we get the following
examples:

Example 2.4. For any g = 7 there exists a double covering with a ramification
point whose Weierstrass semigroup is generated by 6, 8, 10 and 2g − 7.
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3 Cyclic 6-semigroups.

First, we describe the condition for a 6-semigroup to be cyclic in tems of the
standard basis. Using the description we determine the condition on n under
which the semigroup Hn in Theorem 2.2 is cyclic when H is a 3-semigroup.

Lemma 3.1. Let H be a cyclic 6-semigroup. Then there exists a pointed curve
(C,P ) satisfying H(P ) = H such that the curve C is defined by an equation of
the form

z6 =
∏5

q=1

∏iq
j=1(x− cqj)

q

with
∑5

q=1 qiq ≡ 1 or 5 mod 6 and that f(P ) = (0 : 1) where f : C −→ P1 is
the surjective morphism defined by f(Q) = (1 : x(Q)). Here cqj’s are distinct
elements of k.

Proof. Since H is a cyclic 6-semigroup, there is a pointed curve (C,P ) such
that C is a cyclic covering of P1 of degree 6 with its total ramification point P
satisfying H(P ) = H. Hence, C is defined by an equation of the form

z6 =
∏5

q=1

∏iq
j=1(x− cqj)

q

where i1, . . . , i5 are non-negative integers. If f : C −→ P1 is the morphism
sending Q to (1 : x(Q)), then f(P ) = (0 : 1) or (1 : cqj) for q = 1 or 5
and some j. Even if f(P ) = (1 : cqj), we may assume that f(P ) = (0 : 1)
by transforming the variable x into X = 1/(x − cqj). In this case, we get∑5

q=1 qiq ≡ 1 or 5 mod 6. 2

Proposition 3.2. Let (C,P ) be a pointed curve as in Lemma 3.1. Then we
have

S(H(P )) = {6,
∑5

i=1 qiq, 2(i1 + 2i2 + i4 + 2i5), 3(i1 + i3 + i5),

2(2i1 + i2 + 2i4 + i5),
∑5

i=1(6− q)iq}.

Proof. We set
f−1((1 : cqj)) = {Pqj} for q = 1, 5,

f−1((1 : cqj)) = {Pqj , P
′
qj} for q = 2, 4,

f−1((1 : cqj)) = {Pqj , P
′
qj , P

′′
qj} for q = 3.

LetH be the semigroup generated by 6, b1 =
∑5

i=1 qiq, b2 = 2(i1+2i2+i4+2i5),

b3 = 3(i1 + i3 + i5), b4 = 2(2i1 + i2 + 2i4 + i5) and b5 =
∑5

i=1(6 − q)iq. Since∑5
q=1 qiq ≡ 1 or 5 mod 6, H is a numerical semigroup. First, we show that

H j H(P ). We have

div z = −b1P +
∑i1

j=1 P1j + 5
∑i5

j=1 P5j +
∑i2

j=1(P2j + P ′
2j)

+2
∑i4

j=1(P4j + P ′
4j) +

∑i3
j=1(P3j + P ′

3j + P ′′
3j),
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div (x− cqj) = −6P + 6Pqj for q = 1, 5,

div (x− cqj) = −6P + 3Pqj + 3P ′
qj for q = 2, 4,

div (x− cqj) = −6P + 2Pqj + 2P ′
qj + 2P ′′

qj for q = 3.

For any m ∈ {1, 2, 3, 4, 5} we set

ym =
∏5

q=1

∏iq
j=1(x− cqj)

−[−mq/6]

where [r] denotes the largest integer less than or equal to r for any real number
r. Then we get

div (ym/zm) = −
∑5

q=1(−mq − 6[−mq/6])iqP + (6−m)
∑i1

j=1 P1j

+(−6[−5m/6]− 5m)
∑i5

j=1 P5j + (−3[−2m/6]−m)
∑i2

j=1(P2j + P ′
2j)

+(−3[−4m/6]−2m)
∑i4

j=1(P4j+P ′
4j)+(−2[−3m/6]−m)

∑i3
j=1(P3j+P ′

3j+P ′′
3j).

Hence we obtain
div (ym/zm)∞ = b6−mP

for any m ∈ {1, 2, 3, 4, 5}. Thus, we have H j H(P ), which implies that
g(H) = g(H(P )). By Hurwitz’s theorem we get

g(H(P )) = (5i1 + 4i2 + 3i3 + 4i4 + 5i5 − 5)/2.

But we have

g(H) 5
∑5

q=1[bq/6] = [(
∑5

i=1 qiq)/6] + [(2(i1 + 2i2 + i4 + 2i5))/6]

+[(3(i1 + i3 + i5))/6] + i1 + i2 + i4 + i5

+[(−2(i1 + 2i2 + i4 + 2i5))/6] +
∑5

q=1 iq + [(−
∑5

i=1 qiq)/6]

= (5i1 + 4i2 + 3i3 + 4i4 + 5i5 − 5)/2 = g(H(P )),

because
∑5

q=1 qiq ≡ 1 or 5 mod 6. Therefore, we get the equality g(H) =
g(H(P )), which implies that H(P ) = H. Moreover, by the above equality
the standard basis for H(P ) must be the desired one. 2

Using the above description of a cyclic 6-semigroup in terms of the standard
basis we get a computable necessary and sufficient condition for a 6-semigroup
to be cyclic.

Theorem 3.3. Let H be a 6-semigroup with

S(H) = {6, 6m1 + 1, 6m2 + 2, 6m3 + 3, 6m4 + 4, 6m5 + 5}.

Then it is cyclic if and only if we have

m2 +m5 = m3 +m4, m1 +m5 = m2 +m4 and m1 +m4 = m2 +m3.
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Proof. First, assume that H is cyclic. By Lemma 3.1 and Proposition 3.2 there
are non-negative integers i1, i2, i3, i4 and i5 such that

i1 + 2i2 + 3i3 + 4i4 + 5i5 = 6m1 + 1 (resp. 6m5 + 5)
2i1 + 4i2 + 2i4 + 4i5 = 6m2 + 2 (resp. 6m4 + 4)
3i1 + 3i3 + 3i5 = 6m3 + 3
4i1 + 2i2 + 4i4 + 2i5 = 6m4 + 4 (resp. 6m2 + 2)
5i1 + 4i2 + 3i3 + 2i4 + i5 = 6m5 + 5 (resp. 6m1 + 1).

Considering i1, i2, i3, i4, i5 to be variables the determinant of the coefficient ma-
trix is 1296. By calculation the above system of linear equations has a unique
solution

i1 = m3 +m4 + 1−m1 (resp. m2 +m3 −m5),

i2 = m2 +m5 −m3 −m4 (resp. m1 +m4 −m2 −m3),

i3 = m1 +m5 −m2 −m4,

i4 = m1 +m4 −m2 −m3 (resp. m2 +m5 −m3 −m4),

i5 = m2 +m3 −m5 (resp. m3 +m4 + 1−m1).

Since all iq’s must be non-negative, we get the desired result.
We shall show the ”only if”-part. Let iq’s be as in the above, which are

non-negative by the assumption. Then we get the pointed curve (C,P ) as in
Lemma 3.1. Using Proposition 3.2 we get H = H(P ), which implies that H is
cyclic. 2

When H is a 3-semigroup, we give a criterion for the 6-semigroup Hn as in
Lemma 2.1 to be non-cyclic.

Proposition 3.4. Let H be a 3-semigroup with S(H) = {3, 3l1+1, 3l2+2} and n
an odd integer larger than 2c(H)−2 and distinct from 5. We set Hn = 2H+nN0.
i) If n ≡ 3 mod 6, then the 6-semigroup Hn is cyclic.
ii) Let n ≡ 1 mod 6. If 2l1 = l2, then the 6-semigroup Hn is cyclic. Otherwise,
Hn is not cyclic.
iii) Let n ≡ 5 mod 6. If l1 = 2l2 + 1, then the 6-semigroup Hn is cyclic.
Otherwise, Hn is not cyclic.

Proof. By Lemma 2.1 i) we have

S(Hn) = {6, 6l1 + 2, 6l2 + 4, n, n+ 6l1 + 2, n+ 6l2 + 4}.

For any i = 1, . . . , 5, let si ∈ S(Hn) such that si ≡ i mod 6. We set mi = [si/6].
First, we consider the case where n ≡ 3 mod 6. Then we have

m1 = l2 + [n/6] + 1, m3 = [n/6] and m5 = l1 + [n/6].

Thus, we get m1 +m5 > m2 +m4. Since 2l1 = l2 and 2l2 + 1 = l1, we have

m2 +m5 = m3 +m4 and m1 +m4 = m2 +m3.
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By Theorem 3.3 the 6-semigroup Hn is cyclic.
Second, we consider the case where n ≡ 1 mod 6. Then we have

m1 = [n/6], m3 = l1 + [n/6] and m5 = l2 + [n/6].

Thus, we get m2 +m5 = m3 +m4. If 2l1 > l2, then we have

m1 +m4 = [n/6] + l2 < 2l1 + [n/6] = m2 +m3,

which implies that Hn is not cyclic. Let 2l1 = l2. Then we have

m1 +m4 = m2 +m3.

Moreover, we see that c(H) = 6l1+2− 3+1 = 6l1. By the assumption we have
n = 12l1 − 1, which implies that [n/6] = 2l1 − 1. Hence we obtain

m1 +m5 = l2 + 2[n/6] = l2 + 4l1 − 2 > l1 + l2 = m2 +m4.

Thus, if 2l1 = l2, then Hn is cyclic.
Last, let n ≡ 5 mod 6. The method similar to the case n ≡ 1 mod 6 works

well. 2

Using the above result we get a criterion for the 6-semigroup in Example 2.4
to be cyclic.

Example 3.5. For any g = 7 let H(g) be the semigroup generated by 6, 8, 10
and 2g − 7. The 6-semigroup H(g) is cyclic if and only if g ≡ 2 mod 3.
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