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SUMMARY

We consider the doubly robust estimation of the parameters in a semiparametric conditional
odds ratio model. Our estimators are consistent and asymptotically normal in a union model
that assumes either of two variation independent baseline functions is correctly modelled but
not necessarily both. Furthermore, when either outcome has finite support, our estimators are
semiparametric efficient in the union model at the intersection submodel where both nuisance
functions models are correct. For general outcomes, we obtain doubly robust estimators that are
nearly efficient at the intersection submodel. Our methods are easy to implement as they do not
require the use of the alternating conditional expectations algorithm of Chen (2007).

Some key words: Doubly robust; Generalized odds ratio; Locally efficient; Semiparametric logistic regression.

1. INTRODUCTION

Given a random vector O = (Y, A, L) the conditional odds ratio function γ (Y, A, y0, a0,L)
between A and Y given L at a given base point (a0, y0) is

γ (Y, A, L) = f (Y | A, L) f (y0 | a0, L)

f (y0 | A, L) f (Y | a0, L)

= g(A | Y, L)g (a0 | y0, L)

g (a0 | Y, L) g (A | y0, L)
,

where the vectors Y and A can take either discrete values, continuous values, or a mixture of
both, L is a high-dimensional vector of measured auxiliary covariates, (a0, y0) is a user specified
point in the sample space and f (Y | A, L), g(A | Y, L) and h(A, Y | L) are, respectively, the
conditional densities of Y given A and L , the conditional density of A given Y and L and the
joint conditional density of A and Y given L with respect to a dominating measure μ. The odds
ratio function is a particularly useful measure of association when Y and A take both discrete
and continuous values. For instance, A and Y could each be a mixture of a discrete component
encoding, say, the presence or absence of a given bacterium and a continuous component encoding
the bacterial counts when it is present. In such a case, as argued by Chen (2007), a complete
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characterization of the association between bacterium A and bacterium Y given L would require
separate comparisons of the probabilities of absence of one bacterium when the other bacterium
is either absent or present at a particular concentration, and of the concentration distribution for
one bacterium when the other bacterium is either absent or present at a particular concentration.
Instead, the direct estimation of the odds ratio function relating bacterium A to bacterium Y
given covariates L provides a unified solution to this problem and obviates the need for separate
analyses.

Given n independent and identically distributed copies of O , Chen (2007) proposed a locally
efficient iterative estimator of the parameter ψ0 in a semiparametric model B that specifies
(i) γ (Y, A, L) is equal to a known function γ (Y, A, L; ψ) evaluated at the unknown true p-
dimensional parameter vector ψ0, i.e.

γ (Y, A, L; ψ0) = γ (Y, A, L), (1)

where γ (Y, A, L; ψ) takes the value 1 if A = a0, Y = y0, or ψ = 0, so ψ0 = 0 encodes the null
hypothesis that Y and A are conditionally independent given L , and (ii) either but not necessarily
both, (a) a given parametric model f (Y | a0, L; θ) for f (Y | a0, L) or (b) a parametric model
g(A | y0, L; α) for g(A | y0, L) is correct. Model B is referred to as a union model because it is
the union of the model C that assumes that (i) and (iia) are true and the model D that assumes
that (i) and (iib) are true. An estimator of ψ0 that is consistent and asymptotically normal under
this union model is referred to as doubly robust because, given equation (1), the estimator is
consistent and asymptotically normal for ψ0 if one has succeeded in specifying either a correct
model f (Y | a0, L) or a correct model for g(A | y0, L), thus giving the data analyst two chances
rather than one chance to obtain valid inference for ψ0.

An example of a simple parametric model for the odds ratio function is the bilinear log-odds
ratio model (Chen, 2003, 2004). It assumes that γ (Y, A, L; ψ0) = exp{ψ0(Y − y0) ⊗ (A − a0)},
where ⊗ is the direct product. This model includes all of the generalized linear regression models
with canonical link functions as special cases. In the case of stratified 2 × 2 tables, it implies
homogeneous odds ratios, but is easily extended to the case of nonhomogeneous odds ratios.
Other interesting examples of odds ratio models are given by Chen (2007).

Unfortunately, Chen’s aforementioned locally efficient doubly robust estimator of ψ0 under
model B is computationally very demanding, especially when A and Y have multiple continuous
components. The main contribution of our paper is to provide novel and highly efficient doubly
robust estimators of ψ0 that are substantially easier to compute than those of Chen.

2. PRELIMINARIES

Before describing our new approach, we briefly summarize Chen’s results. He considered
the following parametric and semiparametric approaches to the estimation of ψ0: a prospective
likelihood approach under the model C that assumes that one has correctly modelled the nuisance
baseline function f (Y | a0, L); a retrospective likelihood approach under the model D that
assumes that one has correctly specified a model for the nuisance baseline function g(A | y0, L);
a joint likelihood approach under the intersection model that assumes that both models C and D
are correct; and a doubly robust locally semiparametric efficient approach under the union model
B of § 1.

In his doubly robust approach, Chen establishes that in the semiparametric model A char-
acterized by the sole restriction (1), the density h(A, Y | L) can be written as h(A, Y | L; ψ0),
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where

h (A, Y | L; ψ) = γ (Y, A, L; ψ) f (Y | L , A = a0) g (A | Y = y0, L)∫
γ (y, a, L; ψ) f (y | L , A = a0) g (a | Y = y0, L) dμ (a, y)

, (2)

f (y | L , A = a0) and g(a | Y = y0, L) are the unknown conditional densities that generated the
data and are solely restricted by

∫
γ (y, a, L) f (y | L , A = a0)g(a | Y = y0, L)dμ(a, y) < ∞

almost everywhere. Then, he specifies parametric models f (Y | a0, L; θ) and g(A | y0, L; α)
for the unknown nuisance baseline functions f (y | a0, L) and g(a | y0, L), obtains profile es-
timates θ̂(ψ) and α̂(ψ) of the nuisance parameters θ and α and calculates the efficient score
Ŝeff (ψ) ≡ Seff {θ̂ (ψ), α̂(ψ), ψ} for ψ in the semiparametric model A evaluated at the law
[γ (y, a, l; ψ), f {y | a0, l; θ̂(ψ)}, g{a | y0, l; α̂(ψ)}] indexed by {θ̂ (ψ), α̂(ψ), ψ}. Next, he es-
timates ψ0 with the solution ψ̂eff to Pn{Ŝeff (ψ)} = 0, where Pn(H ) = n−1 ∑

i Hi , and proves that
ψ̂eff is regular and asymptotically linear and thus consistent and asymptotically normal under
the union model B. Further general results of Robins and Rotnitzky (2001) imply that Ŝeff (ψ)
is also the efficient score for ψ in model B under the law [γ (y, a, l; ψ), f {y | a0, l; θ̂ (ψ)}, g{a |
y0, l; α̂(ψ)}]. It follows that the estimator ψ̂eff is locally semiparametric efficient under model B
at the intersection submodel with both nuisance models correct; that is, ψ̂eff attains the semipara-
metric efficiency bound for the model B when both nuisance models happen to hold.

By definition, the efficient score Seff = �(Sψ | �⊥
nuis) for a parameter ψ in a given model is

the projection of the score Sψ for ψ onto the orthocomplement �⊥
nuis to the nuisance tangent

space �nuis in the Hilbert space L2 ≡ L2(FO ) of zero-mean functions of p dimensions, T ≡
t(A, Y, L) = t(O), with inner product EFO (T T

1 T2) ≡ E(T T
1 T2), and corresponding squared norm

‖T ‖2 = E(T TT ), where FO is the distribution function that generated the data. Chen proves that
for model A, the set

�⊥
nuis = {v(Y, A, L) : E{v(Y, A, L) | A, L} = E{v(Y, A, L) | Y, L} = 0} ∩ L2 (3)

contains all functions that have zero-mean conditional on both (A, L) and (Y, L). When both A
and Y contain continuous components and ψ0 � 0, Chen (2007) finds that this projection and
therefore Seff do not exist in closed form and must be computed using the iterative alternating
conditional expectations algorithm. Each iteration requires the evaluation, by numerical inte-
gration, of conditional expectations, which seriously limits the practicality of Chen’s approach,
particularly when A and/or Y have two or more continuous components.

The main contribution of our paper is to show that, even though the projection �(R | �⊥
nuis) of

a given random variable R = r (Y, A, L) into the orthocomplement �⊥
nuis does not exist in closed

form when both A and Y contain continuous components, the set �⊥
nuis does have a closed-form

representation, which appears to be new. We use our representation to obtain doubly robust
estimators, i.e. consistent and asymptotically normal estimators of ψ0 in the union model B, that
are nearly as efficient as ψ̂eff under the intersection submodel, yet do not require the alternating
conditional expectations algorithm. Moreover, our closed-form representation of �⊥

nuis is of
independent interest, with applications beyond the present paper. For example, Vansteelandt et al.
(2008) use our representation to construct multiple robust estimators of the parameter encoding
the interaction on an additive and multiplicative scale between two exposures A1 and A2 in their
effects on an outcome Y .

In the special situation where either Y or A has finite support, Bickel et al. (1993) provide a
closed-form expression for �(R | �⊥

nuis), which Chen, however, did not use to give a closed-form
expression for Seff. We remedy this oversight and obtain doubly robust locally-efficient closed-
form estimating functions when Y and/or A has finite support; some emphasis is given to the
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important case of dichotomous Y which, incidentally, coincides with the semiparametric logistic
regression model.

In the following, for a vector v we write v⊗2 = vvT. To simplify notation, we suppose y0 = 0
and a0 = 0 throughout, so that γ (Y, 0, L; ψ) = γ (0, A, L; ψ) = γ (Y, A, L; 0) = 1. We shall also
use the following definition.

DEFINITION 1. Given conditional densities f †(Y | L) and g†(A | L), the density h†(Y, A | L) =
f †(Y | L)g†(A | L) that makes A and Y conditionally independent given L is an admissible
independence density if the joint law of (Y, A) given L under h†(·, · | L) is absolutely continuous
with respect to the true law of (Y, A) given L with probability one. Furthermore, E†(· | ·, L)
denotes conditional expectations with respect to h†(Y, A | L).

3. MAIN RESULT

As noted previously, under model A characterized by restriction (1), Chen showed that �⊥
nuis

is given by the set (3). We now provide a new closed-form representation of this set. To do so, for
a fixed choice of admissible independence density h†(Y, A | L) = f †(Y | L)g†(A | L) and any
p-dimensional function d of (Y, A, L), define the random vector U (ψ ; d, h†) as

U (ψ ; d, h†) ≡ u(O; ψ ; d, h†) ≡ {d(Y, A, L) − d†(Y, A, L)} h†(Y, A | L)

h(Y, A | L; ψ)

with h (Y, A | L; ψ) defined in (2) and d†(Y, A, L) = E†(D | A, L) + E†(D | Y, L) − E†(D |
L) for D ≡ d(Y, A, L). The following theorem gives the influence functions of regular asymptot-
ically linear estimators of ψ0 in model A and will form the basis for our doubly robust approach.

THEOREM 1. Given an admissible independence density h†, an alternative representation of
the set �⊥

nuis of (3) is �⊥
nuis = {U (ψ0; d, h†) : d unrestricted} ∩ L2.

Proof. One can verify by explicit calculation that {U (ψ0; d, h†) : d} ∩ L2 ⊆ �⊥
nuis. To show

the other direction, take any function v(A, Y, L) in �⊥
nuis, let d(Y, A, L) = v(A, Y, L)h(A, Y |

L)/h†(Y, A | L). Then v(A, Y, L) = U (ψ0; d, h†) since
∫

d(y, A, L) f †(y | L)dμ(y) =∫
v(A, y, L) f (y | A, L)g(A | L)/g†(A | L)dμ(y) = E{v(A, Y, L) | A, L}g(A | L)/g†(A |

L) = 0 and
∫

d(Y, a, L)g†(a | L)dμ(a) = E{v(A, Y, L) | Y, L} f (Y | L)/ f †(Y | L) = 0. �

Remark. We give an alternative, more abstract, proof of the fact that U (ψ0; d, h†) ≡
{d(Y, A, L) − d†(Y, A, L)}h†(Y, A | L)/h(Y, A | L; ψ0) ∈ �⊥

nuis. Given an admissible indepen-
dence density h†, let �⊥,†

nuis be the set (3) with expectations taken under h†. It is well
known that when, as under h†, A and Y are conditionally independent given L , �⊥,†

nuis admits
the representation {d(Y, A, L) − d†(Y, A, L) : d}. Then d(Y, A, L) − d†(Y, A, L) ∈ �⊥,†

nuis im-
plies {d(Y, A, L) − d†(Y, A, L)}h†(Y, A | L)/h(Y, A | L; ψ0) ∈ �⊥

nuis, by the Radon–Nikodym
theorem.

By standard semiparametric theory (Bickel et al., 1993), Theorem 1 implies that if ψ̂ is a
regular and asymptotically linear estimator of ψ0 in model A, then given any admissible inde-
pendence density h†, there exists a p-dimensional function D ≡ d(O) such that n1/2(ψ̂ − ψ0) =
n1/2 Pn[E{∂U (ψ ; d, h†)/∂ψT |ψ=ψ0}−1U (ψ0; d, h†)] + op(1). Furthermore, this also implies that
any regular and asymptotically linear estimator of ψ0 in model A can be obtained, up to
asymptotic equivalence, as the solution to an equation

∑n
i=1 Ui (ψ ; d, h†) = 0. However, these

solutions are infeasible because h(Y, A | L; ψ) depends on the unknown conditional densi-
ties f (y | L , A = 0) and g(a | Y = 0, L), which must be estimated from the data. While a
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nonparametric smoothing method would, in principle, be the preferred approach to estimate
these densities, its finite-sample performance is bound to be poor for continuous L of mod-
erate to high dimension because of the curse of dimensionality. A practical alternative is to
proceed as in Chen (2007) and to impose working models of reduced dimension for the un-
known baseline functions f (Y | A = 0, L) and g(A | Y = 0, L). Hence, we specify variation
independent parametric models g(A | Y = 0, L; α) for g(A | Y = 0, L) and f (Y | A = 0, L; θ)
for f (Y | A = 0, L) with unknown finite-dimensional parameters α and θ . Since we cannot be
sure that either f (Y | A = 0, L; θ) or g(A | Y = 0, L; α) is correctly specified, we shall construct
a doubly robust estimator of ψ0 that is guaranteed to be consistent and asymptotically normal if
either, but not necessarily both, of these working models is correct.

To do so, we adopt the notational convention introduced in § 1 that given a function such as
U (ψ0; d, h†) which depends on the unknown law h(Y, A | L; ψ0), we let U (ψ, θ, α; d, h†) be
the function U (ψ0; d, h†) evaluated at the law {γ (y, a, l; ψ), f (y | 0, l; θ), g(a | 0, l; α)}. Then,
Theorem 2 shows that, under standard regularity conditions, ψ̂ ≡ ψ̂(d; ĥ†) is doubly robust,
where ψ̂(d; ĥ†) is the solution to

Pn[U {ψ, θ̂ (ψ), α̂(ψ); d, ĥ†}] = 0,

d(Y, A, L) is a user-supplied function,

α̂(ψ) = arg max
α

n∑
i=1

log{g(Ai | Yi , Li ; ψ, α)}

is the profile maximum likelihood estimator of α at a fixed ψ, g(A | Y, L; ψ, α) =
γ (Y, A, L; ψ)g(A | Y = 0, L; α)/

∫
g(a | Y = 0, L; α)γ (Y, a, L; ψ)dμ(a),

θ̂ (ψ) = arg max
θ

n∑
i=1

log{ f (Yi | Ai , Li ; ψ, θ)}

is the profile maximum likelihood estimator of θ at a fixed ψ, f (Y | A, L; ψ, θ) =
γ (Y, A, L; ψ) f (Y | A = 0, L; θ)/

∫
γ (y, A, L; ψ) f (y | A = 0, L; θ)dμ(y), and ĥ†(Y, A | L) ≡

f †(Y | L; ω̂ f )g†(A | L , ω̂g). Here f †(Y | L; ω̂ f ) is a user-specified density when ω̂ f is cho-
sen to be nonrandom, and f †(Y | L; ω̂ f ) is a user-supplied parametric model f †(Y | L; ω f ) for
the density of Y | L evaluated at ω̂ f maximizing

∏n
i=1 f †(Yi | Li ; ω f ), otherwise. Similarly,

g†(A | L , ω̂g) is a user-specified density when ω̂g is chosen nonrandom and g†(A | L , ω̂g) is a
user-supplied parametric model g†(A | L; ωg) for the density of A | L , evaluated at ω̂g maximiz-
ing

∏n
i=1 f †(Ai | Li ; ωg), otherwise.

THEOREM 2. Suppose ĥ†(Y, A | L) converges in probability to an admissible independence
density h†(Y, A | L). Then subject to the regularity conditions given in the Appendix, under the
union model B characterized by (1) and the assumption that either the model f (y | L , A = 0; θ)
or g(a | Y = 0, L; α) is correct, n1/2(ψ̂ − ψ0) is regular and asymptotically linear, with influence
function

E
[

∂

∂ψ
M{ψ, θ∗(ψ0), α∗(ψ0); d, h†} |ψ=ψ0

]−1

M{ψ0, θ
∗(ψ0), α∗(ψ0); d, h†} (4)

and thus converges in distribution to N (0, 
), where


 = E

⎧⎨
⎩
(

E
[

∂

∂ψ
M{ψ, θ∗ (ψ0) , α∗ (ψ0) ; d, h†} |ψ=ψ0

]−1

M{ψ0, θ
∗ (ψ0) , α∗ (ψ0) ; d, h†}

)⊗2
⎫⎬
⎭
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with θ∗(ψ) and α∗(ψ) denoting the probability limits of θ̂ (ψ) and α̂(ψ), respectively, and

M(ψ, θ, α; d, h†) = U (ψ, θ, α; d, h†) − E
{

∂

∂θ
U (ψ, θ, α; d, h†)

}
E

{
∂

∂θ
C(ψ, θ)

}−1

C(ψ, θ)

−E
{

∂

∂α
U (ψ, θ, α; d, h†)

}
E

{
∂

∂α
B(ψ, α)

}−1

B(ψ, α), (5)

where C(ψ, θ) = ∂
∂θ

log f (Y | A, L; ψ, θ) and B(ψ, α) = ∂
∂α

log{g(A | Y, L; ψ, α)} are the
scores for θ and α, respectively.

A consistent estimator of 
 is


̂ = n−1
n∑

i=1

⎛
⎜⎝

⎡
⎣n−1

n∑
j=1

∂

∂ψ
M̂ j {ψ, θ̂ (ψ̂), α̂(ψ̂); d, ĥ†} |ψ=ψ̂

⎤
⎦

−1

M̂i {ψ̂, θ̂(ψ̂), α̂(ψ̂); d, ĥ†}
⎞
⎟⎠

⊗2

,

where M̂ is defined as M but with expectations replaced by their empirical version. Thus, 
̂ can
easily be used to obtain Wald-type confidence intervals for components of ψ0.

Remark. When ω̂ f and/or ω̂g are random, the asymptotic distribution of ψ̂(d; ĥ†) is equal to
that of ψ̂(d; h†) with h† = f † × g† = f †(Y | L) × g†(A | L) the probability limit of f̂ † × ĝ† =
f †(Y | L; ω̂ f ) × g†(A | L , ω̂g). In practice, it will be convenient to use an estimated density ĥ†

rather than a fixed choice h†.

4. LOCAL EFFICIENCY

We first consider the case in which both A and Y contain continuous components. Chen’s
estimator ψ̂eff solving Pn{Ŝeff (ψ)} = 0 is locally efficient in modelB at the intersection submodel.
However, as previously noted, the estimated efficient score Ŝeff (ψ) does not exist in closed form
when ψ � 0 and the alternating conditional expectations algorithm is needed to compute Ŝeff (ψ)
and thus ψ̂eff. In this section, we propose estimators that exploit our representation of the set (3)
and thus are easier to compute than ψ̂eff, and yet are nearly locally efficient, i.e. have asymptotic
variance almost equal to that of ψ̂eff at the intersection submodel. The first estimator ψ̂(dind, ĥ†

ind)
is the easiest to compute, although its asymptotic variance is close to that of ψ̂eff only when all
components of ψ0 are close to zero; nonetheless ψ̂(dind, ĥ†

ind) will be useful in practice, because in
many epidemiologic studies, the investigator will know from previously published results that all
components of ψ0 are small. Specifically, we set dind(Y, A, L) ≡ [∂ log{γ T(Y, A, L; ψ)}/∂ψ]|ψ=0

and ĥ†
ind(Y, A | L) = f̂ †ind(Y | L)ĝ†

ind(A | L), with f̂ †ind(Y | L) ≡ f {Y | L , A; ψ = 0, θ̂ (ψ = 0)}
and ĝ†

ind(A | L) ≡ g{A | Y, L; ψ = 0, α̂(ψ = 0)}. When the true parameter ψ0 is 0 and thus

A and Y are independent given L , ψ̂eff and ψ̂(d̂ind, ĥ†
ind) have identical limiting distributions

under the union model B. This result follows from the fact that, when ψ0 = 0, Seff (ψ) =
dind(Y, A, L) − d†

ind(Y, A, L) with h†(Y, A | L) equal to the true density h(Y, A | L) (Chen, 2007).

By continuity, the asymptotic variances of ψ̂(d̂ind, ĥ†
ind) and ψ̂eff will be close, whenever ψ0 is

nearly zero.
When ψ0 is not known to be nearly zero, we adopt a general approach proposed by Newey

(1993). We take a basis system φ j (A, Y, L) ( j = 1, . . .) of functions dense in L2, such as
tensor products of trigonometric, wavelets or polynomial bases when the components of
A, Y and L are all continuous. For some finite K > dim(ψ), we form the K -dimensional
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vector U (ψ ; φ̃K , h†) with φ̃K the vector of the first K basis functions and let ŴK (ψ) ≡
U {ψ, θ̂ (ψ), α̂(ψ); φ̃K , ĥ†}, and �̂K (ψ̃) = ∑n

i=1 ŴK ,i (ψ̃)Ŵ T
K ,i (ψ̃), where ψ̃ is any preliminary

doubly robust estimator of ψ0. Let ψ̃K ,eff ≡ ψ̃K ,eff (φ̃K , ĥ†) be the minimizer of the quadratic form
{∑n

i=1 ŴK ,i (ψ)}T{�̂K (ψ̃)}−{∑n
i=1 ŴK ,i (ψ)} with {�̂K (ψ̃)}− a generalized inverse of �̂K (ψ̃).

Then, ψ̃K ,eff ≡ ψ̃K ,eff (φ̃K , ĥ†) is consistent and asymptotically normal in the semiparamet-
ric union model B; furthermore, with K chosen sufficiently large, the asymptotic variance of
n1/2(ψ̃K ,eff − ψ0) nearly attains the semiparametric efficiency bound for the union model at
the intersection submodel with both nuisance models correct. In particular, the inverse of the
asymptotic variance of ψ̃K ,eff at the intersection submodel is

K =
[

E
{

∂

∂ψT
U (ψ ; φ̃K , h†) |ψ=ψ0

}]T

�−
K E

{
∂

∂ψT
U (ψ ; φ̃K , h†) |ψ=ψ0

}

= E{SψU T(ψ0; φ̃K , h†)}�−
K [E{SψU T(ψ0; φ̃K , h†)}]T

where �−
K is a generalized inverse of �K = E{U T(ψ0; φ̃K , h†)U (ψ0; φ̃K , h†)}. Thus, K is the

variance of the population least squares regression of Sψ on the linear span of U (ψ0; φ̃K , h†). By
φ̃K dense in L2, as K → ∞, the components of U (ψ0; φ̃K , h†) become dense in �⊥

nuis so that
K →

K→∞
||�(Sψ |�⊥

nuis)||2 =var(Sψ,eff), the semiparametric information bound for estimating ψ0

under model B.
Neither of these two strategies is needed if Y or A have finite support as an explicit form for the

efficient score in this case was given by Bickel et al. (1993). Without loss of generality, assume
Y has finite support say {y0, y1, . . . , yM−1}, with y0 = 0. In the following, we use the result
obtained by Bickel et al. (1993) to construct a doubly robust locally-efficient estimating function
in model B. We then demonstrate that this estimating function is in fact a particular member of
the class of estimating functions in § 3. For clarity of exposition, this demonstration is restricted
to the case of dichotomous Y , but can be easily extended to Y with arbitrary finite support.

Consider the vector {I (Y = y1), . . . , I (Y = yM−1)} which we again denote by Y . Next,
let �(A, L; ψ0) = E{ε(ψ0)⊗2 | A, L} and k → Ũ (ψ0; k) = [k(A, L) − Ẽ{k(A, L) | L; ψ0}] ×
ε(ψ0) be a function that maps the space of p × M − 1 matrix functions of A and L into
L2, where Ẽ{k(A, L) | L; ψ0} = E{k(A, L) × �(A, L; ψ0) | L} × E{�(A, L; ψ0) | L}−1 and
ε(ψ0) = Y − E(Y | A, L; ψ0). Then, by Theorem A.4.5 of Bickel et al. (1993), the closed lin-
ear set {Ũ (ψ0; k) : k = k(A, L) unrestricted} ∩ L2 as k varies over the set of all p × (M − 1)-
dimensional functions of A and L is equal to the set �⊥

nuis for model A.
Furthermore, Bickel et al. (1993) show that Ũ {ψ0; keff (ψ0)} is the efficient score func-

tion of ψ in model A, where keff (ψ0) equals keff (ψ0) = [∂ log{ρT(A, L; ψ)}/∂ψ] |ψ=ψ0 ,
with ρ(A, L; ψ) defined to be the (M − 1) × 1 vector with the j th component equal to
γ (y j , A, L , ψ), j = 1, . . . , M − 1. Robins and Rotnitzky (2001) prove that the efficient score
in models A and B is identical at the intersection submodel. Therefore, a doubly robust, lo-
cally efficient at the intersection submodel, estimator of ψ0 in model B is obtained by solving
either

∑n
i=1 Ũi {ψ ; keff (ψ), θ̂(ψ), α̂(ψ)} = 0, or

∑n
i=1 Ũi {ψ ; keff (ψ̂mle), θ̂(ψ), α̂(ψ)} = 0, where

Ũ (ψ ; keff, θ, α) is equal to the function Ũ (ψ ; keff) evaluated at the law {γ (y, a, l; ψ), f (y | A =
0, l; θ), g(a | Y = 0, l; α)} and (ψ̂mle, θ̂mle, α̂mle) is the maximum likelihood estimator in the
parametric model h(A, Y | L; ψ, α, θ) for h(A, Y | L).

We next derive a doubly robust locally-efficient estimating function U (ψ, θ, α; deff, h†) in our
class that equals Ũ (ψ ; keff, θ, α), in the special case where Y is dichotomous. This case is of
particular interest as model A is then equivalent to the familiar semiparametric logistic regression
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model

logit{Pr (Y = 1 | A, L; ψ0) = log {γ (1, A, L; ψ0)} + η(L)

with y1 = 1 and η(L) = log[Pr(Y = 1 | A = 0, L)/{1 − Pr(Y = 1 | A = 0, L)}] is an unre-
stricted function of L . Since Y is binary, any function d(Y, A, L) may be written as
Y m(A, L) + n(A, L) with m(A, L) = d(1, A, L) − d(0, A, L) and n(A, L) = d(0, A, L). Given
an admissible independence density h†(Y, A | L) = f †(Y | L)g†(A | L), let r → V (ψ0; r, h†) =
{r (A, L) − r

†
(L)} × (−1)1−Y g†(A | L)/h(Y, A | L; ψ0), be a function that maps the space of

p-dimensional functions of A and L into L2, where r†(L) ≡ E†{r (A, L) | L}. For a given choice
of h† and d(Y, A, L), U (ψ0; d, h†) simplifies to V (ψ0; r, h†) with r (A, L) = m(A, L) f †(1 |
L){1 − f †(1 | L)}.

Furthermore, by

(−1)1−Y

h(Y, A | L; ψ0)
= {Y − Pr(Y = 1 | A, L; ψ0)}

var(Y | A, L; ψ0)
∫

h(y, A | L; ψ0)dμ(y)
,

we have that

V (ψ0; r, h†) = {r (A, L) − r
†
(L)}g†(A | L)

var(Y | A, L; ψ0)
∫

h(y, A | L)dμ(y)
× ε(ψ0).

Thus, since Seff = Ũ (keff) is the efficient score, we conclude that V {ψ0; reff (h†; ψ0), h†} = Seff

with

reff (h†; ψ0) ≡ g(A | L)

g†(A | L)
× var(Y | A, L; ψ0) × [keff (ψ0) − E{keff (ψ0)

× var(Y | A, L; ψ0) | L} × E{var(Y | A, L; ψ0) | L}−1].

Therefore, the solution to either of the following estimating equations is doubly robust
locally semiparametric efficient

∑n
i=1 Ui [ψ, θ̂ (ψ), α̂(ψ); deff {ψ, θ̂ (ψ), α̂(ψ), ĥ†}, ĥ†] = 0, or∑n

i=1 Ui {ψ, θ̂ (ψ), α̂(ψ); deff (ψ̂mle, θ̂mle, α̂mle, ĥ†), ĥ†} = 0 where deff (Y, A, L; ψ, θ, α,

ĥ†) = Yreff (ĥ†; ψ, θ, α), α̂(ψ) as defined earlier and θ̂ (ψ) = arg maxθ

∑n
i=1[Yi log{b(Ai ,

Li ; ψ, θ)} + (1 − Yi ) log{1 − b(Ai , Li ; ψ, θ)}] with logit{b(A, L; ψ, θ)} = log{γ (1, A, L; ψ)} +
η(L; θ). More precisely, each solution is regular and asymptotically linear under model B and
attains the semiparametric efficiency bound for the model at the intersection submodel.

5. DISCUSSION

Although the common variation independent parameterization of h(A, Y | L) fL (L) under
model A with Y binary is (ψ, f, g, fL ) with fL = fL (l), f = f (y | l, A = 0) and g = g(a | l),
we instead used the parameterization of Chen (2007) that has g = g(a | Y = 0, l) rather than
g = g(a | l). Our use of Chen’s parameterization was the key to our obtaining the doubly
robust estimating functions for ψ and hence doubly robust estimators. Formally, following
Robins and Rotnitzky (2001), a function S(ψ, f ∗, g∗) = s(O; ψ, f ∗, g∗) of a single subject’s
data O is said to be doubly robust for ψ under a particular parameterization for model A if,
when either, but not necessarily both f = f ∗ or g = g∗, (i) Eψ, f,g, fL {S(ψ ; f ∗, g∗)} = 0 and
varψ, f,g, fL {S(ψ, f ∗, g∗)} < ∞ for all ψ and (ii) ∂[Eψ∗, f,g, fL {S(ψ ; f ∗, g∗)}/∂ψ]|ψ=ψ∗ � 0 for
all ψ∗, f, g, fL . Part (ii) guarantees power against local alternatives. As shown in the Appendix,
U (ψ ; θ, α, d, h†) and Ũ (ψ ; kef f , θ, α) satisfy this definition under Chen’s parameterization with
f ∗(y | l, A = 0) = f (y | l, A = 0; θ) and g∗(a | Y = 0, l) = g(a | Y = 0, l; α). In contrast, no
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doubly robust estimating function for ψ exists under the common parameterization. In fact, the
following result holds.

THEOREM 3. Under the common parameterization by (ψ, f, g, fL ) with fL = fL (l), f =
f (l) = f (y | l, A = 0) and g = g(a | l), there does not exist a doubly robust estimating function
S(ψ, f ∗, g∗) = s(O; ψ, f ∗, g∗) in model A with Y binary characterized by the sole restriction
(1).

In the Appendix, we prove this result for discrete A, thereby avoiding technicalities that arise
in the continuous case.
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APPENDIX

Proof of Theorem 2. We assume that the regularity conditions of Theorem 1A of Robins et al. (1992)
hold for U (ψ0; θ, α, h†), C(ψ0, θ ) and B(ψ0, α) and that E[∂ M{ψ, θ∗(ψ), α∗(ψ); d, h†}/∂ψ |ψ=ψ0 ] is
nonsingular. We first show that E{U (ψ0; θ∗(ψ0), α∗(ψ0), h†)} = 0 when the data are generated under
either f (Y | A, L; ψ0, θ0) or f (A | Y, L; ψ0, α0). By symmetry, it is enough to consider the case where the
data were generated under f (Y | A, L; ψ0, θ0). Under standard conditions guaranteeing the consistency
of the maximum likelihood estimator, θ∗(ψ0) = θ0. Now, under f (Y | A, L; ψ0, θ0),

E[U {ψ0; θ0, α
∗(ψ0), h†}]

= E[ f †(Y | L)g†(A | L){d(Y, A, L) − d†(Y, A, L)}/h{Y, A | L; ψ0, θ0, α
∗(ψ0)}]

= E

(
g†(A | L)∫

h{u, A | L; ψ0, θ0, α∗(ψ0)}dμ(u)
E

[
f †(Y | L)

h(Y | A, L; ψ0, θ0)
{d(Y, A, L) − d†(Y, A, L) | A, L

])

= E

[
g†(A | L)∫

h{u, A | L; ψ0, θ0, α∗(ψ0)}dμ(u)

∫
f †(y | L){d(y, A, L) − d†(y, A, L)}dμ(y)

]
= 0,

since∫
f †(y | L){d(y, A, L) − d†(y, A, L)}dμ(y)

=
∫

f †(y | L)d(y, A, L)dμ(y) −
∫

d(y, A, L) f †(y | L)dμ(y)

−
∫

d(y, a, L) f †(y | L)g†(a | L)dμ(a, y) +
∫

d(y, a, L)g†(a | L) f †(y | L)dμ(y, a) = 0.

Then, under the assumed regularity conditions the formulae (4) and (5) follow from standard Taylor series
arguments, whenever E[∂ M{ψ, θ∗(ψ), α∗(ψ); d, h†}/∂ψ]|ψ=ψ0 is nonsingular. The asymptotic normality
result follows from the standard application of Slutsky’s theorem and the central limit theorem. �

Proof of Theorem 3. The proof is by contradiction: if S(ψ, f ∗, g∗) were doubly robust, then, for every
f ∗, S(ψ, f ∗, g∗) would be an unbiased estimating function for ψ with power against local alternatives in
the submodel Ag∗ of model A in which g = g∗ is known a priori. Hence, it suffices to prove that model
Ag∗ does not admit such unbiased estimating functions. Noting that model Ag∗ can be parameterized
by (ψ, f, fL ), we need to prove there is no function Q(ψ) = q(O; ψ) such that Eψ, f, fL {Q(ψ)} = 0,
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varψ, f, fL {Q(ψ)} < ∞ and ∂[Eψ∗, f, fL {Q(ψ)}]/∂ψ|ψ=ψ∗ � 0 for all ψ∗, f, fL . Now Bickel et al. (2003)
proved that an unbiased estimating function for a parameter ψ lies in the orthocomplement to the nuisance
tangent space for the model. For model Ag∗ , it is straightforward to show that the orthocomplement to the
nuisance tangent space at law (ψ, f, fL ), say �⊥

nuis,g∗(ψ, f ), does not depend on fL and is the direct sum
of the orthocomplement for model A plus the space of functions v = v(A, L) of (A, L) with zero-mean
given L . Thus,

�⊥
nuis,g∗(ψ, f ) =[

T (k, v; ψ, f ) = Ũ (ψ, f ; k) + v(A, L); k unrestricted, v with E{v(A, L) | L} = 0
] ∩ L2,

where Ũ (ψ, f ; k) = ε(ψ, f )[k(A, L) − Ẽ{k(A, L) | L; ψ, f }] is Ũ (ψ ; k) defined in § 4 with the depen-
dence on f now made explicit. Suppose Q(ψ) existed. Then Q(ψ) = T (k f , v f ; ψ, f ) ∈ �⊥

nuis,g∗(ψ, f )
holds for each f , where k f and v f are the particular functions k and v associated with a given f .
Thus, T (k f , v f ; ψ, f ) = T (k f ∗ , v f ∗ ; ψ, f ∗) for any f, f ∗. Noting ε(ψ, f ) ≡ Y − pr(Y = 1 | A, L; ψ, f ),
the previous equality implies that Y {k f (A, L) − Ẽ{k f (A, L) | L; ψ, f } − k f ∗ (A, L) − Ẽ{k f ∗ (A, L) |
L; ψ, f ∗}] is equal to a function that does not depend on Y . Hence, it must be that

k f (A, L) − Ẽ{k f (A, L) | L; ψ, f } = k f ∗ (A, L) − Ẽ{k f ∗ (A, L) | L; ψ, f ∗}.
Thus, for a function r (L), k f ∗ (A, L) = k f (A, L) + r (L). Substituting for k f ∗ (A, L) in the last display
we obtain k f (A, L) − Ẽ{k f (A, L) | L; ψ, f } = k f (A, L) + r (L) − Ẽ{k f (A, L) | L; ψ, f ∗} − r (L) and
hence Ẽ{k f (A, L) | L; ψ, f } = Ẽ{k f (A, L) | L; ψ, f ∗} with probability one for all f, f ∗, ψ which, as
shown in the next paragraph, implies k f (A, L) is not a function of A, i.e. k f (A, L) = k̃(L) with prob-
ability one for some k̃(L). But k f (A, L) not a function of A implies ∂[Eψ∗, f, fL {Q(ψ)]/∂ψ |ψ=ψ∗ = 0,
which is a contradiction. We conclude that no unbiased estimating function Q(ψ) with power against local
alternatives exists. We show that, for A binary, Ẽ{h(A, L) | L; ψ, f } depends on f on a set of nonzero
probability whenever the conditional odds ratio function γ (1, 1, L; ψ) � 1 with probability one, and
h(A, L) = h1(L)A + h0(L) depends on A, i.e. whenever h1(L) is nonzero with positive probability. Let
f (l) denote f (1 | A = 0, l). When γ (1, 1, L; ψ) � 1 with probability one, Ẽ[A | L; ψ, f ] = Ẽ[A | L;
ψ, f ] = [1 + {g(A = 0 | L)/g(A = 1 | L)}{1 − f (L) + γ (1, 1, L) f (L)}2/γ (1, 1, L)]−1 obviously de-
pends on f (L) with probability one which implies Ẽ{h(A, L) | L; ψ, f } depends on f on the set
where h1(L) is nonzero. The proof for arbitrary discrete A is identical except that extra bookkeeping is
required. �

REFERENCES

BICKEL, P., KLASSEN, C., RITOV, Y. & WELLNER, J. (1993). Efficient and Adaptive Estimation for Semiparametric
Models. New York: Springer.

CHEN, H. Y. (2003). A note on prospective analysis of outcome-dependent samples. J. R. Statist. Soc. B 65, 575–84.
CHEN, H. Y. (2004). Nonparametric and semiparametric models for missing covariates in parametric regression. J. Am.

Statist. Assoc. 99, 1176–89.
CHEN, H. Y. (2007). A semiparametric odds ratio model for measuring association. Biometrics 63, 413–21.
NEWEY, W. (1993). Efficient estimation of models with conditional moment restrictions. In Handbook of Statistics, IV,

Ed. G. S. Maddala, C. R. Rao and H. Vinod, pp. 427–61. Amsterdam: Elsevier Science.
ROBINS, J. M., MARK, S. D. & NEWEY, W. K. (1992). Estimating exposure effects by modelling the expectation of

exposure conditional on confounders. Biometrics 48, 479–95.
ROBINS, J. M. & ROTNITZKY, A. (2001). Comment on the Bickel and Kwon article, ‘Inference for semiparametric

models: some questions and an answer’. Statist. Sinica 11, 920–36.
VANSTEELANDT, S., VANDERWEELE, T., TCHETGEN, E. J. & ROBINS, J. M. (2008). Semiparametric inference for statistical

interactions. J. Am. Statist. Assoc. 103, 1693–704.

[Received September 2008. Revised May 2009]


	Introduction
	Preliminaries
	Main result
	Local efficiency
	Discussion

